Electronic Supporting Information (ESI)

Coordination-induced Bond Weakening of Water at the Surface of an Oxygen-deficient Polyoxovanadate Cluster

Shannon E. Cooney, Alex A. Fertig,* Madeleine R. Buisch, William W. Brennessel, and Ellen M. Matson*

Department of Chemistry, University of Rochester, Rochester, New York 14627

Supporting Information Table of Contents:

Figure S1. ¹ H NMR spectrum of (calix)V ₆ O ₅ (OH ₂)	S2
Figure S2. ¹ H NMR spectrum of (calix)V ₆ O ₆	S2
Figure S3. Electronic absorption spectra of $(calix)V_6O_5(OH_2)$ and $(calix)V_6O_6$	S3
Table S1. Crystallographic parameters of (calix)V6O5(OH2)	S4
Table S2. Bond valence sum calculations for (calix)V ₆ O ₅ (OH ₂)	S4
Figure S4. ¹ H NMR spectrum of crude reaction of (calix)V ₆ O ₆ with hydrazobenzene	S5
Figure S5. ¹ H NMR spectrum (calix)V ₆ O ₆ + 1 eq H ₂ NQ over 12 hours	S5
Figure S6. ¹ H NMR spectrum of (calix)V ₆ O₅(OH ₂) + 1 eq NQ	S6
Figure S7. Cyclic voltammogram of (calix)V ₆ O ₆ in THF	S6
Figure S8. Cyclic voltammogram of the reduction of TEMPO	S7
Figure S9. Raw kinetic trace of reaction between (calix)V ₆ O ₅ (OH ₂) and TEMPO	S7
Figure S10. Worked up kinetic trace of reaction between (calix)V ₆ O ₅ (OH ₂) and TEMPO	S8
Figure S11 ¹ H NMR spectrum of (calix)V ₆ O ₅ (OD ₂)	S9
Figure S12. Electronic absorption spectra of (calix)V ₆ O ₅ (OD ₂)	S9
Figure S13. ² H NMR spectrum of TEMPO-D	510
Figure S14. <i>k</i> _{obs} vs. [TEMPO] for the reaction between (calix)V ₆ O ₅ (OD ₂) and TEMPO	S10

Figure S1. ¹H NMR spectrum of (calix)V₆O₅(OH₂), collected in CDCl₃ at 21 °C.

Figure S2. ¹H NMR spectrum of $(calix)V_6O_6$, collected in CDCl₃ at 21°C, red asterisk indicates residual THF solvent.

Figure S3. Electronic absorption spectra of $(calix)V_6O_5(OH_2)$ (blue), and $(calix)V_6O_6$ (orange) in tetrahydrofuran.

Empirical formula	C ₅₂ H ₇₆ O ₁₉ V ₆		
Formula weight	1577.57		
Temperature / K	173.00(10) K		
Wavelength / Å	1.54184 Å		
Crystal system	orthorhombic		
Space group	Pbcm		
Unit cell dimensions	<i>a</i> = 14.4807(2) Å		
	b = 27.8595(5) Å		
	<i>c</i> = 18.7836(2) Å		
	α = 90°		
	$\beta = 90^{\circ}$		
	$\gamma = 90^{\circ}$		
Volume / Å ³	7577.78(19) Å ³		
Ζ	4		
Reflections collected	48002		
Independent reflections	8377 [<i>R</i> (int) = 0.0397]		
Completeness to theta = 67.684°	99.9%		
Goodness-of-fit on F ²	1.038		
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	<i>R</i> 1 = 0.0644, <i>wR</i> 2 = 0.1861		
Largest diff. peak and hole	0.665 and -0.479 e.Å ⁻³		

Table S1: Crystallographic parameters for molecular structure of (calix)V₆O₅ (OH₂).

Table S2. Bond valence sum (BVS) calculations for crystallographically independent vanadium ions in (calix)V₆O₅(OH₂) based on X-ray crystallographic data collected at 100 K. Table reflects the results of BVS calculations using V-O bond valence parameters (r_0) for different oxidation states of vanadium.

(calix)V ₆ O ₅ (OH ₂)	V1	V2	V3	V4	V5
V(III)	3.194	3.826	3.921	3.051	3.814
V(IV)	3.270	3.917	4.015	3.124	3.905
V(V)	3.513	4.178	4.278	3.359	4.167

Figure S4. ¹H NMR spectrum of crude reaction of $(calix)V_6O_6$ with hydrazobenzene after 5 hours at 25 °C. Red asterisks are residual solvent (THF) and purple asterisk indicate azobenzene.

Figure S5. ¹H NMR spectrum (calix) V_6O_6 + 1 eq H₂NQ after 30 minutes (top, teal) in THF-d₈. Reaction reached equilibrium at 25 °C after 12 hours (bottom, black). Red asterisks indicate the formation of (calix) $V_6O_5(OH_2)$.

Figure S6. ¹H NMR spectrum of $(calix)V_6O_5(OH_2) + 1$ eq NQ in THF-d₈. Red asterisks indicate the formation of $(calix)V_6O_6$ after 12 at 25 °C.

Figure S7. Cyclic voltammogram 1 mM (calix) V_6O_6 with 100 mM [NBu₄][PF₆] electrolyte at a scan rate of 20 mV s⁻¹ in THF.

Figure S8. Cyclic Voltammogram of the irreversible reduction of TEMPO in THF vs Fc/Fc^+ with 0.1 M TBAPF₆ as a counter electrolyte.

Figure S9. Absorbance trace for the reaction between 0.5 mM (calix) $V_6O_5(OH_2)$, and 43 mM TEMPO in THF. The extent of the reaction was monitored at 900 nm. Experiment was performed at 25 °C.

Figure S10. Plot used to obtain the pseudo first-order rate constant for kinetic experiments performed in this work. Plotting $ln(A_t-A_{inf}/A_{inf}-A_0)$ against time results in a linear trend, from which the k_{obs} value can be determined from the absolute value of the slope. A_t = absorbance at time = t, A_{inf} = absorbance at equilibrium, and A₀ = initial absorbance.

Figure S11. ¹H NMR spectrum of (calix)V₆O₅(OD₂) in CDCl₃, red asterisks indicate residual THF.

Figure S12. Comparison of the electronic absorption spectra for $(calix)V_6O_5(OH_2)$ and $(calix)V_6O_5(OD_2)$. Both samples were collected in THF at 21 °C. The similarity of both spectra suggests the successful isolation of the deuterated cluster.

Figure S13. ²H NMR spectrum of TEMPO-D in tetrahydrofuran after a reaction of $(calix)V_6O_5(OD_2)$ with 2 eq. TEMPO.

Figure S14. Plot of the observed rate constant, k_{obs} , collected for the reaction between (calix)V₆O₅(OD₂) and TEMPO against the concentration of TEMPO originally in solution. Each experiment was run with 0.5 mM of (calix)V₆O₅(OD₂) initially in the solution. The linear trend of the plotted results indicates first order with respect to TEMPO, where the second order rate constant for the reaction, k_{PCET-D} , is determined from the slope of the best fit line with a Y-intercept of 0. Of note, k_{PCET-D} is equal to $\frac{1}{2}$ the slope of the line in order to account for the two chemically identical D atoms at the reduced cluster.