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To establish reasonable context to our study we conducted a relative extensive literature study of 

what we gauge to be relevant papers concerning the formic acid oxidation reaction (FAOR) for 

direct formic acid fuel cell (DFAFCs) applications. The papers by Kolb1 and Adzic2 are prime 

examples of how in-depth model studies on extended surfaces can help researchers as the right 

questions. Cyclic voltammograms CVs of Pd(hkl) and Pt(hkl) have been compiled in Figure S1. 

 

Figure S1. Literature study of CVs showing anodic and cathodic FAOR scans for basal planes 

Pt(hkl) and Pd(hkl). Pd data was taken from work by Kolb and coworkers1 in 0.1 M H2SO4+0.2 

M HCOOH. Pt data was from work by Adzic et al.2 in 1 M HClO4+0.26 M HCOOH; Note the 

designated potential regions; I: Ideal (low overpotential) FAOR region, overlaps with HUPD 

region, II: FAOR region. III: CO oxidation region. IV: OH adsorption region.  

 

Figure S1 allowed us establish the following: 
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- Pt(100) appears to exhibit the lowest onset potential at ~0.25 VRHE, however as the 

catalyst shows complete inactivity on the cathodic sweeps, i.e. severe poisoning is 

suspected. In terms of FAOR onset order (FAOR peak position) it appears to follow that 

Pt(100)>Pd(111)>Pt(111)>Pd(110)>Pt(110)≈Pd(100). 

- By considering the highest current as metric for activity3 the order is then 

Pd(100)>Pt(100)> Pd(110)> Pd(111)>Pt(110)>Pt(111). I.e. it appears the more open fc 

structures shows better intrinsic activity. 

- The surfaces showing least amount of difference between anodic and cathodic sweep are 

observed to have the following order: 

Pt(111)>Pd(111)>Pd(100)≈Pd(110)>Pt(110)>Pt(100) 

- Similar Pd(hkl) work in 0.1 M HClO4 by Hoshi et al.3 shows similar trend in Pd activity 

albeit with higher maximum currents suggesting anion adsorption (e.g. (bi-)sulfates) may 

poison surfaces and thus influence FAOR activities. Recent work by Koper and 

coworkers4 similarly highlight anions’ importance during FAOR. 

Figure S1 helped us to come to grip with the fact that more than one parameter is relevant to give 

insight to the FAOR performance and not just focus on maximum current. E.g. having an catalyst 

with extremely high current but high onset potential, such as Pd(100), essentially result in a 

DFAFC with very low cell voltages. From Figure 1 it appears that open (100)-like fcc surfaces 

allow for the highest currents, while closed (111)-like surfaces exhibit least differences between 

anodic- and cathodic sweeps, i.e. less prone to poisoning effects. It also appears as if Pt(100) 

allows for the lowest FAOR onset.2 Unintuitive, it however appears that Pd(100) or Pd(911) is 

intrinsically more active.1,3,5 We would like to note similar studies have been reported for Ir(hkl). 
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However, FAOR currents are extremely low (potentially due to irreversible surface oxidation), 

regardless we are confident that pure Ir is a poor FAOR catalyst.6,7  

Expanding on Figure S1 it is important to note what is actually desirable traits for a FAOR 

catalyst when looking at its CV; FAOR onset is desired to occur at low overpotential while 

exhibiting high currents (high intrinsic activity and limited poisoning). The anodic and cathodic 

sweeps should be comparable indicating little to no formation of poisoning species and/or 

catalyst restructuring. Finally, the electrode should be stable and active at relevant operational 

potentials, this is easier observed through chronoamperometric (CA) measurements, see Figure 

S2.  

 

Figure S2. FAOR electrocatalytic performance scheme; (a) Anodic and cathodic sweep similar 

(no poisoning effect); (b) High activity per PGM mass (oxidation current); (c) Low overpotential 

and no need to strongly oxidizing potential for poison removal; (d) Stable performance. 
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The reason why current generally have been highlighted as the main performance metric is 

obvious given the main drawback of a DFAFC compared to a direct methanol fuel cell (DMFCs) 

lies in the energy density, where the overall 8e- reaction in a DMFC follows: 

(DMFC)  CH!OH +
!
"
O" → 2H"O + CO" , ΔE0=1.2 eV  (1) 

Conversely, the overall reaction in DFAFC only concerns 2e- : 

(DFAFC)  HCOOH + #
"
O" → H"O + CO"						 , ΔE0=0.72 eV  (2) 

The DFAFC consist to two half reactions at the anode and the cathode, i.e. the formic acid 

oxidation reaction and the oxygen reduction reaction (ORR), respectively:  

(FAOR) HCOOH → CO" + 2H$ + 2e%  , E0→RHE=-0.23 eV    (3)  

(ORR)  #
"
O" + 2H$ + 2e% → H"O    , E0→RHE=1.23 eV   (4)  

From an electrocatalytic point-of-view optimizing FC catalysts for conversions with fewer 

reaction steps (charge transfers) is fundamentally easier, as the reaction intermediates’ binding to 

the electrode surface typically will scale. Thus, optimizing the reaction intermediate binding for 

one species may inhibit the catalytic properties of the same reaction in a consequent reaction step 

in lieu of the Sabatier principle.8 Due to FAORs industrially relevancy and the fundamental 

electrocatalytic insights one may derive from formic acid studies, it is a prime topic for 

mechanistic studies as illustrated by the impressive numbers of publications related to the 

subject. Most of these publications concerns catalysts based on platinum group metals (PGMs), 

typically Pd or Pt as these are the most active- and stable pure metal candidates for the catalytic 

reaction.9,10 Rh can be considered similarly active,11 but due its cost and scarcity12 it is 

considered impractical for real world applications. In this work we have focused on approaches 

modifying commercially available Pt or Pd nanoparticles (NPs) and systematically compare 

these results with literature results and density functional theory (DFT) predictions. Our goal has 
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been to unify years of FAOR research using simple simulations and experiments elucidating 

appropriate design principles and fundamental limitations when developing catalyst. 

 

From the preceding, it is clear that FAOR selectivity (between reaction and poisoning 

intermediates) is a fundamental aspect governing catalyst performance. Moreover, general 

FAOR trends can be extrapolated from Figure S1 and literature13: FAOR onset often seem to 

match hydrogen desorption potentials >0.2 VRHE. It is in that aspect noted that Pd is reported to 

form Pd-hydride α- and β-phases below 0.2 VRHE.14  

Looking at selected FAOR data on nanocatalysts in literature1,15 one could suspect that formic 

acid adsorption is limited by *OH and *H as FAOR activities are low in these regions and given 

the high FAOR activity in the 0.55-0.80 VRHE region matches the potential at which neither H 

and OH is typically adsorbed on Pt(111) or Pd (111). Moreover, this is the potential region in 

which CO is oxidized e.g. CO oxidation occur at ~200 mV lower potentials on Pd(100) than its 

Pd(111) and Pd(110) counterparts. Perhaps Pd(100)’s activity can been ascribed to its ability to 

remove poisoning CO species at lower overpotential.16,17 It is well-established that CO oxidation 

flows the trend (100)>(110)>(111) on both Pt18,19 and Pd16. The question then arises: Why, does 

Pd(111) or Pd(111) not exhibit high FAOR at potentials above their respective CO oxidation 

potentials? Such question is strongly implied by Figure S1, and highlighted by the four different 

potential regions I-IV. Region I denotes the potential range in which FAOR theoretically should 

be able to occur, see Figure S1. Region II the earliest observed FAOR onset, note the anodic and 

cathodic sweeps are congruous with one another, suggesting one specific reaction pathway in 

which poisoning species are formed. Region III designate the region in which both CO oxidation 

and FAOR takes place, high activity in this potential region may be achieved through partly 



 7 

oxidation of HCOOH to CO followed by CO oxidation toward CO2. Its should be stressed, that 

any FAOR activity in region III is of no consequence in a real DFAFC as ORR overpotential will 

make any cell potential negligible and stack cost too high.20 Finally, Region IV in Figure S1 

designates a region in which FAOR is limited either due to formed site blocking species (other 

than *CO)21 or the adsorption of other spectator species, such as *OH. We note that high 

activities in the III-IV potential region in Figure S1 are not relevant for DFAFC applications as 

significant ORR overpotentials are expected.22 Moreover, at potentials above 1.1 VRHE Pd and Pt 

is known to dissolve.23,24 

 
Having the ability to detect adsorption onset is crucial to identify which adsorbates, spectator 

species and reaction intermediates (both warranted and unwarranted) are present during FAOR, 

is crucial as such information will identify the most likely reaction pathways and possible 

strategies for optimizing the FAOR catalyst design. Interestingly, FTIR studies by Cuesta et al. 

indicated that formate most likely is a reaction intermediate from FAOR on Pt25 and Au26. 

However, it is not quite clear whether formate is an active intermediate or an poisoning 

intermediate blocking FAOR.27 Similarly, in situ FTIR are not consistent over the literature in 

their interpretation and detection of CO28,29 during FAOR.30–33 This is a real issue; hardly any 

consistent in situ studies exist able to detect the presence of CO as a reaction poison exist. It does 

however appear from careful work on Pt(111) by Arenz et al.34 that HCOOH forms CO at 

cathodic potentials which is removed above 0.6 VRHE in line with our observations. Moreover, 

formate intermediate detection is proven using in situ FTIR techniques on NPs. However, as 

formate is both considered a necessity in the FAOR pathways and suspected as a poison standard 

FTIR studies may not be that useful in establishing FAOR insights. Rather, as most FAOR 

studies proposes reaction pathways that explains their electrochemical observations we decided 
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to do the same. Doing what other people already have done is essentially foolish, but using DFT 

to evaluate the relevant reaction steps energetics and consequent likelihood was hoped to give a 

unified explanation of what happens at the catalysts surface during FAOR. Unfortunately, FAOR 

is an extensive studied field and a cornucopia of reaction pathways have been considered in 

literature.9,10,21,35–40 Hence, our principal contribution has been reducing the reaction space 

proposed in literature. We considered both reactions taking place during steady state FAOR and 

those potentially able to occur during cycling. 

  
a)                                                                          b) 

Figure S3. Literature study highlighting all the conceived FAOR reaction pathways during 

potential cycling.21 (a) Depicts all pathways indiscriminate of their likelihood proposed in 

literature. (b) Highlights the reduced number of pathways needed to understand low 

overpotential FAOR. Note historically FAOR has been split into the direct (gray)35,36 and 

indirect FAOR (green and yellow)35,37,38,41 FAOR pathway. It is worth noting that during 

potential cycling a multitude of possible reaction pathways and possible adsorption events are 

able to cloud any FAOR trend, e.g. from partial FAOR forming unwarranted COxHy surface 

species (Purple),9,10,39 site blockage due to hydroxide adsorption (blue) or formation of CO from 
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direct/indirect disproportionation (red)40 has been proposed. Even CO2 reduction reaction by 

cycling too cathodic (brown)36 have been suggested in literature (reverse CO2 reduction 

reaction). Note some of the reaction pathways like hydroxyl adsorption and CO-oxidation often 

takes place at relatively high potentials for Pt and Pd based catalysts. Moreover, while *CO and 

*COxHy (and *OH/*H) are the most mentioned poisoned species mentioned in FAOR in literature, 

recent focus have shifted to formate itself (yellow), which in various arrangements may itself 

cause self-poisoning of the catalyst.25,35,42,43   

 

From Figure S3 the all the relevant reaction pathways (and intermediates) have been established. 

As we a priori not know the true reaction route(s) and our identification of this/these 

pathways(s) are limited due to the fact that CO, formate, H and OH adsorption is difficult to 

detect with traditional FTIR techniques under in situ FAOR conditions30–33. Hence, herein we 

have opted for the simpler approach of testing catalysts with specific properties and compare 

these with widely studied reference systems before finally correlating these results with a broad 

self-consistent theoretical framework. Consequently, it is important to figure out which types of 

catalyst have been considered most relevant for the field. Given that our framework should 

encompass the results, obtained for the most studied catalysts in literature. In literature there has 

generally been four approaches to optimize FAOR performance (note other exists44,45):  

1) Use intrinsically active materials such as Pt and Pd (and possible Rh11). 

2) Design single-site catalyst; surround some active with inert Au,46–48 Ag,49 N/C50 or 

other51–54 as this should disallow the formation of CO during formic acid oxidation. Note, 

Rh and Ir single-sites have also been reported.55–58 
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3) Include ad-atoms on Pt or Pd catalyst as elements such as Cd,59 Sn,60 Sb,61–63 Bi,42,64–67 

Pb,39 Te,68 and Tl45,69 as these elements have been proposed to mitigate both CO and/or 

formate poisoning. 

4) Alloy Pt or Pd, typically with Ru70,71 as this has been shown to mitigate CO poisoning in 

DMFC systems. However, a range of other alloys systems bulk49,72–83 and surface alloys84 

have also been proposed. We note most alloys exhibit similar FAOR performance 

regardless of Pt’s or Pd’s alloying elment.85     

   

Tuning of catalyst shape and -morphologies and even active area have resulted in very 

conservative improvements in catalysts FAOR performances. A range of fundamental work on 

different (non-Pd, non-Pt, non-Rh) pure metal catalysts exist Ru,86 Os,87 Au.26,88 However, 

currents magnitudes and/or onset potential was poor in all instances. 

Several FAOR studies concerns the Pd-Au and Pt-Au systems. Recent work by Zhang and 

coworkers on Pt-Au NP single-site catalyst suggested some FAOR improvement using a novel, 

albeit not straightforward synthesis.46 However, looking into the mass activity performance on 

many of these systems, we noted that all Pt-Au NPs systems’ catalytic performances found in 

literature89–93 are quite similar to one another; in-fact it seems to be true for all PtxMx-1/PdxMx-1 

alloys.49,72,81–85,73–80 However, we wanted to see if previous results on Pt-Au systems arises from 

some unknown propensity towards forming Pt/Pd dual- or triple-sites during synthesis formation. 

One simple approach to test this is to form PtxMx-1 (M=Au, Ag, Hg and x>3) intermetallic. 

Fortunately work by Arnau et al.94 have reported Hg4Pt catalyst preparation by modifying Pt/C 

NPs and forming Pt-Hg. Our idea was to use this well-tested catalysts and see if we observe any 

mass activity improvement relative to the pure seed catalyst.  
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Other work by Lim and co-wokers67 (among others) report Pt/C NP modification using Bi. Such 

model systems seems to exhibit very high activities and are consequently very interesting to us. 

Besides the work on various metal-nitrogen-carbon (MNC)and Pt/Pd alloyed catalyst it is worth 

mentioning that a range of fundamental works exist investigating the effects of electrolyte 

pH,25,38,95,96 electrolyte composition,97 HCOOH concentration/mass-transport limitations,98,99 and 

temperature42.  

From the vast amount of literature concerning FAOR, establishing a robust theoretical 

framework explaining catalysts performing in all the potential regions, see Figure S1. Such a 

model should explain the limited activity of the most relevant pure metal catalysts, as well as 

relevant alloys and single-site systems (carbon-based or alloyed). We know from earlier work,100 

that catalytic properties changes significantly when considering carbon-based structures such as 

metal-nitrogen-carbon (MNC). Hence, our theory should consider elements relevant for both 

pure metal catalyst (see Figure S4a), bimetallic alloys and carbon-based motifs such as MNCs. 

The question then arises which metal and catalyst should we consider in our model to get a 

satisfactory model. 
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Figure S4. Elements relevant for screening FAOR catalysts. (a) Elements for metal based 

catalysts. Note; Green elements are the only active pure metal candidates. Blue elements are 

typically alloyed with green elements, in many instances in the hope of forming single-site 

catalysts. Alloys combining green and yellow elements are ripe in literature and are often 

proposed to increase either catalyst area or CO- or formate tolerance. Red elements are often 

reported as elements used to modify green elements by ad-layer/atoms. (b) Porphyrin MNC 

structures with relevant elements.    

 

Besides the elements mentioned in Figure S4 ions of Cr, V, Co are known to oxidize HCOOH in 

homogenous catalysis.101 From literature we also noted that very few model studies exist 

investigating other pure metal catalyst or alloys for FAOR, consequently we collected data on 

Ag, Cu and Ni as well as Pt5M (M=Tb, Gd, La, Tm, and Ce) electrodes.102  

 
 
Electrochemical experimental details 

All electrochemical measurements were conducted in cleaned glassware in 0.1 M HClO4 

electrolytes (Milli-Q H2O, 18.2 Ωcm, Merck, Suprapur® 30%). Rotating disk electrodes 

measurements relying on commercial Pt/C (TKK, 46.5 wt.% Pt, TEC10EA50E, ca. 5 mgcat ink 

loading) and Pd/C (Aldrich, 407305-1G, 30 wt% Pd, ca. 5 mgcat ink loading) catalysts using inks 

consisting of 2.5 mL 2-propanol (Aldrich, trace metal basis, 99.999%), 10 µL Nafion™ (Aldrich, 

aqueous suspension, 10 wt.%), 7.45 mL milli-Q H2O.103 Ink were mixed in the order: Catalyst, 

water, solvent and finally Nafion™ followed by 15 min sonication. 10 µL ink was dispersed on 

polished and cleaned glassy carbon stubs (HTW, Ø×h=5×4mm) and set to dry under ambient 

conditions. Even surface distribution of ink was verified by visual inspection.104 Mass activity 

was derived from total mass loading in the ink relative to the 10 µL loading put on the 
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electrodes. FAOR investigations were conducted in 0.1 M HClO4 with 0.1 M HCOOH (Aldrich, 

ACS reagent, 98%) under rotation to avoid any possible mass-transport issues.99 Reversible 

hydrogen electrode (RHE) potential and Ohmic-drop compensation was utilized.105 Pt-Hg/C and 

Pd-Hg/C was prepared following earlier established methodology94 on glassy carbon stubs pre-

loaded with Pt/C or Pd/C ink and alloying in ~3mM HgO (Aldrich, trace metal basis, 99.999%) 

in 0.1 M HClO4. Similarly, Pt-Bi/C preparation was based on the deposition procedure, see SI, of 

~7 mM BiO2 (Aldrich, trace metal basis, 99.999%) dissolved in 0.1 M HClO4 as discussed by 

Feliu et al.106   

Prior FAOR experiments reproducible CVs were obtained in pure HClO4 for the Pd/C, Pt/C, Pd-

Hg/C, Pt-Hg/C and Pt-Bi/C catalyst, see figure 2a. Once we established reproducible Pt and Pd 

base CVs corresponding Pt-Hg, Pd-Hg and Pt-Bi CVs were obtained.  

The Pt-Hg, Pd-Hg and Pt-Bi catalyst relied on deposition in a separate cell, and cathodic 

deposition of either Hg or Bi, see Figure S5. 

 

Figure S5. (a) Deposition cell used to alloy Pt and Pd with Hg and deposit Bi on Pt/C. (b) Hg 

alloying example on Pt (Pd looks similar). (c) Deposition of Bi ad-atoms on Pt NPs.   
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The deposition of Bi on Pt and the mercury alloying followed the procedure developed by 

others.107 

We also tried depositing Pb following others work39. Unfortunately we found that Pb was 

unstable even at rather low potential <0.6 VRHE, see Figure S6a. Similarly, we found that cycling 

Pt-Bi/C with Ohmic drop compensation stripped off Bi when going too high in potential. Hence, 

the Pt-Bi/C system was only considered stable in the 0.0-0.8 VRHE range, see Figure S6b. 

 

Figure S6. 20 first CVs at 50 mV/s, room temperature, 1600 rpm. (a) Deactivation of Pt-Pb/C 

catalyst, likely due Pb-oxidation and dissolution (b) Deactivation of Pt-Bi/C catalyst, likely due 

Bi-oxidation and dissolution. 

Figure S6 highlights the instability of Pt-Pb/C and Pt-Bi/C systems and why these have not 

found use in industry for FAOR applications. 

After deposition the electrochemical FAOR investigation relied on the following simple 

procedure: i) Electrodes were rinsed in milli-Q water and inserted into the electrochemical cell 

under potential control at potentials <0.25 VRHE. ii) 200 CVs at 200 mV/s were obtained as a 

conditioning step, see example in Figure S7. iii) Electrochemical impedance spectroscopy (EIS) 
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0.55 VRHE was obtained identifying the series resistance following earlier work. iv) Ohmic drop 

compensated (85%) CVs at 200, 100, 50, 20 and 10 mV/s were obtained at 1600 rpm, see Figure 

S8. All CVs were post corrected the remaining 15% of the Ohmic drop. v) Chronoamperometric 

measurements was collected these relied on potential steps at 0.05 VRHE followed by 1.05 VRHE 

for 30 s followed by 30 min hold at 0.55 VRHE with 85% Ohmic drop compensation. The idea 

was to first reduce sample completely then oxidize and strip off all poisons and then conduct an 

extended CA measurements at a relevant potential. On occasion, a limited steps procedure was 

also used to highlight catalyst types propensity towards poisoning, see Figure 4. 

 

Figure S7. Conditioning step at 50 mV/s for 200 cycles in Ar-saturated electrolytes. (a) Pt/C in 

0.1 M HClO4. (b) Pt-Hg/ C in 0.1 M HClO4. (c) Pt-Hg in 0.1 M HClO4 with 0.1 M HCOOH. 

Note, that after 100 cycles CVs hardly changes. 

Figure S7 reveals that pseudo stable CVs are obtainable after 200 cycles at 50 mV/s. However, in 

the interest of time and in order to limit time in which electrodes could experience some 

unforeseen poisoning event 200 mV/s was used as a conditioning step for the vast majority of 

our measurements. 

CVs for Pt/C, Pd/C, Pt-Hg/C and Pd-Hg/C catalyst was conditioned and obtained in the potential 

limits from 0.00 to 1.05 VRHE, whereas for Pt-Bi/C conditioning and CVs was limited to 0.0 to 
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0.8 VRHE. Following the conditioning the aforementioned CVs were collected at varying can 

rates, see Figure S8. 

 

Figure S8. FAOR CVs at varying scan-speeds at taken at 1600 rpm in room-temperature Ar-

saturated 0.1 M HClO4 with 0.1 M HCOOH. (a) Pt/C NPs. (b) Pd/C NPs. (c) Pt-Hg/C NPs. (d) 

Pd-Hg/C NPs. (e) Pt-Bi/C NPs.  
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Figure 8 reveals that Pt/C, Pt-Hg/C and to some extend the Pd-Hg/C system is more sensitive to 

scan rate than say the Pd/C and Pt-Bi/C system.  

 

Figure S9. Pulsed voltammetry as that of Figure 4 utilizing 30 s pulses to justify this 

interpretation was insufficient as not enough *OOCH species to accumulate. (a) Pt/C. (b) Pd/C. 

Results are similar as those of Figure 4, suggesting OOCH does not accumulate noteworthy on 

Pd.  

 

Additional electrochemical data 

As we needed additional insight to pure metal catalyst for our theoretical framework we tested 

Ni, Ag and Cu wires as ad hoc test to elucidate whether CO- and H-binding were sufficient 

descriptors for FAOR activity, see Figure S10. 

Due to one of our initial hypothesis, we hoped to observe CO-vibration absence for the Pt-Hg/C 

relative to the pure Pt/C system during in situ Fourier-transform infrared spectrometry (FTIR). 

Unfortunately, we were never able to observe CO-vibration changes in HClO4 while varying the 
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potential. However, in flowing CO directly into the cell and conducting CO-stripping 

experiments revealed that if changes in CO-coverages were in-fact occurring these would not be 

observable in HCOOH containing electrolyte, see Figure S10. 

 

Figure S10. (a) Schematic of FTIR cell used. (b) In situ FTIR spectra of Pt/C NPs blue-

background taken at 0.05 VRHE and red-spectra at 1.05 VRHE. (c) Comparison of CVs in a 

standard three-electrode cell and the developed FTIR cell. 

From our disappointing FTIR results and the somewhat inconclusive literature study on the 

subject we came to the conclusion that standard FTIR techniques are incompatible with what we 

expected to observe. Additionally, we noted from our extensive literature study that tuning of Pt-

based catalyst have been seldom explored for the FAOR. This was done in an effort also to track 

CO-stretching for these alloys.     
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Figure S11. (a) CVs of Pt5M extended surface alloys at 10 mV/s at room-temperature and 1600 

rpm in Ar-saturated 0.1 M HClO4 with 0.1 M HCOOH. (b) In situ FTIR CO-stripping of these 

alloys in pure 0.1 M HClO4. 

The most surprising aspect of the FTIR study of Figure S11 was that contrary to our expectation 

the CO-stripping peak did not seem to shift significantly with the lanthanide contraction102 and 

consequently the CO-binding strength109. In regards to the FAOR data the Pt5M data strongly 

suggests that binding of CO is unlikely the limiting factor for most of the observed FAOR 

performances presented in within the field, and consequently any theoretical model should take 

this into account. 

From our realization, that disproportionation from *H and HCOOH (or *CHOO) towards *CO 

and H2O was a real issue in Pt- (and perhaps) Pd-based catalysts, we wondered if we by shifting 

the HCOOH adsorption beyond the pKa of 3.75 could minimize disproportionation. Hence, CVs 

in pH 4.2 in formic acid and acetate was attempted, see Figure S12. 
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Figure S12. CVs of Pt/C in Ar-saturated 0.1 M HCOOH in 0.1M HClO4 (red) or with CH3COO- 

(blue), pH measured 4.2, taken at 50 mV/s at room-temperature at 1600 rpm. 

Figure S12 suggested that tuning pH was unlikely to influence FAOR activity in any meaningful 

way. This was done by going to pH's above formic acid’s pKa of 3.75. Although a change in 

activity is visible the onset hardly varies. Any effects could simply be due to acetate adsorption. 

Or in other words, changing pH appears not to have an effect on the hysteresis, suggesting the 

poisoning seen as hysteresis is independent on HCOOH's pKa, i.e. facilitated by something that 

is not HCOOH.      

It was generally noted, that getting reproducible results of the FAOR performance was very 

difficult in lieu of the NP ink system. It seemed that the catalyst surfaces were very dependent on 

the cleanliness and age of the electrodes on which ink was deposited. This very real dependence 

on advantageous adsorption and its effect on FAOR have been highlighted by adding HCl into 

our HClO4/HCOOH electrolyte during CVs, see Figure S13. 



 21 

 

Figure S13. Base CV of Pt/C in Ar-saturated 0.1 M HCOOH and 0.1 M HClO4 taken at 50 mV/s 

at room-temperature at 1600 rpm (red) into which a small amount 0.1M HClO4 with 0.1 M HCl 

was added (blue). 

The devastating effect HCl has on FAOR highlights how certain adsorbates can significantly 

lower FAOR activities. 

Density Functional Theory (DFT) Calculations Details 

All calculations were performed using Density Functional Theory (DFT), using the programs 

ASE version 3.19.0,110 and GPAW version 19.8.1.111 Calculations were done at the Generalized 

Gradient Approximation (GGA) level of theory, using the grid mode, with the BEEF-VdW 

functional.112 All calculations are done in vacuum. We utilize a k-point sampling appropriate for 

the specific structure and a vacuum of minimum 10 Å. All the structures are relaxed to a force 

below 0.05 eV /Å. As model structure, we use the (111)-fcc facet to represent the metal catalyst, 

which is a fair choice when analysis is carried out on eV scale (although we note in Figure S1 
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that (100)-facets may be more active than (111)). As MNC model structure, we use our previous 

model site with four coordinated nitrogen atoms to the metal in a graphene sheet. All structures 

(metals, MNCs, Pt1Au(111),  PtHg4 and PdHg4) are accessible through our online databases at 

https://chem.ku.dk/research_sections/nanochem/theoretical-electrocatalysis/ 

Table S1: Binding energy data, using H2 and CO2 as references. 

Structure Name H [eV] COOH [eV] OOCH [eV] 
metal: Au 0.40 0.79 0.57 
metal: Ag 0.43 0.90 -0.02 
metal: Cu 0.02 0.54 -0.35 
metal: Ni -0.31 0.13 -0.55 
metal: Pd -0.31 0.05 0.01 
metal: Pt -0.23 -0.17 0.07 
metal: Rh -0.26 -0.05 -0.45 
metal: Cd 0.73 0.92 -0.23 
metal: Fe -0.46 -0.38 -1.22 
metal: In 0.85 0.68 -0.53 
metal: Ir -0.20 -0.12 -0.42 
metal: Pb 0.91 0.90 -0.21 
metal: Sn 0.83 0.65 -0.29 
metal: Tl 0.87 0.86 -0.38 
MNC: Fe 0.30 0.24 0.08 
MNC: Co 0.16 0.14 0.29 
MNC: Ir -0.33 -0.22 0.52 
MNC: Mn 0.44 0.41 -0.10 
MNC: Rh -0.13 -0.01 0.45 
MNC: Ru -0.54 -0.57 -0.30 
PdHg4 0.36 0.26 0.18 
PtHg4 -0.20 -0.19 0.06 
Pt1Au(111) -0.14 -0.05 0.24 
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Figure S14. Binding energy motifs of *H, *COOH and *OOCH on Pt(111) 
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