Supplementary Information

Iridium-Catalyzed Enantioselective Alkynylation and Kinetic Resolution of Alkyl Allylic Alcohols

Jia Guo, ^a Hao-Ran Ma, ^{ab} Wen-Bin Xiong, ^a Luoyi Fan, ^a You-Yun Zhou, ^{*ad} Henry N. C. Wong ^{*abc} and Jian-Fang Cui ^{*a}

^aDepartment of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen 518055, China.

E-mail: cuijf@sustech.edu.cn; hncwong@cuhk.edu.hk; zhouyy@sustech.edu.cn

^bSchool of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), 2001 Longxiang Blvd., Shenzhen 518172, China.

^cDepartment of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.

^dGuangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen 518055, China.

General Methods

Unless otherwise noted, reagents and solvents were purchased from commercial sources and used without further purification. 1,16-Dihydroxytetraphenylene (DHTP) and DHTP-derived ligands [(S)-L1, (R)-L1, (S)-L2, (S)-L3 and (S)-L4 and (S,S,S)-L5] were synthesized according to literature procedure (Synthesis 2017, 49, 181-187; Chem. Sci. 2022, 13, 4608-4615). Potassium alkynyltrifluoroborates were prepared according to literature (Org. Lett. 2020, 22, 7427-7432; J. Am. Chem. Soc. 2018, 140, 16387-16391; Org. Lett. 2013, 15, 5052-5055). (±)-Allylic alcohols were prepared according to literature (ACS Catal. 2021, 11, 7060-7069; Angew. Chem. Int. Ed. 2017, 56, 6558-6562; Angew. Chem. Int. Ed. 2012, 51, 3470-3473). The iridium-catalyzed allylic alkynylations were performed in Schlenk tubes under an atmosphere of argon. Thin layer chromatography was performed on precoated silica gel 60 F²⁵⁴ plates. Flash column chromatography was performed using silica gel (200-300 mesh). ¹H NMR and ¹³C NMR spectra were recorded on Bruker AscendTM 400 and AscendTM 600 spectrometers. Chemical shifts (ppm) were referenced to TMS or deuterated solvents, and coupling constants were given in Hz. Data for ¹H NMR were recorded as follows: chemical shift (δ , ppm), multiplicity (s, singlet; brs, broad singlet; d, doublet; dd, double doublet; ddd, double-double doublet; t, triplet; td, triple doublet; tt, triple triplet; q, quartet; qd, quadruple doublet, m, multiplet), coupling constants (Hz), integration. Data for ¹³C NMR are reported in chemical shift (δ , ppm). Data for ¹⁹F NMR and ³¹P NMR were reported in chemical shift (δ , ppm). High resolution mass spectra (HRMS) were obtained on Thermo Scientific Q Exactive (ESI), or Waters Xevo G2-XS QTof spectrometers (ESI and APCI). X-ray crystallographic data were recorded on Bruker CMOS area detector diffractometer. High pressure liquid chromatography (HPLC) analyses were performed on Agilent 1260 Infinity II equipped with chiral column from Daicel[®]. Melting points (mp) were determined on an SGW X-4A microscopic melting point apparatus. Optical rotations were recorded on a Rudolph Automatic Polarimeter. IR spectra were collected on Bruker VERTEX 70v and Bruker VERTEX 80v spectrometers. Selectivity factors (s) and conversion (C) of kinetic resolution were calculated using the method reported by Kagan (Top. Stereochem. 1988, 18, 249-330; Angew. Chem. Int. *Ed.* **2005**, *44*, 3974-4001): $s = \ln [(1-C)(1-ee_s)]/\ln[(1-C)(1+ee_s)]$, $C = ee_s/(ee_s+ee_n)$. Known compounds were characterized by comparison of their previously reported ¹H and ¹³C NMR spectra.

List of allylic alcohols (±)-1

Figure S1 List of allylic alcohols (±)-1

Allylic alcohols (\pm)-**1e-h** were purchased from commercial sources, (\pm)-**1a-d** and (\pm)-**1i-o** were synthesized according to the literature.^[1]

Genneral procedure:

Vinyl magnesium bromide (1.0 M in THF, 1.0 eq.) was added to a solution of the corresponding aldehyde (1.0 eq.) in THF at 0 °C. After being stirred for 15 min, the reaction was allowed to warm to room temperature (25 °C) and stirred for 1-3 h. The reaction mixture was quenched by the addition of saturated aqueous NH₄Cl and extracted with Et₂O. The organic phase was washed with brine and dried over MgSO₄. The solvent was removed under vacuum. The residue was purified by column chromatography to provide the corresponding allylic alcohol **1** as a colorless oil.

Scheme S1

List of potassium alkynyltrifluoroborates 2

Figure S2 List of potassium alkynyltrifluoroborates 2

All potassium alkynyltrifluoroborates **2a-p** were synthesized according to the literature.^[2]

Genneral procedure:

To a solution of terminal alkyne (1.0 eq.) in dry THF (0.4 M) at -78 °C was added "BuLi (1.6 M in hexane, 1.0 eq.) dropwise. The resulting solution was stirred for 0.5 h at -78 °C. Trimethylborate (1.5 eq.) was then added dropwise at -78 °C. After being stirred for 0.5 h at -78 °C, the reaction mixture was warmed to -20 °C and stirred for 0.5 h. A solution of potassium hydrogen difluoride (6.0 eq.) in H₂O (4.5 M) was then added. The resulting mixture was vigorously stirred for 1 h at room temperature (25 °C). The solvent was removed under reduced pressure. The resulting solid was dried under vacuum to remove water and then dissolved in hot acetone. The solution was filtered, and the filtrate was concentrated under vacuum to ~10 mL. Then, Et₂O (10 mL) was added to precipitate the potassium trifluoroborate. The

mixture was cooled to 0 °C to complete the precipitation. The white solid was collected by filtration to give the corresponding potassium alkynyltrifluoroborate **2**.

$$R = H = \frac{1) \ ^{n}BuLi, B(OMe)_{3}, THF, -78 \ ^{\circ}C}{2) \ KHF_{2} (4.5 M aq.), -20 \ ^{\circ}C to rt} \qquad R = BF_{3}K$$

Scheme S2

Potassium alkynyltrifluoroborates **2a-e** and **2g-p** are known compounds and their NMR data are consistent with reported data. While **2f** is a new compound, the characterizations of **2f** are shown below.

White solid. 53% yield. mp 214.2 – 215.4 °C.

¹**H** NMR (400 MHz, Acetone- d_6): $\delta = 6.48$ (d, J = 2.3 Hz, 2H), 6.35 (t, J = 2.1 Hz, 1H), 3.75 (s, 6H). ¹³**C** NMR (100 MHz, DMSO- d_6) δ 160.56, 127.43, 109.16, 100.38, 89.79 (relaxation time d1 = 3 seconds, no clear signal for the second acetylenic carbon atom), 55.59.

¹⁹**F NMR** (376 MHz; DMSO- d_6) δ = -131.88 (s).

HRMS (ESI): [M-K]⁻ Calcd. for [C₁₀H₉BF₃O₂]⁻ 229.0653, found 229.0643.

IR (neat): 3300, 2943, 2843, 2195, 1584, 1456, 1421, 1211, 1159, 983, 918, 833, 814, 671 cm⁻¹.

Synthesis of ligand (R)-L1

Scheme S3

A flame-dried Schlenk flask under argon was charged with the (*R*)-**DHTP** (1 mmol, 1.0 eq.) and PCl₃ (15.0 eq.). The mixture was heated at 50°C for 30 min. The initially heterogeneous mixture turned into a brownish homogenous solution. After cooling to room temperature (25°C), the excess PCl₃ was thoroughly evaporated in vacuo to remove the remaining PCl₃. The resulting phosphorochloridite was redissolved in anhydrous THF (5 mL). In a separate Schlenk flask under argon, the corresponding amine (1.2 eq.) dissolved in anhydrous THF (10 mL) was deprotonated at -78°C by the slow addition of *n*BuLi (1.6 M solution in hexanes, 1.1 eq.). After being stirred at -78 °C for 1 hour, the aforementioned phosphorochloridite solution was slowly transferred into the resulting solution via syringe. The resulting mixture was stirred at -78°C, then warmed to 25°C and continued to stir overnight. The solvent was evaporated in vacuo and purification by flash chromatography on silica gel using hexanes/toluene as the eluents to give (*R*)-L1 as a white solid in 78% yield (434.9 mg). [α]²⁰_D: +287.20 (*c* = 1.0, CHCl₃).

¹**H** NMR (400 MHz, Acetone- d_6) δ 7.39 – 7.16 (m, 15H), 7.08 – 6.95 (m, 6H), 6.91 – 6.82 (m, 2H), 6.75 (d, J = 7.5 Hz, 1H).

¹³**C NMR** (100 MHz, Acetone- d_6) δ 149.45, 149.05 (d, J = 6.5 Hz), 144.06 (d, J = 1.6 Hz), 142.99 (d, J = 1.4 Hz), 142.94, 142.75, 142.28 (d, J = 4.4 Hz), 141.25, 141.15, 141.01, 140.58, 136.43 (d, J = 3.2 Hz), 135.98 (d, J = 1.1 Hz), 131.59, 131.59, 131.19, 130.41 (d, J = 4.5 Hz), 129.51, 129.40, 129.22, 129.07 (d, J = 5.0 Hz), 129.06, 128.98, 128.61, 128.59 (d, J = 1.1 Hz), 128.43 (d, J = 8.4 Hz), 128.26, 128.16, 127.81, 127.70, 127.30, 127.27, 126.91 (d, J = 1.1 Hz), 126.66, 126.65, 125.12, 120.66 (d, J = 2.3 Hz), 120.36.

DEPT 135 ¹³**C NMR** (100 MHz, Acetone-*d*₆) δ 131.59, 131.19, 129.51, 129.40, 129.22, 129.21, 129.07 (d, *J* = 5.0 Hz), 129.06, 128.98, 128.62, 128.59 (d, *J* = 1.4 Hz), 128.44 (d, *J* = 8.3 Hz), 128.26, 128.16, 127.82, 127.70, 127.30, 127.27, 126.91 (d, *J* = 1.4 Hz), 126.67, 126.65, 125.13 (d, *J* = 1.2 Hz), 120.66 (d, *J* = 2.3 Hz), 120.37.

³¹**P** NMR (162 MHz, Acetone- d_6) $\delta = 135.09$.

HRMS (ESI): [M+H]⁺ Calcd. for [C₃₈H₂₅NO₂P]⁺ 558.1617, found 558.1614.

General procedure for the Ir-catalyzed allylic alkynylation/kinetic resolution

Scheme S4

[Ir(cod)Cl]₂ (10.8 mg, 16.0 μ mol, 4 mol%) and (*S*)-L1 (35.6 mg, 64.0 μ mol, 16 mol%) were dissolved in 1,4-dioxane (0.4 mL) in a Schlenk tube and stirred for 30 min. To the resulting brownish red solution, alkyl allylic alcohol (±)-1 (0.4 mmol, 1.0 eq.), potassium alkynyltrifluoroborate **2** (0.48 mmol, 1.2 eq.), *"*Bu₄NBr (13.0 mg, 40 μ mol, 10 mol%), KHF₂ (37.5 mg, 0.48 mmol, 1.2 eq.), and CF₃CO₂H (68.4 mg, 0.6 mmol, 1.5 eq.) were sequentially added. The resulting heterogeneous yellow mixture was stirred at 0 °C for 8 h. The reaction mixture was diluted with hexane (1.0 mL), treated with triethylamine (0.1 mL), and directly subjected to silica gel flash chromatography to afford the corresponding 1,4-enyne and unreacted allylic alcohol.

The stereoconfigurations of obtained 1,4-enynes and unreacted allylic alcohols were determined by comparison of optical rotations of (*R*)-**3a** and (*S*)-**1a** previously reported in literature. ^[3] For (*S*)-**1a**, the absolute configuration (*S*) was further confirmed by an X-ray crystallographic analysis of its derivative (*S*)-**1a**'.

The 1,4-enynes (\pm) -**3a-p** and (\pm) -**4a-m** for HPLC determination were prepared by using racemic **BINOL**-based (\pm) -**L6** as a ligand under the above standard conditions.

Scheme S5

General procedure for the esterification of (S)-1a and (S)-1e-m

Table S1 Esterification of allylic alcohols (S)-1a and (S)-1e-m

To a solution of the obtained allylic alcohol (1.0 eq.) in CH_2Cl_2 was added triethylamine (1.5 eq.) and 3,5-dinitrobenzoyl chloride (1.2 eq.) at -5 °C. The mixture was stirred for 5 h at room temperature before water (2.0 mL) was poured into the mixture at 0 °C. The aqueous phase was extracted with Et_2O , and combined organic phases were washed with saturated brine solution, dried over anhydrous MgSO₄, and concentrated under reduced pressure. The residue was purified by silica gel chromatography to give the corresponding esterification products (*S*)-1a' and (*S*)-1e'-m'.

The absolute configuration of (S)-1a was further confirmed by an X-ray crystallographic analysis of its esterification product (S)-1a'. The enantiomeric excesses of (S)-1e-m were determined by HPLC analysis of their corresponding esterification products (S)-1e'-m'.

Scale-up preparation of (S)-1a

Scheme S6

[Ir(cod)Cl]₂ (107.5 mg, 0.16 mmol) and (*S*)-L1 (356.9 mg, 0.64 mmol) were dissolved in 1,4-dioxane (4.0 mL) in a Schlenk tube and stirred for 30 min. To the resulting brownish red solution, alkyl allylic alcohol (±)-1a (0.65 g, 4.0 mmol), potassium alkynyltrifluoroborate 2a (1.14 g, 4.8 mmol), "Bu₄NBr (0.13 g, 0.4 mmol), KHF₂ (0.37 g, 4.8 mmol), and CF₃CO₂H (0.68 g, 6.0 mmol) were sequentially added. The resulting heterogeneous yellow mixture was stirred at 0 °C for 8 h. The reaction mixture was diluted with hexanes (10.0 mL) and treated with triethylamine (1.0 mL). After being stirred for 10 min, the solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel to give (*R*)-3a (0.40 g, 36% yield, 95% *ee*) and (*S*)-1a (0.28 g, 43% yield, 96% *ee*).

HPLC for the obtained (*R*)-3a: Daicel Chiralcel[®] OJ-H, 1% ^{*i*}PrOH, 99% hexane, 1.0 mL/min, 40 °C, 220 nm; 95% *ee* (t_R (major) = 20.53 min, t_R (minor) = 25.58 min).

Racemic

Enantioenriched

HPLC for the obtained (S)-1a: Daicel Chiralcel® OD-H, 12 % PrOH, 88% hexane, 1.0 mL/min, 35 °C,

220 nm; 96% *ee* (t_R (major) = 6.03 min, t_R(minor) = 7.38 min). *Racemic*

Scale-up preparation of (S)-matsutakeol

Scheme S7

 $[Ir(cod)Cl]_2$ (107.5 mg, 0.16 mmol) and (*S*)-L1 (356.9 mg, 0.64 mmol) were dissolved in 1,4-dioxane (4.0 mL) in a Schlenk tube and stirred for 30 min. To the resulting brownish red solution, alkyl allylic alcohol **1i** (0.51 g, 4.0 mmol), potassium alkynyltrifluoroborate **2a** (1.14 g, 4.8 mmol), *n*Bu₄NBr (0.13 g, 0.4 mmol), KHF₂ (0.37 g, 4.8 mmol), and CF₃CO₂H (0.68 g, 6.0 mmol) were sequentially added. The resulting heterogeneous yellow mixture was stirred at 0 °C for 8 h. The reaction mixture was diluted with hexanes (10.0 mL) and treated with triethylamine (1.0 mL). After being stirred for 10 min, the solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel to give (*R*)-**4i** (0.33 g, 34% yield, 95% *ee*) and (*S*)-**1i** (0.246 g, 48% yield, 97% *ee*).

HPLC for the obtained (*R*)-4i: Daicel Chiralcel[®] OJ-H, 1% ^{*i*}PrOH, 99% hexane, 1.0 mL/min, 40 °C, 220 nm; 95% *ee* (t_R (major) = 5.66 min, t_R (minor) = 6.48 min).

(S)-1i was converted to (S)-1i' for the HPLC analysis.

HPLC for the obtained (S)-1i' : Daicel Chiralcel® OD-H, 5% PrOH, 97% hexane, 1.0 mL/min, 35 °C,

220 nm; 97% *ee* (t_R (major) = 13.18 min, t_R (minor) = 10.46 min).

Racemic

Scale-up preparation of (R)-matsutakeol

Scheme S8

[Ir(cod)Cl]₂ (107.5 mg, 0.16 mmol) and (*R*)-L1 (356.9 mg, 0.64 mmol) were dissolved in 1,4-dioxane (4.0 mL) in a Schlenk tube and stirred for 30 min. To the resulting brownish red solution, alkyl allylic alcohol 1i (0.51 g, 4.0 mmol), potassium alkynyltrifluoroborate 2a (1.14 g, 4.8 mmol), "Bu₄NBr (0.13 g, 0.4 mmol), KHF₂ (0.37 g, 4.8 mmol), and CF₃CO₂H (0.68 g, 6.0 mmol) were sequentially added. The resulting heterogeneous yellow mixture was stirred at 0 °C for 8 h. The reaction mixture was diluted with hexanes (10.0 mL) and treated with triethylamine (1.0 mL). After being stirred for 10 min, the solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel to give (*S*)-4i (0.35 g, 36% yield, 98% *ee*) and (*R*)-1i (0.24 g, 47% yield, 99% *ee*).

HPLC for the obtained (S)-4i: Daicel Chiralcel[®] OJ-H, 1% ⁱPrOH, 99% hexane, 1.0 mL/min, 40 °C, 220 nm; 98% *ee* (t_R (major) = 6.37 min, t_R (minor) = 5.60 min).

Racemic

Enantioenriched

(*R*)-1i was converted to (*R*)-1i' for the HPLC analysis.

HPLC for the obtained (R)-1i' : Daicel Chiralcel[®] OD-H, 5% 'PrOH, 95% hexane, 1.0 mL/min, 35 °C,

220 nm; 99% *ee* (t_R (major) = 10.57 min, t_R (minor) = 13.71 min). *Racemic*

Enantioenriched	Enantioenriched		

The synthetic transformations of (S)-1a

A) The Mitsunobu reaction of (S)-1a with N-hydroxyphthalimide

To a solution of (*S*)-1a (64.9 mg, 0.4 mmol, 98% *ee*) in THF (1.5 mL) was added PPh₃ (125.9 mg, 0.48 mmol,) and *N*-Hydroxyphthalimide (78.3 mg, 0.48 mmol). The resulting mixture was cooled to 0 °C before diethyl azodicarboxylate (**DEAD**, 83.6 mg, 0.48 mmol) was added dropwise. After being stirred 0.5 h at 0 °C, the reaction was allowed to warm to room temperature (25 °C) and stirred until the reaction completed by TLC analysis. The solvent was evaporated in vacuo and the residue was purified by column chromatography to provide 103.3 mg (*R*)-**5** as a colorless oil in 84% yield (103.3 mg) with 99% *ee*.

The stereoconfiguration of (R)-5 was determined by comparison of optical rotation of its enantiomer previously reported in literature.^[4]

B) The esterification of (S)-1a

To a solution of (*S*)-1a (64.9 mg, 0.4 mmol, 98% *ee*) in CH₂Cl₂ (1.0 mL) was added Trichloroacetyl isocyanate (90.4 mg, 0.48 mmol) dropwise at 0 °C. The reaction was allowed to warm to room temperature (25 °C) and stirred until the reaction completed by TLC analysis. The excess solvent was evaporated in vacuo. The residue was cooled to 0 °C and dissolved in MeOH-water (4:1, 2.0 ml). K₂CO₃ (221.2 mg, 1.6 mmol) was added in one portion to the mixture. The resulting mixture was warmed to room temperature (25 °C) and continued to stir overnight. The solvent was removed under vacuum, and the residue was purified by column chromatography to provide 69.6 mg (*S*)-**6** as a white solid in 85% yield with >99% *ee*.

The stereoconfiguration of (S)-6 was determined by comparison of optical rotation of its analogue previously reported in literature.^[5]

C) The cyclopropanation of (S)-1a

To a solution of Dimethoxyethane (**DME**, 144.2 mg, 1.6 mmol) in CH₂Cl₂ (10.0 mL) was added Et₂Zn (1.0 M in hexane, 1.6 mL, 1.6 mmol) and CH₂I₂ (857.1 mg, 3.2 mmol) dropwise at -20 °C under argon. Then a solution of (*S*)-1a (64.9 mg, 0.4 mmol, 98% *ee*) in CH₂Cl₂ (2.0 mL) was added at -20 °C. The reaction was allowed to warm to room temperature (25 °C) and stirred until the reaction completed by TLC analysis. The reaction was quenched by saturated solution of NH₄Cl and the resulting mixture was extracted with Et₂O. The combined organic layers were washed with brine, dried over MgSO₄. The solvent was removed under vacuum and the residue was purified by column chromatography to provide 60.1 mg (*S*)-7 as a colorless oil in 85% yield with 99% *ee*.

The stereoconfiguration of (*S*)-7 was determined by comparison of optical rotation of its analogue^[4] and its enantiomer^[6] previously reported in literature.

D) The hydrogenation of (S)-1a

To a solution of (*S*)-1a (64.9 mg, 0.4 mmol, 98% *ee*) in MeOH (2.0 mL) was added 10 wt% Pd/C (100.6 mg, 0.1 equiv). The reaction was stirred at room temperature under H₂ (1 atm balloon) overnight. The reaction was filtered through a celite plug. Then the solvent was removed under vacuum and the residue was purified by column chromatography to provide 63.6 mg (*R*)-8 as a white solid in 98% yield with 98% *ee*.

The stereoconfiguration of (*R*)-8 was determined by comparison of its optical rotation previously reported in literature.^[7]

Control experiments using enantiopure allylic alcohol (S)-1a as substrate

A) Using (S)-L1 as ligand:

Scheme S13

 $[Ir(cod)Cl]_2$ (10.8 mg, 16.0 µmol) and (*S*)-L1 (35.6 mg, 0.64 µmol) were dissolved in 1,4-dioxane (0.4 mL) in a Schlenk tube and stirred for 30 min. To the resulting brownish red solution, alkyl allylic alcohol (*S*)-1a (64.9 mg, 0.4 mmol, 96% *ee*), potassium alkynyltrifluoroborate 2a (114.3 mg, 0.48 mmol), "Bu₄NBr (13.0 mg, 40 µmmol), KHF₂ (37.5 mg, 0.48 mmol), and CF₃CO₂H (68.4 mg, 0.6 mmol) were sequentially added. The resulting heterogeneous yellow mixture was stirred at 0 °C for 8 h. The reaction mixture was diluted with hexanes (1.0 mL) and treated with triethylamine (0.1 mL). The resulting mixture was purified by flash chromatography on silica gel to only give (*S*)-1a in 78% yield with 98% *ee*, while no 3a was afforded.

HPLC for (S)-1a: Daicel Chiralcel[®] OD-H, 12 % ^{*i*}PrOH, 88% hexane, 1.0 mL/min, 35 °C, 220 nm; 98% ee (t_R (major) = 6.09 min, t_R(minor) = 7.65 min).

Racemic

B) Using (*R*)-L1 as ligand:

Scheme S14

[Ir(cod)Cl]₂ (10.8 mg, 16.0 μ mol) and (*R*)-L1 (35.6 mg, 0.64 μ mol) were dissolved in 1,4-dioxane (0.4 mL) in a Schlenk tube and stirred for 30 min. To the resulting brownish red solution, alkyl allylic alcohol (*S*)-1a (64.9 mg, 0.4 mmol, 96% *ee*), potassium alkynyltrifluoroborate 2a (114.3 mg, 0.48 mmol), ^{*n*}Bu₄NBr (13.0 mg, 40 μ mmol), KHF₂ (37.5 mg, 0.48 mmol), and CF₃CO₂H (68.4 mg, 0.6 mmol) were sequentially added. The resulting heterogeneous yellow mixture was stirred at 0 °C for 8 h. The reaction mixture was diluted with hexanes (1.0 mL) and treated with triethylamine (0.1 mL). The resulting mixture was purified by flash chromatography on silica gel to give (*S*)-3a in 74% yield with 99% *ee*, and no (*S*)-1a was recovered. HPLC for the obtained (*S*)-3a: Daicel Chiralcel[®] OJ-H, 1% ^{*i*}PrOH, 99% hexane, 1.0 mL/min, 40 °C, 220 nm; 99% *ee* (t_R (major) = 24.08 min, t_R (minor) = 20.22 min).

Racemic

³¹P NMR experiment of (S)-L1 and [Ir(cod)Cl]₂ in a ratio of 4: 1

Scheme S15

In a glove box, to a bottle was added $[Ir(cod)Cl]_2$ (10.7 mg, 0.016 mmol, 1.0 equiv.), (S)-L1 (35.7 mg, 0.064 mmol, 4.0 equiv.) and CDCl₃ (0.8 mL). The resulting solution was stirred at room temperature for 2 hours. The reaction solution was transferred into an NMR tube and analyzed by ³¹P NMR and HRMS spectroscopies.

³¹**P** NMR (162 MHz, CDCl₃) δ = 135.6 (s).

HRMS (ESI): [M-Cl]⁺ Calcd. for [C₇₆H₄₈IrN₂O₄P₂]⁺ 1307.2713, found 1307.2744.

According to the ³¹P NMR and HRMS analyses, the structure of the generated product was proposed as Ir[(*S*)-L1]₂Cl.

Figure S3 ³¹P NMR (162 MHz, CDCl₃) spectrum of the *in situ* generated Ir[(S)-L1]₂Cl

HRMS anylysis of the *in situ* generated Ir[(S)-L1]₂Cl

Figure S4 ESI-MS spectrum of the spectrum of the *in situ* generated Ir[(S)-L1]₂Cl

Theoretical spectrum of [C76H48N2O4P2Ir]+

a)

Figure S5 a) Experimental and b) simulated isotopic distribution of {Ir[(S)-L1]₂}+

³¹P NMR experiment of (S)-L1 and [Ir(cod)Cl]₂ in a ratio of 2: 1

Scheme S16

In a glove box, to a bottle was added $[Ir(cod)Cl]_2$ (10.7 mg, 0.016 mmol, 1.0 equiv.), (S)-L1 (17.9 mg, 0.032 mmol, 2.0 equiv.) and CDCl₃ (0.8 mL). The resulting solution was stirred at room temperature for 2 hours. The reaction solution was transferred into an NMR tube and analyzed by ³¹P NMR and HRMS spectroscopies.

³¹**P** NMR (162 MHz, CDCl₃) δ = 109.0 (s).

HRMS (ESI): [M-Cl]⁺ Calcd. for [C₄₆H₃₆IrNO₂P]⁺ 858.2118, found 858.2114.

According to the ³¹P NMR and HRMS analyses, the structure of the generated product was proposed as **[(***S***)-L1](cod)IrCl**.

Figure S6 ³¹P NMR (162 MHz, CDCl₃) spectrum of the *in situ* generated [(S)-L1](cod)IrCl

HRMS anylysis of the *in situ* generated [(S)-L1](cod)IrCl

Positive mode:

Figure S7 ESI-MS spectrum of the spectrum of the *in situ* generated [(S)-L1](cod)IrCl

a) Zoom in, $[C_{46}H_{36}NO_2PIr]^+$

G2 #8 RT: 0.10 AV: 1 NL: 8.52E7 T: FTMS + p ESI Full ms [100.0000-1000.0000]

b)

Theoretical spectrum of [C₄₆H₃₆NO₂PIr]⁺

Figure S8 a) Experimental and b) simulated isotopic distribution of {[(S)-L1](cod)Ir}+

The comparison of ³¹P NMR spectra of (S)-L1, [(S)-L1](cod)IrCl and Ir[(S)-L1]₂Cl

Figure S9 ³¹P NMR spectra of (S)-L1, [(S)-L1](cod)IrCl and Ir[(S)-L1]₂Cl

³¹P NMR experiment of (*R*)-1a combined with [Ir(cod)Cl]₂ and (*S*)-L1

In a glove box, to a bottle was added $[Ir(cod)Cl]_2$ (10.7 mg, 0.016 mmol, 1.0 equiv.), (*S*)-L1 (35.7 mg, 0.064 mmol, 4.0 equiv.), (*R*)-1a (15.6 mg, 0.096 mmol, 6.0 equiv.) and CDCl₃ (0.8 mL). The resulting solution was stirred at room temperature for 2 hours. The reaction solution was transferred into an NMR tube under Ar and analyzed by ³¹P NMR spectroscopy.

³¹**P** NMR (162 MHz, CDCl₃) δ = 108.6 (d, *J* = 30.2 Hz), 103.1 (d, *J* = 29.9 Hz).

According to the 31 P NMR anylysis, the structure of the generated intermediate was proposed as **(S,S,R)-A**.

Figure S10 ³¹P NMR (162 MHz, CDCl₃) spectrum of the *in situ* generated (S,S,R)-A

³¹P NMR experiment of (S)-1a combined with [Ir(cod)Cl]₂ and (S)-L1

In a glove box, to a bottle was added $[Ir(cod)Cl]_2$ (10.7 mg, 0.016 mmol, 1.0 equiv.), (*S*)-L1 (35.7 mg, 0.064 mmol, 4.0 equiv.), (*S*)-1a (15.8 mg, 0.096 mmol, 6.0 equiv.) and CDCl₃ (0.8 mL). The resulting solution was stirred at room temperature for 2 hours. The reaction solution was transferred into an NMR tube under Ar and analyzed by ³¹P NMR spectroscopy.

³¹**P** NMR (162 MHz, CDCl₃) δ = 135.7 (s).

200

According to the ³¹P NMR anylysis, the structure of the mainly generated intermediate was $Ir[(S)-L1]_2CI$, while no proposed (*S*,*S*,*S*)-A was generated.

Figure S11 ³¹P NMR (162 MHz, CDCl₃) spectrum of (S)-1a combined with [Ir(cod)Cl]₂ and (S)-L1

Synthesis and isolation of Ir[(S)-L1]₂Cl

Scheme S17

In a glove box, a solution of $[Ir(cod)Cl]_2$ (32.4 mg, 0.05 mmol) and (S)-L1 (111.5 mg, 0.20 mmol) in CHCl₃ (2 mL) was stirred for 12 hours. The reaction mixture was concentrated to about 2/3 of the initial volume, then *n*-pentane (5 mL) was added. The resulting precipitate was isolated by filtration. The filter cake was washed with *n*-pentane (3 x 5 mL) and dried under vacuum to give $Ir[(S)-L1]_2Cl$ (75.4 mg) in 56% yield as a yellow solid.

¹**H NMR** (600 MHz, CD₂Cl₂) δ 8.11 (d, *J* = 8.4 Hz, 1H), 7.34 (t, *J* = 8.0 Hz, 1H), 7.30 (t, *J* = 7.5 Hz, 1H), 7.28 – 7.20 (m, 6H), 7.19 – 7.10 (m, 7H), 7.04 (d, *J* = 7.6 Hz, 1H), 7.00 (dd, *J* = 13.2, 7.5 Hz, 2H), 6.94 (d, *J* = 7.7 Hz, 1H), 6.64 (d, *J* = 8.0 Hz, 1H), 6.49 (d, *J* = 8.1 Hz, 1H), 4.85 – 4.74 (m, 1H), 3.68 – 3.61 (m, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 147.74, 147.52, 144.05, 143.48, 141.91, 141.14, 141.12, 140.80, 140.74, 140.39, 139.42, 139.33, 131.42, 130.84, 129.89, 129.81, 129.43, 128.76, 128.19, 128.15, 128.00, 127.98, 127.92, 127.77, 127.73, 127.53, 127.23, 127.18, 127.09, 126.38, 126.11, 125.39, 121.11, 46.95, 42.85.
³¹P NMR (162 MHz, CDCl₃) δ 135.6.

HRMS (ESI): $[M-C1]^+$ Calcd. for $[C_{76}H_{48}IrN_2O_4P_2]^+$ 1307.2713, found 1307.2716.

Crystallographic Data

X-ray diffraction of (S)-1a' (CCDC 2159810)

Single-crystal X-ray diffraction data for (*S*)-1a' as recorded on a Bruker CMOS area detector diffractometer. The crystal was kept at 100 K during data collection. Using Olex2, the structure was solved with the SHELXT structure solution program using Intrinsic Phasing and refined with the SHELXL refinement package using Least Squares minimisation. Basic information pertaining to crystal parameters and structure refinement is summarized in follow (Table S2). **CCDC 2159810** contains the supplementary crystallographic data of (*S*)-1a' for this paper. These data can be obtained free of charge *via* www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Figure S12 X-ray structure of of (S)-1a'

Table S2 Crystal data and structure refinement for (S)-1a'

cxy3457_0m			
$C_{18}H_{16}N_2O_6$			
356.33			
100			
monoclinic			
P2 ₁			
5.6781(3)			
9.7730(6)			
15.2351(9)			
90			
92.831(3)			
90			
844.40(8)			
2			
1.401			
0.900			
372.0			
$0.32 \times 0.32 \times 0.29$			
$CuK\alpha (\lambda = 1.54178)$			
5.808 to 136.53			
$-6 \le h \le 6, -11 \le k \le 11, -18 \le 1 \le 18$			
14263			
$3048 [R_{int} = 0.0493, R_{sigma} = 0.0351]$			
3048/1/236			
1.079			
$R_1 = 0.0293, wR_2 = 0.0745$			
$R_1 = 0.0297, wR_2 = 0.0747$			
0.22/-0.22			
0.00(5)			

Characterization data

Colorless oil. 43.1 mg, 39% yield. $[\alpha]^{20}_{D}$: +7.4 (*c* = 1.0, CHCl₃) (lit^[3b]: $[\alpha]^{25}_{D}$: +2.4 (*c* = 1.0, CHCl₃)). ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 8.8 Hz, 2H), 7.30 (t, *J* = 7.4 Hz, 2H), 7.26 – 7.17 (m, 3H), 6.84 (d, *J* = 8.8 Hz, 2H), 5.86 (ddd, *J* = 16.5, 10.0, 6.1 Hz, 1H), 5.38 (dt, *J* = 17.0, 1.5 Hz, 1H), 5.14 (dt, *J* = 10.0, 1.5 Hz, 1H), 3.81 (s, 3H), 3.28 (q, *J* = 6.4 Hz, 1H), 2.90 – 2.77 (m, 2H), 1.98 – 1.88 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 159.21, 141.85, 137.95, 132.99, 128.58, 128.38, 125.88, 115.88, 115.32, 113.84, 88.42, 83.89, 55.30, 37.09, 35.57, 33.30.

HRMS (ESI): $[M+H]^+$ Calcd. for $[C_{20}H_{21}O]^+$ 277.1587, found 277.1585.

HPLC: Daicel Chiralcel[®] OJ-H, 1% ^{*i*}PrOH, 99% hexane, 1.0 mL/min, 40 °C, 220 nm; 95% *ee* (t_R (major) = 20.18 min, t_R (minor) = 24.97 min).

Racemic

Enantioenriched

mAU	Signal 2: DAD1 B, S	Sig=220,4 Ref=off		20,182
150 -	Peak RetTime Type # [min]	Width Area [min] [mAU*s]	Height Area [mAU] %	
100	 1 20.182 BB 2 24.966 MM	0.5132 7933.57178 0.5311 207.65051	230.71692 97.4494 6.51650 2.5506	
50	Totals :	8141.22229	237.23342	86.5% 896.5% 896.5%
0		10	15	20 25 mir

Ph (S)-1a

-1a Obtained from the preparation of (R)-3a.

Colorless oil. 27.9 mg, 43% yield. $[\alpha]^{20}_{D}$: -3.5 (c = 1.0, CHCl₃) (lit^[8]: $[\alpha]^{25}_{D}$: -3.6 (c = 0.4, CHCl₃)). ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.25 (m, 2H), 7.25 – 7.16 (m, 3H), 5.99 – 5.85 (m, 1H), 5.26 (dq, J = 17.2, 1.5 Hz, 1H), 5.15 (dq, J = 10.3, 1.4 Hz, 1H), 4.14 (q, J = 6.4 Hz, 1H), 2.82 – 2.64 (m, 2H), 1.93

– 1.82 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 141.89, 141.02, 128.48, 128.42, 125.87, 114.96, 72.49, 38.53, 31.65.

HPLC: Daicel Chiralcel[®] OD-H, 12% ^{*i*}PrOH, 88% hexane, 1.0 mL/min, 35 °C, 220 nm; 98% *ee* (t_R (major) = 6.09 min, t_R (minor) = 7.57 min).

Racemic

(S)-1a'

White solid. 50.9 mg, 83% yield. mp: $60.3 - 60.8 \,^{\circ}$ C. $[\alpha]^{20}_{D}$: -19.7 (c = 1.0, CHCl₃) ¹H NMR (400 MHz, CDCl₃) δ 9.23 (s, 1H), 9.08 (d, J = 2.1 Hz, 2H), 7.29 – 7.24 (m, 2H), 7.20 (d, J = 7.4 Hz, 2H), 7.14 (t, J = 7.2 Hz, 1H), 5.97 (ddd, J = 17.2, 10.5, 6.8 Hz, 1H), 5.63 (q, J = 6.6 Hz, 1H), 5.43 (d, *J* = 17.2 Hz, 1H), 5.36 (d, *J* = 10.5 Hz, 1H), 2.88 – 2.70 (m, 2H), 2.27 (dt, *J* = 15.3, 7.4 Hz, 1H), 2.17 (dq, *J* = 14.3, 6.3 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 161.70, 148.60, 140.75, 135.06, 134.05, 129.35, 128.56, 128.29, 126.08, 122.31, 118.83, 77.65, 35.34, 31.65.

HRMS (ESI): $[M-H]^-$ Calcd. for $[C_{18}H_{15}N_2O_6]^-$ 355.0936, found 355.0921.

IR (neat): 3112, 2988, 2922, 1719, 1630, 1539, 1452, 1342, 1280, 1171, 1072, 923, 866, 719 cm⁻¹.

HPLC: Daicel Chiralcel[®] OJ-H, 30% *i*PrOH, 70% hexane, 1.0 mL/min, 35 °C, 220 nm; 98% *ee* (t_R (major) = 18.98 min, t_R (minor) = 16.44 min).

Racemic

Colorless oil. 27.6 mg, 28% yield. $[\alpha]^{20}_{D}$: +7.8 (c = 1.0, CHCl₃) (lit^[3b]: $[\alpha]^{25}_{D}$: +7.28 (c = 0.98, CHCl₃)). ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.42 (m, 2H), 7.36 – 7.26 (m, 5H), 7.26 – 7.17 (m, 3H), 5.87 (ddd, J = 16.3, 10.0, 6.1 Hz, 1H), 5.40 (dt, J = 16.9, 1.5 Hz, 1H), 5.16 (dt, J = 10.1, 1.4 Hz, 1H), 3.30 (q, J = 6.4 Hz, 1H), 2.94 – 2.76 (m, 2H), 2.01 – 1.87 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 141.77, 137.72, 131.65, 128.57, 128.40, 128.23, 127.78, 125.90, 123.72, 115.44, 90.02, 84.15, 37.02, 35.53, 33.28.

HRMS (APCI): [M]⁺ Calcd. for [C₁₉H₁₈]⁺ 246.1403, found 246.1406.

HPLC: Daicel Chiralcel[®] OJ-H, 5 % ^{*i*}PrOH, 95% hexane, 0.7 mL/min, 40 °C, 220 nm; 97% *ee* (t_R (major) = 8.68 min, t_R (minor) = 9.10 min).

Enantioenriched

m AU	Signa	al 2: DAD1 B,	Sig=220,	4 Ref=off			8 678	2842.82			
350	Peak	RetTime Type	Width	Area	Height	Area		e0.			
300	#	[min]	[min]	[mAU*s]	[mAU]	00		b,			
250			0 1453	3842 82324	440 86121	98 1116					
200	2	9.095 MM	0.1285	60.83271	7.88741	1.5584					
150								21			
100	Total	s :		3903.65596	448.74861			10 6 ⁰ .			
50 -								60 teg.			
0						Λ		lor			
		2		4	6		8	10	12	14	min

-1a Obtained from the preparation of (R)-3b.

Colorless oil. 30.4 mg, 47% yield.

HPLC: Daicel Chiralcel[®] OD-H, 12% ^{*i*}PrOH, 88% hexane, 1.0 mL/min, 35 °C, 220 nm; 94% *ee* (t_R (major) = 6.00 min, t_R (minor) = 7.33 min).

Racemic

Colorless oil. 42.3 mg, 35% yield. $[\alpha]^{20}_{D}$: +1.6 (*c* = 1.0, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.4 Hz, 2H), 7.39 – 7.29 (m, 4H), 7.29 – 7.19 (m, 3H), 5.89 (ddd, *J* = 16.9, 10.0, 6.0 Hz, 1H), 5.42 (dd, *J* = 17.0, 1.5 Hz, 1H), 5.17 (dd, *J* = 10.0, 1.3 Hz, 1H), 3.32 (q, *J* = 7.2, 6.7 Hz, 1H), 2.88 (tt, *J* = 14.4, 6.4 Hz, 2H), 2.03 – 1.89 (m, 2H), 1.34 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃) δ 150.98, 141.85, 137.86, 131.35, 128.58, 128.38, 125.87, 125.22, 120.72, 115.33, 89.24, 84.21, 37.10, 35.54, 34.72, 33.29, 31.21.

HRMS (APCI): [M]⁺ Calcd. for [C₂₃H₂₆]⁺ 302.2029, found 302.2035.

IR (neat): 3022, 2966, 2203, 1703, 1605, 1499, 1456, 1263, 1215, 1090, 1022, 750, 700, 667 cm⁻¹.

HPLC: Daicel Chiralcel[®] OJ-H, 5% ^{*i*}PrOH, 95% hexane, 1.0 mL/min, 40 °C, 220 nm; 92% *ee* (t_R (major) = 5.75 min, t_R (minor) = 5.39 min).

-1a Obtained from the preparation of (R)-3c.

Colorless oil. 28.6 mg, 44% yield.

HPLC: Daicel Chiralcel[®] OD-H, 12% 'PrOH, 88% hexane, 1.0 mL/min, 35 °C, 220 nm; 93% *ee* (t_R (major) = 6.50 min, t_R (minor) = 8.12 min).

(*R*)-**3d**

Colorless oil. 34.3 mg, 31% yield. $[\alpha]^{20}_{D}$: +8.0 (*c* = 0.5, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 7.22 (t, *J* = 7.5 Hz, 2H), 7.19 – 7.07 (m, 4H), 6.98 (d, *J* = 7.6 Hz, 1H), 6.90 (s, 1H), 6.78 (dd, *J* = 8.3, 2.5 Hz, 1H), 5.78 (ddd, *J* = 16.3, 10.0, 6.1 Hz, 1H), 5.31 (d, *J* = 17.0 Hz, 1H), 5.08 (d, *J* = 10.0 Hz, 1H), 3.72 (s, 3H), 3.21 (q, *J* = 6.2 Hz, 1H), 2.85 – 2.67 (m, 2H), 1.95 – 1.78 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 159.31, 141.75, 137.68, 129.29, 128.57, 128.41, 125.92, 124.74, 124.24, 116.54, 115.50, 114.38, 89.92, 84.07, 55.29, 37.00, 35.53, 33.29.

HRMS (APCI): [M]⁺ Calcd. for [C₂₀H₂₀O]⁺ 276.1509, found 276.1518.

IR (neat): 3078, 3028, 2924, 2856, 2191, 1639, 1599, 1574, 1491, 1456, 1285, 1205, 1165, 1045, 991, 922, 854, 748, 700, 687 cm⁻¹.

HPLC: Daicel Chiralcel[®] OJ-H, 1% ^{*i*}PrOH, 99% hexane, 1.0 mL/min, 40 °C, 220 nm; 90% *ee* (t_R (major) = 11.95 min, t_R (minor) = 13.75 min).

1a Obtained from the preparation of (R)-**3d**.

Colorless oil. 31.8 mg, 49% yield.

HPLC: Daicel Chiralcel[®] OD-H, 12% ^{*i*}PrOH, 88% hexane, 1.0 mL/min, 35 °C, 220 nm; 90% *ee* (t_R (major) = 6.01 min, t_R (minor) = 7.37 min).

Racemic

Colorless oil. 30.9 mg, 28% yield. $[\alpha]^{20}_{D}$: +6.0 (c = 0.5, CHCl₃).

¹**H** NMR (400 MHz, CDCl₃) δ 7.35 (dd, J = 7.5, 1.6 Hz, 1H), 7.25 – 7.19 (m, 4H), 7.18 – 7.16 (m, 1H), 7.15 – 7.09 (m, 1H), 6.87 – 6.76 (m, 2H), 5.80 (ddd, J = 17.0, 10.0, 5.9 Hz, 1H), 5.39 (dt, J = 17.0, 1.6 Hz, 1H), 5.08 (dt, J = 10.0, 1.5 Hz, 1H), 3.82 (s, 3H), 3.28 (q, J = 6.2 Hz, 1H), 2.88 – 2.74 (m, 2H), 1.93 – 1.81 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 160.06, 142.01, 137.73, 133.49, 129.14, 128.63, 128.36, 125.82, 120.34, 115.44, 112.91, 110.59, 94.17, 80.42, 55.77, 37.16, 35.80, 33.22.

HRMS (APCI): [M]⁺ Calcd. for [C₂₀H₂₀O]⁺ 276.1509, found 276.1519.

IR (neat): 2991, 2930, 2192, 1668, 1601, 1494, 1456, 1217, 1155, 1049, 1026, 752, 665 cm⁻¹.

HPLC: Daicel Chiralcel[®] OJ-H, 5% iPrOH, 95% hexane, 1.0 mL/min, 40 °C, 220 nm; 98% *ee* (t_R (major) = 8.03 min, t_R (minor) = 9.26 min).

Racemic

-1a Obtained from the preparation of (R)-3e.

Colorless oil. 30.5 mg, 47% yield.

HPLC: Daicel Chiralcel[®] OD-H, 12% ^{*i*}PrOH, 88% hexane, 1.0 mL/min, 35 °C, 220 nm; 89% *ee* (t_R (major) = 6.24 min, t_R (minor) = 7.67 min).

Colorless oil. 55.2 mg, 45% yield. $[\alpha]^{20}_{D}$: +3.5 (*c* = 1.0, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.26 (m, 2H), 7.26 – 7.16 (m, 3H), 6.61 (dt, *J* = 4.7, 2.0 Hz, 2H), 6.43 (d, *J* = 2.1 Hz, 1H), 5.92 – 5.80 (m, 1H), 5.42 – 5.35 (m, 1H), 5.18 – 5.13 (m, 1H), 3.78 (s, 6H), 3.33 – 3.24 (m, 1H), 2.90 – 2.76 (m, 2H), 1.94 (q, *J* = 7.9, 7.1 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 160.51, 141.73, 137.64, 128.58, 128.42, 125.94, 125.03, 115.55, 109.50, 101.30, 89.71, 84.12, 55.42, 36.97, 35.52, 33.30.

HRMS (ESI): $[M+H]^+$ Calcd. for $[C_{21}H_{23}O_2]^+$ 307.1693, found 307.1693.

IR (neat): 3003, 2937, 2841, 2208, 1591, 1456, 1420, 1205, 1155, 1065, 926, 839, 771, 700 cm⁻¹.

HPLC: Daicel Chiralcel[®] OJ-H, 5% ^{*i*}PrOH, 95% hexane, 1.0 mL/min, 40 °C, 220 nm; 96% *ee* (t_R (major) = 7.86 min, t_R (minor) = 9.70 min).

Ph (S)-1a

-1a Obtained from the preparation of (R)-3f.

Colorless oil. 31.1 mg, 48% yield.

HPLC: Daicel Chiralcel[®] OD-H, 12% ^{*i*}PrOH, 88% hexane, 1.0 mL/min, 35 °C, 220 nm; 97% *ee* (t_R (major) = 6.00 min, t_R(minor) = 7.35 min).

Racemic

Enantioenriched

m AU	<u>16</u>	
300	Signal 2: DAD1 B, Sig=220,4 Ref=off	
250	Peak RetTime Type Width Area Height Area	
200	# [min] [min] [mAU*s] [mAU] %	
150	1 6.001 BV R 0.1140 2555.82813 352.68036 98.6947	
100	2 7.345 BV 0.1439 33.80362 3.52540 1.3053	
50	Totals : 2589.63175 356.20576	
0		-
	2 4 6 8 10 "	ıin

Colorless oil. 27.5 mg, 26% yield. $[\alpha]^{20}_{D}$: +3.4 (*c* = 1.0, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 (dd, *J* = 8.6, 5.5 Hz, 2H), 7.24 (t, *J* = 7.5 Hz, 2H), 7.19 – 7.12 (m, 3H), 6.94 (t, *J* = 8.7 Hz, 2H), 5.80 (ddd, *J* = 16.5, 10.0, 6.1 Hz, 1H), 5.36 – 5.27 (m, 1H), 5.10 (dd, *J* = 10.0, 1.5 Hz, 1H), 3.22 (q, *J* = 6.5 Hz, 1H), 2.84 – 2.70 (m, *J* = 7.5 Hz, 2H), 1.93 – 1.84 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 162.21 (d, J = 248.5 Hz), 141.69, 137.62, 133.44 (d, J = 8.1 Hz), 128.55, 128.41, 125.94, 119.75 (d, J = 3.4 Hz), 115.51, 115.45 (d, J = 21.9 Hz), 89.7, 83.05, 36.95, 35.48, 33.27. ¹⁹F NMR (376 MHz, CDCl₃): δ = -113.93.

HRMS (APCI): [M]⁺ Calcd. for [C₁₉H₁₇F]⁺ 264.1309, found 264.1313.

IR (neat): 3022, 2970, 2926, 2178, 1728, 1597, 1508, 1456, 1412, 1325, 1213, 1067, 750, 667 cm⁻¹ HPLC: Daicel Chiralcel[®] OJ-H, 5% ^{*i*}PrOH, 95% hexane, 1.0 mL/min, 40 °C, 220 nm; 99% *ee* (t_R (major)

 $= 5.20 \text{ min}, t_{R}(\text{minor}) = 5.79 \text{ min}).$

Racemic

Ph (S)-1a Obtained from the preparation of (R)-3g.

Colorless oil. 30.5 mg, 47% yield.

HPLC: Daicel Chiralcel[®] OD-H, 12% ^{*i*}PrOH, 88% hexane, 1.0 mL/min, 35 °C, 220 nm; 98% *ee* (t_R (major) = 6.07 min, t_R (minor) = 7.52 min).

Racemic

Enantioenriched

Colorless oil. 25.8 mg, 23% yield. $[\alpha]^{20}_{D}$: +4.5 (*c* = 0.5, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.35 (m, 2H), 7.34 – 7.27 (m, 4H), 7.22 (dd, *J* = 14.4, 6.6 Hz, 3H), 5.93 – 5.80 (m, 1H), 5.43 – 5.33 (m, 1H), 5.21 – 5.13 (m, 1H), 3.29 (q, *J* = 7.3, 6.7 Hz, 1H), 2.90 – 2.76 (m, 2H), 1.95 (q, *J* = 7.6 Hz, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 141.63, 137.48, 133.74, 132.87, 128.54, 128.42, 125.96, 122.19, 115.58, 91.13, 83.03, 36.89, 35.52, 33.26.

HRMS (APCI): [M]⁺ Calcd. for [C₁₉H₁₇Cl]⁺ 280.1013, found 280.1004.

IR (neat): 3024, 2924, 2858, 2208, 1639, 1603, 1489, 1454, 1217, 1092, 1015, 920, 827, 752, 698 cm⁻¹. HPLC: Daicel Chiralcel[®] OJ-H, 5% ^{*i*}PrOH, 95% hexane, 1.0 mL/min, 40 °C, 220 nm; 98% *ee* (t_R (major) = 5.46 min, t_R(minor) = 6.18 min).

Rac	emic													
m AU 200	Signal 2: DAD1 B,	Sig=220,	4 Ref=off			5.61 6 227								
175	Peak RetTime Type	Width	Area	Height	Area	9								
150	# [min]	[min]	[mAU*s]	[mAU]	÷									
125	1 5.616 BB	0.0939	1319.01685	214.05954	50.7824									
100 -	2 6.227 BB	0.1141	1278.37146	173.15991	49.2176									
75 -			0505 00000	007 01045										
50	Totals :		2597.38831	387.21945										
25														
01		· · ·						~			-		, ,	
		2	5 50 AA	4		6	2011 - 623.		8		177874	10		min
Ena	ntioenriche	ed												
mAU -		c'- 220				1 58								
350 -	Signal 1: DADI A,	51g=220,4	4 Ret=off			li i								
300 -	Peak RetTime Type	Width	Area	Height	Area									
250 -	# [min]	[min]	[mAU*s]	[mAU]	%									
200	1 5.458 VB R	0.0954	2519.36353	397.50156	99.1531									
150	2 6.180 BB	0.1187	21.51890	2.82908	0.8469									
100 -	Totals :	:	2540.88242	400.33064										
50 -						80								
0						6				_				
1		2		1					8			10		min

^{1a} Obtained from the preparation of (*R*)-**3h**.

Colorless oil. 31.1 mg, 48% yield.

HPLC: Daicel Chiralcel[®] OD-H, 12 % 'PrOH, 1.0 mL/min, 88% hexane, 35 °C, 220 nm; 98% *ee* (t_R (major) = 6.09 min, t_R (minor) = 7.50 min).

Racemic

Enantioenriched

mAl	J Signal 1: DAD1 A, Sig=220,4 Ref=off	i i i i i i i i i i i i i i i i i i i	
25	Peak RetTime Type Width Area Height	Area %	
20) =		
15	1 6.093 BB 0.1150 2618.77808 359.56805 2 7.497 BB 0.2054 31.62532 2.23058	98.8068 1.1932	
10			
5	10TAIS: 2650.40339 361.79863	.497	
	2 4	6 8 10	m

Colorless oil. 33.7 mg, 26% yield. $[\alpha]^{20}_{D}$: +3.3 (*c* = 0.5, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 – 7.39 (m, 2H), 7.34 – 7.25 (m, 5H), 7.27 – 7.15 (m, 4H), 5.85 (ddd, *J* = 17.0, 10.0, 6.2 Hz, 1H), 5.36 (dt, *J* = 17.0, 1.5 Hz, 1H), 5.16 (dt, *J* = 10.0, 1.4 Hz, 1H), 3.28 (q, *J* = 7.5, 6.9 Hz, 1H), 2.90 – 2.73 (m, 2H), 2.01 – 1.86 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 141.61, 137.43, 133.10, 131.46, 128.53, 128.41, 125.95, 122.66, 121.91, 115.59, 91.34, 83.08, 36.85, 35.54, 33.25.

HRMS (APCI): [M]⁺ Calcd. for [C₁₉H₁₇Br]⁺ 324.0508, found 324.0512.

HPLC: Daicel Chiralcel[®] OJ-H, 5% ^{*i*}PrOH, 95% hexane, 1.0 mL/min, 40 °C, 220 nm; 99% *ee* (t_R (major) = 5.42 min, t_R (minor) = 5.84 min).

Racemic

OH Ph

(S)-1a Obtained from the preparation of (R)-3i.

Colorless oil. 28.6 mg, 44% yield.

HPLC: Daicel Chiralcel[®] OD-H, 12% ^{*i*}PrOH, 88% hexane, 1.0 mL/min, 35 °C, 220 nm; 96% *ee* (t_R (major) = 6.13 min, t_R (minor) = 7.53 min).

Racemic

Colorless oil. 33.9 mg, 27% yield. $[\alpha]^{20}_{D}$: +0.6 (*c* = 0.5, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.8 Hz, 2H), 7.44 (d, *J* = 8.7 Hz, 2H), 7.24 – 7.17 (m, 2H), 7.16 – 7.07 (m, 3H), 5.76 (ddd, *J* = 17.0, 10.0, 6.1 Hz, 1H), 5.28 (dt, *J* = 17.0, 1.5 Hz, 1H), 5.08 (dt, *J* = 10.1, 1.4 Hz, 1H), 3.22 (q, *J* = 6.4 Hz, 1H), 2.81 – 2.67 (m, 2H), 1.92 – 1.82 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 141.54, 137.25, 131.89, 129.59 (q, *J* = 32.6 Hz), 128.55, 128.47, 127.56 (d, *J* = 1.6 Hz), 126.03, 125.18 (q, *J* = 3.9 Hz), 124.02 (q, *J* = 272.1 Hz), 115.77, 92.89, 82.96, 36.83, 35.54, 33.28.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -62.75.

HRMS (APCI): $[M]^+$ Calcd. for $[C_{20}H_{17}F_3]^+$ 314.1277, found 314.1283.

IR(neat): 3020, 2208, 1547, 1479, 1445, 1327, 1217, 1032, 932, 852, 773, 744, 669 cm⁻¹.

HPLC: Daicel Chiralcel[®] OJ-H, 0.5% ^{*i*}PrOH, 99.5% hexane, 1.0 mL/min, 40 °C, 220 nm; 92% *ee* (t_R (major) = 9.78 min, t_R (minor) = 13.87 min).

Racemic

Dotained from the preparation of (R)**-3j**.

Colorless oil. 29.9 mg, 46% yield.

HPLC: Daicel Chiralcel[®] OD-H, 12% ^{*i*}PrOH, 88% hexane, 1.0 mL/min, 35 °C, 220 nm; 90% *ee* (t_R (major) = 6.05 min, t_R (minor) = 7.46 min).

Racemic

Enc	intio	penriche	d								
MAU	Signa	al 2: DAD1 B.	Sig=220	.4 Ref=off			19				
600			019 220	, 1 1.01 011			9.0				
500	Peak	RetTime Type	e Width	Area	Height	Area					
400	= #	[min]	[min]	[mAU*s]	[mAU]	do					
400	3										
300	1	6.051 BB	0.1231	5098.82715	667.95178	95.1619					
000	2	7.459 MM	0.1301	259.22629	33.21721	4.8381			b		
200	-							59.24			
100	Total	ls :		5358.05344	701.16899			459			
100	1							1-PI			
0	1										
			2		4		6	8		10	 min
			-		-		0	0		10	

Colorless oil. 35.5 mg, 30% yield. $[\alpha]^{20}_{D}$: +4.6 (*c* = 0.5, CHCl₃).

¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.72 (dd, *J* = 14.0, 8.7 Hz, 3H), 7.48 – 7.36 (m, 3H), 7.27 – 7.16 (m, 4H), 7.16 – 7.11 (m, 1H), 5.83 (ddd, *J* = 17.0, 10.0, 6.1 Hz, 1H), 5.36 (dt, *J* = 17.0, 1.5 Hz, 1H), 5.11 (dt, *J* = 10.0, 1.4 Hz, 1H), 3.28 (q, *J* = 6.6 Hz, 1H), 2.89 – 2.74 (m, 2H), 1.91 (q, *J* = 7.8 Hz, 2H).
¹³C NMR (100 MHz, CDCl₃) δ 141.76, 137.71, 133.03, 132.59, 131.21, 128.72, 128.59, 128.42, 127.85, 127.72, 127.63, 126.43, 126.38, 125.93, 121.01, 115.55, 90.41, 84.48, 37.03, 35.64, 33.33.

HRMS (APCI): $[M]^+$ Calcd. for $[C_{23}H_{20}]^+$ 296.1560, found 296.1568.

HPLC: Daicel Chiralcel[®] OJ-H, 5% ^{*i*}PrOH, 95% hexane, 1.0 mL/min, 40 °C, 220 nm; 90% *ee* (t_R (major) = 11.34 min, t_R (minor) = 12.52 min).

mAU	Signal 2: DAD1 B, Sig=220,4 Ref=off		11 .46 53 12.483
250	Peak RetTime Type Width Area Height # [min] [min] [mAU*s] [mAU]	Area %	
150	1 11.463 BV 0.2444 5813.19043 367.69864 2 12.483 VB 0.2981 5758.72852 294.49304	 50.2353 49.7647	
100 50	Totals : 1.15719e4 662.19168		
0		8 10	

Enantioenriched

1a Obtained from the preparation of (R)-**3k**.

Colorless oil. 31.1 mg, 48% yield.

HPLC: Daicel Chiralcel[®] OD-H, 12% 'PrOH, 88% hexane, 1.0 mL/min, 35 °C, 220 nm; 96% *ee* (t_R (major) = 6.00 min, t_R (minor) = 7.33 min).

Racemic

Enantioenriched

Colorless oil. 25.2 mg, 25% yield. $[\alpha]^{20}$ _D: -1.4 (*c* = 0.5, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 (dd, *J* = 3.0, 1.0 Hz, 1H), 7.26 – 7.21 (m, 2H), 7.20 – 7.11 (m, 4H), 7.05 (dd, *J* = 5.0, 1.1 Hz, 1H), 5.78 (ddd, *J* = 17.0, 10.0, 6.1 Hz, 1H), 5.30 (dt, *J* = 17.0, 1.5 Hz, 1H), 5.08 (dt, *J* = 10.0, 1.4 Hz, 1H), 3.21 (q, *J* = 6.4 Hz, 1H), 2.83 – 2.69 (m, 2H), 1.91 – 1.82 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 141.73, 137.66, 130.06, 128.56, 128.39, 127.93, 125.91, 125.08, 122.64, 115.49, 89.54, 79.07, 36.94, 35.56, 33.27.

HRMS (APCI): [M]⁺ Calcd. for [C₁₇H₁₆S]⁺ 252.0967, found 252.0970.

HPLC: Daicel Chiralcel[®] OJ-H, 0.5% *i*PrOH, 99.5% hexane, 1.0 mL/min, 40 °C, 220 nm; 96% *ee* (t_R (major) = 22.18 min, t_R (minor) = 28.95 min)

Racemic

Enantioenriched

Ph OH

(S)-1a Obtained from the preparation of (R)-3l.

Colorless oil. 31.8 mg, 49% yield.

HPLC: Daicel Chiralcel[®] OD-H, 12% ^{*i*}PrOH, 88% hexane, 1.0 mL/min, 35 °C, 220 nm; 98% *ee* (t_R (major) = 6.05 min, t_R (minor) = 7.46 min).

Racemic

(R)-(3-(cyclopropylethynyl)pent-4-en-1-yl)benzene (3m).

Colorless oil. 26.9 mg, 32% yield. $[\alpha]^{20}_{D}$: -4.3 (c = 1.0, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 7.26 – 7.20 (m, 2H), 7.18 – 7.09 (m, 3H), 5.72 (ddd, *J* = 16.5, 10.0, 6.1 Hz, 1H), 5.22 (dt, *J* = 17.0, 1.6 Hz, 1H), 5.02 (dt, *J* = 10.0, 1.5 Hz, 1H), 3.01 – 2.91 (m, 1H), 2.77 – 2.61 (m, 2H), 1.82 – 1.68 (m, 2H), 1.27 – 1.20 (m, 1H), 0.75 – 0.67 (m, 2H), 0.66 – 0.58 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 142.32, 138.86, 128.88, 128.68, 126.15, 115.22, 87.50, 75.89, 37.57, 35.38, 33.59, 8.66, 8.62.

HRMS (APCI): $[M]^+$ Calcd. for $[C_{16}H_{18}]^+$ 210.1403, found 210.1403.

HPLC: Daicel Chiralcel[®] OJ-H, 100% hexane, 0.5 mL/min, 40 °C, 220 nm; 98% *ee* (t_R (major) = 13.08 min, t_R (minor) = 13.87 min).

Racemic

Ph (S)-1a Obtained from the preparation of (R)-3m.

Colorless oil. 27.3 mg, 42% yield.

HPLC: Daicel Chiralcel[®] OD-H, 12% ^{*i*}PrOH, 88% hexane, 1.0 mL/min, 35 °C, 220 nm; 96% *ee* (t_R (major) = 5.94 min, t_R (minor) = 7.24 min).

Racemic

Colorless oil. 18.8 mg, 18% yield. $[\alpha]^{20}_{D}$: -7.0 (c = 0.5, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 (d, J = 7.7 Hz, 2H), 7.35 (t, J = 7.6 Hz, 2H), 7.32 – 7.25 (m, 3H), 7.22 (d, J = 7.5 Hz, 3H), 5.84 (ddd, J = 16.4, 10.1, 6.1 Hz, 1H), 5.35 (dq, J = 16.9, 1.5 Hz, 1H), 5.13 (dq, J = 10.0, 1.4 Hz, 1H), 3.70 (s, 2H), 3.20 – 3.10 (m, 1H), 2.88 – 2.73 (m, 2H), 1.95 – 1.82 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 141.92, 138.31, 137.41, 128.56, 128.53, 128.47, 128.37, 127.87, 126.47, 125.85, 115.13, 82.68, 81.38, 37.25, 35.17, 33.30, 25.25.

HRMS (APCI): $[M]^+$ Calcd. for $[C_{20}H_{20}]^+$ 260.1560, found 260.1562.

IR (neat): 3030, 2934, 2858, 2210, 1707, 1603, 1497, 1452, 1317, 1219, 1074, 1030, 933, 854, 771, 687, 673 cm⁻¹

HPLC: Daicel Chiralcel[®] OJ-H, 0.5% *i*PrOH, 99.5% hexane, 1.0 mL/min, 40 °C, 220 nm; 99% *ee* (t_R (major) = 21.64 min).

mAU	Signal 2: DAD1 B	3, Sig=220,4 Ref=of	f			1. 35 6	
70	Peak RetTime Type	Width Area	Height	Area		24.3	
60	# [min]	[min] [mAU*s]	[mAU]	%		1	
50							
40	1 21.556 BB	0.3866 2083.32422	81.40247	49.7210			
30	2 24.372 BB	0.5065 2106.70093	60.46638	50.2790			
20 10 0	Totals :	4190.02515	141.86884				
	5	10		15	20		25 min

Enantioenriched

S)-1a Obtained from the preparation of (R)-3n.

Colorless oil. 31.8 mg, 49% yield.

HPLC: Daicel Chiralcel[®] OD-H, 12.0% ^{*i*}PrOH, 88% hexane, 1.0 mL/min, 35 °C, 220 nm; 96% *ee* (t_R (major) = 6.00 min, t_R (minor) = 7.33 min).

Colorless oil. 25.7 mg, 26% yield. $[\alpha]^{20}$ _D: -8.0 (c = 0.5, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 2H), 7.21 (d, *J* = 7.5 Hz, 3H), 5.78 (ddd, *J* = 17.0, 10.0, 6.0 Hz, 1H), 5.29 (dt, *J* = 16.9, 1.6 Hz, 1H), 5.10 (dt, *J* = 10.0, 1.5 Hz, 1H), 3.69 (t, *J* = 6.4 Hz, 2H), 3.10 – 3.01 (m, 1H), 2.83 – 2.68 (m, 2H), 2.45 (td, *J* = 6.8, 2.2 Hz, 2H), 1.99 (p, *J* = 6.6 Hz, 2H), 1.90 – 1.75 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 141.84, 138.33, 128.51, 128.37, 125.86, 114.98, 81.89, 81.45, 43.79, 37.18, 35.02, 33.26, 31.76, 16.31.

HRMS (APCI): [M]⁺ Calcd. for [C₁₆H₁₉Cl]⁺ 246.1170, found 246.1169.

HPLC: Daicel Chiralcel[®] OJ-H, 100% hexane, 1.0 mL/min, 40 °C, 220 nm; 97% *ee* (t_R (major) = 9.38 min, t_R (minor) = 9.99 min).

Racemic

Enantioenriched

Ph

(S)-1a Obtained from the preparation of (R)-30.

Colorless oil. 31.8 mg, 49% yield.

HPLC: Daicel Chiralcel[®] OD-H, 12% ^{*i*}PrOH, 88% hexane, 1.0 mL/min, 35 °C, 220 nm; 98% *ee* (t_R (major) = 6.06 min, t_R (minor) = 7.49 min).

Racemic

Colorless oil. 36.1mg, 36% yield. $[\alpha]^{20}_{D}$: -3.6 (c = 1.0, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 7.30 (t, *J* = 7.4 Hz, 2H), 7.21 (dd, *J* = 14.2, 7.1 Hz, 3H), 6.11 (dt, *J* = 4.1, 2.1 Hz, 1H), 5.82 (ddd, *J* = 16.4, 10.0, 6.0 Hz, 1H), 5.33 (dt, *J* = 17.0, 1.6 Hz, 1H), 5.12 (d, *J* = 10.0 Hz, 1H), 3.20 (q, *J* = 6.8 Hz, 1H), 2.88 – 2.72 (m, 2H), 2.23 – 2.08 (m, 4H), 1.94 – 1.80 (m, 2H), 1.71 – 1.57 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 141.92, 138.11, 133.71, 128.56, 128.35, 125.83, 120.87, 115.10, 87.07, 85.99, 37.16, 35.46, 33.27, 29.68, 25.61, 22.43, 21.62.

HRMS (APCI): [M]⁺ Calcd. for [C₁₉H₂₂]⁺ 250.1716, found 250.1718.

HPLC: Daicel Chiralcel[®] OJ-H, 1% ^{*i*}PrOH, 99% hexane, 1.0 mL/min, 40 °C, 220 nm; 98% *ee* (t_R (major) = 8.64 min, t_R (minor) = 9.12 min).

```
Racemic
mAU
                                                                                        068
         Signal 2: DAD1 B, Sig=220,4 Ref=off
600 -
         Peak RetTime Type Width
                                     Area
                                               Height
                                                          Area
500 -
                           [min]
                                  [mAU*s]
                                               [mAU]
                                                            %
             [min]
 400 -
              -----|----|------|------|------
               8.585 BV
                           0.1346 6313.96631 732.34607
                                                        50.0551
           1
 300
           2
               9.068 VB
                           0.1442 6300.06299
                                             679.05341
                                                        49.9449
 200 -
 100 -
        Totals :
                                  1.26140e4 1411.39948
  0
```

Enantioenriched

Ph (S)-1a

a Obtained from the preparation of (*R*)-**3p**.

Colorless oil. 29.2 mg, 45% yield.

HPLC: Daicel Chiralcel[®] OD-H, 12% ^{*i*}PrOH, 88% hexane, 1.0 mL/min, 35 °C, 220 nm; 92% *ee* (t_R (major) = 6.06 min, t_R (minor) = 7.51 min).

Racemic

Enantioenriched

```
mAU
       Signal 2: DAD1 B, Sig=220,4 Ref=off
175 -
       Peak RetTime Type Width
                                     Area
                                               Height
                                                           Area
150 -
             [min]
                          [min]
                                   [mAU*s]
                                               [mAU]
                                                             %
         #
125 -
       ----|-----|
                        - | ----- |
 100 -
          1
              6.060 BB
                          0.1112 1482.09473
                                              207.90721
                                                          96.1779
                                                                                               75 -
             7.513 MM
                                                           3.8221
                          0.1421
                                    58.89866
                                                6.90646
          2
 50 -
 25 -
       Totals :
                                  1540.99339
                                              214.81367
  0 -
```


(*R*)-**4b**

Colorless oil. 23.1 mg, 22% yield. $[\alpha]^{20}_{D}$: -2.0 (*c* = 0.5, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 7.28 – 7.13 (m, 7H), 6.74 (d, *J* = 8.8 Hz, 2H), 5.80 (ddd, *J* = 16.9, 10.0, 6.0 Hz, 1H), 5.28 (dt, *J* = 17.0, 1.6 Hz, 1H), 5.05 (dt, *J* = 10.0, 1.4 Hz, 1H), 3.73 (s, 3H), 3.45 (q, *J* = 7.1 Hz, 1H), 2.91 – 2.79 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 159.19, 138.98, 137.34, 132.89, 129.48, 128.11, 126.38, 115.81, 115.56, 113.79, 88.24, 84.37, 55.27, 42.08, 38.19.

HRMS (ESI): $[M+H]^+$ Calcd. for $[C_{19}H_{19}O]^+$ 263.1430, found 263.1429.

IR (neat): 3020, 2934, 2841, 2203, 1709, 1607, 1510, 1443, 1246, 1219, 1034, 924, 831, 771, 686, 673 cm⁻¹

HPLC: Daicel Chiralcel[®] OJ-H, 5% ^{*i*}PrOH, 95% hexane, 1.0 mL/min, 40 °C, 220 nm; 94% *ee* (t_R (major) = 8.65 min, t_R (minor) = 10.60 min).

200 150	1 8.649 BB 2 10.596 BB	0.1492 3588.47266 369.91177 96.8028 0.1961 118.52055 9.33529 3.1972	
100 50	Totals :	3706.99320 379.24706	10.596
0-			

Colorless oil. 28.5 mg, 48% yield. $[\alpha]^{20}_{D}$: +2.6 (c = 1.0, CHCl₃) (lit^[9]: $[\alpha]^{25}_{D}$: +12.7 (c = 1.0, CHCl₃)). ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.20 (m, 2H), 7.18 – 7.13 (m, 3H), 5.85 (ddd, J = 17.3, 10.5, 5.8 Hz, 1H), 5.16 (dt, J = 17.2, 1.5 Hz, 1H), 5.04 (dt, J = 10.4, 1.4 Hz, 1H), 4.29 – 4.22 (m, 1H), 2.82 – 2.67 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 140.16, 137.75, 129.58, 128.50, 126.59, 114.98, 73.66, 43.85.

HPLC: Daicel Chiralcel[®] OD-H, 10% ^{*i*}PrOH, 90% hexane, 1.0 mL/min, 35 °C, 220 nm; 99% *ee* (t_R (major) = 5.75 min, t_R (minor) = 5.13 min).

Racemic

Colorless oil. 38.3 mg, 33% yield. $[\alpha]^{20}{}_{D}$: -25.4 (c = 1.0, CHCl₃) (lit^[3b]: $[\alpha]^{25}{}_{D}$: -2.6 (c = 0.5, CHCl₃)). ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 8.7 Hz, 2H), 7.30 (d, J = 7.6 Hz, 1H), 7.26 (d, J = 6.4 Hz, 1H), 7.24 – 7.15 (m, 3H), 6.82 (d, J = 8.7 Hz, 2H), 5.83 (ddd, J = 16.5, 10.0, 6.1 Hz, 1H), 5.35 (dt, J = 17.0, 1.5 Hz, 1H), 5.11 (dt, *J* = 10.0, 1.4 Hz, 1H), 3.80 (s, 3H), 3.29 (q, *J* = 6.4 Hz, 1H), 2.72 – 2.62 (m, 2H), 1.93 – 1.76 (m, 2H), 1.71 – 1.61 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 159.17, 142.36, 138.16, 132.96, 128.45, 128.32, 125.74, 115.94, 115.04, 113.82, 88.68, 83.48, 55.28, 36.03, 35.66, 34.97, 28.83.

HRMS (ESI): [M+H]⁺ Calcd. for [C₂₁H₂₃O]⁺ 291.1743, found 291.1741.

HPLC: Daicel Chiralcel[®] OJ-H, 10% *i*PrOH, 90% hexane, 0.5 mL/min, 40 °C, 220 nm; 89% *ee* (t_R (major) = 40.80 min, t_R (minor) = 30.51 min).

Racemic

Enantioenriched

Ph. (S)-1c

Colorless oil. 31.7 mg, 45% yield. $[\alpha]^{20}_{D}$: +3.7 (c = 1.0, CHCl₃) (lit^[4]: $[\alpha]^{20}_{D}$: +6.9 (c = 0.48, CHCl₃)). ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.26 (m, 2H), 7.25 – 7.16 (m, 3H), 5.87 (ddd, J = 16.9, 10.4, 6.2 Hz, 1H), 5.23 (dt, J = 17.1, 1.5 Hz, 1H), 5.12 (dt, J = 10.4, 1.4 Hz, 1H), 4.12 (q, J = 6.3 Hz, 1H), 2.66 (t, J = 7.5 Hz, 2H), 1.79 – 1.66 (m, 2H), 1.64 – 1.54 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 142.34, 141.16, 128.45, 128.33, 125.78, 114.75, 73.12, 36.56, 35.81, 27.20.

HPLC: Daicel Chiralcel[®] OD-H, 5% ^{*i*}PrOH, 95% hexane, 1.0 mL/min, 35 °C, 220 nm; 98% *ee* (t_R (major) = 9.25 min, t_R (minor) = 8.50 min).

Colorless oil. 42.6 mg, 35% yield. $[\alpha]^{20}_{D}$: -25.1 (*c* = 1.0, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 (d, *J* = 8.8 Hz, 2H), 7.30 – 7.24 (m, 2H), 7.23 – 7.13 (m, 3H), 6.82 (d, *J* = 8.8 Hz, 2H), 5.84 (ddd, *J* = 21.0, 10.0, 6.2 Hz, 1H), 5.39 – 5.30 (m, 1H), 5.14 – 5.07 (m, 1H), 3.80 (s, 3H), 3.26 (q, *J* = 6.2 Hz, 1H), 2.64 (t, *J* = 7.5 Hz, 2H), 1.75 – 1.46 (m, 6H).

¹³**C NMR** (100 MHz, CDCl₃) δ 159.15, 142.67, 138.29, 132.97, 128.42, 128.27, 125.63, 115.96, 114.91, 113.79, 88.84, 83.39, 55.28, 36.09, 35.87, 35.33, 31.27, 26.78.

HRMS (ESI): [M+H]⁺ Calcd. for [C₂₂H₂₅O]⁺ 305.1900, found 305.1898.

IR (neat): 3022, 2939, 2862, 2210, 1607, 1545, 1510, 1445, 1290, 1219, 1034, 926, 833, 773, 669 cm⁻¹. HPLC: Daicel Chiralcel[®] OJ-H, 1% ^{*i*}PrOH, 99% hexane, 1.0 mL/min, 40 °C, 220 nm; 91% *ee* (t_R (major) = 27.24 min, t_R(minor) = 23.89 min).

```
Racemic
```

```
mAU
                                                                                                                        282
      Signal 1: DAD1 A, Sig=220,4 Ref=off
                                                                                                                        27
 50 -
      Peak RetTime Type
                          Width
                                               Height
                                     Area
                                                           Area
                                                             %
            [min]
                          [min]
                                   [mAU*s]
                                               [mAU]
 40
                ----|---
                                               63.18273
         1 23.654 BB
                          0.5869 2387.57349
                                                          49.8453
 30 -
            27.282 BB
                          0.6848 2402.39233
                                                          50.1547
         2
                                               52.41279
 20 -
                                  4789.96582 115.59552
      Totals :
 10-
  0
                                               10
                                                                                         20
                                                                    15
                                                                                                                                  mir
```

Enantioenriched

mAU - 70 -	Signal 1: DAD1 A, Sig=220,4 Ref=off	
60	Peak RetTime Type Width Area Height Area	
50	# [min] [mAU*s] [mAU] %	
40	1 23 888 MM 0 5237 183 03040 5 82465 4 5829	
30	2 27.241 BB 0.7102 3810.93530 78.52522 95.4171	
20		
20 -	Totals : 3993.97470 84.34986	
10-		
01		
	5 10 15 20 25	min

OH Ph (S)-1d

Colorless oil. 37.3 mg, 49% yield. $[\alpha]^{20}_{D}$: +2.2 (*c* = 1.0, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.26 (m, 2H), 7.22 – 7.15 (m, 3H), 5.87 (ddd, *J* = 16.9, 10.4, 6.2 Hz, 1H), 5.22 (dt, *J* = 17.2, 1.5 Hz, 1H), 5.11 (dt, *J* = 10.4, 1.4 Hz, 1H), 4.10 (q, *J* = 6.1 Hz, 1H), 2.66 – 2.60 (m, 2H), 1.69 – 1.56 (m, 4H), 1.53 – 1.35 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 142.59, 141.25, 128.40, 128.29, 125.68, 114.65, 73.18, 36.89, 35.92, 31.44, 25.07.

HPLC: Daicel Chiralcel[®] OD-H, 5% 'PrOH, 95% hexane, 0.5 mL/min, 35 °C, 220 nm; 96% *ee* (t_R (major) = 19.43 min, t_R (minor) = 20.79 min).

H₃C (*R*)-4e

Colorless oil. 23.8 mg, 32% yield. $[\alpha]^{20}_{D}$: -61.1 (*c* = 1.0, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.8 Hz, 2H), 6.82 (d, *J* = 8.8 Hz, 2H), 5.89 (ddd, *J* = 17.0, 10.0, 5.7 Hz, 1H), 5.34 (dt, *J* = 17.0, 1.5 Hz, 1H), 5.08 (dt, *J* = 10.0, 1.5 Hz, 1H), 3.80 (s, 3H), 3.36 (dt, *J* = 12.8, 6.4 Hz, 1H), 1.35 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 159.14, 139.49, 132.94, 115.89, 113.98, 113.79, 89.92, 82.34, 55.26, 30.21, 21.35.

HRMS (ESI): $[M+H]^+$ Calcd. for $[C_{13}H_{15}O]^+$ 187.1117, found 187.1116.

HPLC: Daicel Chiralcel[®] OJ-H, 1% ^{*i*}PrOH, 99% hexane, 0.5 mL/min, 40 °C, 220 nm; 95% *ee* (t_R (major) = 18.71 min, t_R (minor) = 19.77 min).

Colorless oil. 13.5 mg, 46% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 5.89 (ddd, J = 16.4, 10.4, 5.8 Hz, 1H), 5.19 (dt, J = 17.0, 1.3 Hz, 1H), 5.04 (dt, J = 10.4, 1.4 Hz, 1H), 4.27 (p, J = 6.3 Hz, 1H), 2.06 – 1.92 (m, 1H), 1.25 (d, J = 6.4 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 142.33, 113.63, 68.99, 23.03.

(S)-**1e'**

White solid. 40.3 mg, 82% yield. mp: 54.2 - 54.9 °C. $[\alpha]^{20}_{D}$: +16.0 (c = 0.5, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 9.22 (t, *J* = 2.2 Hz, 1H), 9.16 (d, *J* = 2.1 Hz, 2H), 5.98 (ddd, *J* = 17.0, 10.5, 6.4 Hz, 1H), 5.68 (p, *J* = 6.5 Hz, 1H), 5.39 (dt, *J* = 17.1, 1.1 Hz, 1H), 5.29 (dt, *J* = 10.5, 1.1 Hz, 1H), 1.53 (d, *J* = 6.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 161.73, 148.65, 136.39, 134.31, 129.45, 122.33, 117.69, 74.31, 19.96. HRMS (ESI): [M-H]⁻Calcd. for [C₁₁H₉N₂O₆]⁻ 265.0466, found 265.0459.

IR (neat): 3103, 3020, 1730,1630, 1549, 1460, 1425, 1346, 1277, 1215, 1076, 1042, 991, 926, 771, 744, 667 cm⁻¹.

HPLC: Daicel Chiralcel[®] OD-H, 5% ^{*i*}PrOH, 95% hexane, 1.0 mL/min, 35 °C, 220 nm; 85% *ee* (t_R (major) = 20.62 min, t_R(minor) = 17.30 min).

12.5

15

17.5

20

22.5

40

20 0

Totals :

2.5

Colorless oil. 27.2 mg, 34% yield. $[\alpha]^{20}$: -46.4 (*c* = 1.0, CHCl₃).

4574.03729 141.04193

10

7.5

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 (d, J = 8.6 Hz, 2H), 6.82 (d, J = 8.6 Hz, 2H), 5.84 (ddd, J = 16.5, 10.0, 6.1 Hz, 1H), 5.36 (dt, J = 16.9, 1.6 Hz, 1H), 5.12 (dt, J = 10.0, 1.5 Hz, 1H), 3.80 (s, 3H), 3.21 (q, J) = 6.2 Hz, 1H), 1.74 - 1.59 (m, 2H), 1.05 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 159.12, 138.10, 132.95, 116.02, 115.04, 113.79, 88.74, 83.41, 55.27, 37.64, 28.54, 11.46.

HRMS (ESI): $[M+H]^+$ Calcd. for $[C_{14}H_{17}O]^+$ 201.1274, found 201.1272.

IR (neat): 3020, 2210, 1607, 1510, 1477, 1423, 1215, 1036, 930, 835, 744, 667 cm⁻¹.

HPLC: Daicel Chiralcel® OJ-H, 1% PrOH, 99% hexane, 1.0 mL/min, 40 °C, 220 nm; 93% ee (t_R (major) $= 17.96 \text{ min}, t_{\text{R}}(\text{minor}) = 20.32 \text{ min}).$

Racemic

Colorless oil. 15.8 mg, 46% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 5.86 (ddd, *J* = 16.8, 10.4, 6.2 Hz, 1H), 5.23 (dt, *J* = 17.2, 1.4 Hz, 1H), 5.12 (dt, *J* = 10.4, 1.4 Hz, 1H), 4.03 (q, *J* = 6.3 Hz, 1H), 1.85 (dd, *J* = 5.7, 2.3 Hz, 1H), 1.63 – 1.51 (m, 2H), 0.93 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 140.97, 114.73, 74.53, 29.83, 9.57.

White solid. 42.8 mg, 83% yield. mp: $65.5 - 66.4 \,^{\circ}$ C. $[\alpha]^{20}_{D}$: +23.0 (c = 0.2, CHCl₃) (lit^[10]: $[\alpha]^{20}_{D}$: +28.4 (c = 0.415, CHCl₃)).

¹**H NMR** (400 MHz, CDCl₃) δ 9.22 (t, *J* = 2.1 Hz, 1H), 9.15 (d, *J* = 2.1 Hz, 2H), 5.90 (ddd, *J* = 17.3, 10.5, 6.9 Hz, 1H), 5.49 (q, *J* = 6.7 Hz, 1H), 5.38 (dt, *J* = 17.2, 1.1 Hz, 1H), 5.31 (dt, *J* = 10.5, 1.1 Hz, 1H), 1.96 – 1.77 (m, 2H), 1.01 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 161.81, 148.67, 135.06, 134.33, 129.40, 122.31, 118.68, 79.33, 27.20, 9.50.

HRMS (ESI): [M-H]⁻ Calcd for [C₁₂H₁₁N₂O₆]⁻ 279.0623, found 279.0620.

HPLC: Daicel Chiralcel® OD-H, 5% 'PrOH, 95% hexane, 1.0 mL/min, 35 °C, 220 nm; 93% ee (t_R (major)

= 18.38 min, $t_R(minor) = 16.39 min)$.

Enantioenriched

Colorless oil. 30.0 mg, 35% yield. $[\alpha]^{20}_{D}$: -55.0 (c = 1.0, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.8 Hz, 2H), 6.82 (d, *J* = 8.8 Hz, 2H), 5.84 (ddd, *J* = 16.4, 10.0, 6.2 Hz, 1H), 5.35 (dt, *J* = 17.0, 1.6 Hz, 1H), 5.11 (dt, *J* = 10.0, 1.5 Hz, 1H), 3.80 (s, 3H), 3.27 (q, *J* = 6.4 Hz, 1H), 1.64 – 1.44 (m, 4H), 0.96 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 159.11, 138.40, 132.94, 116.02, 114.77, 113.79, 88.95, 83.23, 55.26, 37.64, 35.90, 20.29, 13.88.

HRMS (ESI): [M+H]⁺ Calcd for [C₁₅H₁₉O]⁺ 215.1430, found 215.1429.

HPLC: Daicel Chiralcel[®] OJ-H, 1% ^{*i*}PrOH, 99% hexane, 0.7 mL/min, 40 °C, 220 nm; 99% *ee* (t_R (major) = 11.93 min, t_R (minor) = 12.69 min).

Racemic

Colorless oil. 19.6 mg, 49% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 5.84 (ddd, *J* = 17.0, 10.4, 6.3 Hz, 1H), 5.19 (d, *J* = 17.3 Hz, 1H), 5.07 (d, *J* = 10.4 Hz, 1H), 4.08 (q, *J* = 6.2 Hz, 1H), 1.91 (d, *J* = 4.7 Hz, 1H), 1.57 – 1.44 (m, 2H), 1.43 – 1.29 (m, 2H), 0.91 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 141.33, 114.43, 72.96, 39.14, 18.54, 13.95.

(S)-**1g'**

White solid. 45.6 mg, 79% yield. mp: 45.9 - 46.8 °C. $[\alpha]^{20}_{D}$: +24.5 (c = 0.2, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 9.22 (t, *J* = 1.8 Hz, 1H), 9.15 (d, *J* = 2.0 Hz, 2H), 5.91 (ddd, *J* = 17.3, 10.4, 7.0 Hz, 1H), 5.57 (q, *J* = 6.7 Hz, 1H), 5.38 (d, *J* = 17.0 Hz, 1H), 5.29 (d, *J* = 10.5 Hz, 1H), 1.92 – 1.81 (m, 1H), 1.81 – 1.71 (m, 1H), 1.50 – 1.36 (m, 2H), 0.98 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 161.80, 148.67, 135.38, 134.33, 129.41, 122.30, 118.48, 77.94, 36.16, 18.43, 13.78.

HRMS (ESI): [M-H]⁻Calcd for [C₁₃H₁₃N₂O₆]⁻ 293.0779, found 293.0778.

IR (neat): 3103, 3020, 2964, 2937, 2878, 1730, 1630, 1547, 1462, 1425, 1344, 1277, 1215, 1171, 1076, 926, 773, 744, 669 cm⁻¹.

HPLC: Daicel Chiralcel[®] OD-H, 5% ^{*i*}PrOH, 95% hexane, 1.0 mL/min, 35 °C, 220 nm; 94% *ee* (t_R (major) = 16.23 min, t_R(minor) = 13.81 min).

Racemic

Enantioenriched

Colorless oil. 31.2 mg, 34% yield. $[\alpha]^{20}_{D}$: -50.1 (*c* = 0.5, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 7.28 (d, *J* = 8.7 Hz, 2H), 6.74 (d, *J* = 8.7 Hz, 2H), 5.77 (ddd, *J* = 16.5, 10.0, 6.2 Hz, 1H), 5.27 (d, *J* = 16.9 Hz, 1H), 5.03 (d, *J* = 10.0 Hz, 1H), 3.73 (s, 3H), 3.17 (q, *J* = 6.5 Hz, 1H), 1.59 – 1.50 (m, 2H), 1.46 – 1.35 (m, 2H), 1.33 – 1.23 (m, 2H), 0.85 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 159.11, 138.42, 132.94, 116.03, 114.78, 113.78, 89.01, 83.22, 55.27, 36.11, 35.21, 29.27, 22.50, 14.05.

HRMS (ESI): [M+H]⁺ Calcd. for [C₁₆H₂₁O]⁺ 229.1587, found 229.1585.

IR (neat): 3020, 2206, 1607, 1547, 1510, 1445, 1290, 1219, 1109, 1036, 930, 854, 773, 669 cm⁻¹.

HPLC: Daicel Chiralcel[®] OJ-H, 1% ^{*i*}PrOH, 99% hexane, 1.0 mL/min, 40 °C, 220 nm; 91% *ee* (t_R (major) = 6.29 min, t_R (minor) = 7.05 min).

Racemic

OH C₄H₉ (S)-1h

Colorless oil. 22.4 mg, 49% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 5.83 (ddd, *J* = 16.8, 10.4, 6.3 Hz, 1H), 5.18 (d, *J* = 17.1 Hz, 1H), 5.06 (d, *J* = 10.4 Hz, 1H), 4.05 (q, *J* = 6.5 Hz, 1H), 2.02 (s, 1H), 1.57 – 1.43 (m, 2H), 1.39 – 1.24 (m, 4H), 0.88 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (10 MHz, CDCl₃) δ 141.35, 114.43, 73.21, 36.70, 27.49, 22.60, 13.99.

(S)-**1h'**

White solid. 49.5 mg, 82% yield. mp: 60.1 – 60.9 °C. $[\alpha]^{20}_{D}$: +22.5 (*c* = 0.2, CHCl₃).

¹**H** NMR (400 MHz, CDCl₃) δ 9.22 (t, *J* = 2.1 Hz, 1H), 9.16 (d, *J* = 2.1 Hz, 2H), 5.91 (ddd, *J* = 17.3, 10.4, 7.0 Hz, 1H), 5.56 (q, *J* = 6.9 Hz, 1H), 5.38 (d, *J* = 17.2 Hz, 1H), 5.30 (d, *J* = 10.4 Hz, 1H), 1.93 – 1.73 (m, 2H), 1.45 – 1.32 (m, 4H), 0.97 – 0.87 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 161.80, 148.67, 135.39, 134.35, 129.41, 122.30, 118.53, 78.21, 33.81, 27.26, 22.40, 13.93.

HRMS (ESI): [M-H]⁻Calcd. for [C₁₄H₁₅N₂O₆]⁻ 307.0936, found 307.0937.

IR (neat): 3103, 3020, 2961, 2934, 2864, 1730, 1630, 1547, 1462, 1425, 1346, 1274, 1215, 1169, 1076, 961, 926, 750, 667 cm⁻¹.

HPLC: Daicel Chiralcel[®] OD-H, 5% ^{*i*}PrOH, 95% hexane, 1.0 mL/min, 35 °C, 220 nm; 99% *ee* (t_R (major) = 14.33 min, t_R (minor) = 11.67 min).

Racemic

Enantioenriched

Colorless oil. 34.0 mg, 35% yield. $[\alpha]^{20}_{D}$: -34.2 (*c* = 1.0, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.7 Hz, 2H), 6.82 (d, *J* = 8.8 Hz, 2H), 5.84 (ddd, *J* = 16.5, 10.0, 6.2 Hz, 1H), 5.34 (d, *J* = 16.9 Hz, 1H), 5.10 (d, *J* = 10.0 Hz, 1H), 3.80 (s, 3H), 3.25 (q, *J* = 6.5 Hz, 1H), 1.64 – 1.57 (m, 2H), 1.55 – 1.42 (m, 2H), 1.37 – 1.28 (m, 4H), 0.90 (t, *J* = 6.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 159.10, 138.42, 132.94, 116.04, 114.78, 113.78, 89.01, 83.22, 55.27, 36.14, 35.46, 31.61, 26.74, 22.59, 14.08.

HRMS (ESI): [M+H]⁺ Calcd. for [C₁₇H₂₃O]⁺ 243.1743, found 243.1741.

HPLC: Daicel Chiralcel[®] OJ-H, 1% ^{*i*}PrOH, 99% hexane, 1.0 mL/min, 40 °C, 220 nm; 98% *ee* (t_R (major) = 6.07 min, t_R (minor) = 7.14 min).

Colorless oil. 23.8 mg, 47% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 5.85 (ddd, *J* = 16.9, 10.4, 6.3 Hz, 1H), 5.20 (dt, *J* = 17.2, 1.5 Hz, 1H), 5.08 (dt, *J* = 10.4, 1.4 Hz, 1H), 4.08 (q, *J* = 6.3 Hz, 1H), 1.73 (s, 1H), 1.57 – 1.44 (m, 2H), 1.42 – 1.23 (m, 6H), 0.88 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 141.33, 114.51, 73.28, 37.00, 31.76, 25.01, 22.60, 14.03.

(3)-11

White solid. 48.5 mg, 80% yield. mp: 63.1 – 63.8 °C. $[\alpha]^{20}_{D}$: +22.1 (*c* = 0.5, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 9.23 (t, *J* = 2.0 Hz, 1H), 9.16 (d, *J* = 2.0 Hz, 2H), 5.90 (ddd, *J* = 17.3, 10.4, 7.0 Hz, 1H), 5.55 (q, *J* = 6.8 Hz, 1H), 5.38 (d, *J* = 17.2 Hz, 1H), 5.30 (d, *J* = 10.5 Hz, 1H), 1.92 – 1.73 (m, 2H), 1.44 – 1.27 (m, 6H), 0.89 (t, *J* = 6.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 161.81, 148.67, 135.38, 134.34, 129.43, 122.32, 118.56, 78.24, 34.05, 31.46, 24.79, 22.49, 13.98.

HRMS (ESI): [M-H]⁻Calcd. for [C₁₅H₁₇N₂O₆]⁻ 321.1092, found 321.1084.

IR (neat): 3020, 1728, 1630, 1549, 1522, 1477, 1427, 1344, 1277, 1215, 928, 744, 669 cm⁻¹.

HPLC: Daicel Chiralcel[®] OD-H, 5% ^{*i*}PrOH, 95% hexane, 1.0 mL/min, 35 °C, 220 nm; 98% *ee* (t_R (major) = 13.80 min, t_R (minor) = 10.75 min).

Colorless oil. 35.9 mg, 35% yield. $[\alpha]^{20}_{D}$: -33.5 (*c* = 1.0, CHCl₃).

¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 8.8 Hz, 2H), 6.82 (d, J = 8.8 Hz, 2H), 5.84 (ddd, J = 16.4, 10.0, 6.2 Hz, 1H), 5.34 (dt, J = 17.0, 1.6 Hz, 1H), 5.10 (dt, J = 10.0, 1.5 Hz, 1H), 3.80 (s, 3H), 3.24 (q, J = 6.4 Hz, 1H), 1.65 - 1.58 (m, 2H), 1.54 - 1.39 (m, 2H), 1.36 - 1.27 (m, 6H), 0.91 - 0.86 (m, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 159.10, 138.43, 132.94, 116.03, 114.77, 113.78, 89.02, 83.21, 55.27, 36.13, 35.50, 31.78, 29.07, 27.03, 22.64, 14.10.

HRMS (ESI): [M+H]⁺ Calcd. for [C₁₈H₂₅O]⁺ 257.1900, found 257.1898.

IR (neat): 3020, 2957, 2934, 2860, 2210, 1607, 1549, 1512, 1445, 1219, 1173, 1034, 932, 854, 773, 744, 669 cm⁻¹.

HPLC: Daicel Chiralcel[®] OJ-H, 1% ^{*i*}PrOH, 99% hexane, 1.0 mL/min, 40 °C, 220 nm; 89% *ee* (t_R (major) = 5.63 min, t_R (minor) = 7.16 min).

Enantioenriched												
mAU 300 -	Signal 1: DAD1 A	, Sig=220,4 Ref=o	ff		5.6 27							
250 -	Peak RetTime Typ	e Width Area	Height	Area								
	# [min]	[min] [mAU*s] [mAU]	%								
200 -		-										
450	1 5.627 BB	0.1130 2360.86	987 323.89279	94.7448								
150 -	2 7.156 MM	0.1570 130.95	015 13.90481	5.2552								
100 -	Totals :	2491.82	002 337.79760									
50 -						7.156 e.						
0-			~									
					· · · ·							
		2	4		6	8		10	min			

Colorless oil. 26.2 mg, 46% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 5.86 (ddd, *J* = 16.9, 10.4, 6.2 Hz, 1H), 5.21 (dt, *J* = 17.2, 1.5 Hz, 1H), 5.09 (dt, *J* = 10.4, 1.4 Hz, 1H), 4.09 (q, *J* = 6.3 Hz, 1H), 1.59 (s, 1H), 1.56 – 1.45 (m, 2H), 1.43 – 1.24 (m, 8H), 0.88 (t, *J* = 6.8 Hz, 3H)..

¹³C NMR (100 MHz, CDCl₃) δ 141.34, 114.52, 73.29, 37.06, 31.79, 29.22, 25.29, 22.60, 14.07.

White solid. 51.2 mg, 81% yield. mp: 58.5 – 59.5 °C. $[\alpha]^{20}$ _D: +15.0 (*c* = 0.2, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 9.22 (t, *J* = 2.1 Hz, 1H), 9.15 (d, *J* = 2.1 Hz, 2H), 5.90 (ddd, *J* = 17.3, 10.4, 7.0 Hz, 1H), 5.55 (q, *J* = 7.0 Hz, 1H), 5.37 (dt, *J* = 17.1, 1.2 Hz, 1H), 5.29 (dt, *J* = 10.4, 1.1 Hz, 1H), 1.92 – 1.72 (m, 2H), 1.42 – 1.23 (m, 8H), 0.87 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 161.80, 148.66, 135.40, 134.33, 129.42, 122.31, 118.51, 78.22, 34.09, 31.64, 28.96, 25.08, 22.55, 14.04.

HRMS (ESI): [M-H]⁻Calcd for [C₁₆H₁₉N₂O₆]⁻ 335.1249, found 335.1222.

IR (neat): 3103, 3020, 2930, 2858, 1730, 1630, 1549, 1460, 1427, 1344, 1275, 1215, 1171, 1076, 991, 924, 754, 669 cm⁻¹.

HPLC: Daicel Chiralcel[®] OD-H, 5% ^{*i*}PrOH, 95% hexane, 1.0 mL/min, 35 °C, 220 nm; 95% *ee* (t_R (major) = 13.18 min, t_R (minor) = 10.40 min).

```
Racemic
```


Colorless oil. 49.6 mg, 36% yield. $[\alpha]^{20}_{D}$: -26.7 (*c* = 1.0, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 7.35 (d, *J* = 8.8 Hz, 2H), 6.82 (d, *J* = 8.7 Hz, 2H), 5.84 (ddd, *J* = 16.3, 10.0, 6.1 Hz, 1H), 5.36 (d, *J* = 16.9 Hz, 1H), 5.11 (d, *J* = 10.0 Hz, 1H), 3.80 (s, 3H), 3.67 (t, *J* = 5.8 Hz, 2H), 3.34 – 3.24 (m, 1H), 1.80 – 1.61 (m, 4H), 0.90 (s, 9H), 0.06 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 159.11, 138.23, 132.95, 115.93, 115.00, 113.77, 88.70, 83.46, 62.94, 55.28, 35.85, 31.81, 30.29, 26.00, 18.39, -5.23.

HRMS (ESI): $[M+H]^+$ Calcd. for $[C_{21}H_{33}O_2Si]^+$ 345.2244, found 345.2244.

HPLC: Daicel Chiralcel[®] OJ-H, 1% ^{*i*}PrOH, 99% hexane, 1.0 mL/min, 40 °C, 220 nm; 87% *ee* (t_R (major) = 4.15 min, t_R (minor) = 3.61 min).

Colorless oil. 42.4 mg, 46% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 5.86 (ddd, *J* = 17.2, 10.4, 5.9 Hz, 1H), 5.22 (dt, *J* = 17.2, 1.6 Hz, 1H), 5.08 (dt, *J* = 10.5, 1.5 Hz, 1H), 4.11 (q, *J* = 6.4, 5.7 Hz, 1H), 3.65 (t, *J* = 5.7 Hz, 2H), 2.74 (s, 1H), 1.70 – 1.54 (m, 4H), 0.89 (s, 9H), 0.05 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 141.23, 114.29, 72.64, 63.38, 34.38, 28.74, 25.93, 18.33, -5.38.

Colorless oil. 60.9 mg, 78% yield. $[\alpha]^{20}_{D}$: +8.0 (*c* = 1.0, CHCl₃).

¹**H** NMR (400 MHz, CDCl₃) δ 9.23 (t, *J* = 2.1 Hz, 1H), 9.16 (d, *J* = 2.1 Hz, 2H), 5.91 (ddd, *J* = 17.3, 10.4, 6.9 Hz, 1H), 5.60 (q, *J* = 6.8 Hz, 1H), 5.39 (d, *J* = 17.3 Hz, 1H), 5.31 (d, *J* = 10.5 Hz, 1H), 3.67 (t, *J* = 6.2 Hz, 2H), 1.98 – 1.83 (m, 2H), 1.68 – 1.59 (m, 2H), 0.89 (s, 9H), 0.05 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 161.77, 148.65, 135.26, 134.27, 129.44, 122.35, 118.69, 77.98, 62.42, 30.63, 28.33, 25.93, 18.34, -5.31.

HRMS (ESI): [M-H]⁻Calcd. for [C₁₉H₂₇N₂O₇Si]⁻ 423.1593, found 423.1581.

IR (neat): 3105, 2955, 2930, 2887, 2858, 1730, 1630, 1547, 1460, 1344, 1275, 1169, 1099, 986, 920, 835, 775, 721 cm⁻¹.

HPLC: Daicel Chiralcel[®] OD-H, 5% ^{*i*}PrOH, 95% hexane, 1.0 mL/min, 35 °C, 220 nm; 94% *ee* (t_R (major) = 11.39 min, t_R (minor) = 8.97 min).

Racemic

Enantioenriched

(R)-**4I**

Colorless oil. 39.7 mg, 37% yield. $[\alpha]^{20}_{D}$: -39.7 (*c* = 1.0, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.7 Hz, 2H), 6.82 (d, *J* = 8.6 Hz, 2H), 5.83 (ddd, *J* = 16.6, 10.0, 6.3 Hz, 1H), 5.34 (d, *J* = 17.0 Hz, 1H), 5.09 (d, *J* = 10.0 Hz, 1H), 3.80 (s, 3H), 3.34 (q, *J* = 6.5 Hz, 1H), 1.83 (d, *J* = 12.7 Hz, 1H), 1.78 – 1.65 (m, 4H), 1.55 – 1.50 (m, 1H), 1.47 – 1.40 (m, 1H), 1.28 – 1.15 (m, 3H), 1.05 – 0.79 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 159.10, 138.74, 132.94, 116.08, 114.55, 113.79, 89.19, 83.01, 55.27, 43.24, 35.27, 33.61, 33.53, 32.80, 26.65, 26.29, 26.27.

HRMS (APCI): [M]⁺ Calcd. for [C₁₉H₂₄O]⁺ 268.1822, found 268.1830.

IR (neat): 3020, 2210, 1607, 1547, 1512, 1445, 1290, 1219, 1107, 1034, 931, 854, 733, 667 cm⁻¹.

HPLC: Daicel Chiralcel[®] OD-H, 1% ^{*i*}PrOH, 99% hexane, 1.0 mL/min, 35 °C, 220 nm; 94% *ee* (t_R (major) = 4.24 min, t_R(minor) = 3.90 min).

OF (S)-**1**

Colorless oil. 25.9 mg, 42% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 5.85 (ddd, *J* = 16.9, 10.4, 6.3 Hz, 1H), 5.20 (dt, *J* = 17.2, 1.4 Hz, 1H), 5.07 (dt, *J* = 10.4, 1.4 Hz, 1H), 4.19 (q, *J* = 6.4 Hz, 1H), 1.77 (d, *J* = 12.6 Hz, 1H), 1.73 – 1.60 (m, 5H), 1.49 – 1.37 (m, 2H), 1.37 – 1.27 (m, 1H), 1.27 – 1.08 (m, 3H), 0.98 – 0.84 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 141.78, 114.26, 70.82, 44.86, 33.93, 33.85, 33.08, 26.57, 26.30, 26.20.

(S)-**1I'**

White solid. 43.9 mg, 75% yield. mp 74.2 – 75.0 °C. $[\alpha]^{20}$ _D: -1.0 (*c* = 0.5, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 9.22 (t, *J* = 2.2 Hz, 1H), 9.15 (d, *J* = 2.2 Hz, 2H), 5.90 (ddd, *J* = 17.3, 10.4, 7.0 Hz, 1H), 5.67 (q, *J* = 7.1 Hz, 1H), 5.38 (d, *J* = 17.2 Hz, 1H), 5.28 (d, *J* = 10.3 Hz, 1H), 1.85 – 1.59 (m, 7H), 1.44 – 1.32 (m, 1H), 1.27 – 1.13 (m, 3H), 1.06 – 0.92 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 161.79, 148.69, 135.71, 134.36, 129.43, 122.30, 118.43, 76.26, 41.69, 33.95, 33.35, 33.11, 26.36, 26.09, 26.07.

HRMS (ESI): [M-H]⁻ Calcd for [C₁₇H₁₉N₂O₆]⁻ 347.1249, found 347.1253.

IR (neat): 3105, 2922, 2853, 1717, 1630, 1541, 1460, 1342, 1283, 1173, 1072, 993, 949, 918, 824, 775, 729, 719, 689 cm⁻¹.

HPLC: Daicel Chiralcel[®] OD-H, 5% ^{*i*}PrOH, 95% hexane, 1.0 mL/min, 35 °C, 220 nm; 98% *ee* (t_R (major) = 13.46 min, t_R (minor) = 11.17 min).

Racemic

Enantioenriched

Colorless oil. 28.1 mg, 33% yield. $[\alpha]^{20}_{D}$: -6.5 (*c* = 1.0, CHCl₃).

¹**H** NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.8 Hz, 2H), 6.82 (d, J = 8.8 Hz, 2H), 5.96 (ddd, J = 16.7, 10.0, 5.9 Hz, 1H), 5.39 (dt, J = 17.0, 1.6 Hz, 1H), 5.14 (dt, J = 10.0, 1.5 Hz, 1H), 3.80 (s, 3H), 3.02 (t, J = 6.4 Hz, 1H), 1.07 - 0.97 (m, 1H), 0.58 - 0.49 (m, 2H), 0.48 - 0.37 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 159.19, 137.71, 133.01, 115.83, 114.73, 113.80, 86.95, 83.36, 55.26, 39.44, 15.21, 3.37, 2.75.

HRMS (ESI): $[M+H]^+$ Calcd. for $[C_{15}H_{17}O]^+$ 213.1274, found 213.1273.

HPLC: Daicel Chiralcel[®] OD-H, 1% PrOH, 99% hexane, 1.0 mL/min, 35 °C, 220 nm; 88% ee (t_R (major) $= 11.93 \text{ min}, t_{R}(\text{minor}) = 12.81 \text{ min}).$

Racemic

2.812

14

mi

Colorless oil. 14.5 mg, 37% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 5.92 (ddd, *J* = 17.4, 10.4, 5.8 Hz, 1H), 5.23 (d, *J* = 17.3 Hz, 1H), 5.08 (d, *J* = 10.5 Hz, 1H), 3.45 (t, *J* = 6.9 Hz, 1H), 2.01 (s, 1H), 1.01 – 0.90 (m, 1H), 0.56 – 0.45 (m, 2H), 0.38 – 0.28 (m, 1H), 0.28 – 0.18 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 139.73, 114.64, 77.21, 17.35, 3.13, 2.04.

White solid. 31.5 mg, 73% yield. mp 77.1 – 78.1 °C. $[\alpha]^{20}_{D}$: +0.8 (*c* = 0.5, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 9.23 (t, *J* = 2.1 Hz, 1H), 9.19 (d, *J* = 2.1 Hz, 2H), 5.99 (ddd, *J* = 17.1, 10.5, 6.4 Hz, 1H), 5.41 (d, *J* = 17.1 Hz, 1H), 5.30 (d, *J* = 10.5 Hz, 1H), 5.06 – 4.97 (m, 1H), 1.33 – 1.24 (m, 1H), 0.76 – 0.62 (m, 2H), 0.57 – 0.49 (m, 1H), 0.48 – 0.41 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 161.90, 148.66, 134.40, 129.52, 122.29, 118.27, 82.29, 14.59, 4.03, 2.92. HRMS (ESI): [M-H]⁻ Calcd. for [C₁₃H₁₁N₂O₆]⁻ 291.0623, found 291.0622.

IR (neat): 3105, 2922, 2855, 1720, 1630, 1543, 1460, 1429, 1342, 1277, 1200, 1165, 1074, 1032, 989, 934, 920, 889, 820, 775, 717, 681 cm⁻¹.

HPLC: Daicel Chiralcel[®] OD-H, 5% ^{*i*}PrOH, 95% hexane, 1.0 mL/min, 35 °C, 220 nm; 31% *ee* (t_R (major) = 17.70 min, t_R (minor) = 16.38 min).

Racemic

Enantioenriched

Colorless oil. 103.3 mg, 84% yield. $[\alpha]^{20}_{D}$: +51.4 (*c* = 1.0, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 7.76 –7.72 (m, 2H), 7.68 – 7.64 (m, 2H), 7.25 – 7.17 (m, 4H), 7.15 – 7.11 (m, 1H), 5.95 – 5.86 (m, 1H), 5.19 – 5.10 (m, 2H), 4.62 (dt, *J* = 9.2, 6.6 Hz, 1H), 2.77 (t, *J* = 8.0 Hz, 2H), 2.25 – 2.16 (m, 1H), 1.97 – 1.88 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 163.98, 141.29, 135.89, 134.36, 128.83, 128.52, 128.45, 126.02, 123.44, 121.66, 88.74, 34.90, 31.33.

HRMS (ESI): [M+H]⁺ Calcd. for [C₁₉H₁₈NO₃]⁺ 308.1282, found 308.1271.

HPLC: Daicel Chiralcel[®] OJ-H, 10% 'PrOH, 90% hexane, 1.0 mL/min, 30 °C, 220 nm; 99% *ee* (t_R (major) = 14.66 min, t_R (minor) = 11.97 min).

Racemic

Enantioenriched

White solid. 69.6 mg, 85% yield. mp: 54.2-55.0°C. $[\alpha]^{20}_{D}$: +3.9 (*c* = 1.0, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 7.22 – 7.19 (m, 2H), 7.13 – 7.10 (m, 3H), 5.80 – 5.71 (m, 1H), 5.21 (dt, *J*

= 17.2, 1.4 Hz, 1H), 5.14 – 5.07 (m, 2H), 4.63 (s, 2H), 2.67 – 2.54 (m, 2H), 1.96 – 1.79 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 156.30, 141.46, 136.59, 128.43, 128.37, 125.95, 116.62, 75.02, 36.08, 31.41.

HRMS (ESI): [M+Na]⁺ Calcd. for [C₁₂H₁₅NO₂Na]⁺ 228.0995, found 228.0992.

IR (neat): 3435, 3342, 3028, 2949, 2860, 2361, 2340, 1705, 1603, 1497, 1454, 1385, 1313, 1219, 1109, 1040, 989, 928, 773, 700 cm⁻¹.

HPLC: Daicel Chiralcel[®] IA, 5% ^{*i*}PrOH, 95% hexane, 1.0 mL/min, 30 °C, 220 nm; >99% *ee* (t_R (major) = 6.77 min).

Colorless oil. 60.1 mg, 85% yield. $[\alpha]^{20}_{D}$: -23.5 (*c* = 1.0, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 7.27 – 7.22 (m, 2H), 7.20 – 7.13 (m, 3H), 2.89 – 2.83 (m, 1H), 2.82 – 2.76 (m, 1H), 2.74 –2.66 (m, 1H), 1.93 – 1.87 (m, 2H), 1.58 (s, 1H), 0.96 –0.87 (m, 1H), 0.54 – 0.44 (m, 2H), 0.27 – 0.22 (m, 1H), 0.20 – 0.15 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 142.26, 128.41, 128.36, 125.75, 76.17, 38.71, 32.05, 18.05, 2.76, 2.58. HRMS (ESI): [M+H]⁺ Calcd. for [C₁₂H₁₇O]⁺ 177.1274, found 177.1273.

IR (neat): 3387, 3081, 3026, 3003, 2926, 2862, 1603, 1497, 1454, 1221, 1074, 1042, 955, 914, 824, 770, 746, 689 cm⁻¹.

HPLC: Daicel Chiralcel[®] OD-H, 5% ^{*i*}PrOH, 95% hexane, 1.0 mL/min, 30 °C, 220 nm; 99% *ee* (t_R (major) = 8.79 min, t_R (minor) = 12.11 min).

White solid. 63.6 mg, 98% yield. mp: 32.9-33.7 °C. $[\alpha]^{20}_{D}$: -20.6 (c = 1.0, CHCl₃). (lit^[7]: $[\alpha]^{22}_{D}$: -21.0 (c = 1.0, CHCl₃)).

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 – 7.31 (m, 2H), 7.30 – 7.21 (m, 3H), 3.67 – 3.58 (m, 1H), 2.91 – 2.81 (m, 1H), 2.78 – 2.68 (m, 1H), 1.91 – 1.74 (m, 2H), 1.67 – 1.55 (m, 2H), 1.54 – 1.47 (m, 1H), 1.01 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 142.22, 128.42, 128.40, 125.80, 72.69, 38.61, 32.09, 30.32, 9.85.

HPLC: Daicel Chiralcel[®] OD-H, 5% ^{*i*}PrOH, 95% hexane, 1.0 mL/min, 30 °C, 220 nm; 98% *ee* (t_R (major) = 8.13 min, t_R (minor) = 11.55 min).

³¹P NMR (162 MHz, CDCl₃) spectrum of Ir[(S)-L1]₂Cl

Reference

- [1] (a) K. Das, K. Sarkar, B. Maji, ACS Catal. 2021, 11, 7060-7069; (b) M. van Gemmeren, M. Börjesson, A. Tortajada, S.-Z. Sun, K. Okura, R. Martin, Angew. Chem. Int. Ed. 2017, 56, 6558-6562; (c) M. Lafrance, M. Roggen, E. M. Carreira, Angew. Chem. Int. Ed. 2012, 51, 3470-3473.
- [2] (a) G. A. Molander, K. M. Traister, Org. Lett. 2013, 15, 5052-5055; (b) P. Xiong, H. Long, J. Song,
 Y. Wang, J.-F. Li, H.-C. Xu, J. Am. Chem. Soc. 2018, 140, 16387-16391; (c) J.-F. Wang, X. Meng,
 C.-H. Zhang, C.-M. Yu, B. Mao, Org. Lett. 2020, 22, 7427-7432.
- [3] (a) W.-Y. Huang, C.-H. Lu, S. Ghorai, B. Li, C. Li, J. Am. Chem. Soc. 2020, 142, 15276-15281; (b)
 C. P. Grugel, B. Breit, Org. Lett. 2018, 20, 1066-1069; (c) A. Harada, Y. Makida, T. Sato, H. Ohmiya, M. Sawamura, J. Am. Chem. Soc. 2014, 136, 13932-13939.
- [4] Z. Liu, B. Breit, Org. Lett. 2018, 20, 300-303.
- [5] M. Zhang, X. Zhao and S. Zheng, Chem. Commun. 2014, 50, 4455-4458.
- [6] R. Larouche-Gauthier, C. J. Fletcher, I. Couto and V. K. Aggarwal, Chem. Commun. 2011, 47, 12592-12594.
- [7] S. Lauzon and T. Ollevier, *Chem. Commun.* **2021**, *57*, 11025–11028.
- [8] N. Kanbayashi, K. Onitsuka, Angew. Chem. Int. Ed. 2011, 50, 5197-5199.
- S. Purushotham Reddy, B. Chinnababu, V. Shekhar, D. Kumar Reddy, G. V. S. Bhanuprakash, L. R. Velatoor, J. Venkateswara Rao, Y. Venkateswarlu, *Bioorg. Med. Chem. Lett.* 2012, 22, 4182-4184.
- [10] L. F. Tietze, S. Dietz, N. Schützenmeister, S. Biller, J. Hierold, T. Scheffer, M. M. Baag, Eur. J. Org. Chem. 2013, 2013, 7305-7312.