Electronic Supplementary Information

Dynamic Charge Collecting Mechanisms of Cobalt Phosphate on Hematite

Photoanode Studied by Photoinduced Absorption Spectroscopy

Dongfeng Li,^{ab} Ruifang Wei,^{ac} Heng Yin,^a Hemin Zhang,^d Xiuli Wang,^{a*} and Can Li^{abc*}

^aState Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian

National Laboratory for Clean Energy, Dalian 116023, China.

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China

^cDepartment of Chemical Physics, University of Science and Technology of China, Hefei 230026, China

^dCollege of Materials Science and Engineering, Sichuan University, Engineering Research Center of Alternative Energy Materials and Devices, Ministry of Education, Chengdu 610065, China

Table of Contents

1.	Experimental section
2.	Fitting PIA lifetimes
3.	CV curves for CoPi, bare Fe ₂ O ₃ and CoPi/Fe ₂ O ₃ anodesS9
4.	EIS results for CoPi, Fe ₂ O ₃ and CoPi electrodes
5.	CV of bare Fe ₂ O ₃ and CoPi/Fe ₂ O ₃ photoanodes with different scan rates under illuminationS11
6.	OCP of bare Fe ₂ O ₃ and CoPi/Fe ₂ O ₃ photoanodes
7.	SECA spectra of CoPi electrocatalyst
8.	CV of NiOOH/Fe ₂ O ₃ photoanode
9.	TAS and TPC results of photoanodes under 0.8 V _{RHE} S15-S16
10.	TAS results of CoPi, bare Fe ₂ O ₃ and CoPi/Fe ₂ O ₃ photoanodes under 1.5 V _{RHE} S17-S18
11.	Ratios of PIA amplitudes and photocurrents for bare Fe ₂ O ₃ and CoPi/Fe ₂ O ₃ S19-S20
12.	Extinction coefficient of CoPi and photoinduced holes in Fe ₂ O ₃ S21-S22
13.	TAS and TPC results of photoanodes under 1.4 V _{RHE} S23-S24
14.	PIA spectra for bare Fe ₂ O ₃ -Ar, CoPi/Fe ₂ O ₃ -Ar, bare Fe ₂ O ₃ -air and CoPi/Fe ₂ O ₃ -airS25
15.	CV curves of porous-Fe ₂ O ₃ and CoPi/porous-Fe ₂ O ₃ photoanodesS26
16.	PIA spectra and photocurrents for CoPi/porous-Fe ₂ O ₃ S27
17.	Linear relationship of PIA intensity and hole density
18.	PIA spectra of CoPi/F-Fe ₂ O ₃ , CoPi/SnO ₂ /Fe ₂ O ₃ and CoPi/Fe ₂ O ₃ /Ta-Fe ₂ O ₃ S30-S31
19.	References

Experimental section

All the reagents are used as received without further purification. All aqueous solutions including sample preparation and electrolytes were prepared with deionized pure water (> 18.2 M Ω /cm). Unless mentioned otherwise, all of the experiments were conducted under normal atmospheric conditions.

Sample preparation

Preparation of FeOOH films. FeOOH films were prepared by solvothermal deposition method.¹ The substrates of FTO (1.5 cm \times 2 cm, Nippon Sheet Glass Company, Japan) were firstly cleaned in acetone, isopropanol, ethanol and deionized water for 20 min respectively. The clean FTO was attached with tape on the glass side and placed leaned against the wall of the vessel. Afterwards, 50 mL solution containing 0.1 M FeCl₃•6H₂O and 0.225 M CO(NH₂)₂ (dense sample) or 1 M NaNO₃ (porous sample) was added. Then it the vessel was sealed and placed in the oven at 100 °C for 4 h. Finally, the deposited FeOOH film was washed by deionized water.

Surface doping with tin. For the surface doping of Sn, firstly 0.1 M SnCl₂ ethanol solution was prepared by dissolving 0.9024 g SnCl₂•2H₂O in 40 mL absolute ethanol. Then the FeOOH film was immersed in the solution for 10 min.² Finally, the electrode was swept to dry by compressed air, and annealed at 550 °C for 3 h, followed by heat treatment at 750 °C for 15 min. The as-obtained dense samples were labeled as Fe_2O_3 . The as-obtained porous samples were labeled as porous-Fe₂O₃.

Deposition of CoPi overlayer. Electrodeposition of CoPi overlayer on FTO, Fe_2O_3 , and porous- Fe_2O_3 photoelectrodes was carried out by modified procedures published elsewhere.³ The employed electrolyte contained 0.5 mM Co(NO₃)₂•2H₂O in

0.1 M phosphate buffer (pH 6.77). The working electrode was subjected to 1.6 V_{RHE} with 5 min. The obtained samples were denoted as CoPi, CoPi/Fe₂O₃ and CoPi/porous-Fe₂O₃.

Deposition of NiOOH overlayer. Electrodeposition of NiOOH overlayer on Fe_2O_3 photoelectrode or FTO was prepared by reported electrodeposition methods⁴ with solution of 0.1 M NaOAc with 16 mM NiOAc. Electrodeposition was performed five times by consecutive linear sweeps from 1.7 to 2.0 V_{RHE} at 10 mV/s. The obtained samples were named as NiOOH and NiOOH/Fe₂O₃.

Regulation of oxygen vacancy for hematite photoanode.⁵ For decreasing oxygen vacancy, as-prepared Fe_2O_3 was annealed at 600 °C for 2 h in air, which is named as Fe_2O_3 -air. In order to increase oxygen vacancy, as-prepared Fe_2O_3 was annealed at 600 °C for 2 h in pure argon flow in a tube furnace. The obtained sample was denoted as Fe_2O_3 -Ar. After CoPi modification on hematite photoanodes of regulating oxygen vacancy, they were noted as CoPi/Fe₂O₃-air and CoPi/Fe₂O₃-Ar.

Surface doping with fluorine.⁶ Fe₂O₃ film was immersed in 0.05 M NaF solution for 10 min, followed calcination at 400 °C for 30 min in furnace. The obtained samples were termed as $F-Fe_2O_3$.

Tantalum doping and constructing homojunction. The preparation processes of high-performance homojunction samples (Fe₂O₃/Ta-Fe₂O₃) were coincident with our previous work.⁷

Insulator modification with SnO_2 .⁸ Fe₂O₃ film was immersed in 0.02 M $SnCl_4$ •5H₂O and 1 M CO(NH₂)₂ solution and deposited for 20 min at 100 °C in the oven, followed calcination at 500 °C for 2 h in furnace. The prepared samples were

named as SnO₂/Fe₂O₃.

Photoelectrochemcial (PEC) measurements

The electrolyte for PEC or electrochemical water oxidation measurements was 1 M NaOH aqueous solution (pH 13.7). A three-electrode setup controlled by a CHI 760C potentiostat was employed with Fe₂O₃ as the working electrode, Ag/AgCl/saturated KCl (Ag/AgCl) as the reference electrode, and Pt foil as the counter electrode. Potentials measured versus Ag/AgCl were converted to reversible hydrogen electrode (RHE), $E_{RHE} = E_{Ag/AgCl} + 0.1981 \text{ V} + 0.0591 \text{ V} \cdot \text{pH}$. Unless mentioned otherwise, all of the potentials were versus RHE. The photoelectrodes were illuminated from the electrolyte-electrode interface.

Electrochemical impedance spectroscopy (EIS) of photoelectrodes under illumination and dark were carried out using an electrochemical workstation (VersaSTAT MC) from 10^5 Hz to 10^{-1} Hz with a signal amplitude of 10 mV.

Cyclic voltammetry (CV) with various scan rates and open circuit potential (OCP) with chopped light of photoelectrodes were conducted by a CHI 760C potentiostat.

Photoinduced absorption (PIA) spectroscopy

The PIA spectroscopy was performed using long-pulsed (\approx s) LED light source to generate photoinduced charges in the photoanode.⁹ The interval of light on/light off was controlled by a wavefunction generator (0.09 Hz and 50 % duty ratio), which simultaneously sent a trigger signal to oscilloscope (Tektronics TDS 2012c) and DAQ card (National Instruments NI USB-6211). During collecting PIA spectra, the illumination duration was ~5 s, followed by ~5 s in the dark. Meanwhile, a monochromatic probe light (for example, 694.3 nm) from a tungsten halogen lamp

(Bentham IL1 Tungsten Halogen lamp) was used to monitor the photogenerated charges dynamics on photoelectrode.³ The optical density difference (Δ OD) of probe light was monitored using a Si photodiode detector (Hamamatsu S3071). A potentiostat (CHI 760C) was used to provide a constant applied potential and collect the transient photocurrent data.

Electroinduced absorption (EIA) spectroscopy

When collecting EIA spectroscopy, the potential pulse instead of light pulse in PIA spectroscopy was applied to induce the absorption variation. After the electrode was stabilized ~20 s under constant potential using chronoamperometry, the absorption spectra were recorded. SECA spectrum is the difference of absorption spectra under two potentials.

Spectroelectrochemical absorption (SECA) spectroscopy

When collecting SECA spectroscopy,¹⁰ the potential instead of light was applied to induce the absorption variation. After the electrode was stabilized ~20 s under constant potential using chronoamperometry (V650, Jasco), the absorption spectra were recorded. SECA spectrum is the difference of absorption spectra under two potentials.

Transient absorption spectroscopy (TAS) and transient photocurrent (TPC)

TAS and TPC measurements were carried out using the third harmonic of a Nd:YAG laser (Opolette HE-355-LD, 355 nm, 7 ns pulse width, 1.05 s period) as the pump light. A liquid light guide transmitted the laser pulse to the sample resulting in an incident pump intensity of ca. 225 μ J/pulse (355 nm). A 100 W tungsten lamp (Bentham, IL 1) coupled to a monochromator (Zolix, Omni - λ 300) was used as the

probe light. Variation in optical density (Δ OD) of the sample was calculated by measuring the transmitted light using a Si photodiode (Hamamatsu) and an amplification system coupled to both an oscilloscope (Tektronix, TDS 2012C) and data acquisition card (National Instruments NI-6221). The data were averaged over 300 laser shots. The operando TAS and TPC experiments were implemented by three-electrode setup controlled by a CHI 760C potentiostat in 1M NaOH solution (pH = 13.7), with the photoanode, Pt, and Ag/AgCl as working, counter and reference electrodes, respectively. During TAS and TPC measurements, a constant potential was maintained by chronoamperometry.

Table. S1 For PIA results in Fig. 3a and 3c, the accumulation and dissipation lifetimes in Fe₂O₃ and CoPi/Fe₂O₃ photoanodes are calculated and fitted by using monoexponential and bi-exponential function: $y = y_0 + A_1 \cdot exp((t-t_0)/\tau_1)$ or $y = y_0 + A_1 \cdot exp((t-t_0)/\tau_1) + A_2 \cdot exp((t-t_0)/\tau_2)$, respectively. Y_0 is the intercept. T_0 is initial points of accumulated or dissipative processes. A_1 and A_2 are the amplitudes. τ_1 and τ_2 are fitting lifetimes. The average lifetime of τ_{ave} is calculated by equation: $\tau_{ave} = (A_1 \cdot \tau_1 + A_2 \cdot \tau_2)/(A_1 + A_2)$. A_1 , A_2 , τ_1 and τ_2 are the parameters in Table S1.

Fe ₂ O ₃									
Potential	Accumulated lifetime			Dissipative lifetime					
V _{RHE}	$A_1 (\Delta OD)$	$ au_{1}\left(\mathrm{s} ight)$	$ au_{\text{average}}\left(\mathbf{s}\right)$	$A_1 (\Delta OD)$	τ_1 (s)	$A_2 (\Delta OD)$	$ au_{2}\left(\mathrm{s} ight)$	$ au_{\mathrm{average}}\left(\mathrm{s} ight)$	
0.6	_	_	_	_	_	_	_	_	
0.7	_	_	_	_	—	—	_	_	
0.8	_	_	_	_	_	_	_	_	
0.9	_	_	_	_	_	_	_	_	
1.0	-5.48E-5	0.41	0.41	5.03E-5	0.04	4.28E-5	1.28	0.61	
1.1	-2.03E-4	0.53	0.53	8.56E-5	0.41	1.06E-4	1.73	1.14	
1.2	-3.58E-4	0.54	0.54	6.32E-5	0.20	2.92E-4	1.48	1.25	
1.3	-4.13E-4	0.52	0.52	1.03E-4	0.28	3.20E-4	2.11	1.66	
1.4	-3.84E-4	0.44	0.44	8.85E-5	0.15	3.07E-4	1.61	1.28	
1.5	-3.76E-4	0.39	0.39	1.15E-4	0.19	2.74E-4	1.75	1.29	
1.6	-3.61E-4	0.35	0.35	1.03E-4	0.18	2.79E-4	1.60	1.22	

				CoPi/Fe ₂ O ₃				
Potential	Accumulated lifetime			Dissipative lifetime				
V_{RHE}	$A_1 (\Delta OD)$	$ au_1$ (s)	$ au_{\text{average}}\left(\mathbf{s}\right)$	$A_1 (\Delta OD)$	$ au_1$ (s)	$A_2 (\Delta OD)$	$ au_{2}\left(\mathrm{s} ight)$	$ au_{ m average}\left({ m s} ight)$
0.6	_	_	—	_	—	_	_	_
0.7	-5.18E-5	2.42	2.42	—	_	5.38E-5	1.55	1.55
0.8	-4.64E-4	3.26	3.26	—	—	3.58E-4	2.81	2.8
0.9	-1.80E-3	3.77	3.77	—	_	1.32E-3	2.88	2.88
1.0	-2.47E-3	3.77	3.77	—	_	1.80E-3	2.88	2.88
1.1	-1.88E-3	1.89	1.89	—	_	1.65E-3	2.33	2.33
1.2	-1.50E-3	1.14	1.14	7.67E-5	0.23	1.30E-3	2.06	1.96
1.3	-1.36E-3	0.90	0.90	1.19E-4	0.14	1.16E-3	1.88	1.72
1.4	-1.33E-3	0.75	0.75	7.75E-5	0.15	1.14E-3	1.76	1.66
1.5	-1.27E-3	0.70	0.70	1.29E-4	0.17	1.04E-3	1.80	1.61
1.6	-1.22E-3	0.62	0.62	1.98E-4	0.23	9.38E-4	1.77	1.50

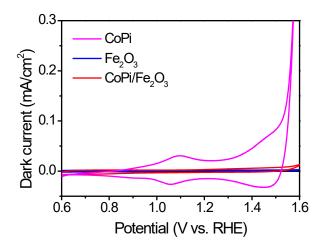


Fig. S1 CV curves for CoPi, bare Fe₂O₃ and CoPi/Fe₂O₃ anodes in dark.

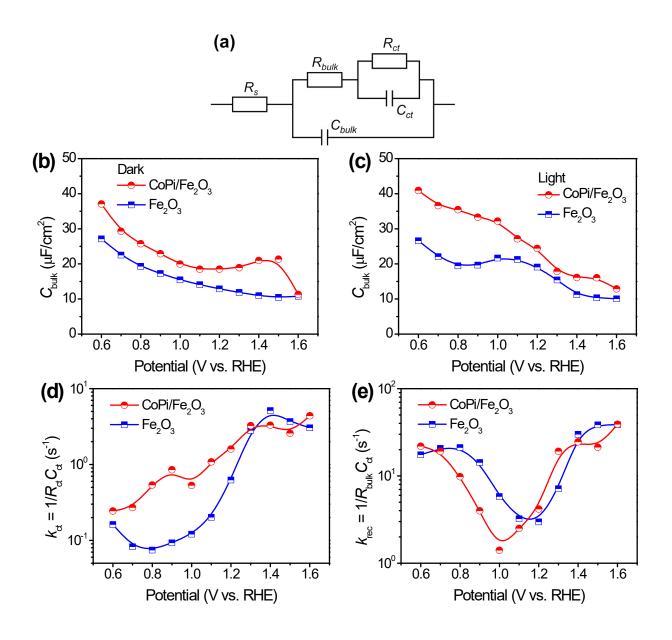


Fig. S2 EIS results for CoPi, Fe_2O_3 and CoPi electrodes. (a) Equivalent circuit. Bulk capacitance of in dark (b) and under illumination (c). Rate constants of charge transfer (d) and recombination (e) under illumination. Irradiation: 456 nm LED (5 mW/cm²).

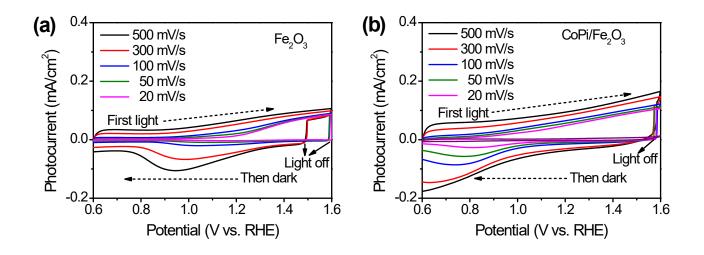


Fig. S3 CV of (a) bare Fe_2O_3 and $CoPi/Fe_2O_3$ photoanodes with different scan rates under illumination (first positive scan from low potential) and dark (following negative scan from high potential). Irradiation: 456 nm LED (5 mW/cm²).

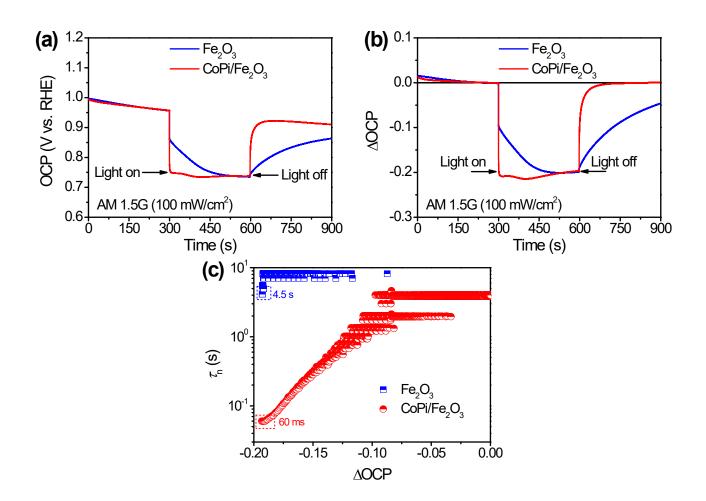


Fig. S4 The (a) raw and (b) corrected OCP with chopped light of bare Fe_2O_3 and $CoPi/Fe_2O_3$ photoanodes (illumination: AM 1.5G, 100 mW/cm²). (c) Calculated decay

life of OCP by function¹¹ of
$$\tau_n = \frac{k_B T}{e} \left(\frac{dOCP}{dt}\right)^{-1}$$
, where τ_n , k_B , T , e and $dOCP/dt$ are the carrier lifetime, Boltzmann's constant, temperature (K), charge of single electron and derivative of the OCP decay, respectively. The initial decay lifetimes (τ_0) after turning light off for Fe₂O₃ and CoPi/Fe₂O₃ are 4.5 s and 60 ms, respectively.

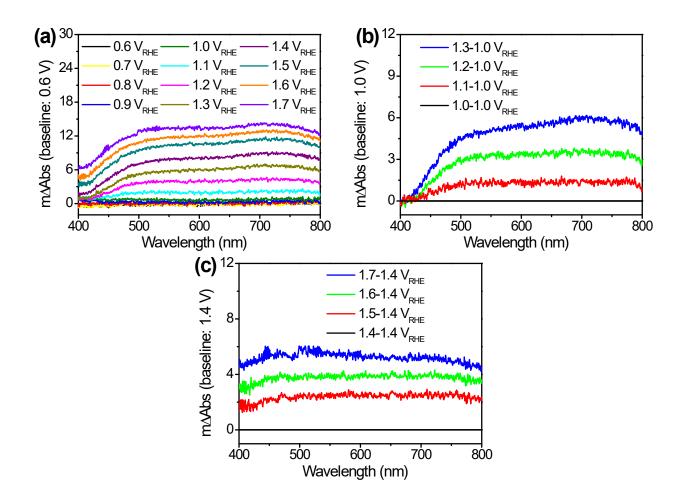


Fig. S5 SECA spectra of CoPi electrocatalyst at different baselines of (a) 0.6, (b) 1.0 and (c) 1.4 V_{RHE} . The baselines of 1.0 V_{RHE} and 1.4 V_{RHE} are used to identify the typical absorption spectra of Co^{2+/3+} and Co^{3+/4+} transition, respectively.

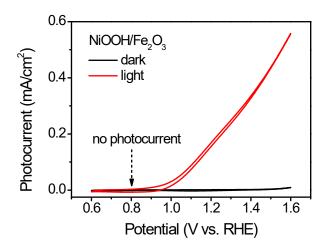


Fig. S6 CV of NiOOH/Fe₂O₃ photoanode with/without illumination (AM 1.5G: 100 mW/cm^2).

Fig. S7 TAS results at (a) 580 or (b) 694.3 nm of CoPi, bare Fe_2O_3 and $CoPi/Fe_2O_3$ photoanodes under 0.8 V_{RHE} . (c) TPC results and (d) integrated charge of bare Fe_2O_3 and $CoPi/Fe_2O_3$ photoanodes excited by nanosecond laser pulse under 0.8 V_{RHE} . (e) Transient absorption spectra at 100 ms of three electrodes at 0.8 V_{RHE} .

In Fig. S7e, transient absorption spectra at 100 ms at low applied potential of 0.8 V_{RHE} display a broad absorption which is quite similar to the absorption spectra of

oxidized Co^{3+} in Fig. S5b, demonstrating that the long-lived transient absorption signals in $CoPi/Fe_2O_3$ at lower potential should be originated from cobalt oxidation of $Co^{2+/3+}$. Moreover, this result demonstrates that cobalt oxidation by trapped holes starts occurring before 100 ms.

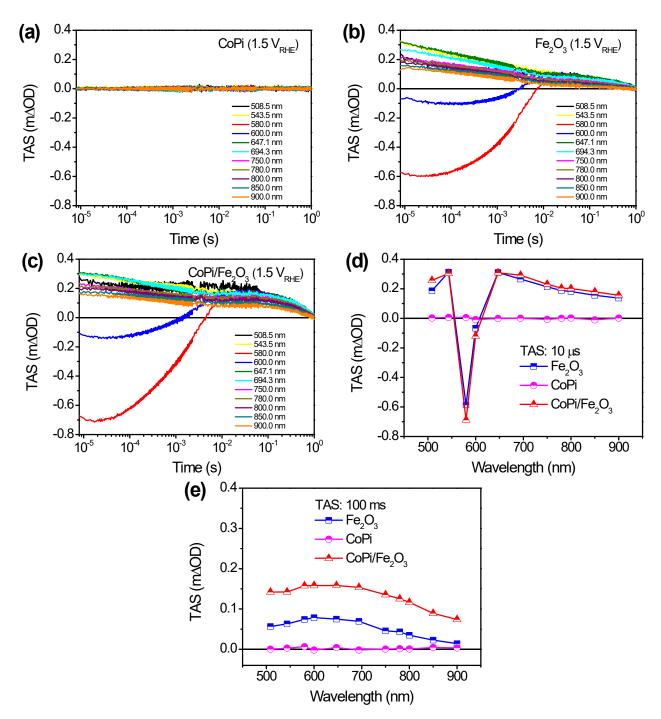


Fig. S8 TAS results of (a) CoPi, (b) bare Fe_2O_3 and (c) CoPi/Fe_2O_3 photoanodes under 1.5 V_{RHE}. Transient absorption spectra at (d) 10 µs and (e) 100 ms of three electrodes extracted from Figs. S8a–c.

Similar to PIA spectra, transient absorption spectra of $CoPi/Fe_2O_3$ photoanode at 100 ms at 1.5 V_{RHE} show similar spectra shape but higher amplitude relative to that of Fe_2O_3 , demonstrating the same surface species. The higher TA amplitude of

 $CoPi/Fe_2O_3$ at 100 ms demonstrates that the cobalt oxidation by VB holes starts occurring before 100 ms.

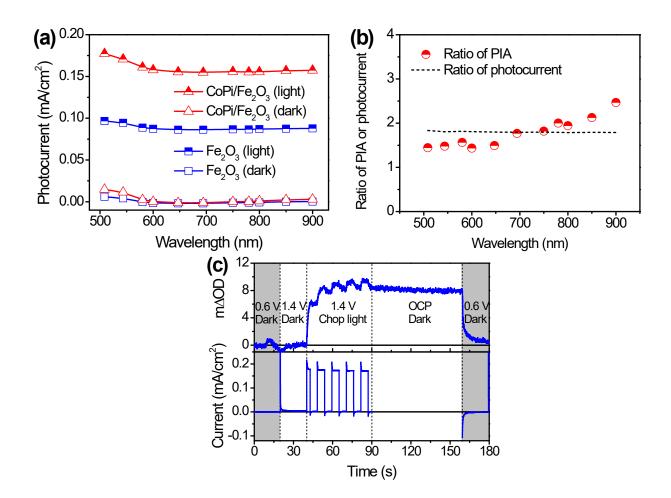


Fig. S9 (a) The corresponding photocurrents during PIA measurement for bare Fe_2O_3 and $CoPi/Fe_2O_3$ photoanodes. (b) The ratios of PIA amplitudes and photocurrents for bare Fe_2O_3 and $CoPi/Fe_2O_3$. (c) The change of PIA for $CoPi/Fe_2O_3$ photoanode at step potential and/or chop light. Pump: 456 nm (5 mW/cm²); probe: 694.3 nm.

For CoPi/Fe₂O₃ photoanode, step potential from 0.6 V_{RHE} to 1.4 V_{RHE} in dark doesn't induce obvious change of optical density (Fig. S9c), which is in good agreement with the negligible dark current in CV of CoPi/Fe₂O₃ in Fig.S1. This result further confirms that the potential of 1.4 V_{RHE} cannot effectively oxidize loaded CoPi to Co³⁺ due to poor conductivity of dense Fe₂O₃. After applying chop light, a considerable increase of absorption amplitude is observed. Several light-dark cycles will stabilize the optical density of CoPi/Fe₂O₃ at a quasi-steady-state state. These results should be due to the oxidation process of Co^{2+/3+}, since CoPi is oxidized to Co³⁺ via the sequential and direct hole transfer processes in light-dark cycle measurement (Fig. S9c). The oxidation of Co^{2+/3+} is almost finished in about four light-dark cycles and stabilized in Co³⁺ states under 1.4 V_{RHE}. Since the PIA data in main text are quasi-steady-state PIA spectra measured with continuous pulsed light on, the initial states of cobalt ions in CoPi/Fe₂O₃ for PIA under 1.4 V_{RHE} should be Co³⁺ states.

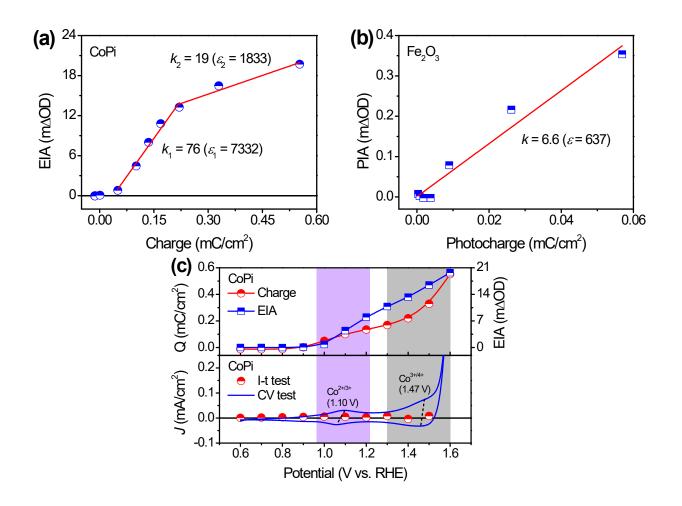


Fig. S10 Extinction coefficient of high-valent cobalt species in CoPi (a) and photoinduced holes in Fe_2O_3 (b) at probe wavelength of 694.3 nm. (c) Comparison of potential-dependent charges, EIA spectra, I-t and CV current for CoPi. Charges and EIA spectra were collected by step potential with 0.6 V_{RHE} baseline.

Extinction coefficient (ε) is calculated by linear relation between absorbance (Δ OD) at a specific wavelength (694.3 nm) and the concentration of charge (mC/cm²), Δ OD = $k \cdot c$, where the unit for slope k is $cm^2 C^{-1}$.¹⁰ By unit conversion, the extinction coefficient can be obtained from slope k: 1 ($cm^2 C^{-1}$) = 96.48 $M^{-1} cm^{-1}$.

The concentration of high-valent cobalt species in CoPi and photoinduced holes in Fe_2O_3 is obtained by integrating the charge of multiple step potential measurement.

The spectroscopic intensity was collected by fixed potential baseline at 0.6 V_{RHE}. In Fig. S10a, CoPi shows two extinction coefficients, which are transition of $\text{Co}^{2+}\rightarrow\text{Co}^{3+}$ $(\varepsilon_1 = 7,332 \ M^{-1} \ cm^{-1})$ and $\text{Co}^{3+}\rightarrow\text{Co}^{4+}$ ($\varepsilon_2 = 1,833 \ M^{-1} \ cm^{-1}$), respectively. The transitions of both $\text{Co}^{2+}\rightarrow\text{Co}^{3+}$ and $\text{Co}^{3+}\rightarrow\text{Co}^{4+}$ induced by photoinduced holes in Fe₂O₃ will lead to increased spectroscopic absorption.

From Fig. S10a and S10c, Co^{4+} species in CoPi has been appeared with ~1.3 V_{RHE} potential and displays the second extinction coefficient. But the steady-state currents only appear above 1.5 V_{RHE}, illustrating that if Co^{4+} species participates in water oxidation reaction, it needs to accumulate a certain amount. When the accumulated amount is not enough, CoPi is only used to store holes but with weak reactivity.

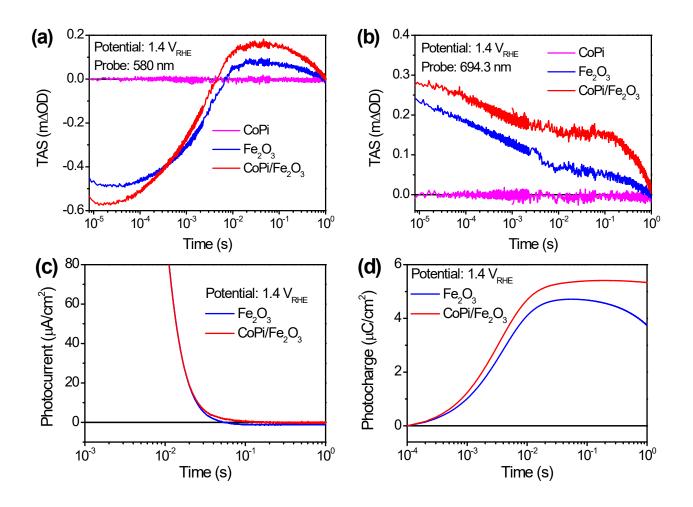


Fig. S11 TAS results at (a) 580 or (b) 694.3 nm of CoPi, bare Fe_2O_3 and $CoPi/Fe_2O_3$ photoanodes under 1.4 V_{RHE} . (c) (d) TPC results of bare Fe_2O_3 and $CoPi/Fe_2O_3$ photoanodes excited by nanosecond laser pulse under 1.4 V_{RHE} .

Above transient results excited by nanosecond laser pulse reproduce previous spectroscopic results of James R. Durrant group^{3, 12}. Wherein, high potential will induce long-lived holes (positive absorption at 694.3 nm) on hematite surface and empty partially intrinsic electrons of trap states (negative absorption at 580 nm) in space charge region of hematite. Loading CoPi electrocatalyst can produce long-lived holes and empty intrinsic electrons under lower potential than pristine hematite. TPC results demonstrate that pristine hematite possesses severe back recombination

(negative TPC), which can be partially suppressed by loading CoPi electrocatalyst.

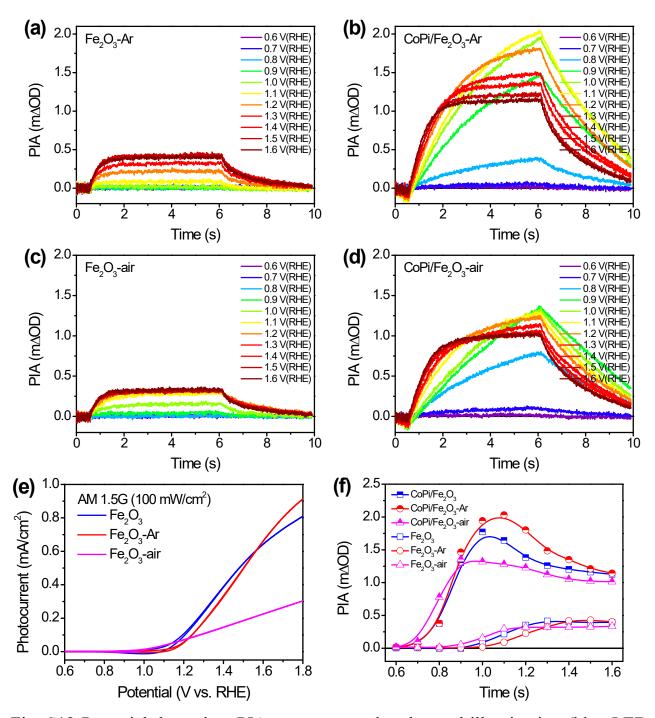


Fig. S12 Potential-dependent PIA responses under chopped illumination (blue LED: 456 nm, 5 mW/cm²) for bare Fe₂O₃-Ar (a), CoPi/Fe₂O₃-Ar (b), bare Fe₂O₃-air (c) and CoPi/Fe₂O₃-air (d). (e) LSV curves for bare Fe₂O₃, Fe₂O₃-Ar and Fe₂O₃-air photoanodes under AM 1.5G illumination. (f) Potential-dependent PIA response for Fe₂O₃, Fe₂O₃-Ar and Fe₂O₃-air photoanodes under illumination of 456 nm (5 mW/cm²). Probe wavelength: 694.3 nm.

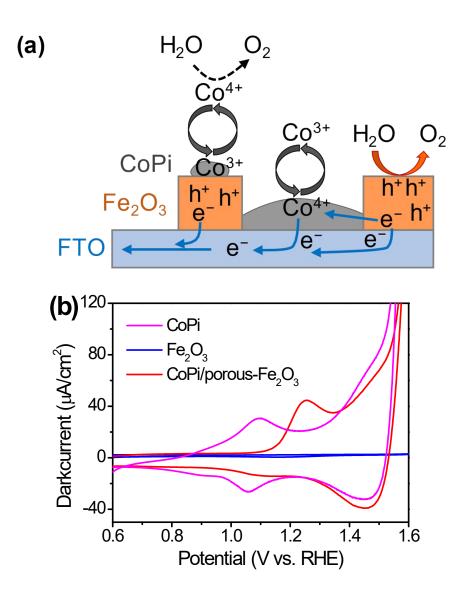


Fig. S13 (a) Schematic of contact between conductive substrate (FTO) and coating electrocatalyst (CoPi) resulting in electron shunt. (c) CV curves of porous Fe_2O_3 photoanodes with/without CoPi coating.

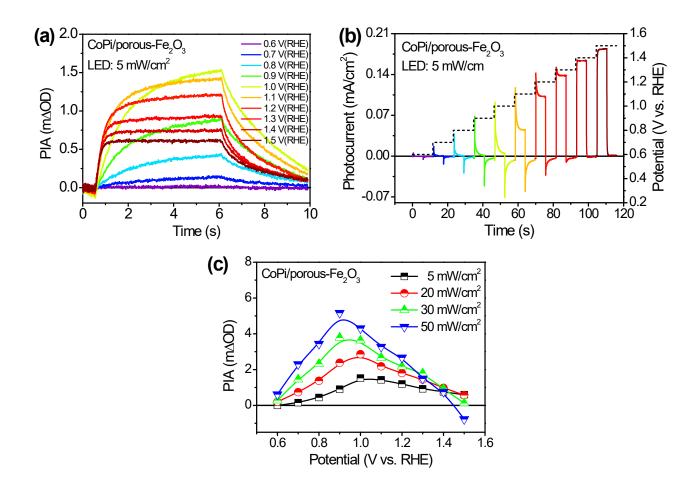


Fig. S14 (a) Potential-dependent PIA spectra and (b) chopped photocurrents for CoPi/porous-Fe₂O₃. Pump wavelength is 456 nm (5 mW/cm²); probe wavelength is 694.3 nm; colors of curves at different potential in Fig. S14a and S14b are identical. (c) Light-intensity-dependent PIA spectra of porous Fe₂O₃ with loaded CoPi under increased potential.

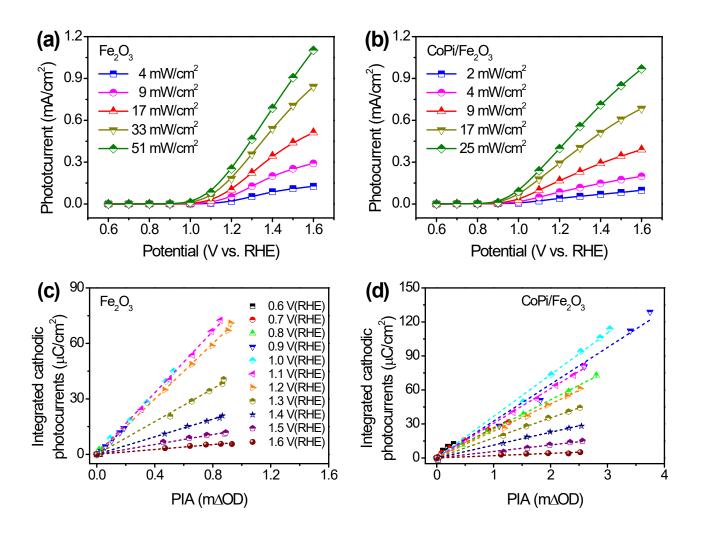


Fig. S15 The corresponding photocurrents during light-intensity-dependent PIA measurements for (a) bare Fe_2O_3 and (b) $CoPi/Fe_2O_3$ photoanodes. Linear relationship of PIA intensity and the integrated cathodic photocurrents for (c) bare Fe_2O_3 and (d) $CoPi/Fe_2O_3$ photoanodes. Colors of lines at different potential in Fig. S15a and S15b are identical.

According to the rate law $(J = k \cdot [h^+]^{\beta}, \log(J) = \log(k) + \beta \cdot \log([h^+]))$, if two types of holes are present, rate law should be $\log(J) = \log(k) + \beta \cdot \log([h^+]_{active})$. PIA spectra concurrently monitor active and inactive holes, that's, PIA_{total} = PIA_{active} + PIA_{inactive}, where inactive holes are trapped holes of Fe₂O₃ and/or oxidized cobalt. The integrated 28 cathodic photocurrents from TPC results can be deemed as inactive hole density, because cathodic photocurrent spike is originated from back recombination.¹³ The total PIA amplitudes and the integrated cathodic photocurrents show a linear relation at a fixed potential, as shown in Fig. S15c and S15d. Thus, PIA_{inactive} = k_1 ·PIA_{total} ($0 < k_1 < 1$). Then, PIA_{active} = $(1 - k_1)$ ·PIA_{total}. When PIA amplitude can be denoted to hole density, rate law is $\log(J) = \log(k') + \beta \cdot \log(\text{PIA}_{\text{active}}) = \log(k') + \beta \cdot \log((1 - k_1)) \cdot \text{PIA}_{\text{total}})$ = $\log(k') + \beta \cdot \log(1 - k_1) + \beta \cdot \log(\text{PIA}_{\text{total}})$. Therefore, due to scaling relationship between total hole density and (in)active hole density at a fixed potential, the rate law analysis of Fe₂O₃ and CoPi/Fe₂O₃ photoanodes is valid.

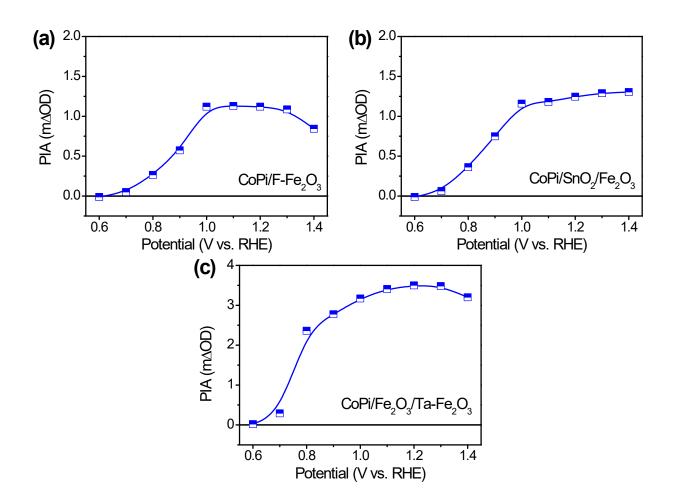


Fig. S16 Potential-dependent PIA response of four CoPi-modified hematite photoanodes. (a) CoPi/F-Fe₂O₃, (b) CoPi/SnO₂/Fe₂O₃ and (c) CoPi/Fe₂O₃/Ta-Fe₂O₃. Pump wavelength is 456 nm (5 mW/cm²) and probe wavelength is 694.3 nm.

The adverse recombination processes of surface states will be released by several strategies influencing photogenerated electrons on/near hematite surface. In Fig. S16a, deceasing density of surface states by surface covalent doping with fluorine (CoPi/F-Fe₂O₃) induces a platform of PIA response at 1.0-1.3 V_{RHE} instead of the PIA peak in CoPi/Fe₂O₃. After surface insulator modification on hematite surface (CoPi/SnO₂/Fe₂O₃) in Fig. S16b, the reverse electron transfer between Fe₂O₃ and CoPi will be greatly suppressed due to blocking of SnO₂, resulting in gradually increasing

PIA intensity in potential-dependent PIA response in line with monodirectional hole transfer process. In addition, since constructing build-in electric field near Fe_2O_3 surface (CoPi/Fe_2O_3/Ta-Fe_2O_3) can drive surface photoinduced electrons into Fe_2O_3 bulk, a delayed PIA peak at 1.2~1.3 V_{RHE} is observed. From the potential-dependent PIA response of three CoPi-modified hematite photoanodes in Fig. S16, three strategies do achieve the aim that regulating surface states will influence surface recombination processes. Wherein, disappeared PIA peak for CoPi/SnO₂/Fe₂O₃ photoanode illustrates that the back recombination processes are strongly suppressed.

References

- J. Y. Kim, D. H. Youn, K. Kang and J. S. Lee, *Angew. Chem. Int. Ed.*, 2016, 55, 10854-10858.
- Z. Wang, G. Liu, C. Ding, Z. Chen, F. Zhang, J. Shi and C. Li, *J. Phys. Chem. C*, 2015, **119**, 19607-19612.
- M. Barroso, C. A. Mesa, S. R. Pendlebury, A. J. Cowan, T. Hisatomi, K. Sivula, M. Gratzel, D. R. Klug and J. R. Durrant, *Proc. Natl. Acad. Sci. U. S. A.*, 2012, 109, 15640-15645.
- C. G. Morales-Guio, L. Liardet and X. Hu, J. Am. Chem. Soc., 2016, 138, 8946-8957.
- Z. Wang, X. Mao, P. Chen, M. Xiao, S. A. Monny, S. Wang, M. Konarova, A. Du and L. Wang, *Angew. Chem. Int. Ed.*, 2019, 58, 1030-1034.
- S. Chen, J. Bai, X. Nurimaimaiti, J. Wang, Y. Zhang, T. Zhou, J. Li and B. Zhou, Nano Energy, 2020, 78.
- H. Zhang, D. Li, W. J. Byun, X. Wang, T. J. Shin, H. Y. Jeong, H. Han, C. Li and J. S. Lee, *Nat. Commun.*, 2020, 11, 4622.
- T. Hisatomi, H. Dotan, M. Stefik, K. Sivula, A. Rothschild, M. Gratzel and N. Mathews, *Adv. Mater.*, 2012, 24, 2699-2702.
- 9. H. Yin, D. Li, X. Wang and C. Li, J. Phys. Chem. C, 2021, 125, 8369-8375.
- L. Francas, S. Corby, S. Selim, D. Lee, C. A. Mesa, R. Godin, E. Pastor, I. E. L. Stephens, K. S. Choi and J. R. Durrant, *Nat. Commun.*, 2019, 10, 5208.

- J. Bisquert, A. Zaban, M. Greenshtein and I. Mora-Seró, J. Am. Chem. Soc., 2004, 126, 13550-13559.
- F. Le Formal, S. R. Pendlebury, M. Cornuz, S. D. Tilley, M. Gratzel and J. R. Durrant, *J. Am. Chem. Soc.*, 2014, **136**, 2564-2574.
- J. Li, W. Wan, C. A. Triana, Z. Novotny, J. Osterwalder, R. Erni and G. R. Patzke, J. Am. Chem. Soc., 2019, 141, 12839-12848.