Supporting Information

Room-Temperature Antiferroelectric in Hybrid Perovskite Enables Highly-Efficient Energy Storage at Low Electric Fields

Yi Liu,¹ Haojie Xu,¹² Xitao Liu,¹ Shiguo Han,¹ Wuqian Guo,¹² Yu Ma,¹² Qingshun Fan,¹² Xinxin Hu,¹² Zhihua Sun,^{*123} and Junhua Luo^{*12}

¹State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China ²University of Chinese Academy of Sciences Beijing, 100049, P. R. China ³Fujian Science & Technology Innovation Laboratory for Optoelectronic Information

of China, Fuzhou, Fujian 350108, P. R. China

Experimental Section

Synthesis and single-crystal growth. The target compound **1** was prepared by mixing stoichiometric ratio of isobutylammonium (10 mmol, 1.52 g), formamidinium acetate (5 mmol, 0.38 g) and $Pb(CH_3COO)_2 \cdot 3H_2O$ (10 mmol, 3.79 g) in the 40% w/w solution of hydrobromic acid. After the continuous stirring for 30 min at 373 K, a clear yellow solution was obtained. Plate-like yellow crystals of **1** were obtained by the temperature cooling method after about three weeks, as shown in Figure S1.

Single-Crystal X-ray Crystallography and Powder X-ray Diffraction. We used the Bruker D8 Quesr/Venture diffractometer with the Mo $K\alpha$ radiation ($\lambda = 0.77$ Å) to record X-ray diffraction data. The structures were solved by direct methods and confirmed by the full-matrix least-squares refinements on F^2 using the *SHELXTL* software packing. All non-H atoms were refined anisotropically, and all H atoms were generated by geometrical method and refined by using a "riding" model with *Uiso* = 1.2 *Ueq* (C). The above-mentioned structure solution and refinement were conducted in the *Olex2* software. Crystal data for 1 at 200 and 310 K are listed in Table S1. Powder X-ray diffractometry (PXRD) data was recorded on the MiniFlex 600 X-ray diffractometer equipped with a Cu K α radiation.

Measurements. The dielectric analyses were performed on TongHui TH2828 analyzer in the temperature range of 270-330 K. Single-crystal plates of **1** with the surface deposited by silver conduction paste were used for dielectric measurements. DSC measurement of **1** was recorded by using a NETZSCH DSC 200F3 instrument in the

temperature range of 270-330 K. The powder samples that placed in aluminum crucibles were heated and cooled with a rate of 5 K·min⁻¹ under a nitrogen atmosphere. The *P-E* hysteresis loops were carried out on a ferroelectric analyzer (Radiant Precision Premier II). For the *P-E* loop measurement, the crystal sample with size of $0.5 \times 0.4 \times 0.4 \text{ mm}^3$ was used. The sample thickness was 0.4 mm and both sides were printed with silver electrodes with an area of approximately 0.16 mm². In order to avoid electric discharge at high electric field, single crystal of **1** was immersed in silicone oil to measure the *P-E* hysteresis loops. Domain structures of the grown crystal were observed using a Nikon Eclipse LV100POL polarizing microscope along [010] crystal wafer.

[CCDC 2157694 and 2157696 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.] Figure

Figure S1. Plate-like single crystal of 1 obtained by the temperature-cooling method.

Figure S2. Experimental and simulated PXRD patterns for 1 at room temperature.

Figure S3. The N-H…Br hydrogen-bonding interactions between organic cations and inorganic perovskite frameworks of **1** at (a) low-temperature phase (LTP, 200 K) and (b) high-temperature phase (HTP, 310 K). Purple dotted lines represent the N-H…Br hydrogen bonds.

Figure S4. Frequency-dependent (a) double *P-E* hysteresis loops and (b) *J-E* curves.

Figure S5. Schematic diagram for energy storage properties of 1 obtained from the typical *P-E* hysteresis loop.

Figure S6. Energy density $W_{\rm rec}$ and energy storage efficiency η of **1** as a function of frequency.

Figure S7. (a) The interlayered space and (b) atomic distance between the adjacent layers of organic n-BA⁺ cations in (n-BA)₂(FA)Pb₂Br₇.

Figure S8. A series of 2D hybrid perovskites, $(i-BA)_2(A)Pb_2Br_7$, created by alloying the cationic spacer $(i-BA^+)$ and "perovskitizer" (FA⁺, MA⁺ and Cs⁺). Obviously, the adjacent *i*-BA⁺ cations exhibit the antiparallel reorientation.

Table

Table S1. Crystal data for 1 collected at low-temperature phase (LTP, 200 K) and high-temperature phase (HTP,310 K).

	LTP	НТР
Empirical formula	$C_9H_{29}Br_7N_4Pb_2$	$C_9H_{29}Br_7N_4Pb_2$
Formula weight	1167.11	1167.11
Temperature/K	200	310
Crystal system	Orthorhombic	Tetragonal
Space group	Pnma	I4/mmm
<i>a</i> (Å)	8.3299(4)	5.9841(2)
b (Å)	37.549(3)	5.9841(2)
<i>c</i> (Å)	8.4639(5)	38.4072(17)
<i>V</i> (ų)	2647.3(3)	1659.7(3)
D _{calca} /Mg⋅m⁻³	2.928	2.818
Z	4	2
μ (mm ⁻¹)	23.269	22.394
F(000)	2080.0	1040.0
2Θ range /°	4.934 to 54.996	7.03 to 55.17
Index ranges	$-10 \le h \le 10, -48 \le k \le 43, -10 \le l \le 10$	-7 ≤ h ≤ 7, -7 ≤ k ≤ 7, -49 ≤ l ≤ 47
Reflections collected	21033 5626	
Independent reflections	3070 [R _{int} = 0.0758, R _{sigma} = 0.0517]	538 [R _{int} = 0.0649, R _{sigma} = 0.0318]
Data/restraints/parameters	3070/38/109	538/98/88
Goodness-of-fit on F ²	1.083	1.082
Final R indexes $[I \ge 2\sigma (I)]$	$R_1 = 0.0554, wR_2 = 0.1474$	$R_1 = 0.0386, wR_2 = 0.1033$
Final R indexes [all data]	$R_1 = 0.0774, wR_2 = 0.1605$	$R_1 = 0.0466, wR_2 = 0.1119$

Table S2. Bond lengths of crystal 1 at 200 K.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Pb1	Br1	3.070(5)	N3	C3	1.508(17)
Pb1	Br2 ¹	2.968(12)	C3	C4	1.44(2)
Pb1	Br2	3.013(12)	C4	N5	1.44(3)
Pb1	Br3 ²	3.027(12)	C4	C6	1.51(2)
Pb1	Br3	3.052(12)	N1	C1	1.308(3)
Pb1	Br4	2.916(16)	N2	C1	1.285(2)

Symmetry transformations used to generate equivalent atoms: ¹1/2+X, Y, -Z-3/2; ²1/2+X, Y, -Z-1/2

Table S3. Bond angles of crystal 1 at 200 K.

Bond	Angle/°	Bond	Angle/°
Br2 ¹ -Pb1-Br1	88.85(4)	Br4-Pb1-Br2	98.43(4)
Br2-Pb1-Br1	90.48(4)	Br4-Pb1-Br3 ²	84.74(4)
Br2 ¹ -Pb1-Br2	90.21(13)	Br4-Pb1-Br3	92.64(4)
Br2 ¹ -Pb1-Br3	176.31(4)	Pb1 ³ -Br1-Pb1	177.11(6)
Br2-Pb1-Br3	91.75(3)	Pb1 ⁴ -Br2-Pb1	159.73(5)
Br2 ¹ -Pb1-Br3 ²	90.02(3)	Pb1 ⁵ -Br3-Pb1	160.25(5)
Br2-Pb1-Br3 ²	176.82(4)	C4-C3-N3	115.5(12)
Br3-Pb1-Br1	88.00(4)	C3-C4-C6	110.5(15)
Br3 ² -Pb1-Br1	86.35(4)	C5-C4-C3	118.0(18)
Br3 ² -Pb1-Br3	87.86(13)	C5-C4-N6	110.5(16)
Br4-Pb1-Br1	171.04(4)	N2-C1-N1	124(3)
Br4-Pb1-Br2 ¹	90.16(4)		

Symmetry transformations used to generate equivalent atoms: ¹1/2+X, Y, -Z-3/2; ²1/2+X, Y, -Z-1/2; ³X, -Y+1/2, Z;

⁴X-1/2, Y, -Z-3/2; ⁵X-1/2, Y, -Z-1/2

Table S4. Hydrogen bonds of crystal 1 at 200 K.

D-H···A	d(D-H)	d(H…A)	< DHA	d(DA)
N1-H1A····Br1 ⁶	0.880	3.117	108.60	3.480
N1-H1B····Br1 ¹	0.884	3.128	110.40	3.535
N2-H2C····Br1 ⁴	0.880	2.695	142.58	3.436
N2-H2D····Br1 ⁵	0.878	2.690	148.83	3.471
N3-H3A····Br4 ¹	0.914	2.499	170.96	3.404
N3-H3B····Br4 ²	0.908	2.580	164.15	3.463
N3-H3C····Br2 ³	0.908	2.878	121.28	3.485

Symmetry transformations used to generate equivalent atoms: ¹X-1/2, Y, -Z-1/2; ²X-1, Y, Z; ³X-1/2, Y, -Z-3/2; ⁴X+1/2, Y, -Z-1/2; ⁵X, Y, Z+1; ⁶X+1/2, -Y+3/2, -Z+3/2

		(- ()	
Antiferroelectrics	E _{cr} (kV/cm)	η (%)	Ref.
TFMBI	22	44	[1]
(BA) ₂ (EA) ₂ Pb ₃ I ₁₀	32	65	[2]
(<i>i</i> -BA) ₂ CsPb ₂ Br ₇	75	69	[3]
ТСМВІ	81	62	[1]
DFMBI	86	78	[1]
AgNbO ₃	150	46	[4]
0.90PHf-0.10PMW	155	72	[5]
[H-55dmbp][Hca]	173	90	[6]
Ag(Nb _{0.85} Ta _{0.15})O ₃	175	69	[7]
Ag _{0.97} Bi _{0.01} NbO ₃	200	55	[8]
SQA	210	90	[9]
Ag _{0.94} La _{0.02} NbO ₃	273	73	[10]
Sm _{0.03} Ag _{0.91} NbO ₃	290	69	[11]
PHS-0.075	320	79	[12]
0.86NaNbO ₃ -0.14(Bi _{0.5} Na _{0.5})HfO ₃	350	80	[13]
PLHT-0.05	360	89	[14]
Pb _{0.98} La _{0.02} (Hf _{0.45} Sn _{0.55}) _{0.995} O ₃	380	94	[15]
PbZrO ₃	463	68	[16]
(Pb _{0.95} Sr _{0.05})ZrO ₃	500	78	[16]
NLNT _{0.18} -0.01BCB	550	66	[17]
Compound 1	41	91	This work

Table S5. Energy storage efficiency (η) for various reported antiferroelectrics at room temperature.

References

1. S. Horiuchi, F. Kagawa, K. Hatahara, K. Kobayashi, R. Kumai, Y. Murakami and Y. Tokura, *Nat. Commun.*, 2012, **3**, 1308.

2. S. Han, X. Liu, Y. Liu, Z. Xu, Y. Li, M. Hong, J. Luo and Z. Sun, J. Am. Chem. Soc., 2019, 141, 12470-12474.

3. Z. Wu, X. Liu, C. Ji, L. Li, S. Wang, Y. Peng, K. Tao, Z. Sun, M. Hong and J. Luo, *J. Am. Chem. Soc.*, 2019, **141**, 3812-3816.

4. Y. Tian, L. Jin, H. Zhang, Z. Xu, X. Wei, E. D. Politova, S. Y. Stefanovich, N. V. Tarakina, I. Abrahams and H. Yan, J. Mater. Chem. A, 2016, 4, 17279-17287.

5. P. Gao, Z. Liu, N. Zhang, H. Wu, A. A. Bokov, W. Ren and Z.-G. Ye, *Chem. Mater.*, 2019, **31**, 979-990.

6. S. Horiuchi, R. Kuma and S. Ishibashi, *Chem. Sci.*, 2018, **9**, 425-432.

7. L. Zhao, Q. Liu, J. Gao, S. Zhang and J.-F. Li, Adv. Mater., 2017, 29, 1701824.

8. Y. Tian, L. Jin, H. Zhang, Z. Xu, X. Wei, G. Viola, I. Abrahams and H. Yan, J. Mater. Chem. A, 2017, 5, 17525-17531.

9. S. Horiuchi and S. Ishibashi, Chem. Sci., 2021, 12, 14198-14206.

10. J. Gao, Y. Zhang, L. Zhao, K.-Y. Lee, Q. Liu, A. Studer, M. Hinterstein, S. Zhang and J.-F. Li, *J. Mater. Chem. A*, 2019, **7**, 2225-2232.

11. N. N. Luo, K. Han, F. P. Zhuo, C. Xu, G. Z. Zhang, L. J. Liu, X. Y. Chen, C. Z. Hu, H. F. Zhou and Y. Z. Wei, *J. Mater. Chem. A*, 2019, **7**, 14118-14128.

12. P.-Z. Ge, X.-G. Tang, K. Meng, X.-X. Huang, S.-F. Li, Q.-X. Liu and Y.-P. Jiang, *Chem. Eng. J.*, 2022, **429**, 132540.

13. Z. T. Yang, H. L. Du, L. Jin, Q. Y. Hu, H. Wang, Y. F. Li, J. F. Wang, F. Gao and S. B. Qu, *J. Mater. Chem. A*, 2019, **7**, 27256-27266.

14. P.-Z. Ge, X.-G. Tang, K. Meng, X.-X. Huang, Q.-X. Liu, Y.-P. Jiang, W.-P. Gong and T. Wang, *Mater. Today Phys.*, 2022, **24**, 100681.

15. W. Chao, T. Yang and Y. Li, J. Mater. Chem. C, 2020, 8, 17016-17024.

16. X. Hao, J. Zhai and X. Yao, J. Am. Ceram. Soc., 2009, 92, 1133-1135.

17. J. Chen, H. Qi and R. Zuo, ACS Appl. Mater. Interfaces, 2020, 12, 32871-32879.