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Figure S1 (a) SEM image of carbon spheres prepared without the addition of metal sources; (b) 

SEM image of the CrMnFeCoNi@C precursor; (c) XRD patterns of the carbon spheres and the 

CrMnFeCoNi@C precursor.
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Figure S2 The structural evolution of HEMOs demonstrated by TEM images: (a~d) Cr-Mn-Fe-

Ni-Cu; (e~h) Cr-Mn-Fe-Ni-Zn and (i~l) Cr-Mn-Co-Ni-Cu.
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Figure S3 SEM images of (a,b) s-CrMnFeCoNiO; (c,d) c-CrMnFeCoNiO and (e,f) h-

CrMnFeCoNiO.
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Figure S4 (a) SEM image and (b) XRD pattern of the sample prepared by calcining the 

amorphous precursor at 800 ℃.
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Figure S5 (a) TEM and (b, c) HRTEM images of c-CrMnFeCoNiO.
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Figure S6 XRD patterns of the high entropy metallic oxides with different metal species: (a) 

CrMnFeNiCuO; (b) CrMnFeNiZnO; (c) CrMnCoNiCuO and (d) CrMnCoNiZnO.
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Figure S7 (a~d) SEM images of the amorphous precursors with (a) Cr; (b) CrMn; (c) CrMnFe and 

(d) CrMnFeCo; (e~h) SEM images of the crystalline oxides: (e) CrO; (f) CrMnO; (g) CrMnFeO 

and (h) CrMnFeCoO; and (i) XRD patterns of the amorphous precursors and (j) XRD patterns of 

of the crystalline oxides.
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Figure S8 High resolution XPS spectra of (a) Cr 2p; (b) Mn 2p; (c) Fe 2p; (d) Co 2p; (e) Ni 2p 

and (f) O 1s of s-CrMnFeCoNiO, c-CrMnFeCoNiO and h-CrMnFeCoNiO.
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Figure S9 Rate capability of c-CrFeCoNiO, c-CrMnCoNiO, c-CrMnFeNiO and c-

CrMnFeCoNiO.
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Table S1 The LIBs performance comparisons of the core-shell CrMnFeCoNiO spheres with 

recently-reported LIBs anodes.

Materials Specific Capacity Reference

c-CrMnFeCoNiO 753 mAh g-1 @ 1.0 A g-1

960 mAh g-1 @ 0.5 A g-1 This work

MS2
MS

812 mAh g-1 @ 0.5 A g-1

595 mAh g-1 @ 1.0 A g-1
Adv. Energy Mater. 
2022, 12, 2103090

(CrNiMnFeCu)3O4
556 mAh g-1 @ 1.0 A g-1

647 mAh g-1 @ 0.5 A g-1
Adv. Funct. Mater. 2022, 

32, 202110992

CNT-on-OCNT-Fe 560 mAh g-1 @ 1.0 A g-1 Adv. Funct. Mater. 2018, 
28, 1801746

(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4 555 mAh g-1 @ 0.2 A g-1 Nat. Commun. 2018, 9, 
3400

MnO@NC 570 mAh g-1 @ 1.0 A g-1 Adv. Funct. Mater. 2018, 
28, 1800003

VEG at 60 °C 550 mAh g-1 @ 1.0 A g-1 Adv. Energy Mater. 
2018, 8, 1801978

b-MnO2 ALAT 520 mAh g-1 @ 1.0 A g-1 Adv. Mater. 2020, 32, 
1906582

Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O
600 mAh g-1 @ 0.089 A g-

1
Energy Environ. Sci. 

2021, 14, 2883

Cu-HHTQ 600 mAh g-1 @ 0.6 A g-1 Angew. Chem. Int. Ed. 
2021, 60, 24467

Li2GeO3 725 mAh g-1 @ 0.05 A g-1 Angew. Chem. Int. Ed. 
2016, 55, 16059

LLTO 449 mAh g-1 @ 0.2 A g-1 Nat. Commun. 2020, 11, 
3490


