Supporting Information for

Ni-Catalyzed Asymmetric C(sp)-P Cross Coupling Reaction for the Synthesis of \boldsymbol{P}-Stereogenic Alkynyl phosphines

Bin Zhang, Wen-Qing Zhou, Xu-Teng Liu, Yingying Sun, and Qing-Wei Zhang*

Department of Chemistry, University of Science and Technology of China, Hefei 230026, China Correspondence to: qingweiz@ustc.edu.cn

INDEX

1. General information S3
2. Optimization of reaction conditions S4
3. The confirmation of absolute configuration S10
4. General procedure for the synthesis of substrates S13
5. Asymmetric synthesis of alkynyl phosphines. S14
6. Synthetic applications S15
7. Spectroscopic data of products S17
8. Copies of NMR spectroscopy S29
9. Copies of HPLC S112
10. References S154

General information

Chemicals and reagents were purchased and used directly unless otherwise stated. Reactions were carried out in a glovebox flushed with N_{2} and were monitored by thin-layer chromatography (TLC) on gel F254 plates. Flash column chromatography or preparative thin-layer chromatography was performed using the silica gel (300-400 mesh, GF254, respectively). All reactions were performed in a N_{2} flushed glovebox unless otherwise noted. THF and toluene were distilled over sodium and degassed with N_{2}. Other Super dry solvents were purchased and used directly. NMR spectra ($\left.{ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P},{ }^{19} \mathrm{~F}\right)$ spectra were recorded on Bruker Aescend ${ }^{\mathrm{TM}} 500 \mathrm{MHz}$ instruments in CDCl_{3}, DMSO- $d_{6}, \mathrm{C}_{6} \mathrm{D}_{6}$, acetone $-d_{6}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$. The residual solvent peak or tetramethylsilane (TMS) is used as an internal reference. ${ }^{1} \mathrm{H}$ NMR data are reported as follows: chemical shifts $(\delta \mathrm{ppm})$, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{b}=$ broad $)$, coupling constant (Hz), integration. Data for ${ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$, and ${ }^{19} \mathrm{~F}$ NMR are reported in terms of chemical shifts and multiplicity where appropriate. High-resolution mass spectral analysis (HRMS) data were measured by means of the ESI technique. Enantiomer excess was determined by HPLC analysis using Darcel Chiracel columns (AD-H, OD-H, OJ-H, IA-H, IB-H and IH) and "hexane/ ${ }^{i} \mathrm{PrOH}$ as eluents. Optical rotations were measured by Perkin-Elmer-343 polarimeter. Fluorescence spectra were measured on a Fluorolog-3-Tau and deltaflex. Circularly polarized luminescence (CPL) was conducted by JASCO CPL-300 in Anhui University.

2. Optimization of reaction conditions.

Table S1. Screening of chiral ligands. ${ }^{a}$

Entry	Ligand	Ee (\%) $^{\boldsymbol{b}}$	Yield (\%) $^{\boldsymbol{c}}$
1	L1	0	67
2	L2	0	45
3	L3	0	74
4	L4	58	62
5	L5	0	84
6	L6	-14	89
7	L7	0	20
8	L8	26	90
9	L9	4	50
10	L10	0	42
11	L11	0	80
12	L12	0	76

${ }^{a}$ Reaction conditions: $0.1 \mathrm{mmol} \mathbf{1 a}, 0.2 \mathrm{mmol} \mathbf{2 a}, 5 \mathrm{~mol} \% \mathrm{Ni}(\mathrm{COD})_{2}, 6 \mathrm{~mol} \%$ Ligand and 0.2 mmol KOAc in 1 mL toluene at room temperature for 16 h under nitrogen atmosphere. Quenched with $0.2 \mathrm{~mL} 30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ aqueous solution.
${ }^{b}$ Determined by chiral HPLC analysis.
${ }^{c} \mathrm{NMR}$ yield based on 1a using $\mathrm{P}(\mathrm{O})(\mathrm{OMe})_{3}$ as an internal standard.

Table S2. Screening of base. ${ }^{a}$

${ }^{a}$ Reaction conditions: $0.1 \mathrm{mmol} 1 \mathbf{1 a}, 0.2 \mathrm{mmol} \mathbf{2 a}, 5 \mathrm{~mol} \% \mathrm{Ni}(\mathrm{COD})_{2}, 6 \mathrm{~mol} \% \mathbf{L} 4$ and 0.2 mmol base in 1 mL toluene at room temperature for 16 h under nitrogen atmosphere. Quenched with $0.2 \mathrm{~mL} 30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ aqueous solution. ${ }^{b}$ Determined by chiral HPLC analysis.
${ }^{c}$ NMR yield based on 1 a using $\mathrm{P}(\mathrm{O})(\mathrm{OMe})_{3}$ as an internal standard.
${ }^{d} 0.25 \mathrm{mmol} \mathrm{NaOAc}$ was used

Table S3. Screening of solvents. ${ }^{a}$

${ }^{a}$ Reaction conditions: $0.1 \mathrm{mmol} \mathbf{1 a}, 0.2 \mathrm{mmol} \mathbf{2 a}, 5 \mathrm{~mol} \% \mathrm{Ni}(\mathrm{COD})_{2}, 6 \mathrm{~mol} \% \mathbf{L} 4$ and 0.25 mmol NaOAc in 1 mL solvent at room temperature for 16 h under nitrogen atmosphere. Quenched with $0.2 \mathrm{~mL} 30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ aqueous solution. ${ }^{b}$ Determined by chiral HPLC analysis.
${ }^{c} \mathrm{NMR}$ yield based on $\mathbf{1 a}$ using $\mathrm{P}(\mathrm{O})(\mathrm{OMe})_{3}$ as an internal standard.

Table S4. Screening of catalyst. ${ }^{a}$

${ }^{a}$ Reaction conditions: $0.1 \mathrm{mmol} \mathbf{1 a}, 0.2 \mathrm{mmol} \mathbf{2 a}, 5 \mathrm{~mol} \%$ catalyst, $6 \mathrm{~mol} \% \mathbf{L} 4$ and 0.25 mmol NaOAc in 1 mL mesitylene at room temperature for 16 h under nitrogen atmosphere. Quenched with $0.2 \mathrm{~mL} 30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ aqueous solution.
${ }^{b}$ Determined by chiral HPLC analysis.
${ }^{c}$ NMR yield based on 1 a using $\mathrm{P}(\mathrm{O})(\mathrm{OMe})_{3}$ as an internal standard.
${ }^{d} 10 \mathrm{~mol} \%$ catalyst and $12 \mathrm{~mol} \% \mathrm{~L} 4$ were used.

Table S5. Screening of temperature. ${ }^{\boldsymbol{a}}$

${ }^{a}$ Reaction conditions: $0.1 \mathrm{mmol} \mathbf{1 a}, 0.2 \mathrm{mmol} \mathbf{2 a}, 5 \mathrm{~mol} \% \mathrm{Ni}(\mathrm{COD})_{2}, 6 \mathrm{~mol} \% \mathbf{L} 4$ and 0.25 mmol NaOAc in 1 mL mesitylene at $\mathrm{T}^{\circ} \mathrm{C}$ for $10-50 \mathrm{~h}$ under nitrogen atmosphere. Quenched with $0.2 \mathrm{~mL} 30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ aqueous solution. ${ }^{b}$ Determined by chiral HPLC analysis.
${ }^{c}$ NMR yield based on 1a using $\mathrm{P}(\mathrm{O})(\mathrm{OMe})_{3}$ as an internal standard.

Table S6. Screening of chiral Duphos ligands. ${ }^{a}$

${ }^{a}$ Reaction conditions: $0.1 \mathrm{mmol} \mathbf{1 a}, 0.2 \mathrm{mmol} \mathbf{2 a}, 5 \mathrm{~mol} \% \mathrm{Ni}(\mathrm{COD})_{2}, 6 \mathrm{~mol} \% \mathbf{L}^{*}$ and 0.25 mmol NaOAc in 1 mL mesitylene at $25^{\circ} \mathrm{C}$ for 16 h under nitrogen atmosphere. Quenched with $0.2 \mathrm{~mL} 30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ aqueous solution.
${ }^{b}$ Determined by chiral HPLC analysis.
${ }^{c}$ NMR yield based on $\mathbf{1 a}$ using $\mathrm{P}(\mathrm{O})(\mathrm{OMe})_{3}$ as an internal standard.
${ }^{d} 0.2 \mathrm{mmol} 1 \mathbf{a}, 0.1 \mathrm{mmol} 2 \mathrm{a}$ were used.
${ }^{e}$ Isolated yields were given in parentheses.

3. The confirmation of absolute configuration.

(S)-tert-butyl(phenyl)phosphine oxide (\boldsymbol{S})-1b was prepared according to the following procedure ${ }^{\text {S1 }}$:
(+)-(S, S)-dibenzoyltartaric acid ($590 \mathrm{mg}, 1.65 \mathrm{mmol}$) tert-butyl(phenyl)phosphine oxide ($250 \mathrm{mg}, 1.37$ $\mathrm{mmol})$ were dissolved in little as possible refluxing diisopropyl ether/toluene (1:1). The mixture was slowly cooled down to r.t. to give the (S)-SPO-DBTA complex as colorless crystals. The solid was filtered and re-dissolved in $1 \mathrm{M} \mathrm{NaOH}(10 \mathrm{~mL})$ and $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CHCl}_{3}(5 \times 5 \mathrm{~mL})$. The combined organic phase was dried and concentrated under reduced pressure to give (S)-tert-butyl(phenyl)phosphine oxide.

HPLC: Race-1b, Chiralpak AD-H, ${ }^{n}$ hexane/ ${ }^{i} \mathrm{PrOH} 90: 10$, flow: $1.0 \mathrm{~mL} / \mathrm{min}$.

$(S)-\mathbf{1 b}, 93 \%$ ee, $\mathrm{t}_{1}=10.6 \mathrm{~min}$, Chiralpak AD-H, ${ }^{n}$ hexane $/{ }^{i} \operatorname{PrOH} 90: 10$, flow: $1.0 \mathrm{~mL} / \mathrm{min}$.

$(R)-\mathbf{1 b}, 78 \%$ ee, $\mathrm{t}_{2}=14.6 \mathrm{~min}$, Chiralpak AD-H, ${ }^{n}$ hexane $/{ }^{i} \operatorname{PrOH} 90: 10$, flow: $1.0 \mathrm{~mL} / \mathrm{min}$.

(S)-tert-butyl(phenyl)(phenylethynyl)phosphine oxide (\boldsymbol{S})-3ba was prepared according to the following procedure ${ }^{9}$: Under N_{2} atmosphere, $0.1 \mathrm{mmol}(\boldsymbol{S}) \mathbf{- 3 b}, 0.1 \mathrm{mmol}$ phenylacetylene, $10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{TFA})_{2}, 0.4$ mmol AgOTf and 1 mL THF were charged into a 4 mL schlenck tube, the mixture was stirred at $60^{\circ} \mathrm{C}$ for 2 hours. The ee\% of $(\boldsymbol{S}) \mathbf{- 3 b}$ and $(\boldsymbol{S}) \mathbf{- 3 b a}$ were monitored by HPLC. The yields were determined by ${ }^{31} \mathrm{P}$ NMR using $\mathrm{P}(\mathrm{O})(\mathrm{OMe})_{3}$ as an internal standard.
HPLC: Race-3ba, Chiralpak OJ-H, ${ }^{n}$ hexane/ ${ }^{i} \operatorname{PrOH} 90: 10$, flow: $1.0 \mathrm{~mL} / \mathrm{min}$.

(S)-3ba, 93% ee, $\mathrm{t}_{2}=6.4 \mathrm{~min}$, Chiralpak OJ-H, ${ }^{n}$ hexane $/{ }^{i} \operatorname{PrOH} 90: 10$, flow: $1.0 \mathrm{~mL} / \mathrm{min}$.

3ba, 86% ee, $\mathrm{t}_{2}=6.7 \mathrm{~min}$, Chiralpak OJ-H, ${ }^{n}$ hexane $/{ }^{i} \mathrm{PrOH} 90: 10$, flow: $1.0 \mathrm{~mL} / \mathrm{min}$.

Residual $(S) \mathbf{- 1 b}, 92 \%$ ee, $\mathrm{t}_{1}=10.6 \mathrm{~min}$, Chiralpak AD-H, ${ }^{n}$ hexane $/{ }^{i} \mathrm{PrOH} 90: 10$, flow: $1.0 \mathrm{~mL} / \mathrm{min}$.
Chromatogram

The absolute configuration of P-stereogenic alkynyl phosphine oxide 3ba via Ni -catalyzed asymmetric $\mathrm{C}(\mathrm{sp})-P$ cross coupling was unambiguously determined to be S according to above HPLCs.

4. General procedure for the synthesis of substrates.

Secondary phosphine oxides were synthesized according to the previous procedure ${ }^{\mathrm{S} 2-\mathrm{S} 5}$. Bromoalkynes were synthesized according to the previous procedure ${ }^{\mathrm{S} 6}$.

5. Asymmetric synthesis of alkynyl phosphines.

General procedure: Under N_{2}, to a 4 mL vial equipped with a stirrer bar were added secondary phosphine oxide (2 equiv., 0.2 mmol), PhSiH_{3} (2 equiv., $0.2 \mathrm{mmol}, 24 \mathrm{uL}$) and 0.5 mL mesitylene. Then mixture was stirred for 15 hours at $70^{\circ} \mathrm{C}$ and then cooled down to r.t. NaOAc (2.5 equiv., 0.25 mmol , 20.5 mg) was added and the vial was stirred for 1 hour. To the reaction mixture were added a precooled $\left({ }^{\circ} \mathrm{C}\right)$ stock solution of $\mathrm{Ni}(\mathrm{COD})_{2}(5 \mathrm{~mol} \%, 1.4 \mathrm{mg}),(S, S)$-Et-Duphos $(6 \mathrm{~mol} \%, 2.2 \mathrm{mg})$ in mesitylene $(0.5 \mathrm{~mL})$ and bromoalkynes (1 equiv., 0.1 mmol). The reaction was stirred for $72-96$ hours at $0^{\circ} \mathrm{C}$ until the disappearance of bromoalkynes indicated by TLC. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}_{2}(0.2 \mathrm{~mL}$, 30% aqueous solution) or $\mathrm{S}_{8}(16 \mathrm{mg}, 0.5 \mathrm{mmol})$ or $\mathrm{BH}_{3}-\mathrm{SMe}_{2}(0.2 \mathrm{mmol})$, stirred for additional 3 hours (for $3 \mathrm{H}_{2} \mathrm{O}_{2}$) or 6 hours (for S_{8}) at room temperature or 1 hour at $0{ }^{\circ} \mathrm{C}$ (for $\mathrm{BH}_{3}-\mathrm{SMe}_{2}$). The reaction mixture was separated directly by preparative thin-layer chromatography to afford the corresponding product 3 .

Racemic 3 were synthesized according to the following procedure: Under N_{2}, to a 4 mL vial equipped with a stirrer bar were added secondary phosphine oxide (1 equiv., 0.1 mmol), PhSiH_{3} (1 equiv., 0.1 $\mathrm{mmol}, 12 \mathrm{uL}$) and 1 mL mesitylene. Then vial was stirred for 15 hours at $70^{\circ} \mathrm{C}$ and then cooled down to r.t. $\mathrm{NaOAc}(2.5$ equiv., $0.25 \mathrm{mmol}, 20.5 \mathrm{mg}), \mathrm{Ni}(\mathrm{COD})_{2}(5 \mathrm{~mol} \%, 1.4 \mathrm{mg}), \mathrm{DPPP}(6 \mathrm{~mol} \%, 2.7 \mathrm{mg})$, and bromoalkynes (1 equiv., 0.1 mmol) were added to the reaction mixture which was then stirred for 24 hours at r.t. until the disappearance of bromoalkynes indicated by TLC. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}_{2}\left(0.2 \mathrm{~mL}, 30 \%\right.$ aqueous solution) or $\mathrm{S}_{8}(16 \mathrm{mg}, 0.5 \mathrm{mmol})$ or $\mathrm{BH}_{3}-\mathrm{SMe}_{2}(0.2 \mathrm{mmol})$, stirred for additional 3 hours (for $3 \mathrm{H}_{2} \mathrm{O}_{2}$) or 6 hours (for S_{8}) at room temperature $\mathrm{BH}_{3}-\mathrm{SMe}_{2}(0.2 \mathrm{mmol})$. The reaction mixture was separated directly by preparative thin-layer chromatography to afford the corresponding racemic product.

6. Synthetic applications.

6.1 Gram-scale reaction.

Under N_{2}, to a 100 mL flask equipped with a stirrer bar were added secondary phosphine oxides $\mathbf{1 n}$ (1 equiv., $5 \mathrm{mmol}, 970 \mathrm{mg}$), PhSiH_{3} (1 equiv., $5 \mathrm{mmol}, 600 \mathrm{uL}$) and 25 mL mesitylene. Then flask was stirred for 24 hours at $70^{\circ} \mathrm{C}$ and then cooled down to r.t. followed by the addition of NaOAc (1.5 equiv., $7.5 \mathrm{mmol}, 615 \mathrm{mg})$. The reaction mixture was stirred for 1 hour and then cooled down to $0{ }^{\circ} \mathrm{C}$. To the reaction mixture were added a precooled $\left({ }^{\circ} \mathrm{C}\right)$ stock solution of $\mathrm{Ni}(\mathrm{COD})_{2}(5 \mathrm{~mol} \%, 70 \mathrm{mg}),(S, S)$-EtDuphos ($6 \mathrm{~mol} \%, 110 \mathrm{mg}$) in mesitylene (0.5 mL) and bromoalkynes $\mathbf{2 a}$ (1 equiv., 5 mmol). The reaction was stirred for 96 hours at $0^{\circ} \mathrm{C}$ until the disappearance of bromoalkynes indicated by TLC. The reaction was quenched with $\mathrm{S}_{8}(800 \mathrm{mg}, 75 \mathrm{mmol})$, stirred for additional 12 hours at room temperature. The reaction mixture was separated directly by preparative thin-layer chromatography to afford the corresponding product 3na ($842 \mathrm{mg}, 54 \%$ yield, 87% ee).

6.2 1,2-Addition.

The alkynyl phosphine oxide 3na-O ($0.2 \mathrm{mmol}, 59 \mathrm{mg}$), $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol}, 18 \mathrm{mg})$ and $\mathrm{PdCl}_{2}(0.02 \mathrm{mmol}$, 3.5 mg) were dissolved in 1,4 -dioxane (2 mL) in a 4 mL vial and stirred at $80^{\circ} \mathrm{C}$ for 24 h . The resulting mixture was concentrated under vacuum and the crude product was purified by silica gel chromatography with petroleum ether and ethyl acetate as the eluent to afford the corresponding product $4(45.9 \mathrm{mg}, 73 \%$ yield, and 84% ee).

6.3 Radical addition/cyclization.

Under N_{2}, to a 10 mL flask equipped with a stirrer bar was added alkynyl phosphine oxide 3ba (0.2 mmol, 56 mg$), \mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{H}(0.6 \mathrm{mmol}, 122 \mathrm{mg}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(1 \mathrm{mmol}, 270 \mathrm{mg})$ and $5 \mathrm{mLCH}_{3} \mathrm{CN}$. The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 24 h . The mixture was cooled down to room temperature and subjected to flash chromatography (petroleum ether/ethyl acetate) to afford the corresponding product 5 (56.0 mg , 58% yield, 86% ee, and 3:1 dr).

6.4 Synthesis of \boldsymbol{P}-stereogenic phosphepines.

Under N_{2}, to a mixture of alkynyl phosphine oxide $\mathbf{3 w p}(2 \mathrm{mmol}, 876 \mathrm{mg})$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(4 \mathrm{mmol}, 568$ $\mathrm{mg})$ in $\mathrm{MeCN}(20 \mathrm{~mL})$ was added $\mathrm{ICl}(6 \mathrm{mmol}, 972 \mathrm{mg})$ dropwise. The reaction was stirred at room temperature for 1 h , and was then quenched by $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \%$ aq., 10 mL), diluted with ethyl acetate $(10 \mathrm{~mL})$. The organic phase was sequentially washed with water, brine, dried with anhydrous MgSO_{4} and filtered. The filtration was concentrated under reduced pressure to give the crude product which was used directly without further purification. To the crude product, (4-methoxyphenyl) boronic acid (4 mmol , 608 mg) and $\mathrm{K}_{2} \mathrm{CO}_{3}(4 \mathrm{mmol}, 553 \mathrm{mg})$ in degassed solvents ($\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}=9 \mathrm{~mL} / 1 \mathrm{~mL}$) was added $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.2 \mathrm{mmol}, 115 \mathrm{mg})$. The reaction mixture was heated at $90^{\circ} \mathrm{C}$ under nitrogen for 30 h . The solution was cooled to room temperature and was added saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The mixture was extracted with ethyl acetate $(10 \mathrm{~mL})$, the organic phase was washed with water, brine, dried with
anhydrous MgSO_{4} and filtered. The filtration was concentrated under reduced pressure to give a crude product which was purified by column chromatography on silica gel to give the corresponding product 6 with $560 \mathrm{mg}, 53 \%$ yield, and 64% ee ($317 \mathrm{mg}, 30 \%$ yield, and 99% ee from recrystallization by EA and $\mathrm{Et}_{2} \mathrm{O}$).

6.5 Measurements of photoluminescence (PL) spectra.

Sample solutions were prepared according to the following procedure: $\mathbf{6}\left(1.6 \mathrm{mg}, 3 \times 10^{-3} \mathrm{mmol}\right)$ was respectively dissolve in $30 \mathrm{~mL} 0 \%, 30 \%, 60 \%$, and 90% (different water fractions) THF/water mixtures.

6.6 Preparation of chiral composite films.

The composite films were prepared as follows. $6(10 \mathrm{mg})$ and PMMA $(0.5 \mathrm{~g})$ were dissolved in 6 mL CHCl_{3} and cast onto a glass petri dish. The CHCl_{3} was then evaporated under ambient condition and the film with a uniform thickness of approximately 0.3 mm were obtained.

7. Spectroscopic data of products.

3aa

Colorless oil, $R_{f}=0.31(\mathrm{PE} / \mathrm{EA}=2: 1), 80 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96$ $-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.36(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.29-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{dd}, J=12.7,6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{dd}$, $J=12.3,6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 132.38(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 132.14$ $(\mathrm{d}, J=2.7 \mathrm{~Hz}), 130.92(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 130.67(\mathrm{~d}, J=112.2 \mathrm{~Hz}), 130.54(\mathrm{~s}), 128.54(\mathrm{~s}), 128.48(\mathrm{~d}, J=$ $13.1 \mathrm{~Hz}), 119.90(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 104.18(\mathrm{~d}, J=25.6 \mathrm{~Hz}), 81.58(\mathrm{~d}, J=152.1 \mathrm{~Hz}), 31.48(\mathrm{~d}, J=84.3 \mathrm{~Hz})$, $15.51(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 15.10(\mathrm{~d}, J=2.2 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.49$. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{OP}^{+}[\mathrm{M}+\mathrm{H}]+269.1090$, Found 269.1099. The enantiomeric excess was determined by Daicel Chiralcel OJ-H (78% ee), n-Hexanes $/$ IPA $=90 / 10,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t$ (major) $=7.71 \mathrm{~min}, t$ (minor) $=6.00 \mathrm{~min} .[\alpha]_{\mathrm{D}}^{20}=-2.5(c=0.76$, acetone $)$.

3ba

Colorless oil, $R_{f}=0.35(\mathrm{PE} / \mathrm{EA}=2: 1), 72 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97$ $-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{dt}, J=4.4,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.47(\mathrm{~m}$, $2 \mathrm{H}), 7.46(\mathrm{dd}, J=6.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 132.52(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 132.13(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 132.03$ (d, $J=9.4 \mathrm{~Hz}), 130.56(\mathrm{~s}), 129.55(\mathrm{~d}, J=109.3 \mathrm{~Hz}), 128.62(\mathrm{~s}), 128.20(\mathrm{~d}, J=12.1 \mathrm{~Hz}), 120.16(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}), 104.41(\mathrm{~d}, J=24.3 \mathrm{~Hz}), 81.32(\mathrm{~d}, J=149.2 \mathrm{~Hz}), 34.13(\mathrm{~d}, J=83.1 \mathrm{~Hz}), 23.91(\mathrm{~s}) .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 31.30. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{OP}^{+}[\mathrm{M}+\mathrm{H}]+283.1246$, Found 283.1259. The enantiomeric excess was determined by Daicel Chiralcel OJ-H (86% ee), n-Hexanes/IPA $=90 / 10,1$ $\mathrm{mL} / \mathrm{min}, \lambda=262 \mathrm{~nm}, t$ (major) $=6.74 \mathrm{~min}, t($ minor $)=5.40 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-22.1(c=0.38$, acetone $)$.

3ca

Colorless oil, $R_{f}=0.3(\mathrm{PE} / \mathrm{EA}=2: 1), 76 \%$ yield. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92-$ $7.88(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.47-$ $7.41(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.91(\mathrm{~m}, 3 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.66$ $(\mathrm{m}, 1 \mathrm{H}), 1.50-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.14(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $132.49(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 132.09(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 131.03(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 130.85(\mathrm{~d}, J=112.2 \mathrm{~Hz}), 130.52$ (s), 128.57 (s$), 128.49(\mathrm{~d}, J=12.7 \mathrm{~Hz}), 120.12(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 104.13(\mathrm{~d}, J=25.3 \mathrm{~Hz}), 81.95(\mathrm{~d}, J=$ $152.4 \mathrm{~Hz}), 41.38(\mathrm{~d}, J=84.8 \mathrm{~Hz}), 26.21(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 26.09(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 25.78(\mathrm{~d}, J=1.3 \mathrm{~Hz})$, $25.31(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 24.90(\mathrm{~d}, J=2.5 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.58$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{OP}^{+}[\mathrm{M}+\mathrm{H}]+309.1403$, Found 309.1407. The enantiomeric excess was determined by Daicel Chiralcel IA-H (74% ee),n-Hexanes $/$ IPA $=75 / 25,1 \mathrm{~mL} / \mathrm{min}, \lambda=250 \mathrm{~nm}, t$ (major) $=16.76 \mathrm{~min}, t$ (minor) $=12.87 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=0.4(c=1.02$, acetone $)$.

3da

Colorless oil, $R_{f}=0.2(\mathrm{PE} / \mathrm{EA}=2: 1), 81 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96$ $-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.49(\mathrm{~m}, 5 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 2.15$ $(\mathrm{dq}, J=15.1,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{dt}, J=20.1,7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 132.47(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 132.22(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 131.86(\mathrm{~d}, J=115.2 \mathrm{~Hz})$, $130.56(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 130.46(\mathrm{~s}), 128.69(\mathrm{~d}, J=12.9 \mathrm{~Hz}), 128.58(\mathrm{~s}), 120.01(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 103.88(\mathrm{~d}$, $J=27.5 \mathrm{~Hz}), 82.48(\mathrm{~d}, J=156.6 \mathrm{~Hz}), 27.01(\mathrm{~d}, J=85.1 \mathrm{~Hz}), 6.10(\mathrm{~d}, J=5.2 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR (162 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 18.93. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{OP}^{+}[\mathrm{M}+\mathrm{H}]{ }^{+}$255.0933, Found 255.0943. The enantio-
meric excess was determined by Daicel Chiralcel OJ-H (29% ee), n-Hexanes $/ \mathrm{IPA}=90 / 10,1 \mathrm{~mL} / \mathrm{min}, \lambda$ $=262 \mathrm{~nm}, t($ major $)=9.14 \mathrm{~min}, t($ minor $)=7.80 \mathrm{~min} .[\alpha]_{D}{ }^{20}=-2.1(c=1.02$, acetone $)$.

3ea

Colorless oil, $R_{f}=0.30(\mathrm{PE} / \mathrm{EA}=30: 1), 76 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.07 (dd, $J=13.4,7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.61 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.57-7.43 (m, 4H), 7.42$7.36(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 132.45(\mathrm{~d}, J$ $=2.1 \mathrm{~Hz}), 132.35(\mathrm{~d}, J=10.4 \mathrm{~Hz}), 131.84(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 130.51(\mathrm{~s}), 129.66(\mathrm{~d}, J=$ $83.8 \mathrm{~Hz}), 128.60(\mathrm{~s}), 128.10(\mathrm{~d}, J=12.6 \mathrm{~Hz}), 120.42(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 105.33(\mathrm{~d}, J=20.5 \mathrm{~Hz}), 80.20(\mathrm{~d}$, $J=135.8 \mathrm{~Hz}), 36.69(\mathrm{~d}, J=59.9 \mathrm{~Hz}), 24.33(\mathrm{~d}, J=2.8 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 45.70$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{PS}^{+}[\mathrm{M}+\mathrm{H}]{ }^{+}$299.1018, Found 299.1025. The enantiomeric excess was determined by Daicel Chiralcel AD-H (86% ee), n-Hexanes $/ \mathrm{IPA}=90 / 10,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t$ (major) $=6.88 \mathrm{~min}, t($ minor $)=5.44 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-16.4(c=1.24$, acetone $)$.

3ea'

Colorless oil, $R_{f}=0.30(\mathrm{PE} / \mathrm{EA}=10: 1), 68 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.95-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.53$ (dd, $J=8.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.46$ (m, 2H), $7.46-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.34(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 132.41(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 131.56$ (d, $J=2.6 \mathrm{~Hz}), 130.29(\mathrm{~s}), 128.58(\mathrm{~s}), 128.39(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 125.98(\mathrm{~d}, J=57.0$ $\mathrm{Hz}), 120.81(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 108.05(\mathrm{~d}, J=12.9 \mathrm{~Hz}), 77.85(\mathrm{~d}, J=99.9 \mathrm{~Hz}), 31.36(\mathrm{~d}, J=35.3 \mathrm{~Hz}), 25.27$ (d, $J=3.5 \mathrm{~Hz}$). ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.41$ (dd, $J=40.4,17.2 \mathrm{~Hz}$). HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{BNaP}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 303.1444$, Found 303.1459. The enantiomeric excess was determined by Daicel Chiralcel IA-H (84% ee), n-Hexanes $/$ IPA $=90 / 10,1 \mathrm{~mL} / \mathrm{min}, \lambda=252 \mathrm{~nm}, t$ (major) $=5.64 \mathrm{~min}, t$ (minor) $=4.39 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=67.5(c=1.20$, acetone $)$.

3fa

Colorless oil, $R_{f}=0.30(\mathrm{PE} / \mathrm{EA}=10: 1), 78 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{ddd}, J=9.5,6.8,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.47-$ $7.42(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.97(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~d}$, $J=18.6 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.57(\mathrm{~d}, J=3.2 \mathrm{~Hz})$, $134.17(\mathrm{~d}, J=12.1 \mathrm{~Hz}), 132.41(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 130.45(\mathrm{~s}), 128.59(\mathrm{~s}), 120.48(\mathrm{~d}, J=93.8 \mathrm{~Hz}), 120.47$ $(\mathrm{d}, J=4.1 \mathrm{~Hz}), 113.67(\mathrm{~d}, J=13.8 \mathrm{~Hz}), 104.93(\mathrm{~d}, J=20.5 \mathrm{~Hz}), 80.52(\mathrm{~d}, J=134.8 \mathrm{~Hz}), 55.46(\mathrm{~s}), 36.82$ (d, $J=61.3 \mathrm{~Hz}$), $24.32\left(\mathrm{~d}, J=2.8 \mathrm{~Hz}\right.$). ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 44.88$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{OPS}^{+}[\mathrm{M}+\mathrm{H}]{ }^{+}$329.1123, Found 329.1127. The enantiomeric excess was determined by Daicel Chiralcel AD-H (76% ee), n-Hexanes $/ \mathrm{IPA}=90 / 10,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t$ (major) $=14.92 \mathrm{~min}, t$ $($ minor $)=8.47 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=+3.4(c=0.19$, acetone $)$
 $1.7 \mathrm{~Hz}), 132.26(\mathrm{~d}, J=10.8 \mathrm{~Hz}), 130.45(\mathrm{~s}), 128.59(\mathrm{~s}), 126.31(\mathrm{~d}, J=89.8 \mathrm{~Hz}), 125.17(\mathrm{~d}, J=12.9 \mathrm{~Hz})$, $120.49(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 104.99(\mathrm{~d}, J=20.7 \mathrm{~Hz}), 80.49(\mathrm{~d}, J=134.6 \mathrm{~Hz}), 36.69(\mathrm{~d}, J=60.1 \mathrm{~Hz}), 34.98$ (s), 31.17 (s), $24.37\left(\mathrm{~d}, J=3.0 \mathrm{~Hz}\right.$). ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 45.28$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{PS}^{+}[\mathrm{M}+\mathrm{H}]{ }^{+} 355.1644$, Found 355.1646 . The enantiomeric excess was determined by Daicel

Chiralcel IB-H (90% ee),n-Hexanes $/$ IPA $=90 / 10,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t$ (major) $=7.29 \mathrm{~min}, t$ (minor) $=4.48 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=+3.4(c=4.80$, acetone $)$.

3ha

Colorless oil, $R_{f}=0.35(\mathrm{PE} / \mathrm{EA}=30: 1), 72 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.94(\mathrm{dd}, J=13.3,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 1 \mathrm{H})$, $7.39(\mathrm{dd}, J=11.5,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{dd}, J=8.0,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$,
$1.27(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.40(\mathrm{~d}, J=3.0$ $\mathrm{Hz}), 132.43(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 132.33(\mathrm{~s}), 130.43(\mathrm{~s}), 128.86(\mathrm{~d}, J=13.1 \mathrm{~Hz}), 128.58(\mathrm{~s}), 126.30(\mathrm{~d}, J=$ $89.9 \mathrm{~Hz}), 120.52(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 105.04(\mathrm{~d}, J=20.6 \mathrm{~Hz}), 80.43(\mathrm{~d}, J=134.8 \mathrm{~Hz}), 36.68(\mathrm{~d}, J=60.4 \mathrm{~Hz})$, $24.34(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 21.54(\mathrm{~s}) .{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 45.46$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{PS}^{+}$ $[\mathrm{M}+\mathrm{H}]+313.1174$, Found 313.1178. The enantiomeric excess was determined by Daicel Chiralcel OD$\mathrm{H}(84 \%$ ee $), n$-Hexanes $/ \mathrm{IPA}=90 / 10,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t$ (major) $=9.89 \mathrm{~min}, t$ (minor) $=5.06 \mathrm{~min}$. $[\alpha]_{D}{ }^{20}=-10.2(c=0.80$, acetone $)$.

3ia Colorless oil, $R_{f}=0.35(\mathrm{PE} / \mathrm{EA}=30: 1), 68 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{ddd}, J=12.9,8.6,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{td}, J=8.6,2.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.27(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.14$ (dd, $J=$ $253.8,3.6 \mathrm{~Hz}), 134.81(\mathrm{dd}, J=12.3,8.9 \mathrm{~Hz}), 132.45(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 130.63(\mathrm{~s}), 128.63(\mathrm{~s}), 125.58$ (dd, $J=90.4,3.4 \mathrm{~Hz}), 120.24(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 115.42(\mathrm{dd}, J=21.4,13.9 \mathrm{~Hz}), 105.56(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 79.99$ (d, $J=136.6 \mathrm{~Hz}), 36.79(\mathrm{~d}, J=60.9 \mathrm{~Hz}), 24.28(\mathrm{~d}, J=2.8 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 44.70$. ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-107.33$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{FPS}^{+}[\mathrm{M}+\mathrm{H}]+317.0924$, Found 317.0938. The enantiomeric excess was determined by Daicel Chiralcel AD-H (90% ee), n-Hexanes/IPA $=90 / 10,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t$ (major) $=7.07 \mathrm{~min}, t($ minor $)=5.47 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-20.2(c=0.59$, acetone).

3ja

Colorless oil, $R_{f}=0.25(\mathrm{PE} / \mathrm{EA}=30: 1), 64 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.00(\mathrm{dd}, J=12.8,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 3 \mathrm{H})$, $7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.57(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 133.73(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 132.47(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 130.66$ (s$), 128.64(\mathrm{~s}), 128.41(\mathrm{~d}, J=13.4 \mathrm{~Hz}), 128.39(\mathrm{~d}, J=88.4 \mathrm{~Hz}), 120.18(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 105.71(\mathrm{~d}, J=$ $21.2 \mathrm{~Hz}), 79.79(\mathrm{~d}, J=136.8 \mathrm{~Hz}), 36.81(\mathrm{~d}, J=60.6 \mathrm{~Hz}), 24.27(\mathrm{~d}, J=2.8 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR (202 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 44.88. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClPS}^{+}[\mathrm{M}+\mathrm{H}]+333.0628$, Found 333.0631. The enantiomeric excess was determined by Daicel Chiralcel AD-H (83% ee), n-Hexanes $/ \mathrm{IPA}=90 / 10,1 \mathrm{~mL} / \mathrm{min}$, $\lambda=254 \mathrm{~nm}, t($ major $)=8.18 \mathrm{~min}, t($ minor $)=5.61 \mathrm{~min} .[\alpha]_{\mathrm{D}}^{20}=-16.2(c=0.63$, acetone $)$.

3ka

Colorless oil, $R_{f}=0.35(\mathrm{PE} / \mathrm{EA}=30: 1), 63 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{dd}, J=12.8,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.29(\mathrm{~d}, J=$ $18.9 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.48(\mathrm{~d}, J=84.8 \mathrm{~Hz}), 133.59$ (qd, $J=32.9,3.3 \mathrm{~Hz}), 132.87(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 132.49(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 130.82(\mathrm{~s}), 128.69(\mathrm{~s}), 125.10-$ $124.81(\mathrm{~m}), 123.63(\mathrm{q}, J=273.0 \mathrm{~Hz}), 119.99(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 106.18(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 79.45(\mathrm{~d}, J=138.0$ $\mathrm{Hz}), 36.86(\mathrm{~d}, J=60.0 \mathrm{~Hz}), 24.25(\mathrm{~d}, J=2.7 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 44.96 .{ }^{19} \mathrm{~F}$ NMR (471 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-63.07$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{PS}^{+}[\mathrm{M}+\mathrm{H}]+367.0892$, Found 367.0900. The
enantiomeric excess was determined by Daicel Chiralcel AD-H (84% ee), n-Hexanes/IPA $=90 / 10,1$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t($ major $)=6.10 \mathrm{~min}, t($ minor $)=4.53 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-22.9(c=0.70$, acetone $)$.

31a

Colorless oil, $R_{f}=0.3(\mathrm{PE} / \mathrm{EA}=40: 1), 64 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.85(\mathrm{dd}, J=19.2,10.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.43-7.31(\mathrm{~m}, 4 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.00(\mathrm{~d}, J=13.0 \mathrm{~Hz}), 132.75(\mathrm{~d}, J=11.5 \mathrm{~Hz}), 132.68$ (d, $J=3.4 \mathrm{~Hz}), 132.44(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 130.44(\mathrm{~s}), 129.50(\mathrm{~d}, J=10.2 \mathrm{~Hz})$, $129.44(\mathrm{~d}, J=87.2 \mathrm{~Hz}), 128.58(\mathrm{~s}), 127.90(\mathrm{~d}, J=13.4 \mathrm{~Hz}), 120.52(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 105.21(\mathrm{~d}, J=20.9$ $\mathrm{Hz}), 80.36(\mathrm{~d}, J=135.2 \mathrm{~Hz}), 36.66(\mathrm{~d}, J=60.1 \mathrm{~Hz}), 24.37(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 21.54(\mathrm{~s}) .{ }^{31} \mathrm{P}$ NMR (202 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 45.80. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{PS}^{+}[\mathrm{M}+\mathrm{H}]+313.1174$, Found 313.1178. The enantiomeric excess was determined by Daicel Chiralcel OJ-H (75% ee), n-Hexanes/IPA $=80 / 20,1$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t($ major $)=9.84 \mathrm{~min}, t($ minor $)=4.67 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-14.5(c=1.00$, acetone $)$.

3ma

Colorless oil, $R_{f}=0.25(\mathrm{PE} / \mathrm{EA}=30: 1), 70 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.85(\mathrm{dd}, J=12.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.52$ - 7.43 (m, 2H), $7.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.24(\mathrm{~m}$, 9H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.22$ (dd, $J=249.9,17.5 \mathrm{~Hz}$), 132.71 (dd, $J=86.2,5.7 \mathrm{~Hz}) .132 .46(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 130.75(\mathrm{~s}), 129.96(\mathrm{dd}, J=14.6,7.5 \mathrm{~Hz}), 128.07(\mathrm{dd}, J=9.9$, $2.9 \mathrm{~Hz}), 120.08(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 119.28(\mathrm{dd}, J=23.3,12.0 \mathrm{~Hz}), 119.03(\mathrm{dd}, J=21.3,2.6 \mathrm{~Hz}), 105.81(\mathrm{~d}$, $J=21.3 \mathrm{~Hz}), 79.67(\mathrm{~d}, J=137.6 \mathrm{~Hz}), 36.85(\mathrm{~d}, J=59.9 \mathrm{~Hz}), 24.30(\mathrm{~d}, J=2.7 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR (202 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 46.14 .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-111.37$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{PS}^{+}[\mathrm{M}+\mathrm{H}]{ }^{+}$ 317.0924, Found 317.0928. The enantiomeric excess was determined by Daicel Chiralcel OD-H (82% ee), n-Hexanes $/$ IPA $=90 / 10,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t($ major $)=8.40 \mathrm{~min}, t($ minor $)=6.36 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=$ -10.73 ($c=1.24$, acetone).

3na

Colorless oil, $R_{f}=0.30(\mathrm{PE} / \mathrm{EA}=30: 1), 68 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.21(\mathrm{dd}, J=15.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.40$ (q, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H})$, $1.32(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.79(\mathrm{~d}, J=10.8 \mathrm{~Hz})$, 134.77 (d, $J=11.8 \mathrm{~Hz}$), $132.85(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 132.21(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 131.71(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 130.36$ (s$), 128.58(\mathrm{~s}), 126.27(\mathrm{~d}, J=83.3 \mathrm{~Hz}), 125.36(\mathrm{~d}, J=12.5 \mathrm{~Hz}), 120.74(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 106.17(\mathrm{~d}, J=$ $20.8 \mathrm{~Hz}), 81.94(\mathrm{~d}, J=136.6 \mathrm{~Hz}), 38.64(\mathrm{~d}, J=58.9 \mathrm{~Hz}), 24.75(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 23.20(\mathrm{~d}, J=2.8 \mathrm{~Hz})$. ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 46.72. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{PS}{ }^{+}[\mathrm{M}+\mathrm{H}]{ }^{+} 313.1174$, Found 313.1181. The enantiomeric excess was determined by Daicel Chiralcel AD-H (90% ee), n-Hexanes/IPA $=90 / 10,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t($ major $)=7.60 \mathrm{~min}, t($ minor $)=5.56 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-31.4(c=0.61$, acetone).

30a

Colorless oil, $R_{f}=0.30(\mathrm{PE} / \mathrm{EA}=10: 1), 73 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27$ (ddd, $J=16.7,7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.51$ (ddd, $J=8.9$, $2.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{td}, J=8.1,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.95$ (dd, $J=8.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.87$ (s, 3H), 1.31 (d, $J=19.2 \mathrm{~Hz}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.68(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 136.40(\mathrm{~d}, J=10.8 \mathrm{~Hz}), 134.03(\mathrm{~d}, J=2.1 \mathrm{~Hz})$, $132.20(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 130.02(\mathrm{~s}), 128.50(\mathrm{~s}), 121.22(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 120.74(\mathrm{~d}, J=13.4 \mathrm{~Hz}), 117.28(\mathrm{~d}$,
$J=84.5 \mathrm{~Hz}), 111.87(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 104.21(\mathrm{~d}, J=23.0 \mathrm{~Hz}), 81.40(\mathrm{~d}, J=142.7 \mathrm{~Hz}), 55.47(\mathrm{~s}), 38.08$ (d, $J=61.6 \mathrm{~Hz}$), $24.98(\mathrm{~d}, J=3.6 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 41.45$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{OPS}^{+}[\mathrm{M}+\mathrm{H}]+329.1123$, Found 329.1128. The enantiomeric excess was determined by Daicel Chiralcel IB-H (76% ee), n-Hexanes $/$ IPA $=90 / 10,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t$ (major) $=6.97 \mathrm{~min}, t$ (minor) $=5.93 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-31.4(c=0.61$, acetone $)$.

3pa

Colorless oil, $R_{f}=0.15(\mathrm{PE} / \mathrm{EA}=10: 1), 56 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.63-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.50(\mathrm{dd}, J=12.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.42-$ $7.37(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{dd}, J=8.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 2 \mathrm{H}), 1.27(\mathrm{~d}, J=18.7 \mathrm{~Hz}$, 9H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.90(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 147.67(\mathrm{~d}, J=19.4$ $\mathrm{Hz}), 132.44(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 130.49(\mathrm{~s}), 128.59(\mathrm{~s}), 127.87(\mathrm{~d}, J=12.0 \mathrm{~Hz}), 122.64(\mathrm{~d}, J=91.7 \mathrm{~Hz})$, $120.39(\mathrm{~d}, ~ J=4.1 \mathrm{~Hz}), 112.04(\mathrm{~d}, J=14.1 \mathrm{~Hz}), 108.17(\mathrm{~d}, J=16.0 \mathrm{~Hz}), 105.18(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 101.78$ (s$), 80.32(\mathrm{~d}, J=135.8 \mathrm{~Hz}), 36.93(\mathrm{~d}, J=60.9 \mathrm{~Hz}), 24.39(\mathrm{~d}, J=2.8 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 45.96. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{PS}^{+}[\mathrm{M}+\mathrm{H}]{ }^{+} 343.0916$, Found 343.0919. The enantiomeric excess was determined by Daicel Chiralcel AD-H (86% ee), n-Hexanes $/ \mathrm{IPA}=90 / 10,1 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}, t($ major $)=6.88 \mathrm{~min}, t($ minor $)=5.44 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-1.9(c=0.30$, acetone $)$.

3qa

White solid, $R_{f}=0.30(\mathrm{PE} / \mathrm{EA}=20: 1), 60 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.63(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.09-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.92(\mathrm{dd}, J=8.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.61(\mathrm{~m}, 2 \mathrm{H})$, $7.61-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{~d}$, $J=18.7 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.73(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 134.29(\mathrm{~d}, J=10.8 \mathrm{~Hz}), 132.50$ (d, $J=1.7 \mathrm{~Hz}$), $132.27(\mathrm{~d}, J=14.1 \mathrm{~Hz}), 130.60(\mathrm{~s}), 129.09(\mathrm{~s}), 128.67(\mathrm{~s}), 128.33(\mathrm{~s}), 127.80(\mathrm{~s}), 127.70$ (s$), 127.33(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 127.00(\mathrm{~s}), 126.82(\mathrm{~d}, J=87.4 \mathrm{~Hz}), 120.42(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 105.55(\mathrm{~d}, J=$ $21.0 \mathrm{~Hz}), 80.35(\mathrm{~d}, J=135.4 \mathrm{~Hz}), 37.08(\mathrm{~d}, J=60.4 \mathrm{~Hz}), 24.47(\mathrm{~d}, J=2.7 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR (202 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 45.80. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{PS}^{+}[\mathrm{M}+\mathrm{H}]+349.1174$, Found 349.1182. The enantiomeric excess was determined by Daicel Chiralcel AD-H (80% ee), n-Hexanes/IPA $=90 / 10,1$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t$ (major) $=13.02 \mathrm{~min}, t$ (minor) $=7.53 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-0.7(c=0.30$, acetone $)$.

Colorless oil, $R_{f}=0.20(\mathrm{PE} / \mathrm{EA}=30: 1), 41 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.77-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~d}, J=19.7 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.94(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 133.94(\mathrm{~s}), 132.44(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 132.37$ (d, $J=97.2 \mathrm{~Hz}), 130.57(\mathrm{~s}), 128.58(\mathrm{~s}), 128.20(\mathrm{~d}, J=14.6 \mathrm{~Hz}), 120.24(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 104.67(\mathrm{~d}, J=$ $22.1 \mathrm{~Hz}), 80.80(\mathrm{~d}, J=138.8 \mathrm{~Hz}), 37.16(\mathrm{~d}, J=65.0 \mathrm{~Hz}), 24.30(\mathrm{~d}, J=3.0 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR (202 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 35.51. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{PS}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]+$ 305.0582, Found 305.0592. The enantiomeric excess was determined by Daicel Chiralcel AD-H (72% ee), n-Hexanes/IPA $=90 / 10,1$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t$ (major $)=8.00 \mathrm{~min}, t($ minor $)=7.42 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-13.0(c=0.75$, acetone $)$.

Colorless oil, $R_{f}=0.2(\mathrm{PE} / \mathrm{EA}=30: 1), 63 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.15(\mathrm{dd}, J=15.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.87(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.62$ $(\mathrm{d}, J=11.8 \mathrm{~Hz}), 137.98(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 136.24(\mathrm{~d}, J=12.8 \mathrm{~Hz}), 132.56(\mathrm{~d}, J=12.0 \mathrm{~Hz}), 132.23(\mathrm{~d}, J=$
$2.2 \mathrm{~Hz}), 130.55(\mathrm{~s}), 128.64(\mathrm{~s}), 125.63(\mathrm{~d}, J=13.5 \mathrm{~Hz}), 125.03(\mathrm{~d}, J=84.6 \mathrm{~Hz}), 120.47(\mathrm{~d}, J=3.8 \mathrm{~Hz})$, $106.61(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 81.48(\mathrm{~d}, J=137.9 \mathrm{~Hz}), 38.75(\mathrm{~d}, J=59.3 \mathrm{~Hz}), 24.68(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 23.09(\mathrm{~d}$, $J=2.6 \mathrm{~Hz}$). ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 46.04$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ClPS}^{+}[\mathrm{M}+\mathrm{H}]{ }^{+}$ 347.0785, Found 347.0790. The enantiomeric excess was determined by Daicel Chiralcel AD-H (90% ee), n-Hexanes $/$ IPA $=90 / 10,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t($ major $)=8.44 \mathrm{~min}, t($ minor $)=5.50 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=$ $-13.0(c=0.75$, acetone).

3ta

Colorless oil, $R_{f}=0.25(\mathrm{PE} / \mathrm{EA}=30: 1)$, 58% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{~s}$, $3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $139.42(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 135.12(\mathrm{~d}, J=12.0 \mathrm{~Hz}), 134.88(\mathrm{~d}, J=12.8 \mathrm{~Hz}), 132.77(\mathrm{~d}, J=12.4 \mathrm{~Hz}), 132.60$ $(\mathrm{d}, J=3.0 \mathrm{~Hz}), 132.16(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 130.36(\mathrm{~s}), 128.61(\mathrm{~s}), 125.86(\mathrm{~d}, J=82.8 \mathrm{~Hz}), 120.79(\mathrm{~d}, J=4.0$ $\mathrm{Hz}), 106.18(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 82.04(\mathrm{~d}, J=136.0 \mathrm{~Hz}), 38.57(\mathrm{~d}, J=59.1 \mathrm{~Hz}), 24.76(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 22.77$ $(\mathrm{d}, J=2.9 \mathrm{~Hz}), 21.18(\mathrm{~s}) .{ }^{31} \mathrm{P} \operatorname{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 46.28 . \mathrm{HRMS}$ (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{PS}^{+}[\mathrm{M}+\mathrm{H}]$ +327.1331 , Found 327.1349 . The enantiomeric excess was determined by Daicel Chiralcel OD-H (92% ee), n-Hexanes $/ \mathrm{IPA}=90 / 10,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t($ major $)=4.52 \mathrm{~min}, t($ minor $)=5.10 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=$ $-20.44(c=3.05$, acetone $)$

3ua

Colorless oil, $R_{f}=0.20(\mathrm{PE} / \mathrm{EA}=30: 1), 68 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.29(\mathrm{dd}, J=16.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.36$ (dt, $J=15.9,7.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{dq}, J=13.9$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{dd}, J=20.7,6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{dd}, J=21.3,6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 140.31(\mathrm{~d}, J=10.2 \mathrm{~Hz}), 133.76(\mathrm{~d}, J=12.1 \mathrm{~Hz}), 132.30(\mathrm{~d}, J=1.7 \mathrm{~Hz})$, $132.13(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 131.89(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 130.41(\mathrm{~s}), 128.54(\mathrm{~s}), 128.34(\mathrm{~d}, J=88.0 \mathrm{~Hz}), 125.96$ $(\mathrm{d}, J=13.0 \mathrm{~Hz}), 120.48(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 105.57(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 80.80(\mathrm{~d}, J=136.8 \mathrm{~Hz}), 32.49(\mathrm{~d}, J=$ $62.5 \mathrm{~Hz}), 21.84(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 17.06(\mathrm{~d}, J=2.3 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 37.80 . \mathrm{HRMS}(\mathrm{ESI})$ calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{PS}^{+}[\mathrm{M}+\mathrm{H}]+299.1018$, Found 299.1028. The enantiomeric excess was determined by Daicel Chiralcel OD-H (88% ee), n-Hexanes $/ \mathrm{IPA}=90 / 10,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t$ (major) $=5.44 \mathrm{~min}$, t (minor) $=6.78 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=7.18(c=1.65$, acetone $)$

Colorless oil, $R_{f}=0.20(\mathrm{PE} / \mathrm{EA}=30: 1), 50 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.56-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.87-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{~s}, 6 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{dd}, J=21.3,6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.20$ (dd, $J=20.7,6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.27(\mathrm{~d}, J=10.9 \mathrm{~Hz}$), 140.89 (d, $J=3.0 \mathrm{~Hz}$), 132.00 (s), 131.98 (s$), 131.53(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 126.19(\mathrm{~d}, J=91.3 \mathrm{~Hz}), 120.94$ $(\mathrm{d}, J=3.8 \mathrm{~Hz}), 105.21(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 82.47(\mathrm{~d}, J=132.6 \mathrm{~Hz}), 34.77(\mathrm{~d}, J=60.7 \mathrm{~Hz}), 24.16(\mathrm{~d}, J=5.2$ $\mathrm{Hz}), 20.89(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 17.23(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 16.06(\mathrm{~s}) .{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.88 . \mathrm{HRMS}$ (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{PS}^{+}[\mathrm{M}+\mathrm{H}]+327.1331$, Found 327.1349. The enantiomeric excess was determined by Daicel Chiralcel AD-H (80% ee), n-Hexanes $/ \mathrm{IPA}=90 / 10,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t$ (major) $=9.50$ $\min , t($ minor $)=8.41 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=2.23(c=0.61$, acetone $)$

3na-O

Colorless oil, $R_{f}=0.3(\mathrm{PE} / \mathrm{EA}=1: 1), 64 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.90 (ddd, $J=14.6,8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 4 \mathrm{H})$, 7.28-7.26 (m, 2H), $2.79(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 143.89(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 133.94(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 132.41(\mathrm{~d}, J=1.4 \mathrm{~Hz})$, $132.24(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 131.81(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 130.41(\mathrm{~s}), 128.59(\mathrm{~s}), 126.59(\mathrm{~d}, J=106.0 \mathrm{~Hz}), 124.91$ $(\mathrm{d}, J=12.6 \mathrm{~Hz}), 120.42(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 103.99(\mathrm{~d}, J=23.4 \mathrm{~Hz}), 82.78(\mathrm{~d}, J=148.7 \mathrm{~Hz}), 35.71(\mathrm{~d}, J=$ $81.9 \mathrm{~Hz}), 24.29(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 21.97(\mathrm{~d}, J=2.5 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 36.43$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{OP}^{+}[\mathrm{M}+\mathrm{H}]{ }^{+}$297.1403, Found 297.1409. The enantiomeric excess was determined by Daicel Chiralcel IH (90% ee), n-Hexanes $/ \mathrm{IPA}=90 / 10,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t$ (major) $=13.04 \mathrm{~min}, t($ minor $)=10.34 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-3.59(c=4.00$, acetone $)$.

Colorless oil, $R_{f}=0.20(\mathrm{PE} / \mathrm{EA}=2: 1), 58 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, DMSO- d_{6}) $\delta 7.87(\mathrm{dd}, J=14.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-$ $7.50(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.16(\mathrm{~d}, J=16.6$ $\mathrm{Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 154.45$ (s), 143.50 (d, $J=9.5$ $\mathrm{Hz}), 134.03(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 132.67(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 132.57(\mathrm{~s}), 132.54(\mathrm{~s}), 126.82(\mathrm{~d}, J=105.2 \mathrm{~Hz})$, $126.40(\mathrm{~s}), 125.73(\mathrm{~d}, J=12.5 \mathrm{~Hz}), 116.83(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 104.05(\mathrm{~d}, J=23.1 \mathrm{~Hz}), 82.63(\mathrm{~d}, J=139.8$ Hz), 35.56 ($\mathrm{d}, J=81.9 \mathrm{~Hz}$), 35.26 (s$), 31.20(\mathrm{~s}), 24.22(\mathrm{~s}), 21.66(\mathrm{~d}, J=1.9 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR (202 MHz , DMSO- d_{6}) δ 34.17. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{OP}^{+}[\mathrm{M}+\mathrm{H}]+353.2029$, Found 353.2035. The enantiomeric excess was determined by Daicel Chiralcel AD-H (93% ee), n-Hexanes/IPA $=90 / 10,1$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t($ major $)=13.24 \mathrm{~min}, t($ minor $)=11.64 \mathrm{~min} .[\alpha]_{D^{20}}=-49.35(c=0.43$, acetone $)$.

Colorless oil, $R_{f}=0.2(\mathrm{PE} / \mathrm{EA}=2: 1), 62 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{dd}, J=14.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-$ $7.56(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dt}, J=$ $7.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.91(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 143.20(\mathrm{~s}), 139.83(\mathrm{~s}), 133.98(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 132.89(\mathrm{~d}, J=1.4$ Hz), $132.27(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 131.84(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 129.01(\mathrm{~s}), 128.15(\mathrm{~s}), 127.20(\mathrm{~d}, J=13.9 \mathrm{~Hz})$, $126.64(\mathrm{~d}, J=106.4 \mathrm{~Hz}), 124.94(\mathrm{~d}, J=12.8 \mathrm{~Hz}), 119.15(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 103.99(\mathrm{~d}, J=23.5 \mathrm{~Hz}), 83.42$ (d, $J=148.4 \mathrm{~Hz}$), $35.75\left(\mathrm{~d}, J=81.9 \mathrm{~Hz}\right.$), $24.33(\mathrm{~s}), 22.01(\mathrm{~d}, J=2.4 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 36.45. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{OP}^{+}[\mathrm{M}+\mathrm{H}]{ }^{+} 373.1716$, Found 373.1719. The enantiomeric excess was determined by Daicel Chiralcel IB-H (91% ee), n -Hexanes $/ \mathrm{IPA}=90 / 10,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t$ $($ major $)=8.65 \mathrm{~min}, t($ minor $)=10.08 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-34.67(c=2.96$, acetone $)$.

Colorless oil, $R_{f}=0.3(\mathrm{PE} / \mathrm{EA}=2: 1), 62 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.88$ (ddd, $\left.J=14.6,8.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.62-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.43$ (ddd, $J=9.0,3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=6.6,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.06$ $(\mathrm{m}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 163.72(\mathrm{~d}, J=253.1 \mathrm{~Hz}), 143.88(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 134.63(\mathrm{dd}, J=9.1,1.6 \mathrm{~Hz}), 133.89(\mathrm{~s}), 132.29(\mathrm{~d}$, $J=12.0 \mathrm{~Hz}), 131.91(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 126.33(\mathrm{~d}, J=106.4 \mathrm{~Hz}), 124.93(\mathrm{~d}, J=12.8 \mathrm{~Hz}), 116.49(\mathrm{t}, J=3.6$ $\mathrm{Hz}), 116.10(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 103.06(\mathrm{~d}, J=23.8 \mathrm{~Hz}), 82.56(\mathrm{~d}, J=147.7 \mathrm{~Hz}), 35.68(\mathrm{~d}, J=82.0 \mathrm{~Hz})$, $24.24(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 21.94(\mathrm{~d}, J=2.5 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 36.82 .{ }^{19} \mathrm{~F}$ NMR (471 MHz , CDCl_{3}) δ-106.67. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{FOP}^{+}[\mathrm{M}+\mathrm{H}]+315.1309$, Found 315.1320. The
enantiomeric excess was determined by Daicel Chiralcel OD-H (86% ee), n-Hexanes/IPA $=90 / 10,1$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t($ major $)=6.62 \mathrm{~min}, t($ minor $)=5.98 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-5.04(c=0.60$, acetone $)$.

Colorless oil, $R_{f}=0.20($ PE/EA $=2: 1), 51 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{dd}, J=14.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=11.2,4.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.78(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 143.91 (d, $J=9.9 \mathrm{~Hz}$), 133.84 (s$), 133.74$ (s$), 132.30(\mathrm{~d}, J=12.0 \mathrm{~Hz}$), 131.96 (s$), 131.91(\mathrm{~d}, J=2.7 \mathrm{~Hz})$, $126.33(\mathrm{~d}, ~ J=106.0 \mathrm{~Hz}), 125.08(\mathrm{~s}), 124.93(\mathrm{~d}, J=12.8 \mathrm{~Hz}), 119.30(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 102.71(\mathrm{~d}, J=23.3$ $\mathrm{Hz}), 84.06(\mathrm{~d}, J=146.0 \mathrm{~Hz}), 35.70(\mathrm{~d}, J=81.8 \mathrm{~Hz}), 24.26(\mathrm{~s}), 21.94(\mathrm{~d}, J=2.5 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR (202 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 36.33. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BrOP}^{+}[\mathrm{M}+\mathrm{H}]+375.0508$, Found 375.0508. The enantiomeric excess was determined by Daicel Chiralcel IB-H (84% ee), n-Hexanes/IPA $=90 / 10,1$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t($ major $)=6.58 \mathrm{~min}, t($ minor $)=7.50 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-14.43(c=1.88$, acetone $)$.

Colorless oil, $R_{f}=0.20(\mathrm{PE} / \mathrm{EA}=2: 1), 65 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.91$ (ddd, $\left.J=14.7,8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.44-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.30-$ $7.22(\mathrm{~m}, 4 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.85(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 138.39(\mathrm{~s}), 133.96(\mathrm{~d}, J=11.7$ $\mathrm{Hz}), 132.82$ (d, $J=1.4 \mathrm{~Hz}$), 132.21 (d, $J=11.9 \mathrm{~Hz}$), 131.78 (d, $J=2.7 \mathrm{~Hz}$), 131.33 (s$), 129.53$ (s$), 128.49$ (s), $126.64(\mathrm{~d}, J=106.4 \mathrm{~Hz}), 124.90(\mathrm{~d}, J=12.7 \mathrm{~Hz}), 120.20(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 104.30(\mathrm{~d}, J=23.7 \mathrm{~Hz})$, 82.37 (d, $J=149.7 \mathrm{~Hz}$), 35.69 (d, $J=81.9 \mathrm{~Hz}$), $24.29(\mathrm{~s}), 21.97(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 21.22(\mathrm{~s}) .{ }^{31} \mathrm{P}$ NMR (202 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 36.3. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{OP}^{+}[\mathrm{M}+\mathrm{H}]{ }^{+}$311.1559, Found 311.1563. The enantiomeric excess was determined by Daicel Chiralcel AD-H (90% ee), n-Hexanes/IPA $=90 / 10,1$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t$ (major) $=8.58 \mathrm{~min}, t($ minor $)=7.64 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-14.55(c=1.00$, acetone $)$.

Colorless oil, $R_{f}=0.20(\mathrm{PE} / \mathrm{EA}=2: 1), 57 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, CDCl_{3}) $\delta 7.87$ (ddd, $\left.J=14.6,8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40$ $-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 1 \mathrm{H})$, $2.79(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.20$ $(\mathrm{d}, J=248.2 \mathrm{~Hz}), 143.91(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 133.76(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 132.29(\mathrm{~d}, J=12.0 \mathrm{~Hz}), 131.92(\mathrm{~d}, J$ $=2.7 \mathrm{~Hz}), 130.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 128.36(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 126.25(\mathrm{~d}, J=106.5 \mathrm{~Hz}), 124.94(\mathrm{~d}, J=12.6$ $\mathrm{Hz}), 122.12(\mathrm{dd}, J=9.2,3.6 \mathrm{~Hz}), 119.13(\mathrm{dd}, J=23.8,1.4 \mathrm{~Hz}), 117.91(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 102.23(\mathrm{dd}, J=$ $22.9,3.4 \mathrm{~Hz}), 83.72(\mathrm{~d}, J=145.3 \mathrm{~Hz}), 35.71(\mathrm{~d}, J=81.8 \mathrm{~Hz}), 24.22(\mathrm{~s}), 21.92(\mathrm{~d}, J=2.3 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-111.65 .{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 36.74. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{FOP}^{+}$ $[\mathrm{M}+\mathrm{H}]+315.1309$, Found 315.1310. The enantiomeric excess was determined by Daicel Chiralcel AD$\mathrm{H}(84 \%$ ee $), n$-Hexanes $/ \mathrm{IPA}=90 / 10,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t$ (major) $=10.85 \mathrm{~min}, t$ (minor) $=7.59 \mathrm{~min}$. $[\alpha]_{D}{ }^{20}=-10.73(c=1.24$, acetone $)$.

Colorless oil, $R_{f}=0.15(\mathrm{PE} / \mathrm{EA}=1: 1), 61 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.01$ (ddd, $J=14.7,8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-$ $7.36(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.88(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{~s}$, $3 \mathrm{H}), 1.28(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.56(\mathrm{~s})$, $143.79(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 134.35(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 133.93(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 132.06(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 131.92$ (s$), 131.66(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 126.80(\mathrm{~d}, J=106.0 \mathrm{~Hz}), 124.81(\mathrm{~d}, J=12.8 \mathrm{~Hz}), 120.46(\mathrm{~s}), 110.79(\mathrm{~s})$,
$109.79(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 100.87(\mathrm{~d}, J=24.8 \mathrm{~Hz}), 86.60(\mathrm{~d}, J=152.2 \mathrm{~Hz}), 55.78(\mathrm{~s}), 35.75(\mathrm{~d}, J=81.9 \mathrm{~Hz})$, $24.23(\mathrm{~s}), 21.97(\mathrm{~d}, J=2.6 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 36.31$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{P}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+} 327.1508$, Found 327.1508 . The enantiomeric excess was determined by Daicel Chiralcel AD (90% ee), n-Hexanes $/ \mathrm{IPA}=90 / 10,1 \mathrm{~mL} / \mathrm{min}, \lambda=300 \mathrm{~nm}, t$ (major) $=15.46 \mathrm{~min}, t$ (minor) $=10.12 \mathrm{~min}$. $[\alpha]_{\mathrm{D}}{ }^{20}=-8.83(c=1.15$, acetone $)$.

Colorless oil, $R_{f}=0.20(\mathrm{PE} / \mathrm{EA}=2: 1), 53 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{dd}, J=14.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.80(\mathrm{~m}, 3 \mathrm{H})$, $7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ $-7.25(\mathrm{~m}, 2 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 143.91(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 134.04(\mathrm{~s}), 133.94(\mathrm{~s}), 133.69(\mathrm{~s}), 133.36(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 132.60(\mathrm{~s})$, 132.32 (s , 132.23 (s), 131.86 ($\mathrm{d}, ~ J=2.7 \mathrm{~Hz}$), 128.43 (s), 128.08 (s$), 127.92$ (s$), 127.46(\mathrm{~d}, J=97.6 \mathrm{~Hz})$, $126.21(\mathrm{~s}), 124.96(\mathrm{~d}, J=12.8 \mathrm{~Hz}), 117.56(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 104.47(\mathrm{~d}, J=23.7 \mathrm{~Hz}), 83.00(\mathrm{~d}, J=148.3$ $\mathrm{Hz}), 35.77(\mathrm{~d}, J=82.0 \mathrm{~Hz}), 24.35(\mathrm{~d}, J=1.1 \mathrm{~Hz}), 22.01(\mathrm{~d}, J=2.3 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 36.53. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{OP}^{+}[\mathrm{M}+\mathrm{H}]{ }^{+} 347.1559$, Found 347.1558. The enantiomeric excess was determined by Daicel Chiralcel AD-H (81% ee), n-Hexanes $/ \mathrm{IPA}=80 / 20,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t$ $($ major $)=17.07 \mathrm{~min}, t($ minor $)=12.04 \mathrm{~min} .[\alpha]_{D^{20}}=-26.96(c=3.21$, acetone $)$.

Colorless oil, $R_{f}=0.40(\mathrm{PE} / \mathrm{EA}=2: 1), 40 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, DMSO- d_{6}) $\delta 8.26(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=14.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.74$ (dd, $J=4.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.33(\mathrm{~m}, 3 \mathrm{H}), 2.68$ $(\mathrm{s}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 143.51$ $(\mathrm{d}, J=9.9 \mathrm{~Hz}), 134.84(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 134.05(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 132.66(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 132.53(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}), 130.20(\mathrm{~s}), 128.29(\mathrm{~s}), 126.82(\mathrm{~d}, J=104.8 \mathrm{~Hz}), 125.73(\mathrm{~d}, J=12.3 \mathrm{~Hz}), 118.79(\mathrm{~d}, J=3.7 \mathrm{~Hz})$, $99.45(\mathrm{~d}, J=23.5 \mathrm{~Hz}), 82.78(\mathrm{~d}, J=145.8 \mathrm{~Hz}), 35.53(\mathrm{~d}, J=81.9 \mathrm{~Hz}), 24.23(\mathrm{~s}), 21.65(\mathrm{~d}, J=1.8 \mathrm{~Hz})$. ${ }^{31} \mathrm{P}$ NMR (202 MHz , DMSO- d_{6}) δ 34.36. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{OPS}^{+}[\mathrm{M}+\mathrm{H}]+303.0967$, Found 303.0976. The enantiomeric excess was determined by Daicel Chiralcel IB-H (78% ee), n-Hexanes/IPA $=97.5 / 2.5,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t$ (major) $=26.53 \mathrm{~min}, t($ minor $)=29.90 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-15.08(c=0.48$, acetone).

3nk

White solid, $R_{f}=0.20(\mathrm{PE} / \mathrm{EA}=10: 1), 33 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{dd}, J=15.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=$ $7.8,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-$ $7.24(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{~s}, 6 \mathrm{H}), 1.33(\mathrm{dd}, J=18.8,1.0 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.83(\mathrm{~d}, J=10.9 \mathrm{~Hz}), 135.53(\mathrm{~d}, J=2.0 \mathrm{~Hz})$, $134.65(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 133.70(\mathrm{~s}), 132.96(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 131.87(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 129.04(\mathrm{~s}), 126.19$ (s$), 125.46(\mathrm{~d}, J=12.9 \mathrm{~Hz}), 121.51(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 104.16(\mathrm{~d}, J=20.1 \mathrm{~Hz}), 83.42(\mathrm{~d}, J=132.4 \mathrm{~Hz})$, $38.73(\mathrm{~d}, J=58.6 \mathrm{~Hz}), 24.75(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 23.23(\mathrm{~d}, J=2.9 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 47.46$ (s). HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{P}_{2} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 547.1806$, Found 547.1810. The enantiomeric excess was determined by Daicel Chiralcel IB-H (97% ee, $5: 1 \mathrm{dr}$), n-Hexanes $/ \mathrm{IPA}=90 / 10,1 \mathrm{~mL} / \mathrm{min}, \lambda=254$ nm, t (major $)=7.08 \mathrm{~min}, t_{1}=7.84 \mathrm{~min}, t_{2}=8.87 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-1.95(c=0.40$, acetone $)$.

3 nl

Colorless oil, $R_{f}=0.30(\mathrm{PE} / \mathrm{EA}=2: 1), 38 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{ddd}, J=14.6,8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.24(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{td}, J=7.1,3.3 \mathrm{~Hz}, 2 \mathrm{H})$, $1.67-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{td}, J=7.0,3.2 \mathrm{~Hz}, 4 \mathrm{H})$, $1.19(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 9 \mathrm{H}), 0.90(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.77(\mathrm{~d}, J=9.5 \mathrm{~Hz})$, $133.99(\mathrm{~d}, J=12.0 \mathrm{~Hz}), 132.10(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 131.60(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 126.85(\mathrm{~d}, J=105.9 \mathrm{~Hz}), 124.69$ (d, $J=12.8 \mathrm{~Hz}$), $107.94(\mathrm{~d}, J=24.5 \mathrm{~Hz}), 74.44(\mathrm{~d}, J=155.1 \mathrm{~Hz}), 35.33(\mathrm{~d}, J=82.5 \mathrm{~Hz}), 31.17$ (s), 28.58 (s), $27.65(\mathrm{~s}), 24.19(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 22.49(\mathrm{~s}), 21.89(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 19.67(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 14.00(\mathrm{~s}) .{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 35.67. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{OP}^{+}[\mathrm{M}+\mathrm{H}]+305.2029$, Found 305.2028. The enantiomeric excess was determined by Daicel Chiralcel IH-H (93% ee), n-Hexanes/IPA $=90 / 10,1$ $\mathrm{mL} / \mathrm{min}, \lambda=271 \mathrm{~nm}, t$ (major) $=6.60 \mathrm{~min}, t$ (minor $)=5.33 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=2.63(c=2.41$, acetone $)$.

Colorless oil, $R_{f}=0.30(\mathrm{PE} / \mathrm{EA}=2: 1), 40 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.82(\mathrm{dd}, J=14.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H})$, $2.74(\mathrm{~s}, 3 \mathrm{H}), 2.69-2.60(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.65-$ $1.49(\mathrm{~m}, 3 \mathrm{H}), 1.45-1.32(\mathrm{~m}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 143.76(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 134.02(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 132.08(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 131.57(\mathrm{~d}, J=2.7 \mathrm{~Hz})$, $126.94(\mathrm{~d}, J=105.8 \mathrm{~Hz}), 124.71(\mathrm{~d}, J=12.7 \mathrm{~Hz}), 111.28(\mathrm{~d}, J=23.5 \mathrm{~Hz}), 74.21(\mathrm{~d}, J=154.8 \mathrm{~Hz}), 35.36$ (d, $J=82.6 \mathrm{~Hz}$), $31.52(\mathrm{~s}), 29.67(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 25.64(\mathrm{~s}), 24.58(\mathrm{~s}), 24.23(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 21.94(\mathrm{~d}, J=$ 2.1 Hz). ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 35.34. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{OP}^{+}[\mathrm{M}+\mathrm{H}]+303.1872$, Found 303.1878. The enantiomeric excess was determined by Daicel Chiralcel AD-H (90% ee), n Hexanes $/ \mathrm{IPA}=90 / 10,1 \mathrm{~mL} / \mathrm{min}, \lambda=271 \mathrm{~nm}, t$ (major) $=7.03 \mathrm{~min}, t($ minor $)=6.02 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-8.02$ ($c=1.00$, acetone).

$3 n n$

Colorless oil, $R_{f}=0.30(\mathrm{PE} / \mathrm{EA}=2: 1), 35 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{dd}, J=14.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-$ $7.21(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{td}, J=6.9,3.3 \mathrm{~Hz}$, $2 \mathrm{H}), 2.11-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.19$ (d, $J=16.7 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 143.80(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 133.84(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 132.18(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 131.75(\mathrm{~d}, J=2.7 \mathrm{~Hz})$, $126.55(\mathrm{~d}, J=106.4 \mathrm{~Hz}), 124.80(\mathrm{~d}, J=12.6 \mathrm{~Hz}), 105.44(\mathrm{~d}, J=23.8 \mathrm{~Hz}), 75.67(\mathrm{~d}, J=151.4 \mathrm{~Hz}), 43.34$ (s), $35.35(\mathrm{~d}, J=81.9 \mathrm{~Hz}), 30.27(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 24.16(\mathrm{~s}), 21.87(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 17.09(\mathrm{~d}, J=2.7 \mathrm{~Hz})$. ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 36.03. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{ClOP}^{+}[\mathrm{M}+\mathrm{H}]+297.1170$, Found 297.1169. The enantiomeric excess was determined by Daicel Chiralcel AD-H (84% ee), n-Hexanes/IPA $=90 / 10,1 \mathrm{~mL} / \mathrm{min}, \lambda=271 \mathrm{~nm}, t$ (major) $=8.82 \mathrm{~min}, t($ minor $)=7.27 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=0.54(c=0.50$, acetone).

White solid, $R_{f}=0.20(\mathrm{PE} / \mathrm{EA}=1: 1), 32 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.82-7.74(\mathrm{~m}, 3 \mathrm{H}), 7.71-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 1 \mathrm{H})$, $7.27-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.11(\mathrm{~m}, 5 \mathrm{H}), 5.17(\mathrm{dd}, J=11.2,5.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.40-4.25(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.47(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 2.46$ (tdd, J $=7.1,3.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{dd}, J=16.7,2.4 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 168.73(\mathrm{~s}), 167.40(\mathrm{~s}), 143.77(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 136.55(\mathrm{~s}), 134.23(\mathrm{~s}), 133.89(\mathrm{~d}, J=11.9 \mathrm{~Hz})$, $132.14(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 131.72(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.46(\mathrm{~s}), 128.70(\mathrm{~d}, J=25.9 \mathrm{~Hz}), 126.90(\mathrm{~s}), 126.50$ (d, $J=106.2 \mathrm{~Hz}), 124.83(\mathrm{~d}, J=12.8 \mathrm{~Hz}), 123.50(\mathrm{~s}), 105.62(\mathrm{~d}, J=23.8 \mathrm{~Hz}), 77.28(\mathrm{~s}), 75.45(\mathrm{~d}, J=$
151.4 Hz), $64.10(\mathrm{~s}), 53.25(\mathrm{~s}), 35.33(\mathrm{~d}, J=82.2 \mathrm{~Hz}), 34.77(\mathrm{~s}), 26.84(\mathrm{~d}, J=1.0 \mathrm{~Hz}), 24.15(\mathrm{~d}, J=1.1$ $\mathrm{Hz}), 21.86(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 16.31(\mathrm{~d}, J=2.7 \mathrm{~Hz}) .{ }^{31} \mathrm{P} \operatorname{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 36.09$. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{P}^{+}[\mathrm{M}+\mathrm{H}]+410.2005$, Found 410.2029. $\mathrm{dr}=9: 1\left(\delta 38.10: \delta 36.09\right.$ of ${ }^{31} \mathrm{P}$ NMR $) .[\alpha]_{\mathrm{D}}{ }^{20}$ $=-61.06(c=4.15$, acetone $)$.

4

Colorless solid, $\mathrm{R}_{f}=0.30(\mathrm{PE} / \mathrm{EA}=1: 2), 73 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.10-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=7.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=15.3$, $13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=13.2,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=15.3 \mathrm{~Hz}$, $9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.07(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 144.86(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 137.34(\mathrm{~s}), 133.36$ (s$), 133.05(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 132.59(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 131.67(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 129.61(\mathrm{~s}), 128.37(\mathrm{~s}), 125.93$ (d, $J=88.9 \mathrm{~Hz}$), $124.55(\mathrm{~d}, J=12.0 \mathrm{~Hz}), 38.92(\mathrm{~d}, J=48.1 \mathrm{~Hz}), 35.81(\mathrm{~d}, J=69.0 \mathrm{~Hz}), 24.56(\mathrm{~s}), 22.00$ (d, $J=2.3 \mathrm{~Hz}$). ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 49.52$ (s). HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{P}^{+}[\mathrm{M}+\mathrm{H}]+$ 315.1508, Found 315.1506. The enantiomeric excess was determined by Daicel Chiralcel OD-H (84% ee), n-Hexanes $/$ IPA $=90 / 10,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t$ (major $)=10.11 \mathrm{~min}, t$ (minor) $=12.33 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}$ $=1.95(c=0.40$, acetone $)$.

5

Colorless solid, $\mathrm{R}_{f}=0.30$ (EA), 58% yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12$ (ddd, $J=12.3,7.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.54-7.41(\mathrm{~m}, 7 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{ddd}, J=10.5,8.8,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-6.99$ $(\mathrm{m}, 3 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.57(\mathrm{dd}, J=11.5,3.9 \mathrm{~Hz}), 142.65(\mathrm{dd}, J=24.8,14.7 \mathrm{~Hz})$, $134.76(\mathrm{~d}, J=4.9 \mathrm{~Hz}), 133.91(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 133.06(\mathrm{dd}, J=13.0,6.5 \mathrm{~Hz}), 132.68(\mathrm{~s}), 132.51(\mathrm{~d}, J=$ $9.8 \mathrm{~Hz}), 131.87(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.70(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 131.60(\mathrm{~s}), 130.96(\mathrm{~d}, J=4.9 \mathrm{~Hz}), 130.65(\mathrm{~d}, J=$ 9.4 Hz), $130.38(\mathrm{~d}, J=9.4 \mathrm{~Hz}), 130.36(\mathrm{~s}), 129.47(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 128.91(\mathrm{~s}), 127.79(\mathrm{dd}, J=12.5,5.9$ $\mathrm{Hz}), 127.69(\mathrm{dd}, J=65.3,3.7 \mathrm{~Hz}), 126.98(\mathrm{~d}, J=60.8 \mathrm{~Hz}), 125.47(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 34.15(\mathrm{~d}, J=68.7$ Hz), $24.68(\mathrm{~s}) .{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 64.16(\mathrm{~d}, J=31.8 \mathrm{~Hz}, 1 \mathrm{P}), 16.61(\mathrm{~d}, J=30.4 \mathrm{~Hz}, 1 \mathrm{P})$. HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{P}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]+483.1637$, Found 483.1645. The enantiomeric excess was determined by Daicel Chiralcel AD-H (86% ee), n-Hexanes/IPA $=90 / 10,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t$ (major) $=31.22 \mathrm{~min}, t($ minor $)=22.36 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-4.78(c=2.25$, acetone $)$.

Colorless solid, $\mathrm{R}_{f}=0.30(\mathrm{PE} / \mathrm{EA}=1: 3), 64 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, d_{6}-\right.$ acetone) $\delta 8.15(\mathrm{dd}, J=15.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.48$ $(\mathrm{m}, 3 \mathrm{H}), 7.45(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.34(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.09(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}$, $3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Acetone) $\delta 161.58$ (s), 158.93 (s), $146.18(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 141.59(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 134.18(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 133.99$ (d, $J=122.2 \mathrm{~Hz}), 132.89(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 132.64(\mathrm{~d}, J=119.6 \mathrm{~Hz}), 132.09(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 131.46(\mathrm{~d}, J$ $=1.2 \mathrm{~Hz}), 131.41(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 130.75(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 128.57(\mathrm{~s}), 128.17(\mathrm{~d}, J=13.3 \mathrm{~Hz}), 127.15(\mathrm{~d}$, $J=13.0 \mathrm{~Hz}$), 122.41 (s$), 115.36(\mathrm{~s}), 114.37$ (s$), 113.74(\mathrm{~s}), 111.73(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 104.85(\mathrm{~d}, J=30.0$ $\mathrm{Hz}), 82.91(\mathrm{~d}, J=171.1 \mathrm{~Hz}), 55.08(\mathrm{~s}), 54.55(\mathrm{~s}) .{ }^{31} \mathrm{P}$ NMR (202 MHz , Acetone) $\delta 5.83$ (s). HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{P}^{+}[\mathrm{M}+\mathrm{H}]+439.1458$, Found 439.1460 . The enantiomeric excess was determined by

Daicel Chiralcel IB-H (48% ee), n-Hexanes $/ \mathrm{IPA}=90 / 10,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t$ (major) $=23.91 \mathrm{~min}$, t (minor) $=29.01 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=2.54(c=0.90$, acetone $)$.

Colorless solid, $\mathrm{R}_{f}=0.20(\mathrm{PE} / \mathrm{EA}=1: 3), 53 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.10(\mathrm{dd}, J=11.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 2 \mathrm{H}), 7.60(\mathrm{dt}, J=14.5,10.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=12.9,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.73(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=13.9,8.3 \mathrm{~Hz}, 3 \mathrm{H}), 6.42(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}$, $6 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 158.51(\mathrm{~d}, J=57.4 \mathrm{~Hz}$), 148.89 (d, $J=11.2 \mathrm{~Hz}), 141.92$ (s$), 140.89(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 136.59(\mathrm{~d}, J=1.2$ $\mathrm{Hz}), 136.24(\mathrm{~d}, J=99.2 \mathrm{~Hz}), 135.91(\mathrm{~d}, J=92.5 \mathrm{~Hz}), 135.12(\mathrm{~d}, J=15.1 \mathrm{~Hz}), 133.93(\mathrm{~d}, J=5.7 \mathrm{~Hz})$, 133.33 (s), $133.07(\mathrm{~d}, J=51.5 \mathrm{~Hz}), 132.63(\mathrm{~d}, J=49.2 \mathrm{~Hz}), 132.25(\mathrm{~s}), 131.94(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 131.81$ (d, $J=1.8 \mathrm{~Hz}), 131.35(\mathrm{~s}), 130.91(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 130.43(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 130.09(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 129.80$ (d, $J=11.3 \mathrm{~Hz}), 128.51(\mathrm{~d}, J=12.2 \mathrm{~Hz}), 128.40(\mathrm{~s}), 127.75(\mathrm{~d}, J=12.6 \mathrm{~Hz}), 127.63(\mathrm{~d}, J=10.9 \mathrm{~Hz})$, $113.95(\mathrm{~d}, J=76.0 \mathrm{~Hz}), 112.80(\mathrm{~s}), 55.37(\mathrm{~s}), 55.08(\mathrm{~s}), 20.99(\mathrm{~s}) .{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 19.36$. HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{P}^{+}[\mathrm{M}+\mathrm{H}]+529.1927$, Found 529.1937. The enantiomeric excess was determined by Daicel Chiralcel IB-H (64% ee), n-Hexanes $/ I P A=70 / 30,1 \mathrm{~mL} / \mathrm{min}, \lambda=318 \mathrm{~nm}, t$ (major) $=10.21 \mathrm{~min}, t$ (minor) $=4.87 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-702.44(c=0.05$, acetone $) .30 \%$ yield, and 99% ee from recrystal.

8. Copies of NMR spectroscopy.

 | ∞ |
| :--- | :--- |
| io |
| io |

[^0]
-25.49

$\stackrel{O}{\stackrel{3}{m}}$

3ba

in in

3da

 Mor

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

130	80	40	0	$\begin{aligned} & -40 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	-90	-140	-200

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3 ma

3ma

3ua

NNNNNNNNNかも

$$
\begin{aligned}
& \text { 3na-O }
\end{aligned}
$$

--106.67

$\underset{\infty}{\text { ® }} \underset{\infty}{\stackrel{1}{\infty}}$
 ఱ্লে শ্লু

	130	40	0	-40	-90	-140	-200

--111.65

| 0 | 10 | 0 | -10 | -30 | -50 | -70 | -90 | -110 | -130 | -150 | -170 | -190 | -210 |
| :--- |

Mo
®N N® ® む

3nj

$\stackrel{\leftrightarrow}{4}$

$\left.\begin{array}{llllllllllllllllllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 80 \\ \mathrm{f1}(\mathrm{ppm})\end{array}\right)$

$\stackrel{\infty}{\infty}$

(30

5

9. Copies of HPLC

Chematogram

mAU
Chromatogram

PDA Ch1 254nm			
Peak\#	Ret. Time	Area	Area\%
1	5.350	1514165	49.813
2	6.745	1525557	50.187
Total	3039722	100.000	

Chromatogram

Chromatogram

PDA Ch1 254nm			
Peak\#	Ret. Time	Area	Area\%
1	8.545	662691	49.904
2	15.004	665247	50.096
Total		1327937	100.000

Chromatogram

PDA Ch1 254nm			
Peak\#	Ret. Time	Area	Area\%
1	8.470	636598	11.604
2	14.919	4849454	88.396
Total		5486052	100.000

Chematogram

PDA Chl 254nm			
Peak\#	Ret. Time	Area	Area\%
1	5.151	22293660	49.796
2	10.267	22476466	50.204
Total		44770126	100.000

PDA Chl 254 nm			
Peak\#	Ret. Time	Area	Area\%
1	5.056	2260201	8.175
2	9.893	25388648	91.825
Total		27648850	100.000

PDA Ch1 254nm			
Peak\#	Ret. Time	Area	Area\%
1	5.057	2946747	50.002
2	6.274	2946523	49.998
Total		5893271	100.000
mAU		Chromatogram	

PDA Ch1 254 nm			
Peak\#	Ret. Time	Area	Area\%
1	5.466	323529	5.046
2	7.069	6087791	94.954
Total		6411319	100.000

mAU
Chromatogram

PDA Ch1 254nm			
Peak\#	Ret. Time	Area	Area\%
1	5.483	5385011	50.080
2	7.934	5367825	49.920
Total		10752836	100.000

PDA Ch1 254nm			min
Peak\#	Ret. Time	Area	Area\%
1	4.456	2686211	50.262
2	5.981	2658176	49.738
Total		5344387	100.000

PDA Chl 254nm			
Peak\#	Ret. Time	Area	Area\%
1	4.528	65497	7.772
2	6.100	777252	92.228
Total		842749	100.000

PDA Ch1 254nm			
Peak\#	Ret. Time	Area	Area\%
1	4.823	3121522	50.071
2	10.523	3112639	49.929
Total		6234161	100.000
mAU		Chromatogram	

PDA Ch1 254nm			
Peak\#	Ret. Time	Area	Area\%
1	4.668	1819577	12.499
2	9.841	12738059	87.501
Total		14557636	100.000

Chromatogram
Chematogram

PDA Ch1 254nm			
Peak\#	Ret. Time	Area	Area\%
1	5.931	9856850	88.629
2	6.974	1264563	11.371
Total		11121414	100.000

PDA Ch1 254nm			
Peak\#	Ret. Time	Area	Area\%
1	5.435	13559353	94.379
2	6.783	807545	5.621
Total	14366898	100.000	

PDA Ch1 254nm			min
Peak\#	Ret. Time	Area	Area\%
1	8.579	3305537	50.432
2	9.745	3248901	49.568
Total	6554438	100.000	
		Chromatogram	
mAU			

mAU

mAU
Chromatogram

PDA Ch1 254nm			
Peak\#	Ret. Time	Area	Area\%
1	11.893	2545418	49.983
2	16.892	2547106	50.017
Total		5092523	100.000

Chromatogram
mAU

PDA Ch1 254nm			
Peak\#	Ret. Time	Area	Area\%
1	12.042	892433	9.402
2	17.071	8599713	90.598
Total		9492146	100.000

Chromatogram

PDA Ch1 254 nm			
Peak\#	Ret. Time	Area	Area\%
1	25.926	10070978	50.107
2	28.581	10027876	49.893
Total		20098855	100.000

PDA Ch1 254nm			
Peak\#	Ret. Time	Area	Area\%
1	26.534	11099600	89.105
2	29.896	1357164	10.895
Total	12456764	100.000	

mAU

PDA Ch1 318nm			
Peak\#	Ret. Time	Area	Area\%
1	5.124	1406334	52.605
2	10.758	1267027	47.395
Total		2673361	100.000

PDA Ch1 318nm			
Peak\#	Ret. Time	Area	Area\%
1	4.865	513696	17.670
2	10.210	2393469	82.330
Total		2907165	100.000

10. References

S1. F. A. Kortmann, M. C. Chang, E. Otten, E. P. Couzijn, M. Lutzc, A. J. Minnaard, Chem. Sci., 2014, 5, 1322-1327.

S2. R. Beaud, R. J. Phipps, M. J. Gaunt, J. Am. Chem. Soc., 2016, 138, 13183-13186.
S3. L. Duan, K. Zhao, Z. Wang, F. L. Zhang, Z. Gu, ACS Catal., 2019, 9, 9852-9858.
S4. Y. Liu, B. Ding, D. Liu, Z. Zhang, Y. Liu, W. Zhang, Res. Chem. Intermed., 2017, 43, 49594966.

S5. B. M. Trost, S. M. Spohr, A. B. Rolka, C. A. Kalnmals, J. Am. Chem. Soc., 2019, 141, 1409814103.

S6. Z. Chen, H. Jiang, Y. Li, C. Qi, Chem. Commun., 2010, 46, 8049-8051.
S7. Y. Gao, G. Wu, Q. Zhou, J.-B. Wang, Angew. Chem. Int. Ed., 2018, 57, 2716-2720.
S8. J. Santandrea, C. Minozzi, C. Cruch, S. K. Collins, Angew. Chem. Int. Ed., 2017, 56, 1225512259.

S9. W. Wang, F. Wei, Y. Ma, C.-H. Tung, Z. Xu, Org. Lett., 2016, 18, 4158-4161.

[^0]: $\begin{array}{llllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90_{\mathrm{f}(\mathrm{ppm})}^{80} & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

