One Step Synthesis of Unsymmetrical 1,3-Disubstituted BCP Ketones via Nickel/Photoredox-Catalyzed [1.1.1]Propellane Multicomponent Dicarbofunctionalization

Weichen Huang,[§] Sebastian Keess,[¶] Gary A. Molander^{§*}

[§]Roy and Diana Vagelos Laboratories, Department of Chemistry, University of

Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323,

United States.

Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie

Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany

General Considerations	S2
Additional Optimization Details	S 3
Preparation of Propellane (solution in Et ₂ O)	S 6
Synthesis of Organotrifluoroborates	S 7
General Procedure for Three-Component Coupling	S12
Reaction Limitations	S33
Further Transformations	834
Mechanistic Studies	837
References	S40
Spectra of Synthesized Compounds	S41

1. General Considerations

1.1 General: For purple light irradiation, a Kessil PR160L-purple LED lamp (30 W High Luminous DEX 2100 LED, $\lambda_{max} = 390$ nm) was placed 1.5 inches away from the reaction vials. NMR spectra (¹H, ¹³C, ¹⁹F) were obtained at 298 K using 400, 500 and 600 MHz spectrometers. Flash chromatography was carried out using an automated system (CombiFlash®, UV detector, $\lambda = 254$ nm and 280 nm) with RediSep® R_f silica gel disposable flash columns (60 Å porosity, 40–60 µm) or RediSep R_f Gold® silica gel disposable flash columns (60 Å porosity, 20–40 µm). Accurate mass measurement analyses were conducted using electrospray ionization (ESI). The signals were mass measured against an internal lock mass reference of leucine enkephalin for ESI-LC/MS. The utilized software calibrates the instruments and reports measurements by use of neutral atomic masses. The mass of the electron is not included. IR spectra were recorded on an FT-IR using either neat oil or solid products. Melting points (°C) are uncorrected. UV/vis studies were measured in a 1 cm quartz cuvette using a Genesys 150 UV/vis spectrophotometer from Thermo Scientific.

1.2 Chemicals: Deuterated NMR solvents were purchased and stored over 4Å molecular sieves. Dry DME, dioxane, DMA, DMF and were obtained from Acros Organics and used as received. THF and Et₂O were purchased and dried via a solvent delivery system. Acyl chlorides were purchased from commercial suppliers and used as received. Data are presented as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant *J* (Hz) and integration.

2. Additional Optimization Details

General Optimization Procedure: To a 4 mL reaction vial equipped with a stirrer bar was added t-BuBF₃K 1 (24.6 mg, 0.15 mmol, 1.5 equiv), benzoyl chloride 2 (14.2 mg, mmol, 1 equiv), Cs₂CO₃ (49.6 mg, 0.15 mmol, 1.5 equiv), the 0.1 [Ir{dFCF₃ppy}₂(dtbbpy)]PF₆ (2.2 mg, 0.02 mmol, 2 mol %), and Ni(dtbbpy)Br₂ (0.02 mmol, 9.72 mg, 0.2 equiv). The vial was sealed with a cap containing a TFE-lined silicone septa and was evacuated and purged with argon three times via an inlet needle. The vial was then charged with 2.0 mL of dry DME via syringe, Then the vial was charged with the [1.1.1]propellane (0.37 mL, 0.3 mmol, 3.0 equiv, 0.8 M soln in Et₂O). The cap was sealed with Parafilm®, and the reaction was irradiated for 16 h. Irradiation was performed with a Kessil® PR160 390 nm lamp according to the procedure outlined in the Photochemical Reactor Design and Setup section. The temperature of the reaction was maintained at approximately 27 °C via a fan. After 16 h, an aliquot of a solution of 1,3,5-trimethoxybenzene (16.8 mg in 0.1 mL DME) was added to each vial. The reaction mixture concentrated via rotary evaporation, then re-dissolved in 250 µL of CDCl₃. The resulting soln was passed through a hydrophobic PTFE 0.2 µm syringedriven filter unit and dispensed into an NMR tube. NMR yields were calculated based on relative integrations of the aromatic peak of 1,3,5-trimethoxybenzene and the BCP proton in the BCP ketone products.

Table 1. Solvent Screen

BF ₃ K 1 + 2	[Ir{dFCF ₃ ppy} ₂ (dtbbpy)]PF ₆ (2 mol%) Ni(dtbbpy)Br ₂ (20 mol%) Cs ₂ CO ₃ (1.5 quiv) Solvent (0.05 M), 390 nm, 16 h	
Entry	Solvent	NMR yield(%)
1	DME	63
2	THF	35
3	dioxane	41
4	МТВЕ	15
5	TFT	18
6	triglyme	32
7	DMA	0
8	CH ₃ CN	0
9	DME(0.1 M)	57
10	DME(0.05 M)	54

Table 2. Base Screen

Entry	PC	NMR yield(%)
1	[lr{dFCF ₃ ppy} ₂ (dtbbpy)]PF ₆	63
2	[Ir{dFCF ₃ ppy} ₂ (bpy)]PF ₆	38
3	[lr(dtbpy)(bpy) ₂]PF ₆	0
4	Ru(bpy) ₃	0
5	4CzIPN	0

Table 4. Nickel/Ligand Screen

,CI

Entry	[Ni]	NMR yield(%)
1	Ni(dtbbpy)Br ₂	63
2	Ni(dOMebpy)Br ₂	37
3	Ni(bpy)Br ₂	28
4	Ni(Phen)Br ₂	24
5	Ni(dtbbpy)Br ₂ (10 mol%)	56
6	Ni(dtbbpy)Br ₂ (15 mol%)	60

Table 5 Stoichiometry Variation Screen

Table 6 LED Light Screen

Linuy	^	NIVIR yielu(%)
1	456	23
2	440	27
3	427	41
4	390	63
5	blue LED	18

3. Preparation of Propellane (solution in Et₂O)¹

A flame-dried flask equipped with a stir bar was charged with 1,1-dibromo-2,2bis(chloromethyl)cyclopropane.(5.0 g, 16.8 mmol). To this was added 10 mL of Et₂O. The solution was cooled to -78 °C (a white suspension formed). 20 mL of PhLi (20 mL, 38 mmol, 2.3 equiv, 1.9 M soln in *n*-Bu₂O) was added slowly dropwise. The mixture was stirred at -78 °C for 15 min, then warmed to 0 °C and stirred for another 2 h. The reaction flask was fitted with a flask-to-flask vacuum distillation piece attached to a receiving flask cooled to -78 °C. A pump was used to evacuate the system down slowly to ~10 Torr, and the solution was held at this pressure for 10 min. This resulted in the distillation of the Et₂O/ propellane soluyion. The concentration was checked by NMR by taking a 100 µL aliquot of the stock solution and determining the ratio of propellane to an added standard, such as mesitylene (35%-45% yield - typically concentrations are 0.6-0.9 M with this protocol). This solution should be kept at a -20 °C freezer, and the propellane is stable for at least several months under these conditions.

4. Synthesis of Organotrifluoroborates²

To a solution of ketone (1.0 equiv) in MeOH (1.0 M) at rt, 2- mesitylenesulfonyl hydrazide (1.0 equiv) was added. The solution was stirred at rt for 1-12 h, over which time a white solid precipitates. TLC showed the complete consumption of both starting materials. The solid was filtered and washed with cold Et₂O, providing the desired 2mesitylenesulfonyl hydrazone. A screw-capped culture tube was charged with Cs₂CO₃ (4.9 g, 15 mmol, 3.0 equiv), boronic acid (15 mmol, 3.0 equiv) and 2mesitylenesulfonyl hydrazone (5 mmol, 1.0 equiv). Then the tube was evacuated and backfilled 3 times with argon, followed by addition of chlorobenzene (1.0 mL) via a syringe. After stirring for at 100 °C for 5 h, the reaction mixture was cooled to rt. Next, pinacol (2.95 g, 25 mmol, 5.0 equiv) was added, and the reaction was stirred at 100 °C for another 1 h. The suspended solution was then filtered over Celite and washed with Et₂O. The solvent was removed under high vacuum, and the resultant crude Bpin was taken up in MeOH (0.1 M) and cooled to 0 ° C in an ice-water bath. After 5 min, aq KHF₂ (8.5 equiv, 4.5 M) was added dropwise via an addition funnel. After complete addition, the ice bath was removed, and the reaction was allowed to stir overnight. After this time, the crude reaction mixture was concentrated via rotary evaporation. The crude solid was taken up in portions of boiling acetone and filtered through a coarse fritted glass funnel to remove inorganic byproducts. The filtrate was concentrated via rotary evaporation, and the crude solid was washed with a 1:1 mixture of pentane/CH₂Cl₂ then CH₂Cl₂ to afford pure organotrifluoroborate

4-Methyl-4-(trifluoro-14-boraneyl)pentan-1-ol, Potassium Salt (197 mg, 19% yield) was prepared following the General Procedure. This product was obtained as a white solid, Melting point: 216-217 °C. ¹H NMR (600 MHz, acetone- d_6) δ 3.40 (t, J = 7.1 Hz, 2H), 3.21(s, 1H), 1.57 – 1.47 (m, 2H), 1.13 – 1.05 (m, 2H), 0.65 (s, 6H). ¹³C NMR (151 MHz, Acetone- d_6) δ 63.7, 36.7, 25.7, 24.5; ¹⁹F NMR (376 MHz, acetone- d_6) δ - 150.52; ¹¹B NMR (128 MHz, acetone- d_6) δ 5.4. IR (ATR): v = 3518, 3004, 1709, 1420, 1220, 1092, 902, 529 cm⁻¹ MS (ESI) calcd for C₆H₁₃BF₃O [M-K]⁺: 169.10; Found: 169.26. HRMS (ESI) not found.

Trifluoro(1-methylcyclooctyl)-l4-borane, Potassium Salt (301 mg, 26% yield) was prepared following the General Procedure. This product was obtained as a white solid, Melting point > 250 °C. ¹H NMR (600 MHz, acetone- d_6) δ 1.72 – 1.37 (m, 12H), 1.29 – 1.15 (m, 2H), 0.67 (s, 3H); ¹³C NMR (151 MHz, acetone- d_6) δ 32.48, 29.57, 25.77, 24.26, 23.92; ¹⁹F NMR (565 MHz, acetone- d_6) δ -150.5. ¹¹B NMR (128 MHz, acetone- d_6) δ 5.4.

IR (ATR): v = 2919, 2958, 1476, 1183, 960, 919 cm⁻¹

HRMS (ESI) calcd for C₉H₁₇BF₃ [M-K]⁺: 193.1375; Found: 193.1370.

Trifluoro(2-methylbicyclo[2.2.1]heptan-2-yl)-l4-borane, Potassium Salt (388 mg, 36% yield) was prepared following the General Procedure. This product was obtained as a white solid, Melting point > 250 °C. (dr = 5:4) ¹H NMR (600 MHz, acetone- d_6) δ 1.98 (t, J = 7.1 Hz, 1H), 1.75 – 1.67 (m, 3H), 1.38 (d, J = 13.1 Hz, 1H), 1.28 – 1.23 (m, 1H), 1.10 – 1.02 (m, 2H), 0.89 (d, J = 8.9 Hz, 1H), 0.76 (s, 3H), 0.42 (dd, J = 11.3, 2.5 Hz, 1H). ¹³C NMR (151 MHz, acetone- d_6) δ 46.15, 42.89, 42.24, 42.20, 39.00, 38.23,

38.08, 36.87, 29.54, 28.42, 27.18, 26.52, 25.06, 22.00.¹⁹F NMR (376 MHz, acetone- d_6) δ -145.25. ¹¹B NMR (128 MHz, acetone- d_6) δ 4.8. IR (ATR): v = 2944, 2866, 1711, 1483, 1257, 1024, 916 829 cm⁻¹ MS (ESI) calcd for C₈H₁₃BF₃ [M-K]⁺: 177.10 ; Found: 177.28. HRMS (ESI) not found.

tert-Butyl 4-Methyl-4-(trifluoro-l4-boraneyl)piperidine-1-carboxylate, Potassium Salt (472 mg, 31% yield) was prepared following the General Procedure. This product was obtained as a white solid, Melting point > 250 °C. ¹H NMR (600 MHz, acetone- d_6) δ 3.42 (t, J = 10.8 Hz, 2H), 3.37 – 3.27 (m, 2H), 1.67 – 1.55 (m, 2H), 0.95 (t, J = 11.1 Hz, 2H),1.42(s, 9H), 0.75 (s, 3H); ¹³C NMR (151 MHz, acetone- d_6) δ 154.5, 77.1, 40.9, 34.6, 27.8, 22.7; ¹⁹F NMR (565 MHz, acetone- d_6) δ -150.22; ¹¹B NMR (128 MHz, acetone- d_6) δ 4.8.

IR (ATR): v = 2922, 1667, 1432, 1366, 1252, 1170, 901 cm⁻¹

HRMS (ESI) calcd for C₁₁H₂₀BF₃NO₂ [M-K]⁺: 266.1535; Found: 266.1539.

(4-Butyltetrahydro-2H-pyran-4-yl)trifluoro-14-borane, Potassium Salt (533 mg, 46% yield) was prepared following the General Procedure. This product was obtained as a white solid, Melting point : 226 -227°C ¹H NMR (600 MHz, acetone- d_6) δ 3.58 – 3.44 (m, 2H), 3.38 (ddd, J = 10.6, 6.5, 3.8 Hz, 2H), 1.52 (ddd, J = 13.5, 6.7, 3.5 Hz, 2H), 1.19 (td, J = 9.0, 4.7 Hz, 2H), 1.08 (td, J = 15.0, 12.5, 5.5 Hz, 4H), 0.93 (ddd, J = 12.8, 8.0, 3.8 Hz, 2H), 0.73 (t, J = 7.3 Hz, 3H). ¹³C NMR (151 MHz, acetone- d_6) δ 64.4, 38.5, 34.0, 27.1, 24.3, 13.8. ¹⁹F NMR (565 MHz, acetone- d_6) δ -145.35. ¹¹B NMR (128 MHz, acetone- d_6) δ 5.0.

IR (ATR): v =2929, 2863, 1232, 1025, 953, 544 cm⁻¹

MS (ESI) calcd for C₉H₁₇BF₃O [M-K]⁺: 209.13 ; Found: 209.36.

HRMS (ESI) not found.

(3*S*,8*S*,9*S*,10*R*,13*S*,14*S*,17*R*)-10,13-Dimethyl-17-(2-(trifluoro-l4-boraneyl)propan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H

cyclopenta[a]phenanthren-3-yl Acetate, Potassium Salt (858 mg, 37% yield) was prepared following the General Procedure. This product was obtained as a white solid, Melting point > 250 °C. ¹H NMR (600 MHz, acetone- d_6) δ 5.24 (dq, J = 5.2, 1.6 Hz, 1H), 4.38 (ddt, J = 16.4, 8.4, 4.5 Hz, 1H), 2.18 – 2.14 (m, 2H), 1.83 (s, 3H), 1.82 – 1.80 (m, 1H), 1.77 (dt, J = 13.4, 3.6 Hz, 1H), 1.69 (dq, J = 12.4, 3.6 Hz, 1H), 1.57 (td, J =9.5, 7.1 Hz, 2H), 1.50 – 1.23 (m, 8H), 1.04 – 0.97 (m, 2H), 0.90 (s, 3H), 0.87 – 0.76 (m, 3H), 0.74 (s, 3H), 0.66 (s, 3H), 0.66 (s, 3H); ¹³C NMR (151 MHz, acetone- d_6) δ 169.4, 139.8, 122.5, 73.4, 57.2, 57.1, 50.5, 44.1, 40.2, 38.0, 37.0, 36.5, 31.9, 31.6, 29.5, 27.6, 24.3, 24.2, 23.7, 22.8, 20.9, 20.3, 18.7, 13.7; ¹⁹F NMR (376 MHz, acetone- d_6) δ -148.86; ¹¹B NMR (128 MHz, acetone- d_6) δ 5.3.

IR (ATR): v = 2939, 1732, 1248, 1036, 962, 946 cm⁻¹

HRMS (ESI) calcd for C₂₄H₃₇BF₃O₂ [M-K]⁺: 425.2839; Found: 425. 2832

Trifluoro((5*S*,8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-3,10,13-trimethyl-17-((*R*)-6methylheptan-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl)-l4borane, Potassium Salt (688 mg, 285 yield) was prepared following the General Procedure. This product was obtained as a white solid, Melting point : 207-208 °C dr = 5:1 ¹H NMR (400 MHz, acetone- d_6) δ 1.96-2.04 (m, 1H), 1.91 – 1.79 (m, 1H), 1.75 – 1.50 (m, 6H), 1.49 – 1.29 (m, 8H), 1.24 (s, 3H), 1.24 (s, 3H), 1.21 – 0.99 (m, 12H), 0.95 (d, *J* = 6.6 Hz, 3H), 0.89 (d, *J* = 6.6 Hz, 6H), 0.76-0.79 (m, 1H), 0.76-0.79 (m, 1H), 0.70 (s, 3H), 0.66-0.68 (m, 1H); ¹³C NMR (151 MHz, acetone- d_6) δ 56.8, 56.6, 56.3, 55.1, 54.8, 46.0, 42.5, 42.4, 42.3, 40.6, 40.3, 40.0, 39.3, 38.1, 36.8, 36.0, 35.7, 35.7, 35.5, 35.4, 33.0, 32.4, 32.3, 32.1, 28.0, 27.8, 25.6, 24.1, 24.0, 23.9, 23.6, 22.1, 21.9, 20.8, 18.2, 11.7, 11.6, 11.5, 11.5.

¹⁹F NMR (376 MHz, acetone- d_6) δ -145.56, -155.60. ¹¹B NMR (128 MHz, acetone- d_6) δ 5.2.

IR (ATR): v = 2929, 2851, 1379, 1145, 1026, 853, 693 cm⁻¹

HRMS (ESI) calcd for C₂₈H₄₉BF₃ [M-K]⁺: 453.3879; Found: 453.3863.

Trifluoroborates below were synthesized according to known literature procedures³⁻⁸

5. General Procedure

$$R_{2} \xrightarrow{R_{1}}{R_{3}} BF_{3}K + CI \xrightarrow{O} + CI \xrightarrow{R_{1}}{R} R \xrightarrow{O} DME (0.05 \text{ M}), 390 \text{ nm}, 16 \text{ h}} R_{2} \xrightarrow{R_{1}}{R_{3}} R_{2}$$

R = Aryl, Alkyl To an 8.0 mL clear borosilicate glass vial with a screw top equipped with a magnetic

To an 0.6 mB etcal objectificate glass via with a seriet top equipped with a magnetic stir bar was added [Ir{dFCF₃ppy}₂(dtbbpy)]PF₆ (6.73 mg, 0.06 mmol, 2 mol %), NiBr₂(dtbbpy) (29.21 mg, 0.06 mmol, 20 mol %), Cs₂CO₃ (146 mg, 0.45 mmol, 1.5 equiv), organotrifluoroborate (0.45 mmol, 1.5 equiv), the acyl chloride (if solid, 0.30 mmol, 1.0 equiv), The vial was then sealed with a screw-cap containing a PTFE-lined silicone septum. An inlet needle was inserted, and the atmosphere was exchanged for N₂ via three evacuation-backfill cycles. The vial was then charged with 6.0 mL of dry DME via syringe, and the acyl chloride (if liquid, 0.50 mmol, 1.0 equiv) was added via syringe. Finally, the via was charged with [1.1.1]propellane (1.13 mL, 0.9 mmol, 3.0 equiv, 0.8 M soln in Et₂O). The reaction was then sparged for ~2 min with N₂ or Ar, the cap was sealed with Parafilm®, and the reaction mixture was irradiated with a Kessil® PR160 390 nm lamp for 16 h. Upon reaction completion, The resulting soln was passed through a pad of Celite®, eluting with either CH₂Cl₂ or EtO₂ followed by SiO₂ column chromatography (hexanes/EtOAc).

(3-(*tert*-Butyl)bicyclo[1.1.1]pentan-1-yl)(phenyl)methanone 4 (43.7 mg, 64% yield) was prepared following the General Procedure. This product was obtained as a paleyellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.00 (d, *J* = 7.1 Hz, 2H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.43 (t, *J* = 7.3 Hz 2H), 2.08 (s, 6H), 0.90 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 198.6, 136.8, 132.7, 128.8, 128.3, 49.8, 48.6, 41.7, 29.4, 25.7. IR (ATR): v = 2959, 2908, 2872, 1666, 1340, 1209, 872 696 cm⁻¹ HRMS (EI) calcd for C₁₆H₂₀O [M]⁺: 228.1514; Found: 228.1526.

(3-(*tert*-Butyl)bicyclo[1.1.1]pentan-1-yl)(4-methoxyphenyl)methanone 5 (39.4 mg, 51% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.01 (d, *J* = 8.9 Hz, 2H), 6.92 (d, *J* = 8.9 Hz, 2H), 3.86 (s, 3H), 2.06 (s, 6H), 0.90 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 196.9, 163.1, 131.2, 129.8, 113.5, 55.4, 49.8, 48.5, 41.5, 29.4, 25.7. IR (ATR): v = 2960, 1655, 1601, 1509, 1259, 1211, 1167, 1028, 809 cm⁻¹. HRMS (EI) calcd for C₁₇H₂₂O₂ [M]⁺: 258.1620; Found: 258.1627.

(3-(*tert*-Butyl)bicyclo[1.1.1]pentan-1-yl)(3-fluorophenyl)methanone 6 (33.9 mg, 46% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.79 (dt, *J* = 7.8, 1.2 Hz, 1H), 7.66 (ddd, *J* = 9.5, 2.7, 1.5 Hz, 1H), 7.42 (td, *J* = 8.0, 5.6 Hz, 1H), 7.23 (tdd, *J* = 8.3, 2.7, 1.0 Hz, 1H), 2.07 (s, 6H), 0.90 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃) δ -111.8; ¹³C NMR (101 MHz, CDCl₃) δ 197.2 (d, *J* = 2.0 Hz), 162.6 (d, *J* = 247.7 Hz), 138.7 (d, *J* = 6.0 Hz), 130.0 (d, *J* = 7.6 Hz), 124.6 (d, *J* = 3.1 Hz), 119.7 (d, *J* = 21.5 Hz), 115.5 (d, *J* = 22.1 Hz), 49.8, 48.7, 41.6, 29.4, 25.7.

IR (ATR): v = 2959, 2910, 1671, 1587, 1482, 1296, 1203, 876, 791 cm⁻¹ HRMS (EI) calcd for C₁₆H₁₉FO [M]⁺: 246.1420; Found: 246.1439.

(3-(*tert*-Butyl)bicyclo[1.1.1]pentan-1-yl)(4-chlorophenyl)methanone 7 (28.2 mg, 36% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, *J* = 8.4 Hz, 2H), 7.41 (d, *J* = 8.5 Hz, 2H), 2.06 (s, 6H), 0.90 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 197.3, 139.1, 135.0, 130.3, 128.7, 49.8, 48.7, 41.6, 29.4, 25.7.

IR (ATR): v = 2955, 1664, 1586, 1208, 1091, 872 cm⁻¹

HRMS (EI) calcd for C₁₆H₁₉ClO [M]⁺: 262.1124; Found: 262.1116.

(3-(*tert*-Butyl)bicyclo[1.1.1]pentan-1-yl)(4-(trifluoromethoxy)phenyl)methanone 8 (42.1 mg, 45% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.8 Hz, 2H), 7.27 (dd, *J* = 8.8 ,1.6 Hz, 2H), 2.07 (s, 6H), 0.90 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃) δ -57.62; ¹³C NMR (101 MHz, CDCl₃) δ 196.9, 152.3, 135.0, 130.8, 120.3 (q, *J* = 271.7 Hz) 120.2, 49.8, 48.7, 41.6, 29.4, 25.7.

IR (ATR): v = 2960, 2873, 1668, 1602, 1505, 1363, 1258, 1210, 874 cm⁻¹ HRMS (EI) calcd for C₁₇H₁₉F₃O₂ [M]⁺: 312.1337; Found: 312.1346.

(3-(*tert*-Butyl)bicyclo[1.1.1]pentan-1-yl)(o-tolyl)methanone 9 (30.4 mg, 42% yield) was prepared following the General Procedure. This product was obtained as a paleyellow oil.¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, J = 7.6, 1.5 Hz, 1H), 7.32 (td, J = 7.5, 1.4 Hz, 1H), 7.24 – 7.17 (m, 2H), 2.38 (s, 3H), 1.95 (s, 6H), 0.86 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 203.6, 137.9, 136.9, 131.4, 130.3, 127.7, 125.0, 48.9, 48.3, 42.5, 29.4, 25.7, 20.37.

IR (ATR): v = 2958, 2871, 1672, 1459, 1300, 1282, 1209, 759 cm⁻¹ HRMS (EI) calcd for C₁₇H₂₂O [M]⁺: 242.1671; Found: 242.1703.

3-(3-(*tert***-Butyl)bicyclo[1.1.1]pentane-1-carbonyl)benzonitrile 10** (22.7 mg, 30% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.26 (s, 1H), 8.20 (d, *J* = 7.9 Hz, 1H), 7.82 (d, *J* = 7.7 Hz, 1H), 7.58 (t, *J* = 7.8 Hz, 1H), 2.09 (s, 6H), 0.91 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 196.5, 137.5, 135.6, 132.7, 132.5, 129.5, 118.0, 112.9, 49.9, 49.0, 41.5, 29.4, 25.7.

IR (ATR): v = 2959, 2250, 1683, 1673, 1260, 1203, 1093, 798 cm⁻¹ HRMS (EI) calcd for C₁₇H₁₉NO [M]⁺: 253.1467; Found: 253.1468.

(3-(*tert*-Butyl)bicyclo[1.1.1]pentan-1-yl)(3-(trifluoromethyl)phenyl)methanone 11 (40.8 mg, 46% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.24 (s, 1H), 8.17 (d, J =7.8 Hz, 1H), 7.79 (d, J = 7.9 Hz, 1H), 7.58 (t, J = 7.8 Hz, 1H), 2.09 (s, 6H), 0.91 (d, J =1.6 Hz, 9H); ¹⁹F NMR (565 MHz, CDCl₃) δ -62.85; ¹³C NMR (151 MHz, CDCl₃) δ 197.2, 137.2, 131.9, 131.0 (q, J = 32.9 Hz), 129.1 (q, J = 3.9 Hz), 129.0, 125.6 (q, J =3.9 Hz), 123.7 (q, J = 271.7 Hz) 49.9, 48.8, 41.6, 29.4, 25.7. IR (ATR): v = 2961, 1673, 1330, 1207, 1169, 1131 1075 cm⁻¹ HRMS (EI) calcd for C₁₇H₁₉F₃O [M]⁺: 296.1388; Found: 242.1379.

(3-(tert-Butyl)bicyclo[1.1.1]pentan-1-yl)(4-

((trifluoromethyl)thio)phenyl)methanone 12 (31.4 mg, 32% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.01 (d, J = 7.7 Hz, 2H), 7.71 (d, J = 5.8 Hz, 2H), 2.08 (s, 6H), 0.90 (s, 9H); ¹⁹F NMR (565 MHz, CDCl₃) δ -41.77. ¹³C NMR (151 MHz, CDCl₃) δ 197.7, 138.2, 135.5, 130.4 (q, J = 10.0Hz), 129.6, 128.9 (q, J = 308 Hz) 49.8, 48.8, 41.7, 29.4, 25.7.

IR (ATR): $v = 2960, 2908, 1656, 1489, 1259, 1118, 1087, 938 \text{ cm}^{-1}$

HRMS (EI) calcd for $C_{17}H_{19}F_3OS \ [M]^+: 328.1109$; Found: 328.1109.

Benzo[d][1,3]dioxol-5-yl(3-(*tert***-butyl)bicyclo[1.1.1]pentan-1-yl)methanone** 13 (38.3 mg, 47% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.66 (d, J = 10.5 Hz, 1H), 7.47 (s, 1H), 6.83 (d, J = 7.5 Hz, 1H), 6.03 (s, 2H), 2.05 (s, 6H), 0.89 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 196.4, 151.4, 147.9, 131.5, 125.3, 108.6, 107.7, 101.7, 49.9, 48.5, 41.5, 29.4, 25.7.

IR (ATR): v = 2958, 2908, 1656, 1487, 1360, 1261, 1243, 1038, 934 cm⁻¹ HRMS (EI) calcd for C₁₇H₂₀O₃ [M]⁺: 272.1412; Found: 272.1406.

(3-(*tert*-Butyl)bicyclo[1.1.1]pentan-1-yl)(thiophen-2-yl)methanone 14 (19.6 mg, 28% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.83 (d, *J* = 3.8 Hz, 1H), 7.62 (d, *J* = 4.9

Hz, 1H), 7.13 (t, *J* = 4.4 Hz, 1H), 2.05 (s, 6H), 0.90 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 191.1, 143.0, 133.3, 132.8, 128.0, 49.5, 48.1, 41.2, 29.4, 25.8. IR (ATR): v = 2959, 2907, 1644, 1413, 1362, 1209, 720 cm⁻¹ HRMS (EI) calcd for C₁₄H₁₈SO [M]⁺: 239.1078; Found: 239.1068.

(3-(*tert*-Butyl)bicyclo[1.1.1]pentan-1-yl)(furan-2-yl)methanone 15 (20.9 mg, 32% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.59 (d, J = 2.6 Hz, 1H), 7.22 (s, 1H), 6.52 (dt, J = 3.6, 1.8 Hz, 1H), 2.02 (s, 6H), 0.89 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 187.1, 152.3, 146.3, 118.1, 111.9, 48.9, 48.3, 40.3, 29.4, 25.7. IR (ATR): v = 2958, 2872, 1661, 1464, 1362, 1202, 1054 cm⁻¹ HRMS (EI) calcd for C₁₄H₁₈O₂ [M]⁺: 218.1307; Found: 218.1301.

1-(3-(*tert***-Butyl)bicyclo[1.1.1]pentan-1-yl)-3-phenylpropan-1-one 16** (46.8 mg, 61 yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.28 (t, *J* = 7.7 Hz, 2H), 7.22 – 7.15 (m, 3H), 2.87 (t, *J* = 7.7 Hz, 2H), 2.76 (t, *J* = 7.7 Hz, 2H), 1.77 (s, 6H), 0.83 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 208.4, 141.2, 128.4, 128.3, 126.0, 47.6, 47.6, 41.5, 40.4, 29.4, 29.3, 25.6.

IR (ATR): v = 2958, 2870, 1702, 1362, 1200, 1094, 951, 698 cm⁻¹. HRMS (EI) calcd for C₁₈H₂₄O [M]⁺: 256.1827; Found: 256.1829.

(3-(*tert*-Butyl)bicyclo[1.1.1]pentan-1-yl)(cyclopropyl)methanone 17 (31.1 mg, 54% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 2.08 (tt, *J* = 7.8, 4.6 Hz, 1H), 1.85 (s, 6H), 1.06 – 0.98 (m, 2H), 0.84-0.88 (m, 11H); ¹³C NMR (151 MHz, CDCl₃) δ 209.3, 47.7, 47.6, 42.0, 29.4, 25.7, 17.0, 11.1.

IR (ATR): v = 2965, 2870, 1683, 1391, 1202, 1085, 964 cm⁻¹ HRMS (EI) calcd for C₁₂H₁₇O [M-CH₃]⁺: 177.1279; Found: 177.1267;

(3-(*tert*-Butyl)bicyclo[1.1.1]pentan-1-yl)(cyclohexyl)methanone 18 (29.4 mg, 42% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 2.60 (tt, *J* = 11.5, 3.4 Hz, 1H), 1.82 (s, 6H), 1.77 – 1.73 (m, 4H), 1.38 – 1.10 (m, 6H), 0.85 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 212.2, 48.0, 47.9, 47.3, 41.2, 29.3, 28.4, 25.8, 25.7, 25.7. IR (ATR): v = 2931, 2856, 1695, 1449, 1362, 954, 761 cm⁻¹ HRMS (EI) calcd for C₁₆H₂₆O [M]⁺: 234.1984; Found: 234.2000.

Ethyl 4-(3-(*tert*-Butyl)bicyclo[1.1.1]pentan-1-yl)-4-oxobutanoate 19 (35.5 mg, 47% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 4.12 (q, *J* = 7.2 Hz, 2H), 2.76 (t, *J* = 6.8 Hz, 2H), 2.56 (t, *J* = 6.8 Hz, 2H), 1.83 (s, 6H), 1.25 (t, *J* = 7.2 Hz, 3H), 0.85 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 207.2, 172.8, 60.6, 47.6, 47.6, 41.3, 33.3, 29.3, 27.6, 25.7, 14.2.

IR (ATR): v = 2960, 1737, 1705, 1364, 1202, 1097 cm⁻¹

HRMS (EI) calcd for C₁₅H₂₄O₃ [M]⁺: 252.1725; Found: 252.1731.

4-Bromo-1-(3-(*tert***-butyl)bicyclo[1.1.1]pentan-1-yl)butan-1-one 20** (33.4 mg, 41% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 3.44 (t, *J* = 6.4 Hz, 2H), 2.64 (t, *J* = 7.0 Hz, 2H), 2.14 – 2.07 (m, 2H), 1.82 (s, 6H), 0.85 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 208.0, 47.6, 47.5, 41.5, 36.5, 33.4, 29.3, 26.1, 25.7. IR (ATR): v = 2959, 2909, 2871, 1701, 1509, 1362, 1201, 1089, 803 cm⁻¹

HRMS (EI) calcd for C₁₃H₂₁BrO [M]⁺: 272.0776; Found: 272.0784.

1-(3-(*tert***-Butyl)bicyclo[1.1.1]pentan-1-yl)-4-chlorobutan-1-one 21** (28.1 mg, 47% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 3.57 (t, *J* = 6.3 Hz, 2H), 2.63 (t, *J* = 7.0 Hz, 2H), 2.02 (tt, *J* = 7.0, 6.3 Hz, 2H), 1.82 (s, 6H), 0.85 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 208.1, 47.6, 47.5, 44.5, 41.5, 35.3, 29.3, 26.0, 25.6. IR (ATR): v = 2960, 2871, 1702, 1363, 1260, 1202, 1095, 803 cm⁻¹ HRMS (EI) calcd for C₁₂H₁₈CIO [M-CH₃]⁺: 213.1046; Found: 213.1047

(3-(tert-Butyl)bicyclo[1.1.1]pentan-1-yl)(2,2,3,3-

tetramethylcyclopropyl)methanone 22 (26.7 mg, 36% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 1.76 (s, 6H), 1.20 (d, *J* = 1.3 Hz, 13H), 0.85 (s, 9H;; ¹³C NMR (151 MHz, CDCl₃) δ 208.1, 47.2, 47.0, 43.3, 40.3, 34.2, 29.3, 25.7, 23.8, 16.3. IR (ATR): v = 2955, 1680, 1409, 1260, 1200, 1100, 807 cm⁻¹ HRMS (EI) calcd for C₁₇H₂₈O [M]⁺: 248.2140; Found: 248.2138.

2-(Adamantan-1-yl)-1-(3-(*tert***-butyl)bicyclo[1.1.1]pentan-1-yl)ethan-1-one 23** (46.8 mg, 52% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 2.17 (s, 2H), 1.94 (s, 3H), 1.77 (s, 6H), 1.68 (d, *J* = 12.3 Hz, 3H), 1.65 – 1.60 (m, 9H), 0.84 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 209.5, 51.1, 47.5, 47.3, 43.0, 42.5, 36.8, 33.6, 29.3, 28.6, 25.7. IR (ATR): v = 2956, 2901, 1702, 1451, 1393, 1360, 1199, 1082, 872, 803 cm⁻¹ HRMS (EI) calcd for C₂₁H₃₂O [M]⁺: 300.2453; Found: 300.2453.

3-(*tert*-**Butyl**)-*N*-**phenylbicyclo**[1.1.1]**pentane-1-carboxamide 24** (11.6 mg, 16% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.53 (d, *J* = 6.2 Hz, 2H), 7.31 (td, *J* = 7.7, 2.1 Hz, 1H), 7.15 (br, 1H), 7.09 (dt, *J* = 7.7, 4.0 Hz, 2H), 1.90 (s, 6H), 0.88 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 169.0, 137.7, 129.0, 124.2, 119.5, 47.6, 47.1, 37.8, 29.3, 25.8.

IR (ATR): v = 2957, 1659, 1599, 1440, 1206, 753, 692 cm⁻¹

HRMS (ESI) calcd for C₁₆H₂₂NO [M+H]⁺: 244.1701; Found: 244.1406.

1-(*tert*-**Butyl**)-**3-**styrylbicyclo[1.1.1]pentane **25** (18.9 mg, 28% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.30 (dd, J = 8.2, 7.0 Hz, 2H), 7.25 – 7.21 (m, 3H), 6.48 (d, J = 12.0 Hz, 1H), 5.70 (d, J = 12.0 Hz, 1H), 1.56 (s, 6H), 0.77 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 137.5, 131.9, 130.2, 129.1, 127.5, 126.5, 49.8, 49.2, 35.9, 29.4, 25.8. IR (ATR): v = 2958, 2902, 2705, 1670, 1027, 1095, 1045, 830 cm⁻¹ HRMS (EI) calcd for C₂₇H₂₂ [M]⁺: 226.1722; Found: 226.1718.

4-(3-Benzoylbicyclo[1.1.1]pentan-1-yl)-4-methylpentan-2-one 26 (41.1 mg, 51% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (400 MHz, CDCl₃ δ 7.98 (d, *J* = 8.1 Hz, 2H), 7.60 – 7.47 (t, *J* = 7.5 Hz 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 2.34 (s, 2H), 2.16 (s, 3H), 2.09 (s, 6H), 1.03 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 208.4, 198.1, 136.6, 132.8, 128.8, 128.4, 50.6, 49.8, 48.5, 41.7, 32.5, 32.4, 22.9;

IR (ATR): v = 2966, 2913, 2875, 1713, 1664, 1448, 1361, 1330, 1177 cm⁻¹ HRMS (EI) calcd for C₁₈H₂₂O₂ [M]⁺: 270.1620; Found: 270.1631.

Methyl 4-(3-Benzoylbicyclo[1.1.1]pentan-1-yl)-4-methylpentanoate 27 (37.8 mg, 42% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, *J* = 8.3 Hz, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.44 (t, *J* = 7.8 Hz, 2H), 3.68 (s, 3H), 2.35 – 2.26 (m, 2H), 2.11 (s, 6H), 1.66 – 1.52 (m, 2H), 0.85 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 198.2, 174.6, 136.7, 132.7, 128.8, 128.4, 51.6, 50.0, 48.5, 41.9, 33.4, 31.6, 29.6, 22.4. IR (ATR): v = 2964, 1737, 1665, 1297, 1207, 872, 766, 697 cm⁻¹ HRMS (EI) calcd for C₁₉H₂₄O₃ [M]⁺: 300.1725; Found: 300.1737.

5-(3-Benzoylbicyclo[1.1.1]pentan-1-yl)-5-methylhexan-2-one 28 (31.5 mg, 37% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, J = 8.3 Hz, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 7.4 Hz, 2H), 2.47 – 2.39 (m, 2H), 2.17 (s, 3H), 2.11 (s, 6H), 1.55

- 1.49 (m, 2H), 0.84 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 209.1, 198.2, 136.6, 132.8, 128.8, 128.4, 50.0, 48.6, 42.0, 39.1, 31.9, 31.4, 30.0, 22.6.
IR (ATR): v = 2928, 2868, 1667, 1448, 1209, 800, 696 cm⁻¹
HRMS (EI) calcd for C₁₉H₂₄O₂ [M]⁺: 284.1776; Found: 284.1783.

(3-(2-Methyl-4-phenylbutan-2-yl)bicyclo[1.1.1]pentan-1-yl)(phenyl)methanone 29 (43.8 mg, 46% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, *J* = 9.4 Hz, 2H), 7.54 (t, *J* = 6.6 Hz, 1H), 7.44 (t, *J* = 6.7 Hz 2H), 7.30 (t, *J* = 6.8 Hz, 2H), 7.24 – 7.16 (m, 3H), 2.64 – 2.54 (m, 2H), 2.13 (s, 6H), 1.56 – 1.51 (m, 2H), 0.95 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 198.4, 143.2, 136.7, 132.7, 128.8, 128.4, 128.3, 128.3, 125.7, 50.1, 48.8, 42.0, 41.1, 32.1, 31.0, 22.7.

IR (ATR): v = 2963, 1715, 1665, 1448, 1207, 872, 767, 697cm⁻¹

HRMS (EI) calcd for C₂₃H₂₆O [M]⁺: 318.1984; Found: 300.1978.

(3-(2,6-Dimethylhept-5-en-2-yl)bicyclo[1.1.1]pentan-1-yl)(phenyl)methanone 30 (45.2 mg, 51% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 7.2 Hz, 2H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.5 Hz, 2H), 5.14 (ddq, *J* = 8.5, 5.7, 1.4 Hz, 1H), 2.12 (s, 6H), 2.03 – 1.92 (m, 2H), 1.72 (s, 3H), 1.64 (s, 3H), 1.29 – 1.23 (m, 2H), 0.89 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 198.5, 136.8, 132.7, 131.1, 128.8, 128.3, 125.0, 50.1, 48.9, 42.0, 38.6, 31.8, 25.7, 23.1, 17.6.

IR (ATR): v = 2964, 2912, 2872, 1666, 1598, 1580, 1448, 1362, 1177, 696 cm⁻¹ HRMS (EI) calcd for C₂₁H₂₈O [M]⁺: 296.2140; Found: 296.2130.

(3-(5-Hydroxy-2-methylpentan-2-yl)bicyclo[1.1.1]pentan-1-yl)(phenyl)methanone 31 (25.2 mg, 31% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, *J* = 7.0 Hz, 2H), 7.47 (t, *J* = 7.4 Hz, 1H), 7.37 (t, *J* = 7.4 Hz, 2H), 3.58 (t, *J* = 6.6 Hz, 2H), 2.03 (s, 6H), 1.57 – 1.42 (m, 3H), 1.24 – 1.17 (m, 2H), 0.79 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 198.4, 136.7, 132.7, 128.8, 128.4, 63.8, 50.1, 48.8, 42.0, 34.5, 31.6, 27.8, 22.7. IR (ATR): v = 3518, 3004, 1709, 1359, 1220, 902, 529 cm⁻¹ HRMS (ESI) calcd for C₁₈H₂₅O₂ [M+H]⁺: 273.1855; Found: 273.1847.

4-(3-Benzoylbicyclo[1.1.1]pentan-1-yl)-4-methylpentanenitrile 32 (43.2 mg, 54% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.98 (d, *J* = 6.5 Hz, 2H), 7.55 (t, *J* = 6.9 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 2H), 2.32 (dd, *J* = 8.9, 7.4 Hz, 2H), 2.12 (s, 6H), 1.67 (dd, *J* = 8.9, 7.4 Hz, 2H), 0.90 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 197.8, 136.5, 132.9, 128.8, 128.4, 120.3, 49.9, 48.1, 41.9, 34.3, 32.0, 22.2, 12.7. IR (ATR): v = 2966, 2874, 2245, 1663, 1448, 1208, 767, 698 cm⁻¹ HRMS (EI) calcd for C₁₈H₂₁ON [M]⁺: 267.1623; Found: 267.1612.

3-(3-Benzoylbicyclo[1.1.1]pentan-1-yl)-3-methylcyclohexan-1-one 33 (32.1 mg, 38% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.98 (d, *J* = 8.1 Hz, 2H), 7.55 (t, *J* = 7.7 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 2H), 2.34 (d, *J* = 14.6 Hz, 1H), 2.27 (t, *J* = 10.4 Hz, 2H), 2.13 (s, 6H), 2.04 – 1.99 (m, 2H), 1.85 (dtt, *J* = 19.6, 12.8, 3.8 Hz, 1H), 1.72 – 1.64 (m,

1H), 1.53 (d, J = 13.8 Hz, 1H), 0.90 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 211.8, 197.8, 136.5, 132.9, 128.8, 128.4, 49.8, 49.5, 47.9, 41.9, 40.8, 37.8, 32.4, 22.3, 20.7. IR (ATR): v = 2963, 1710, 1664, 1260, 1207, 1023, 798, 697 cm⁻¹ HRMS (EI) calcd for C₁₉H₂₂O₂ [M]⁺: 282.1620; Found: 282.1629.

(3-(1-Methylcyclohexyl)bicyclo[1.1.1]pentan-1-yl)(phenyl)methanone 34 (45 mg, 56% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 7.1 Hz, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.44 (t, *J* = 7.5 Hz, 2H), 2.09 (s, 6H), 1.62 (dt, *J* = 12.5, 3.8 Hz, 1H), 1.52 (t, *J* = 4.2 Hz, 1H), 1.46 – 1.33 (m, 2H), 1.27 – 1.20 (m, 5H), 1.13 (dt, *J* = 12.1, 3.8 Hz, 1H), 0.87 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 198.7, 136.8, 132.6, 128.9, 128.3, 49.6, 49.3, 42.0, 33.3, 31.5, 26.3, 21.9, 19.4. IR (ATR): v = 2960, 2925, 1666, 1445, 1260, 1205, 805, 798, 696 cm⁻¹

HRMS (EI) calcd for C₁₉H₂₄O [M]⁺: 268.1827; Found: 268.1812.

(3-(1-Methylcyclooctyl)bicyclo[1.1.1]pentan-1-yl)(phenyl)methanone 35 (37.2 mg, 42% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, *J* = 6.5 Hz, 2H), 7.53 (t, *J* = 7.2 Hz, 1H), 7.44 (t, *J* = 7.7 Hz, 2H), 2.11 (s, 6H), 1.67 – 1.51 (m, 7H), 1.52 – 1.39 (m, 5H), 1.43 – 1.20 (m, 2H), 0.81 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 198.6, 136.8, 132.6, 128.8, 128.3, 50.5, 49.4, 42.3, 34.3, 32.1, 28.6, 25.6, 23.5, 23.2. IR (ATR): v = 2958, 2915, 1665, 1447, 1205, 805, 756, 696 cm⁻¹ HRMS (EI) calcd for C₂₁H₂₈O [M]⁺: 296.2140; Found: 296.2127.

(3-(2-Methylbicyclo[2.2.1]heptan-2-yl)bicyclo[1.1.1]pentan-1-

yl)(phenyl)methanone 36 (39.8 mg, 47% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. dr =4:1. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 2H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.44 (t, *J* = 7.4 Hz, 2H), 2.21 – 2.16 (m, 1H), 2.10 (s, 6H), 2.00 (d, *J* = 3.8 Hz, 1H), 1.66 – 1.58 (m, 2H), 1.50 (ddd *J* = 9.5, 4.3, 2.3 Hz, 2H), 1.36 – 1.29 (m, 1H), 1.14 (ddq, *J* = 8.9, 2.7, 1.3 Hz, 2H), 0.93 (s, 3H), 0.77 (d, *J* = 12.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 198.5, 136.8, 132.6, 128.8, 128.3, 50.7, 48.1, 46.3, 43.2, 43.0, 41.2, 38.6, 37.7, 28.0, 25.0, 21.7. IR (ATR): v = 2964, 2871, 1665, 1598, 1580, 1319, 1205 695 cm⁻¹ HRMS (EI) calcd for C₂₀H₂₄O [M]⁺: 280.1827; Found: 280.1824.

tert-Butyl 4-(3-Benzoylbicyclo[1.1.1]pentan-1-yl)-4-methylpiperidine-1carboxylate 37 (45.3 mg, 41% yield) was prepared following the General Procedure. This product was obtained as a white solid, Melting point 103-104 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.98 (d, *J* = 8.1 Hz, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.44 (td, *J* = 7.8, 1.6 Hz, 2H), 3.88 (bs, 2H), 2.93 (t, *J* = 12.7 Hz, 2H), 2.10 (s, 6H), 1.41-1.15 (m, 11H), 1.34 – 1.14 (m, 2H), 0.94 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 198.2, 154.9, 136.6, 132.8, 128.8, 128.4, 79.3, 49.6, 48.4, 42.2, 40.0, 32.5, 30.4, 28.4, 18.4. IR (ATR): v = 2970, 2918, 2870, 1691, 1666, 1207, 1150, 697 cm⁻¹ HRMS (ESI) calcd for C₂₃H₃₁O₃Na [M+Na]⁺: 392.2202; Found: 392.2190.

(3-(4-Butyltetrahydro-2H-pyran-4-yl)bicyclo[1.1.1]pentan-1-yl)(phenyl)

methanone 38 (54.2 mg, 58% yield) was prepared following the General Procedure. This product was obtained as a white solid, Melting point 76-77 °C.¹H NMR (600 MHz, CDCl₃) δ 7.98 (dd, J = 8.4, 1.4 Hz, 2H), 7.52 (t, J = 7.3 Hz, 1H) , 7.44 (t, J = 7.7 Hz, 2H), 3.77 (dt, J = 11.7, 4.1 Hz, 2H), 3.58 (td, J = 11.2, 2.5 Hz, 2H), 2.17 (s, 6H), 1.54 (ddd, J = 13.8, 10.9, 4.5 Hz, 2H), 1.51 – 1.44 (m, 2H), 1.35 – 1.29 (m, 4H), 1.30 – 1.21 (m, 2H), 0.92 (t, J = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 198.1, 136.7, 132.8, 128.8, 128.4, 63.8, 51.0, 48.4, 42.6, 32.5, 31.8, 31.6, 26.4, 23.7, 14.1. IR (ATR): v = 2955, 2850, 1665, 1450, 1356, 1205, 549 cm⁻¹ HRMS (EI) calcd for C₂₁H₂₈O₂ [M]⁺: 312.2089; Found: 312.2100.

3-(3-Benzoylbicyclo[1.1.1]pentan-1-yl)-3-methylcyclopentan-1-one 39 (28.1 mg, 35% yield) was prepared following the General Procedure. This product was obtained as a white solid, Melting point 63-65 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, *J* = 7.0 Hz, 2H), 7.47 (t, *J* = 7.4 Hz, 1H), 7.37 (t, *J* = 7.4 Hz, 2H), 2.37 – 2.27 (m, 2H), 2.24 (d, *J* = 17.9 Hz, 1H), 2.14 (qd, *J* = 9.8, 2.0 Hz, 6H), 2.02 – 1.96 (m, 2H), 1.72 (dd, *J* = 13.0, 9.1 Hz, 1H), 1.09 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 219.0, 197.6, 136.5, 132.9, 128.8, 128.5, 50.2, 48.5, 46.7, 42.3, 38.8, 37.3, 31.7, 22.8. IR (ATR): v = 2962, 2874, 1740, 1663, 1597, 1448, 1319, 1212, 1176, 872 cm⁻¹ HRMS (EI) calcd for C₁₈H₂₀O₂ [M]⁺: 368.1463; Found: 368.1469.

S26

Phenyl(3-(2,2,2-trifluoro-1-(*p*-tolyl)ethyl)bicyclo[1.1.1]pentan-1-yl)methanone 40 (33.1 mg, 32% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz CDCl₃) δ 7.93 (d, *J* = 7.6 Hz, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.43 (t, *J* = 7.9 Hz, 2H), 7.19 (d, *J* = 7.1 Hz, 2H), 7.15 (d, *J* = 6.8 Hz, 2H), 3.47 (q, *J* = 10.0 Hz, 1H), 2.36 (s, 3H), 2.28 (q, *J* = 9.6 Hz, 6H); ¹⁹F NMR (565 MHz, CDCl₃) δ -65.78 (d, *J* = 10.0 Hz); ¹³C NMR (151 MHz, CDCl₃) δ 196.8, 137.9, 136.4, 132.9, 129.9, 129.4, 128.8, 128.7, 128.5, 126.5 (q, *J* = 281.3 Hz), 53.5, 50.9 (q, *J* = 26.4 Hz), 44.6, 38.9, 21.1.

IR (ATR): v = 2983, 1666, 1336, 1260,1172, 1131, 1101, 1025 695 cm⁻¹ HRMS (EI) calcd for C₂₁H₁₉F₃O [M]⁺: 344.1388; Found: 344.1384.

4-Methyl-4-(3-(3-phenylpropanoyl)bicyclo[1.1.1]pentan-1-yl)pentanenitrile 41 (31.8 mg, 36% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.27 (t, *J* = 7.4 Hz, 2H), 7.22 – 7.16 (m, 3H), 2.87 (td, *J* = 7.7, 2.3 Hz, 2H), 2.75 (t, *J* = 8.1 Hz, 2H), 2.27 (t, *J* = 7.1 Hz, 2H), 1.81 (s, 6H), 1.59 (t, *J* = 8.1 Hz, 2H), 0.83 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 207.6, 141.1, 128.5, 128.3, 126.1, 120.2, 47.7, 47.1, 41.7, 40.4, 34.2, 31.8, 29.4, 22.1, 12.6.

IR (ATR): v = 2956, 2852, 2250, 1260, 1098, 1048, 798 cm⁻¹

HRMS (EI) calcd for C₂₀H₂₅NO [M]⁺: 295.1936; Found: 295.1929.

4-Methyl-4-(3-(3-phenylpropanoyl)bicyclo[1.1.1]pentan-1-yl)pentan-2-one 42 (42.9 mg, 48% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.27 (t, *J* = 7.4 Hz, 2H), 7.22 – 7.16 (m, 3H), 2.87 (t, *J* = 7.6 Hz, 2H), 2.75 (t, *J* = 8.1 Hz, 2H), 2.27 (s, 2H), 2.13 (s, 3H), 1.79 (s, 6H), 0.96 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 208.4, 207.9, 141.1, 128.5, 128.3, 126.1, 50.5, 47.6, 47.5, 42.9, 41.5, 40.4, 32.4, 29.4, 22.8. IR (ATR): v = 2964, 2912, 2873, 1701, 1604, 1496, 1453, 1192, 1154, 699 cm⁻¹ HRMS (EI) calcd for C₂₀H₂₆O₂ [M]⁺: 298.1933; Found: 298.1942.

1-(3-(1-Methylcyclooctyl)bicyclo[1.1.1]pentan-1-yl)-3-phenylpropan-1-one 43 (56.3 mg, 58% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.27 (t, *J* = 7.4 Hz, 2H), 7.22 – 7.16 (m, 3H),7.00 (d, *J* = 7.4 Hz, 1H), 2.86 (t, *J* = 7.7 Hz, 2H), 2.75 (dd, *J* = 8.3, 7.1 Hz, 2H), 1.80 (s, 6H), 1.61 – 1.43 (m, 6H), 1.50 – 1.34 (m, 5H), 1.29 – 1.04 (m, 2H), 0.75 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 208.4, 141.2, 128.4, 128.3, 126.0, 48.3, 48.3, 42.2, 40.4, 34.2, 32.0, 29.4, 28.6, 25.6, 23.4, 23.1. IR (ATR): v = 2959, 2914, 2870, 1702, 1448, 1376, 692 cm⁻¹ HRMS (EI) calcd for C₂₃H₃₂O [M]⁺: 324.2453; Found: 324.2460.

(3-(5-(2,5-Dimethylphenoxy)-2-methylpentan-2-yl)bicyclo[1.1.1]pentan-1-

yl)(phenyl)methanone 44 (43.9 mg, 39% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.00 (d, *J* = 7.9 Hz, 2H), 7.55 (t, *J* = 6.9 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 2H), 7.01 (d, *J* = 7.5 Hz, 1H), 6.67 (d, *J* = 7.5 Hz, 1H), 6.64 (s, 1H), 3.94 (t, *J* = 6.4 Hz, 2H), 2.31 (s, 3H), 2.19 (s, 3H), 2.12 (s, 6H), 1.85 – 1.71 (m, 2H), 1.44 – 1.37 (m, 2H), 0.90 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 198.4, 157.0, 136.7, 136.5, 132.7, 130.3, 128.9, 128.4, 123.5, 120.6, 112.0, 68.5, 50.1, 48.8, 42.0, 35.0, 31.7, 24.6, 21.4, 15.8. IR (ATR): v = 2960, 2872, 1666, 1581, 1448, 1264, 1207, 1026, 766 cm⁻¹ HRMS (EI) calcd for C₂₆H₃₂O₂ [M]⁺: 376.2402; Found: 376.2393.

1-(5-(3-Benzoylbicyclo[1.1.1]pentan-1-yl)-5-methylhexyl)-3,7-dimethyl-3,7dihydro-1H-purine-2,6-dione 45 (47.1 mg, 35% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 7.0 Hz, 2H), 7.53 (t, J = 7.4 Hz, 1H), 7.49 (s, 1H), 7.43 (t, J = 7.5 Hz, 2H), 4.07 – 3.96 (m, 5H), 3.57 (s, 3H), 2.08 (s, 6H), 1.69 – 1.58 (m, 2H), 1.42 – 1.33 (m, 2H), 1.31 – 1.24 (m, 2H), 0.84 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 198.5, 155.3, 151.4, 148.7, 141.3, 136.8, 132.6, 128.8, 128.3, 107.7, 50.0, 48.8, 41.4, 38.2, 33.5, 31.8, 29.6, 28.9, 24.6, 22.8, 21.9. IR (ATR): v = 2934, 2859, 1698, 1672, 1605, 1415, 1234, 1021 cm⁻¹.

HRMS (EI) calcd for C₂₆H₃₃N₄O₃ [M+H]⁺: 449.2553; Found: 449.2562.

Phenyl(3-((3*R*,5*S*,8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-3,10,13-trimethyl-17-((*R*)-6-

methylheptan-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3-

yl)bicyclo[1.1.1]pentan-1-yl)methanone 46 (56.7 mg, 34% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. dr = 10:1. ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, *J* = 8.4 Hz, 2H), 7.54 (td, *J* = 7.4, 1.4 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 2H), 2.19 (s, 6H), 1.96 (dt, *J* = 12.5, 3.6 Hz, 1H), 1.86 – 1.76 (m, 1H), 1.70 – 1.61 (m, 1H), 1.55 – 1.43 (m, 5H), 1.31-1.38(m, 5H), 1.27 – 1.20 (m, 6H), 1.17 – 1.06 (m, 8H), 1.04 – 0.95 (m, 3H), 0.90 (d, *J* = 6.5 Hz, 3H), 0.87 (d, *J* = 2.7 Hz, 3H), 0.86 (d, *J* = 2.8 Hz, 3H), 0.80 (s, 3H), 0.75 (s, 3H), 0.64 (s, 3H) 0.60-0.64 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 198.4, 136.8, 132.7, 128.8, 128.3, 56.6, 56.3, 54.7, 52.3, 47.7, 42.6, 42.6, 42.1, 40.0, 39.5, 38.4, 36.1, 35.9, 35.8, 35.6, 35.5, 32.2, 31.6, 31.1, 29.0, 28.7, 28.2, 28.0, 24.2, 23.8, 22.8, 22.5, 20.9, 18.6, 12.1, 11.4. IR (ATR): v = 2963, 1715, 1665, 1448, 1364, 1207, 1177, 697 cm⁻¹ HRMS (EI) calcd for C₄₀H₆₀O[M]⁺:556.4644; Found:556.4653.

(3*S*,8*S*,9*S*,10*R*,13*S*,14*S*,17*S*)-17-(2-(3-Benzoylbicyclo[1.1.1]pentan-1-yl)propan-2yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-

cyclopenta[a]phenanthren-3-yl Acetate 47 (80.7 mg, 51% yield) was prepared following the General Procedure. This product was obtained as white solid, Melting point 163-165 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.98 (d, *J* = 7.6 Hz, 2H), 7.53 (t, *J* = 7.3 Hz, 1H), 7.44 (t, *J* = 7.0 Hz, 2H), 5.51 – 5.32 (m, 1H), 4.60 (dt, *J* = 11.5, 6.1 Hz, 1H), 2.31-2.35(m, 2H), 2.09 (q, *J* = 9.6 Hz, 6H), 2.03(s, 3H), 1.97 (d, *J* = 15.8 Hz, 1H), 1.86 (d, *J* = 11.9 Hz, 2H), 1.73 – 1.36 (m, 10H), 1.18-1.26 (m, 2H), 1.17 – 1.05 (m, 3H), 1.02 (s, 3H), 1.00 (s, 3H), 0.93 (s, 3H), 0.78 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 198.7, 170.5, 139.6, 136.8, 132.7, 128.8, 128.3, 122.6, 73.9, 56.2, 55.8, 50.7, 50.7, 49.9, 44.1, 41.7, 40.3, 38.1, 37.0, 36.5, 35.5, 31.8, 31.3, 27.7, 25.2, 24.5, 24.4, 21.4, 21.0, 19.5, 19.3, 13.9.

IR (ATR): v = 2963, 1731, 1663, 1447, 1363, 1331, 1248, 1036, 696 cm⁻¹ HRMS (EI) calcd for C₃₆H₄₈O₃ [M]⁺: 528.3603; Found: 528.3592.

1-(3-(5-(2,5-Dimethylphenoxy)-2-methylpentan-2-yl)bicyclo[1.1.1]pentan-1-yl)-3phenylpropan-1-one 48 (49.6 mg, 41% yield) was prepared following the General Procedure. This product was obtained as white solid, Melting point 59-60 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.27 (t, *J* = 7.4 Hz, 2H), 7.22 – 7.16 (m, 3H), 7.00 (d, *J* = 7.4 Hz, 1H), 6.66 (d, *J* = 7.5 Hz, 1H), 6.62 (s, 1H), 3.91 (t, *J* = 7.1 Hz, 2H), 2.87 (t, *J* = 7.7 Hz, 2H), 2.76 (t, *J* = 7.7 Hz, 2H), 2.31 (s, 3H), 2.17 (s, 3H), 1.82 (s, 6H), 1.78 – 1.70 (m, 2H), 1.37 – 1.30 (m, 2H), 0.83 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 208.2, 157.0, 141.2, 136.4, 130.3, 128.4, 128.3, 126.0, 123.5, 120.6, 112.0, 68.4, 47.9, 47.7, 41.9, 40.4, 34.9, 31.6, 29.4, 24.6, 22.7, 21.4, 15.8.

IR (ATR): v = 2960, 1702, 1508, 1453, 1364, 1265, 1157, 803, 699 cm⁻¹ HRMS (EI) calcd for C₂₈H₃₆O₂ [M]⁺: 404.2715; Found: 404.2707.

Phenyl(3-(1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-2yl)bicyclo[1.1.1]pentan-1-yl)methanone 49 (69.8 mg, 56% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.01 (d, *J* = 6. 9 Hz, 2H), 7.54 (t, *J* = 7.1 Hz, 1H), 7.45 (t, *J* = 7.2 Hz, 2H), 7.26 – 7.20 (m, 4H), 7.15 (t, *J* = 7.1 Hz, 1H), 3.01 (d, *J* = 12.8 Hz, 1H), 2.25 (d, *J* = 12.9 Hz, 1H), 2.20 (q, *J* = 9.6 Hz, 6H), 1.24 (s, 6H), 1.16 (s, 6H), 0.88 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 198.3, 140.3, 136.8, 132.7, 130.2, 128.9, 128.4, 127.7, 125.8, 83.5, 51.1, 46.6, 43.3, 41.4, 25.4, 24.9, 17.8; ¹¹B NMR (128 MHz, CDCl₃): 34.2.

IR (ATR): v =2976, 2923, 1665, 1449, 1327, 1205, 1139, 872 cm⁻¹ HRMS (EI) calcd for C₂₇H₃₃BO₃ [M]⁺: 416.2523; Found: 416.2544.

3-Phenyl-1-(3-(1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-2-yl)bicyclo[1.1.1]pentan-1-yl)propan-1-one 50 (59.1 mg, 45% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.29 (t, *J* = 7.4 Hz, 2H), 7.21 – 7.13 (m, 8H), 2.93 (d, *J* = 12.9 Hz, 1H), 2.88 (t, *J* = 7.5 Hz, 2H), 2.76 (t, *J* = 7.5 Hz, 2H), 2.18 (d, *J* = 12.9 Hz, 1H), 1.89 (q, *J* = 9.6 Hz, 6H), 1.23 (s, 6H), 1.14 (s, 6H), 0.82 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 208.1, 141.2, 140.2, 130.2, 128.5, 128.3, 127.7, 126.0, 125.8, 83.5, 48.9, 45.6, 43.2, 41.3, 40.5, 29.5, 25.4, 24.9, 17.7; ¹¹B NMR (128 MHz, CDCl₃): 34.0. IR (ATR): v = 3027, 2976, 2925, 1701,1603, 1453, 1377, 1314, 1140, 859 cm⁻¹ HRMS (ESI) calcd for C₂₉H₃₈BO₃ [M+H]⁺: 445.2919; Found: 445.2921.

6. Reaction Limitations

Failed examples

7. Further transformations

To a 4 mL reaction vial equipped with a stir bar was added 4 (22.8 mg, 0.10 mmol, 1.0 equiv) in dry THF (1.0 mL). Then NaBH₄ (3.8 mg, 0.10 mmol, 1.0 equiv) was added, and the reaction was allowed to stir for 12 h at 70 °C in an oil bath. After this time, the reaction was quenched with H₂O and extracted with Et₂O (3 X 10 mL). The combined organic layers were dried (Na₂SO₄), and the solvent was removed in vacuo by rotary evaporation. Further purification was accomplished by SiO₂ column chromatography (gradient hexane/EtOAc) to give the desired product **51** as a colorless oil (19.7 mg, 86% yield).

(3-(*tert*-Butyl)bicyclo[1.1.1]pentan-1-yl)(phenyl)methanol 51 ¹H NMR (600 MHz, CDCl₃) δ 7.30 – 7.23 (m, 2H), 7.22 – 7.15 (m, 3H), 4.64 (d, *J* = 2.9 Hz, 1H), 1.75 (d, *J* = 3.4 Hz, 1H), 1.36 – 1.28 (m, 6H), 0.72 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 141.9, 128.0, 127.2, 125.9, 74.1, 45.2, 40.3, 29.5, 25.8. IR (ATR): v = 3397, 2958, 2905, 2867, 1361, 1195, 1016, 704 cm⁻¹ HRMS (ESI) calcd for C₁₆H₂₁ [M-OH]⁺: 213.1638; Found: 213.1659.

To a 4 mL reaction vial equipped with a stir bar was added 4 (22.8 mg, 0.10 mmol, 1.0 equiv), *m*-CPBA (70.0 mg, 0.4 mmol, 4.0 equiv), TFA (15.4 μ L, 0.2 mmol, 2.0 equiv), and dry CH₂Cl₂ (1 mL). The reaction mixture was allowed to stir at rt for 48 h. After this time, the reaction was quenched with sat aq NaHCO₃ (2 mL), and extracted with Et₂O (3 X 10 mL). The combined organic layers were dried (Na₂SO₄), and the solvent

was removed in vacuo by rotary evaporation. Further purification was accomplished by SiO₂ column chromatography (gradient hexane/EtOAc) to give the desired product **52** as a colorless oil (18.5 mg, 76% yield)

3-(*tert*-Butyl)bicyclo[1.1.1]pentan-1-yl Benzoate 52 ¹H NMR (600 MHz, CDCl₃) δ 8.02 (dd, *J* = 8.4, 1.4 Hz, 2H), 7.55 (ddt, *J* = 8.7, 7.2, 1.3 Hz, 1H), 7.43 (dd, *J* = 8.2, 7.4 Hz, 2H), 2.07 (s, 6H), 0.93 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 166.1, 132.8, 130.6, 129.6, 128.3, 63.8, 50.1, 42.6, 28.8, 26.6.

IR (ATR): v = 2959, 2878, 1725, 1451, 1280, 1095, 708 cm⁻¹

HRMS (EI) calcd for C₁₅H₁₇O₂ [M-CH₃]⁺: 229.1229; Found: 229.1237.

To a 4 mL reaction vial equipped with a stir bar was added 4 (22.8 mg, 0.10 mmol, 1.0 equiv), hydroxylammonium chloride (21.0 mg, 0.3 mmol, 3.0 equiv), and TFA (0.4 mL). The reaction mixture was allowed to stir at 70 °C in an oil bath for 24 h. After this time, the reaction was quenched with sat aq NaHCO₃ (1 mL) and extracted with Et₂O (3 X 10 mL). The combined organic layers were dried (Na₂SO₄), and the solvent was removed in vacuo by rotary evaporation. Further purification was accomplished by SiO₂ column chromatography (gradient hexane/EtOAc) to give the desired product **24** as a white solid (19.6 mg, 81% yield).

3-(*tert*-**Butyl**)-*N*-**phenylbicyclo**[**1.1.1**]**pentane-1-carboxamide 24** Melting point 54-55 °C ¹H NMR (600 MHz, CDCl₃) δ 7.53 (d, *J* = 6.2 Hz, 2H), 7.31 (td, *J* = 7.7, 2.1 Hz, 1H), 7.15 (br, 1H), 7.09 (dt, *J* = 7.7, 4.0 Hz, 2H), 1.90 (s, 6H), 0.88 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 169.0, 137.7, 129.0, 124.2, 119.5, 47.6, 47.1, 37.8, 29.3, 25.8. IR (ATR): v = 2957, 1659, 1599, 1440, 1206, 753, 692 cm⁻¹ HRMS (ESI) calcd for C₁₆H₂₂NO [M+H]⁺: 244.1701; Found: 244.1706.

To a 10 mL reaction vial equipped with a stir bar was added Ph_3PCH_3Br (40.0 mg, 0.11 mmol, 1.1 equiv) and dry THF (1 mL). The reaction vial was immersed in an ice bath, and then *n*-BuLi (0.1 mL, 1.2 M in hexanes, 1.2 equiv) was added dropwise. The reaction mixture was allowed to stir for 1 h at 0 °C. Subsequently, **4** (25.0 mg, 0.10 mmol, 1.0 equiv, dissolved in 0.5 mL of THF) was added. The reaction mixture was allowed to warm to rt, and then heated to 70 °C in an oil bath for 12 h. After this time, the reaction was quenched with H₂O and extracted with Et₂O (3 X 10 mL). The combined organic layers were dried (Na₂SO₄), and the solvent was removed in vacuo by rotary evaporation. Further purification was accomplished by SiO₂ column chromatography (gradient hexane/EtOAc) to give the desired product **53** as a colorless oil (16.9 mg, 75% yield).

1-(*tert*-**Butyl**)-**3-**(**1**-**phenylvinyl**)**bicyclo**[**1.1.1**]**pentane 53** ¹H NMR (600 MHz, CDCl₃) δ 7.36 (d, J = 6.9 Hz, 2H), 7.31 (t, J = 7.3 Hz, 2H), 7.26 (t, J = 7.3 Hz, 1H), 5.16 (d, J = 1.9 Hz, 1H), 5.07 (d, J = 1.9 Hz, 1H), 1.75 (s, 6H), 0.86 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 149.2, 140.9, 127.9, 127.1, 127.0, 113.0, 48.4, 47.3, 40.1, 29.4, 25.9. IR (ATR): v = 2958, 2878, 1635, 1456, 1208, 915 656 cm⁻¹ HRMS (EI) calcd for C₁₇H₂₂ [M]⁺: 226.1722; Found: 226.1739.
8. Mechanistic Studies

8.1 Competition Experiment

To a 4 mL reaction vial equipped with a stirrer bar was added t-BuBF₃K (24.6 mg, 0.15 mmol, 1.5 equiv), CyBF₃K (28.5 mg, 0.15 mmol, 1.5 equiv), benzoyl chloride (14.2 0.1 mmol, 1 equiv), Cs_2CO_3 (65.6 mg, 0.2 mmol, 2 equiv), mg, [Ir{dFCF₃ppy}₂(dtbbpy)]PF₆ (2.2 mg, 0.02 mmol, 2 mol %), and Ni(dtbbpy)Br₂ (0.02 mmol, 9.72 mg, 0.2 equiv). The vial was sealed with a cap containing a TFE-lined silicone septa and was evacuated and purged with argon three times via an inlet needle. The vial was then charged with 2.0 mL of dry DME via syringe, then the vial was charged with the [1.1.1]propellane (0.37 mL, 0.3 mmol, 3.0 equiv, 0.8 M soln in Et₂O). The cap was sealed with Parafilm[®], and the reaction was irradiated for 16 h. Irradiation was performed with a Kessil® PR160 390 nm lamp according to the procedure outlined in the Photochemical Reactor Design and Setup section. The temperature of the reaction was maintained at approximately 27 °C via a fan. After 16 h, the reaction mixture was subjected to GC-MS for analysis. The observed ratio of of 4:56 was 2.8 :1, and 54 and 55 were not observed.

8.2 Radical-trapping experiment

To a 4 mL reaction vial equipped with a stirrer bar was added t-BuBF₃K (24.6 mg, 0.15 mmol, 1.5 equiv), TEMPO (46.8 mg, 0.3 mmol, 3.0 equiv), benzoyl chloride (14.2 mg, 0.1 mmol, 1 equiv), Cs_2CO_3 (65.6 mg, 0.2 mmol, 2 equiv), the [Ir{dFCF₃ppy}₂(dtbbpy)]PF₆ (2.2 mg, 0.02 mmol, 2 mol %), and Ni(dtbbpy)Br₂ (0.02 mmol, 9.72 mg, 0.2 equiv). The vial was sealed with a cap containing a TFE-lined silicone septa and was evacuated and purged with argon three times via an inlet needle. The vial was then charged with 2.0 mL of dry DME via syringe, Then the vial was charged with the [1.1.1]propellane (0.37 mL, 0.3 mmol, 3.0 equiv, 0.8 M soln in Et₂O). The cap was sealed with Parafilm[®], and the reaction was irradiated for 16 h. Irradiation was performed with a Kessil® PR160 390 nm lamp according to the procedure outlined in the Photochemical Reactor Design and Setup section. The temperature of the reaction was maintained at approximately 27 °C via a fan. After 16 h, an aliquot of a solution of 1,3,5-trimethoxybenzene (16.8 mg in 0.1 mL DME) was added, and the reaction mixture was subjected to GC-MS for analysis. Desired product 4 was not detected, but the TEMPO adduct was observed, the yield of which was determined by GC.

8.3 Radical ring-opening reaction

To an 8.0 mL clear borosilicate glass vial with a screw top equipped with a magnetic stir bar was added $Ir\{dF(CF_3)_{2}ppy\}_{2}(dtbbpy)]PF_{6}$ (6.73 mg, 0.06 mmol, 2 mol%), NiBr₂(dtbbpy) (29.21 mg, 0.06 mmol, 20 mol %), Cs₂CO₃ (146 mg, 0.45 mmol, 1.5 equiv), organotrifluoroborate (0.45 mmol, 1.5 equiv), and the benzoyl chloride (if solid, 0.30 mmol, 1.0 equiv). The vial was then sealed with a screw-cap containing a PTFE-lined silicone septum. An inlet needle was inserted, and the atmosphere was exchanged for N₂ via three evacuation-backfill cycles. The vial was then charged with 6.0 mL of dry DME via syringe, and the acyl chlorides (if liquid, 0.50 mmol, 1.0 equiv) were added via syringe. Finally, the via was charged with [1.1.1]propellane (1.13 mL, 0.9 mmol, 3.0 equiv, 0.8 M soln in Et₂O). The reaction was then sparged for ~2 min with N₂ or Ar, the cap was sealed with Parafilm®, and the reaction completion, the resulting with a Kessil® PR160 390 nm lamp for 16 h. Upon reaction completion, the resulting

soln was passed through a pad of Celite \mathbb{R} , eluting with either CH₂Cl₂ or EtO₂ followed by SiO₂ column chromatography (hexanes/EtOAc).

6-(2-(3-Benzoylbicyclo[1.1.1]pentan-1-yl)propan-2-yl)-3-methylcyclohex-3-en-1one 58 (40.1 mg, 42% yield) was prepared following the General Procedure. This product was obtained as a pale-yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, *J* = 7.0 Hz, 2H), 7.46 (t, *J* = 7.4 Hz, 1H), 7.36 (t, *J* = 7.8 Hz, 2H), 5.44 (tt, *J* = 2.8, 1.5 Hz, 1H), 2.86 (d, *J* = 19.5 Hz, 1H), 2.58 (d, *J* = 21.1 Hz, 1H), 2.51 – 2.43 (m, 2H), 2.30 – 2.21 (m, 1H), 2.07 (s, 6H), 1.62 (s, 3H), 0.96 (s, 3H), 0.89 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 210.5, 198.2, 136.7, 132.7, 132.4, 128.8, 128.4, 121.0, 53.2, 51.4, 48.2, 47.3, 42.1, 33.7, 28.9, 22.4, 22.3, 21.4. IR (ATR): v = 2967, 1717, 1664, 1447, 1334, 1209, 873, 697 cm⁻¹ HRMS (ESI) calcd for C₂₂H₂₆O₂ [M]⁺: 322.1933; Found: 322.1937.

9. References

1. Gianatassio, R.; Lopchuk, J. M.; Wang, J.; Pan, C.- M.; Malins, L. R.; Prieto, L.; Brandt, T. A.; Collins, M. R.; Gallego, G. M.; Sach, N. W.; Spangler, J. E.; Zhu, H.;

Zhu, J.; Baran, P. S. Strain release amination. Science 2016, 351, 241-246.

 Yang, Y.; Tsien, J.; Ben David, A.; Hughes, J. M. E.; Merchant, R. R.; Qin, T. Practical and Modular Construction of C(sp3)-Rich Alkyl Boron Compounds. *J. Am. Chem. Soc.* 2021, *143*, 471–480.

3. Campbell, M. W.; Compton, J. S.; Kelly, C. B.; Molander, G. A. Three-Component Olefin Dicarbofunctionalization Enabled by Nickel/Photoredox Dual Catalysis. *J. Am. Chem. Soc.* **2019**, *141*, 20069–20078.

4. Primer, D. N., Molander, G. A. Enabling the cross-coupling of tertiary organoboron nucleophiles through radical-mediated alkyl transfer *J. Am. Chem. Soc.* **2017**, *139*, 9847-9850.

5 VanHeyst, M. D.; Qi, J.; Roecker, A. J.; Hughes, J. M. E.; Cheng, L.; Zhao, Z.; Yin, J. Continuous Flow-Enabled Synthesis of Bench-Stable Bicyclo[1.1.1]pentane Trifluoroborate Salts and Their Utilization in Metallaphotoredox Cross-Couplings. *Org. Lett.* **2020**, *22*, 1648–1654.

6. Huang, W.; Keess, Sebastian.; Molander, G. A. Dicarbofunctionalization of [1.1.1]Propellane Enabled by Nickel/Photoredox Dual Catalysis: One-Step Multicomponent Strategy for the Synthesis of BCP-Aryl Derivatives" (*JACS.* 2022. https://doi.org/10.1021/jacs.2c05304)

7. Kumar, N.; Reddy, R. R.; Masarwa, A. Stereoselective Desymmetrization of gem - Diborylalkanes by "Trifluorination" *Chem. Eur. J.* **2019**, 25, 8008-8012

8. Ryu, D.; Primer, D. N.; Tellis, J. C.; Molander, G. A. Single-Electron Transmetalation: Synthesis of 1,1-Diaryl-2,2,2-trifluoroethanes by Photoredox/Nickel Dual Catalytic Cross-Coupling. *Chem. - Eur. J.* **2016**, *22*, 120–123.

10. Spectra of Synthesized Compounds ¹H NMR (600 MHz, acetone-*d*₆) spectrum of 4-Methyl-4-(trifluoro-l4-boraneyl)pentan-1-ol, Potassium Salt

¹³C NMR (151 MHz, acetone-*d₆*) spectrum of4-Methyl-4-(trifluoro-l4-boraneyl)pentan-1-ol, Potassium Salt

¹⁹F NMR (565 MHz, acetone-*d*₆) spectrum of 4-Methyl-4-(trifluoro-l4-boraneyl)pentan-1-ol, Potassium Salt

¹H NMR (600 MHz, acetone-*d*₆) spectrum of Trifluoro(1-methylcyclooctyl)-l4-borane, Potassium Salt

¹³C NMR (151 MHz, acetone-*d*₆) spectrum of Trifluoro(1-methylcyclooctyl)-l4-borane, Potassium Salt

¹⁹F NMR (565 MHz, acetone-*d*₆) spectrum of Trifluoro(1-methylcyclooctyl)-l4-borane, Potassium Salt

¹³C NMR (151 MHz, acetone-*d*₆) spectrum of Trifluoro-2-methylbicyclo[2.2.1]heptan-2-yl)-l4-borane, Potassium Salt

¹⁹F NMR (565 MHz, acetone-*d*₆) spectrum of Trifluoro-2-methylbicyclo[2.2.1]heptan-2-yl)-l4-borane, Potassium Salt

¹¹B NMR (128 MHz, acetone-*d*₆) spectrum of Trifluoro-2-methylbicyclo[2.2.1]heptan-2-yl)-l4-borane, Potassium Salt

¹⁹F NMR (565 MHz, acetone-*d*₆) spectrum of tert-Butyl 4-Methyl-4-(trifluoro-l4-boraneyl)piperidine-1-carboxylate, Potassium

¹H NMR (600 MHz, acetone-*d*₆) spectrum of (4-Butyltetrahydro-2H-pyran-4-yl)trifluoro-l4-borane, Potassium Salt

¹³C NMR (151 MHz, acetone-*d*₆) spectrum of (4-Butyltetrahydro-2H-pyran-4-yl)trifluoro-l4-borane, Potassium Salt

¹H NMR (600 MHz, acetone-*d*₆) spectrum of (3*S*,8*S*,9*S*,10*R*,13*S*,14*S*,17*R*)-10,13-Dimethyl-17-(2-(trifluoro-l4-boraneyl)propan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H cyclopenta[a]phenanthren-3-yl Acetate, Potassium Salt

¹³C NMR (151 MHz, acetone-*d*₆) spectrum of (3*S*,8*S*,9*S*,10*R*,13*S*,14*S*,17*R*)-10,13-Dimethyl-17-(2-(trifluoro-l4-boraneyl)propan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H cyclopenta[a]phenanthren-3-yl Acetate, Potassium Salt

¹⁹F NMR (565 MHz, acetone-*d₆*) spectrum of (3*S*,8*S*,9*S*,10*R*,13*S*,14*S*,17*R*)-10,13-Dimethyl-17-(2-(trifluoro-l4-boraneyl)propan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H cyclopenta[a]phenanthren-3-yl Acetate, Potassium Salt

¹¹B NMR (128 MHz, acetone-d₆) spectrum of (3S,8S,9S,10R,13S,14S,17R)-10,13-Dimethyl-17-(2-(trifluoro-l4-boraneyl)propan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H cyclopenta[a]phenanthren-3-yl Acetate, Potassium Salt

-5.35

HWC-1-146-3AA.10.fid 11B NMR with 1H decoupling

141 39 13 14 11 14 2223 6888 0 5 1 0 fl (ppm) 5 15 16 14 13 10 12 ģ 6 fl (ppm) ¹³C NMR (151 MHz, acetone-*d*₆) spectrum of

Trifluoro((5*S*,8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-3,10,13-trimethyl-17-((*R*)-6-methylheptan-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl)-l4-borane, Potassium Salt

S53

¹⁹F NMR (565 MHz, acetone-*d*₆) spectrum of Trifluoro((5*S*,8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-3,10,13-trimethyl-17-((*R*)-6-methylheptan-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl)-l4-borane, Potassium

¹¹B NMR (128 MHz, acetone-*d*₆) spectrum of Trifluoro((5*S*,8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-3,10,13-trimethyl-17-((*R*)-6-methylheptan-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl)-l4-borane, Potassium

Salt

¹H NMR (600 MHz, CDCl₃) spectrum of (3-(*tert*-Butyl)bicyclo[1.1.1]pentan-1-yl)(phenyl)methanone 4

¹³C NMR (151 MHz, CDCl₃) spectrum of (3-(tert-Butyl)bicyclo[1.1.1]pentan-1-yl)(4-methoxyphenyl)methanone 5

¹H NMR (600 MHz, CDCl₃) spectrum of (3-(*tert*-Butyl)bicyclo[1.1.1]pentan-1-yl)(3-fluorophenyl)methanone 6

S58

¹³C NMR (151 MHz, CDCl₃) spectrum of (3-(*tert*-Butyl)bicyclo[1.1.1]pentan-1-yl)(4-chlorophenyl)methanone 7

¹H NMR (600 MHz, CDCl₃) spectrum of (3-(*tert*-Butyl)bicyclo[1.1.1]pentan-yl)(4-(trifluoromethoxy)phenyl)methanone 8

S61

¹H NMR (600 MHz, CDCl₃) spectrum of 3-(3-(*tert*-Butyl)bicyclo[1.1.1]pentane-1-carbonyl)benzonitrile 10

-60 -70

-90

-100

-110

-120

-130 -140

-1

-80

10

ó

-10

-20

-30 -40 -50

¹H NMR (600 MHz, CDCl₃) spectrum of Benzo[d][1,3]dioxol-5-yl(3-(*tert*-butyl)bicyclo[1.1.1]pentan-1-yl)methanone 13

¹H NMR (600 MHz, CDCl₃) spectrum of (3-(*tert*-Butyl)bicyclo[1.1.1]pentan-1-yl)(furan-2-yl)methanone 14

¹H NMR (600 MHz, CDCl₃) spectrum of (3-(*tert*-Butyl)bicyclo[1.1.1]pentan-1-yl)(thiophen-2-yl)methanone 15

¹³C NMR (151 MHz, CDCl₃) spectrum of 1-(3-(*tert*-Butyl)bicyclo[1.1.1]pentan-1-yl)-3-phenylpropan-1-one 16

¹H NMR (600 MHz, CDCl₃) spectrum of (3-(*tert*-Butyl)bicyclo[1.1.1]pentan-1-yl)(cyclopropyl)methanone 17

¹³C NMR (151 MHz, CDCl₃) spectrum of (3-(*tert*-Butyl)bicyclo[1.1.1]pentan-1-yl)(cyclopropyl)methanone 17

¹H NMR (600 MHz, CDCl₃) spectrum of (3-(*tert*-Butyl)bicyclo[1.1.1]pentan-1-yl)(cyclohexyl)methanone 18

¹³C NMR (151 MHz, CDCl₃) spectrum of (3-(*tert*-Butyl)bicyclo[1.1.1]pentan-1-yl)(cyclohexyl)methanone 18

¹H NMR (600 MHz, CDCl₃) spectrum of 4-Bromo-1-(3-(*tert*-butyl)bicyclo[1.1.1]pentan-1-yl)butan-1-one 20

¹H NMR (600 MHz, CDCl₃) spectrum of 1-(3-(*tert*-Butyl)bicyclo[1.1.1]pentan-1-yl)-4-chlorobutan-1-one 21

S74

80

90

70 60 50 40

30

20 10 0

-10

210 200 190 180 170 160 150 140 150 120 110 100

¹³C NMR (151 MHz, CDCl₃) spectrum of (3-(*tert*-Butyl)bicyclo[1.1.1]pentan-1-yl)(2,2,3,3-tetramethylcyclopropyl)meth

¹H NMR (600 MHz, CDCl₃) spectrum of 2-Adamantan-1-yl)-1-(3-(*tert*-butyl)bicyclo[1.1.1]pentan-1-yl)ethan-1-one 23

¹³C NMR (151 MHz, CDCl₃) spectrum of 2-Adamantan-1-yl)-1-(3-(*tert*-butyl)bicyclo[1.1.1]pentan-1-yl)ethan-1-one 23

¹H NMR (600 MHz, CDCl₃) spectrum of 3-(*tert*-Butyl)-*N*-phenylbicyclo[1.1.1]pentane-1-carboxamide 24

¹³C NMR (151 MHz, CDCl₃) spectrum of 3-(*tert*-Butyl)-*N*-phenylbicyclo[1.1.1]pentane-1-carboxamide 24

¹H NMR (600 MHz, CDCl₃) spectrum of 1-(*tert*-Butyl)-3-styrylbicyclo[1.1.1]pentane 25

¹H NMR (600 MHz, CDCl₃) spectrum of 4-(3-Benzoylbicyclo[1.1.1]pentan-1-yl)-4-methylpentan-2-one 26

¹H NMR (600 MHz, CDCl₃) spectrum of

¹H NMR (600 MHz, CDCl₃) spectrum of 5-(3-Benzoylbicyclo[1.1.1]pentan-1-yl)-5-methylhexan-2-one 28

¹H NMR (600 MHz, CDCl₃) spectrum of (3-(2,6-Dimethylhept-5-en-2-yl)bicyclo[1.1.1]pentan-yl)(phenyl)methanone 30

¹³C NMR (151 MHz, CDCl₃) spectrum of (3-(2,6-Dimethylhept-5-en-2-yl)bicyclo[1.1.1]pentan-yl)(phenyl)methanone 30

¹H NMR (600 MHz, CDCl₃) spectrum of 4-(3-Benzoylbicyclo[1.1.1]pentan-1-yl)-4-methylpentanenitrile 32

¹³C NMR (151 MHz, CDCl₃) spectrum of 4-(3-Benzoylbicyclo[1.1.1]pentan-1-yl)-4-methylpentanenitrile 32

¹H NMR (600 MHz, CDCl₃) spectrum of 3-(3-Benzoylbicyclo[1.1.1]pentan-1-yl)-3-methylcyclohexan-1-one 33

¹³C NMR (151 MHz, CDCl₃) spectrum of 3-(3-Benzoylbicyclo[1.1.1]pentan-1-yl)-3-methylcyclohexan-1-one 33

¹H NMR (600 MHz, CDCl₃) spectrum of (3-(1-Methylcyclohexyl)bicyclo[1.1.1]pentan-1-yl)(phenyl)methanone 34

¹H NMR (600 MHz, CDCl₃) spectrum of (3-(1-Methylcyclooctyl)bicyclo[1.1.1]pentan-1-yl)(phenyl)methanone 35

¹³C NMR (151 MHz, CDCl₃) spectrum of (3-(1-Methylcyclooctyl)bicyclo[1.1.1]pentan-1-yl)(phenyl)methanone 35

¹H NMR (600 MHz, CDCl₃) spectrum of

¹³C NMR (151 MHz, CDCl₃) spectrum of *tert*-Butyl 4-(3-benzoylbicyclo[1.1.1]pentan-1-yl)-4-methylpiperidine-1carboxylate 37

¹³C NMR (151 MHz, CDCl₃) spectrum of 3-(3-Benzoylbicyclo[1.1.1]pentan-1-yl)-3-methylcyclopentan-1-one 39

¹³C NMR (151 MHz, CDCl₃) spectrum of Phenyl(3-(2,2,2-trifluoro-1-(*p*-tolyl)ethyl)bicyclo[1.1.1]pentan-1-yl)methanone 40

¹⁹F NMR (565 MHz, CDCl₃) spectrum of Phenyl(3-(2,2,2-trifluoro-1-(*p*-tolyl)ethyl)bicyclo[1.1.1]pentan-1-yl)methanone 40

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR (600 MHz, CDCl₃) spectrum of

4-Methyl-4-(3-(3-phenylpropanoyl)bicyclo[1.1.1]pentan-1-yl)pentan-2-one 42

S96

6 f1 (ppm) 3.38 6.01 6.11 6.14

-2

-1

-3

2.27=

6 15

14 13 12 11 10

¹³C NMR (151 MHz, CDCl₃) spectrum of (3-(5-(2,5-Dimethylphenoxy)-2-methylpentan-2-yl)bicyclo[1.1.1]pentan-1yl)(phenyl)methanone 44

¹H NMR (600 MHz, CDCl₃) spectrum of 1-(5-(3-Benzoylbicyclo[1.1.1]pentan-1-yl)-5-methylhexyl)-3,7-dimethyl-3,7dihydro-1H-purine-2,6-dione 45

S98

¹³C NMR (151 MHz, CDCl₃) spectrum of 1-(5-(3-Benzoylbicyclo[1.1.1]pentan-1-yl)-5-methylhexyl)-3,7-dimethyl-3,7dihydro-1H-purine-2,6-dione 45

¹H NMR (600 MHz, CDCl₃) spectrum of

(3*S*,8*S*,9*S*,10*R*,13*S*,14*S*,17*S*)-17-(2-(3-Benzoylbicyclo[1.1.1]pentan-1-yl)propan-2yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1Hcyclopenta[a]phenanthren-3-yl Acetate 47

¹³C NMR (151 MHz, CDCl₃) spectrum of (3*S*,8*S*,9*S*,10*R*,13*S*,14*S*,17*S*)-17-(2-(3-Benzoylbicyclo[1.1.1]pentan-1-yl)propan-2yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1Hcyclopenta[a]phenanthren-3-yl Acetate 47

¹H NMR (600 MHz, CDCl₃) spectrum of 1-(3-(5-(2,5-Dimethylphenoxy)-2-methylpentan-2-yl)bicyclo[1.1.1]pentan-1-yl)-3phenylpropan-1-one 48

¹³C NMR (151 MHz, CDCl₃) spectrum of 1-(3-(5-(2,5-Dimethylphenoxy)-2-methylpentan-2-yl)bicyclo[1.1.1]pentan-1-yl)-3phenylpropan-1-one 48

¹H NMR (600 MHz, CDCl₃) spectrum of Phenyl(3-(1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-2yl)bicyclo[1.1.1]pentan-1-yl)methanone 49

S103

¹H NMR (600 MHz, CDCl₃) spectrum of 3-Phenyl-1-(3-(1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-2yl)bicyclo[1.1.1]pentan-1-yl)propan-1-one 50

¹³C NMR (151 MHz, CDCl₃) spectrum of 3-Phenyl-1-(3-(1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-2-

yl)bicyclo[1.1.1]pentan-1-yl)propan-1-one 50

¹¹B NMR (128 MHz, CDCl₃) spectrum of 3-Phenyl-1-(3-(1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-2yl)bicyclo[1.1.1]pentan-1-yl)propan-1-one 50

¹H NMR (600 MHz, CDCl₃) spectrum of (3-(*tert*-Butyl)bicyclo[1.1.1]pentan-1-yl)(phenyl)methanol 51

¹³C NMR (151 MHz, CDCl₃) spectrum of 3-(*tert*-Butyl)bicyclo[1.1.1]pentan-1-yl Benzoate 52

¹³C NMR (151 MHz, CDCl₃) spectrum of 1-(*tert*-Butyl)-3-(1-phenylvinyl)bicyclo[1.1.1]pentane 53

¹³C NMR (151 MHz, CDCl₃) spectrum of 6-(2-(3-Benzoylbicyclo[1.1.1]pentan-1-yl)propan-2-yl)-3-methylcyclohex-3-en-1one 58