Supporting Information for

Ni-Catalyzed Asymmetric C(sp)–P Cross Coupling Reaction for the Synthesis of *P*-Stereogenic Alkynyl phosphines

Bin Zhang, Wen-Qing Zhou, Xu-Teng Liu, Yingying Sun, and Qing-Wei Zhang*

Department of Chemistry, University of Science and Technology of China, Hefei 230026, China Correspondence to: qingweiz@ustc.edu.cn

INDEX

1. General information S3
2. Optimization of reaction conditions
3. The confirmation of absolute configuration
4. General procedure for the synthesis of substrates
5. Asymmetric synthesis of alkynyl phosphines
6. Synthetic applications
7. Spectroscopic data of products
8. Copies of NMR spectroscopy
9. Copies of HPLC
10. References

General information

Chemicals and reagents were purchased and used directly unless otherwise stated. Reactions were carried out in a glovebox flushed with N₂ and were monitored by thin-layer chromatography (TLC) on gel F254 plates. Flash column chromatography or preparative thin-layer chromatography was performed using the silica gel (300-400 mesh, GF254, respectively). All reactions were performed in a N₂ flushed glovebox unless otherwise noted. THF and toluene were distilled over sodium and degassed with N2. Other Super dry solvents were purchased and used directly. NMR spectra (¹H, ¹³C, ³¹P, ¹⁹F) spectra were recorded on Bruker AescendTM 500 MHz instruments in CDCl₃, DMSO-*d*₆, C₆D₆, acetone-*d*₆, CD₂Cl₂. The residual solvent peak or tetramethylsilane (TMS) is used as an internal reference. ¹H NMR data are reported as follows: chemical shifts (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, b = broad), coupling constant (Hz), integration. Data for ¹³C, ³¹P, and ¹⁹F NMR are reported in terms of chemical shifts and multiplicity where appropriate. High-resolution mass spectral analysis (HRMS) data were measured by means of the ESI technique. Enantiomer excess was determined by HPLC analysis using Darcel Chiracel columns (AD-H, OD-H, OJ-H, IA-H, IB-H and IH) and "hexane/ PrOH as eluents. Optical rotations were measured by Perkin-Elmer-343 polarimeter. Fluorescence spectra were measured on a Fluorolog-3-Tau and deltaflex. Circularly polarized luminescence (CPL) was conducted by JASCO CPL-300 in Anhui University.

2. Optimization of reaction conditions.

Table S1. Screening of chiral ligands.^a

^{*a*}Reaction conditions: 0.1 mmol **1a**, 0.2 mmol **2a**, 5 mol% Ni(COD)₂, 6 mol% Ligand and 0.2 mmol KOAc in 1 mL toluene at room temperature for 16 h under nitrogen atmosphere. Quenched with 0.2 mL 30% H₂O₂ aqueous solution. ^{*b*}Determined by chiral HPLC analysis.

^cNMR yield based on 1a using P(O)(OMe)₃ as an internal standard.

Table S2. Screening of base.^a

O P P H H Pr 1 1a	equiv. PhSiH ₃ , 70 ^o	$\frac{C, 15 h}{P} \left[\frac{H}{Ph^{-1}Pr} \right]$	1. Ph 2a $\left[\frac{\text{Ni}(\text{COD})_2, \text{ L4, b}}{2. \text{ H}_2\text{O}_2, 1 \text{ h}} \right]$	∙Br pase, toluene ► Ph?	O P Ph iPr
	Entry	Base	Ee $(\%)^{b}$	Yield (%) ^c	
	1	no	0	45	
	2	KOAc	58	62	
	3	K ₂ CO ₃	2	75	
	4	K ₃ PO ₄	41	60	
	5	CH ₃ OK	56	80	
	6	K ₂ HPO ₄	50	98	
	7	CF ₃ COOK	0	100	
	8	^t BuCOOK	60	35	
	9	КОН	54	51	
	10	DBU	38	90	
	11	DIEA	16	90	
	12	NaOAc	64	80	
	13	CsOAc	63	80	
	14	LiOAc	6	50	
	15^{d}	NaOAc	64	85	

^{*a*}Reaction conditions: 0.1 mmol **1a**, 0.2 mmol **2a**, 5 mol% Ni(COD)₂, 6 mol% **L4** and 0.2 mmol base in 1 mL toluene at room temperature for 16 h under nitrogen atmosphere. Quenched with 0.2 mL 30% H₂O₂ aqueous solution. ^{*b*}Determined by chiral HPLC analysis.

^cNMR yield based on **1a** using P(O)(OMe)₃ as an internal standard.

^d0.25 mmol NaOAc was used.

Table S3. Screening of solvents.^a

	► Ph	$\left[\frac{P_{i}Pr}{2} \right] = \frac{Ni(COD)_{2}, L4, N}{2}$	NaOAc, solvent Ph
En	try Solver	nt $\operatorname{Ee}(\%)^b$	Yield (%) ^c
1	toluene	e 64	85
2	mesityle	ne 66	85
3	<i>p</i> -xylen	e 56	70
4	THF	56	50
5	CPME	55	80
6	acetone	e 0	10
7	CH ₃ CN	0	17
8	EtOAc	60	35
0		•	02

^{*a*}Reaction conditions: 0.1 mmol **1a**, 0.2 mmol **2a**, 5 mol% Ni(COD)₂, 6 mol% **L4** and 0.25 mmol NaOAc in 1 mL solvent at room temperature for 16 h under nitrogen atmosphere. Quenched with 0.2 mL 30% H_2O_2 aqueous solution. ^{*b*}Determined by chiral HPLC analysis.

^cNMR yield based on **1a** using P(O)(OMe)₃ as an internal standard.

Table S4. Screening of catalyst.^a

0 Ph ⁻ H ⁻ iPr 1a	O ⊢ P H [∼] iPr 1 equiv. PhSiH ₃ , 70 °C, 15h 1 a		1. Ph—Br 2a H_{P} P_{P} P_{P} P_{P} 2. H ₂ O ₂ , 1 h		/lene Ph Ph 3aa	
	Entry	Catalyst	Ee (%) ^d	Yield (%) ^b		
	1	no	0	20		
	2	Ni(COD)2	66	84		
	3	NiBr ₂ DME	12	30		
	4	NiCl ₂ DME	2	28		
	5	Ni(acac) ₂	34	36		
	6	Ni(COD) ₂ /Zn	32	56		
	7^d	Ni(COD) ₂	66	83		

^{*a*}Reaction conditions: 0.1 mmol **1a**, 0.2 mmol **2a**, 5 mol% catalyst, 6 mol% **L4** and 0.25 mmol NaOAc in 1 mL mesitylene at room temperature for 16 h under nitrogen atmosphere. Quenched with 0.2 mL 30% H₂O₂ aqueous solution.

^bDetermined by chiral HPLC analysis.

^cNMR yield based on **1a** using P(O)(OMe)₃ as an internal standard.

 $^{d}10$ mol% catalyst and 12 mol% L4 were used.

Table S5. Screening of temperature.^a

0	equiv. PhSiH ₃ , 70 °C, 15h	►	 Ph- ── Br 2a NaOAc, mesityle 2. H₂O₂, 1h 	Ni(COD) ₂ , L4, ene, T °C ➤	Ph Ph 3aa
	Entry	T °C	Ee (%) ^b	Yield (%) ^c	
	1	0	42	80	
	2	-10	30	50	
	3	25	66	84	
	4	35	64	87	
	5	50	7	87	

^{*a*}Reaction conditions: 0.1 mmol **1a**, 0.2 mmol **2a**, 5 mol% Ni(COD)₂, 6 mol% **L4** and 0.25 mmol NaOAc in 1 mL mesitylene at T °C for 10-50 h under nitrogen atmosphere. Quenched with 0.2 mL 30% H₂O₂ aqueous solution. ^{*b*}Determined by chiral HPLC analysis.

^cNMR yield based on **1a** using P(O)(OMe)₃ as an internal standard.

Table S6. Screening of chiral Duphos ligands.^a

0 ⊢ ⊢ ⊢ iPr 1a		1. Ph — Br 2a NaOAc, mesity h^{P} iPr $\frac{1}{2}$. H ₂ O ₂ , 1 h	[·] Ni(COD) ₂ , lene, 25 °C	L*, Q Ph Ph Ph Ph Ph Ph Ph 3aa
-	Entry	L*	Ee (%) ^b	Yield (%) ^c
-	1	(S, S)-Me-Duphos	66	84
	2	(S, S)-Et-Duphos	75	83
	3	(S, S)- ⁱ Pr-Duphos	3	48
	4 ^{<i>d</i>,<i>e</i>}	(S, S)-Et-Duphos	78	84(80)

^{*a*}Reaction conditions: 0.1 mmol **1a**, 0.2 mmol **2a**, 5 mol% Ni(COD)₂, 6 mol% L* and 0.25 mmol NaOAc in 1 mL mesitylene at 25 °C for 16 h under nitrogen atmosphere. Quenched with 0.2 mL 30% H₂O₂ aqueous solution.

^bDetermined by chiral HPLC analysis.

^cNMR yield based on **1a** using P(O)(OMe)₃ as an internal standard.

 d 0.2 mmol **1a**, 0.1 mmol **2a** were used.

^eIsolated yields were given in parentheses.

3. The confirmation of absolute configuration.

(*S*)-*tert*-butyl(phenyl)phosphine oxide (*S*)-1b was prepared according to the following procedure^{S1}: (+)-(*S*, *S*)-dibenzoyltartaric acid (590 mg, 1.65 mmol) *tert*-butyl(phenyl)phosphine oxide (250 mg, 1.37 mmol) were dissolved in little as possible refluxing diisopropyl ether/toluene (1:1). The mixture was slowly cooled down to r.t. to give the (*S*)-SPO-DBTA complex as colorless crystals. The solid was filtered and re-dissolved in 1 M NaOH (10 mL) and CHCl₃ (10 mL). The aqueous phase was extracted with CHCl₃ (5 x 5 mL). The combined organic phase was dried and concentrated under reduced pressure to give (*S*)-*tert*-butyl(phenyl)phosphine oxide.

HPLC: Race-1b, Chiralpak AD-H, "hexane/ PrOH 90:10, flow: 1.0 mL/min.

(S)-1b, 93% ee, t₁ = 10.6 min, Chiralpak AD-H, "hexane/ ⁱPrOH 90:10, flow: 1.0 mL/min.

(S)-*tert*-butyl(phenyl)(phenylethynyl)phosphine oxide (S)-3ba was prepared according to the following procedure⁹: Under N₂ atmosphere, 0.1 mmol (S)-3b, 0.1 mmol phenylacetylene, 10 mol% Pd(TFA)₂, 0.4 mmol AgOTf and 1 mL THF were charged into a 4 mL schlenck tube, the mixture was stirred at 60 °C for 2 hours. The ee% of (S)-3b and (S)-3ba were monitored by HPLC. The yields were determined by ³¹P NMR using P(O)(OMe)₃ as an internal standard.

HPLC: Race-3ba, Chiralpak OJ-H, "hexane/ PrOH 90:10, flow: 1.0 mL/min.

(S)-3ba, 93% ee, $t_2 = 6.4$ min, Chiralpak OJ-H, "hexane/ PrOH 90:10, flow: 1.0 mL/min.

3ba, 86% ee, $t_2 = 6.7$ min, Chiralpak OJ-H, "hexane/ PrOH 90:10, flow: 1.0 mL/min.

Residual (S)-1b, 92% ee, t₁ = 10.6 min, Chiralpak AD-H, *ⁿ*hexane/ ^{*i*}PrOH 90:10, flow: 1.0 mL/min.

The absolute configuration of *P*-stereogenic alkynyl phosphine oxide **3ba** *via* Ni-catalyzed asymmetric C(sp)-P cross coupling was unambiguously determined to be *S* according to above HPLCs.

4. General procedure for the synthesis of substrates.

Secondary phosphine oxides were synthesized according to the previous procedure^{S2-S5}. Bromoalkynes were synthesized according to the previous procedure^{S6}.

5. Asymmetric synthesis of alkynyl phosphines.

General procedure: Under N₂, to a 4 mL vial equipped with a stirrer bar were added secondary phosphine oxide (2 equiv., 0.2 mmol), PhSiH₃ (2 equiv., 0.2 mmol, 24 uL) and 0.5 mL mesitylene. Then mixture was stirred for 15 hours at 70 °C and then cooled down to r.t. NaOAc (2.5 equiv., 0.25 mmol, 20.5 mg) was added and the vial was stirred for 1 hour. To the reaction mixture were added a precooled (°C) stock solution of Ni(COD)₂ (5 mol%, 1.4 mg), (*S*, *S*)-Et-Duphos (6 mol%, 2.2 mg) in mesitylene (0.5 mL) and bromoalkynes (1 equiv., 0.1 mmol). The reaction was stirred for 72-96 hours at 0 °C until the disappearance of bromoalkynes indicated by TLC. The reaction was quenched with H₂O₂ (0.2 mL, 30% aqueous solution) or S₈ (16 mg, 0.5 mmol) or BH₃-SMe₂ (0.2 mmol), stirred for additional 3 hours (for 3 H₂O₂) or 6 hours (for S₈) at room temperature or 1 hour at 0 °C (for BH₃-SMe₂). The reaction mixture was separated directly by preparative thin-layer chromatography to afford the corresponding product **3**.

Racemic 3 were synthesized according to the following procedure: Under N₂, to a 4 mL vial equipped with a stirrer bar were added secondary phosphine oxide (1 equiv., 0.1 mmol), PhSiH₃ (1 equiv., 0.1 mmol, 12 uL) and 1 mL mesitylene. Then vial was stirred for 15 hours at 70 °C and then cooled down to r.t. NaOAc (2.5 equiv., 0.25 mmol, 20.5 mg), Ni(COD)₂ (5 mol%, 1.4 mg), DPPP (6 mol%, 2.7 mg), and bromoalkynes (1 equiv., 0.1 mmol) were added to the reaction mixture which was then stirred for 24 hours at r.t. until the disappearance of bromoalkynes indicated by TLC. The reaction was quenched with H₂O₂ (0.2 mL, 30% aqueous solution) or S₈ (16 mg, 0.5 mmol) or BH₃-SMe₂ (0.2 mmol), stirred for additional 3 hours (for 3 H₂O₂) or 6 hours (for S₈) at room temperature BH₃-SMe₂ (0.2 mmol). The reaction mixture was separated directly by preparative thin-layer chromatography to afford the corresponding racemic product.

6. Synthetic applications.

6.1 Gram-scale reaction.

Under N₂, to a 100 mL flask equipped with a stirrer bar were added secondary phosphine oxides **1n** (1 equiv., 5 mmol, 970 mg), PhSiH₃ (1 equiv., 5 mmol, 600 uL) and 25 mL mesitylene. Then flask was stirred for 24 hours at 70 °C and then cooled down to r.t. followed by the addition of NaOAc (1.5 equiv., 7.5 mmol, 615 mg). The reaction mixture was stirred for 1 hour and then cooled down to 0 °C. To the reaction mixture were added a precooled (°C) stock solution of Ni(COD)₂ (5 mol%, 70 mg), (*S*, *S*)-Et-Duphos (6 mol%, 110 mg) in mesitylene (0.5 mL) and bromoalkynes **2a** (1 equiv., 5 mmol). The reaction was stirred for 96 hours at 0 °C until the disappearance of bromoalkynes indicated by TLC. The reaction was quenched with S₈ (800 mg, 75 mmol), stirred for additional 12 hours at room temperature. The reaction mixture was separated directly by preparative thin-layer chromatography to afford the corresponding product **3na** (842 mg, 54% yield, 87% ee).

6.2 1,2-Addition.

The alkynyl phosphine oxide **3na-O** (0.2 mmol, 59 mg), H₂O (1 mmol, 18 mg) and PdCl₂ (0.02 mmol, 3.5 mg) were dissolved in 1,4-dioxane (2 mL) in a 4 mL vial and stirred at 80 °C for 24 h. The resulting mixture was concentrated under vacuum and the crude product was purified by silica gel chromatography with petroleum ether and ethyl acetate as the eluent to afford the corresponding product **4** (45.9 mg, 73% yield, and 84% ee).

6.3 Radical addition/cyclization.

Under N₂, to a 10 mL flask equipped with a stirrer bar was added alkynyl phosphine oxide **3ba** (0.2 mmol, 56 mg), Ph₂P(O)H (0.6 mmol, 122 mg), K₂S₂O₈ (1 mmol, 270 mg) and 5 mL CH₃CN. The reaction mixture was stirred at 90 °C for 24 h. The mixture was cooled down to room temperature and subjected to flash chromatography (petroleum ether/ethyl acetate) to afford the corresponding product **5** (56.0 mg, 58% yield, 86% ee, and 3:1 dr).

6.4 Synthesis of *P*-stereogenic phosphepines.

Under N₂, to a mixture of alkynyl phosphine oxide **3wp** (2 mmol, 876 mg) and Na₂HPO₄ (4 mmol, 568 mg) in MeCN (20 mL) was added ICl (6 mmol, 972 mg) dropwise. The reaction was stirred at room temperature for 1 h, and was then quenched by Na₂S₂O₃ (10 % aq., 10 mL), diluted with ethyl acetate (10 mL). The organic phase was sequentially washed with water, brine, dried with anhydrous MgSO₄ and filtered. The filtration was concentrated under reduced pressure to give the crude product which was used directly without further purification. To the crude product, (4-methoxyphenyl) boronic acid (4 mmol, 608 mg) and K₂CO₃(4 mmol, 553 mg) in degassed solvents (DMF/H₂O= 9 mL/1 mL) was added Pd(PPh₃)₄ (0.2 mmol, 115 mg). The reaction mixture was heated at 90 °C under nitrogen for 30 h. The solution was cooled to room temperature and was added saturated aqueous NH₄Cl (10 mL). The mixture was extracted with ethyl acetate (10 mL), the organic phase was washed with water, brine, dried with

anhydrous MgSO₄ and filtered. The filtration was concentrated under reduced pressure to give a crude product which was purified by column chromatography on silica gel to give the corresponding product **6** with 560 mg, 53% yield, and 64% ee (317 mg, 30% yield, and 99% ee from recrystallization by EA and Et₂O).

6.5 Measurements of photoluminescence (PL) spectra.

Sample solutions were prepared according to the following procedure: **6** (1.6 mg, 3×10^{-3} mmol) was respectively dissolve in 30 mL 0%, 30%, 60%, and 90% (different water fractions) THF/water mixtures.

6.6 Preparation of chiral composite films.

The composite films were prepared as follows. **6** (10 mg) and PMMA (0.5g) were dissolved in 6 mL CHCl₃ and cast onto a glass petri dish. The CHCl₃ was then evaporated under ambient condition and the film with a uniform thickness of approximately 0.3 mm were obtained.

7. Spectroscopic data of products.

Colorless oil, $R_f = 0.31$ (PE/EA = 2:1), 80% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.96 - 7.88 (m, 2H), 7.60 - 7.53 (m, 3H), 7.53 - 7.47 (m, 2H), 7.42 (t, J = 7.5 Hz, 1H), 7.36 (t, J = 7.4 Hz, 2H), 2.29 – 2.17 (m, 1H), 1.27 (dd, J = 12.7, 6.2 Hz, 3H), 1.23 (dd, 3aa J = 12.3, 6.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 132.38 (d, J = 1.4 Hz), 132.14 (d, J = 2.7 Hz), 130.92 (d, J = 9.8 Hz), 130.67 (d, J = 112.2 Hz), 130.54 (s), 128.54 (s), 128.48 (d, J = 112.2 Hz), 130.54 (s), 128.54 (s), 128.48 (d, J = 112.2 Hz), 130.54 (s), 128.54 (s), 128.48 (d, J = 112.2 Hz), 130.54 (s), 128.54 (s), 12813.1 Hz), 119.90 (d, J = 3.7 Hz), 104.18 (d, J = 25.6 Hz), 81.58 (d, J = 152.1 Hz), 31.48 (d, J = 84.3 Hz), 15.51 (d, J = 1.6 Hz), 15.10 (d, J = 2.2 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 25.49. HRMS (ESI) calcd for C₁₇H₁₈OP⁺ [M+H] ⁺ 269.1090, Found 269.1099. The enantiomeric excess was determined by Daicel Chiralcel OJ-H (78% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 254$ nm, *t* (major) = 7.71 min, *t* (minor) = 6.00 min. $[\alpha]_D^{20}$ = -2.5 (*c* = 0.76, acetone).

Colorless oil, $R_f = 0.35$ (PE/EA = 2:1), 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.97 -7.89 (m, 2H), 7.60 (dt, J = 4.4, 1.9 Hz, 2H), 7.58 -7.54 (m, 1H), 7.53 -7.47 (m, 2H), 7.46 (dd, *J* = 6.9, 4.6 Hz, 1H), 7.42 – 7.36 (m, 2H), 1.25 (d, *J* = 16.8 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 132.52 (d, J = 1.3 Hz), 132.13 (d, J = 2.7 Hz), 132.03

 $(d, J = 9.4 \text{ Hz}), 130.56 \text{ (s)}, 129.55 \text{ (d}, J = 109.3 \text{ Hz}), 128.62 \text{ (s)}, 128.20 \text{ (d}, J = 12.1 \text{ Hz}), 120.16 \text{$ 3.6 Hz), 104.41 (d, J = 24.3 Hz), 81.32 (d, J = 149.2 Hz), 34.13 (d, J = 83.1 Hz), 23.91 (s). ³¹P NMR $(162 \text{ MHz}, \text{CDCl}_3) \delta 31.30$. HRMS (ESI) calcd for $C_{18}H_{20}\text{OP}^+$ [M+H] + 283.1246, Found 283.1259. The enantiomeric excess was determined by Daicel Chiralcel OJ-H (86% ee), n-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 262$ nm, t (major) = 6.74 min, t (minor) = 5.40 min. $[\alpha]_{D}^{20} = -22.1$ (c = 0.38, acetone).

Ph

Colorless oil, $R_f = 0.3$ (PE/EA = 2:1), 76% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.92-7.88 (m, 2H), 7.60-7.58 (m, 2H), 7.57 - 7.54 (m, 1H), 7.54 - 7.48 (m, 2H), 7.47 -7.41 (m, 1H), 7.40 - 7.35 (m, 2H), 2.06 - 1.91 (m, 3H), 1.88-1.79 (m, 2H), 1.73-1.66

(m, 1H), 1.50 – 1.35 (m, 2H), 1.32 – 1.14 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 3ca 132.49 (d, J = 1.5 Hz), 132.09 (d, J = 2.7 Hz), 131.03 (d, J = 9.9 Hz), 130.85 (d, J = 112.2 Hz), 130.52 (s), 128.57 (s), 128.49 (d, J = 12.7 Hz), 120.12 (d, J = 3.7 Hz), 104.13 (d, J = 25.3 Hz), 81.95 (d, J = 25.3 Hz) 152.4 Hz), 41.38 (d, J = 84.8 Hz), 26.21 (d, J = 4.3 Hz), 26.09 (d, J = 3.9 Hz), 25.78 (d, J = 1.3 Hz), 25.31 (d, J = 2.6 Hz), 24.90 (d, J = 2.5 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 22.58. HRMS (ESI) calcd for C₂₀H₂₂OP⁺ [M+H] ⁺ 309.1403, Found 309.1407. The enantiomeric excess was determined by Daicel Chiralcel IA-H (74% ee), *n*-Hexanes/IPA = 75/25, 1 mL/min, $\lambda = 250$ nm, *t* (major) = 16.76 min, *t* (minor) = 12.87 min. $[\alpha]_D^{20} = 0.4$ (*c* = 1.02, acetone).

Colorless oil, $R_f = 0.2$ (PE/EA = 2:1), 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.96 - 7.87 (m, 2H), 7.60 - 7.49 (m, 5H), 7.47 - 7.41 (m, 1H), 7.40 - 7.34 (m, 2H), 2.15 (dq, J = 15.1, 7.6 Hz, 2H), 1.25 (dt, J = 20.1, 7.6 Hz, 3H). ¹³C NMR (126 MHz, 3da CDCl₃) δ 132.47 (d, J = 1.6 Hz), 132.22 (d, J = 2.7 Hz), 131.86 (d, J = 115.2 Hz), 130.56 (d, J = 3.6 Hz), 130.46 (s), 128.69 (d, J = 12.9 Hz), 128.58 (s), 120.01 (d, J = 3.7 Hz), 103.88 (d, J = 12.9 Hz), 128.58 (s), 120.01 (d, J = 3.7 Hz), 103.88 (d, J = 12.9 Hz), 128.58 (s), 120.01 (d, J = 3.7 Hz), 103.88 (d, J = 12.9 Hz), 128.58 (s), 120.01 (d, J = 3.7 Hz), 103.88 (d, J = 12.9 Hz), 128.58 (s), 120.01 (d, J = 3.7 Hz), 103.88 (d, J = 12.9 Hz), 128.58 (s), 120.01 (d, J = 3.7 Hz), 103.88 (d, J = 12.9 Hz), 128.58 (s), 120.01 (d, J = 3.7 Hz), 103.88 (d, J = 12.9 Hz), 128.58 (s), 120.01 (d, J = 3.7 Hz), 103.88 (d, J = 12.9 Hz), 128.58 (s), 120.01 (d, J = 3.7 Hz), 103.88 (d, J = 12.9 Hz), 128.58 (s), 120.01 (d, J = 3.7 Hz), 103.88 (

J = 27.5 Hz), 82.48 (d, J = 156.6 Hz), 27.01 (d, J = 85.1 Hz), 6.10 (d, J = 5.2 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 18.93. HRMS (ESI) calcd for C₁₆H₁₆OP⁺ [M+H] ⁺ 255.0933, Found 255.0943. The enantiomeric excess was determined by Daicel Chiralcel OJ-H (29% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, λ = 262 nm, *t* (major) = 9.14 min, *t* (minor) = 7.80 min. [α]_D²⁰ = -2.1 (*c* = 1.02, acetone).

Colorless oil, $R_f = 0.30$ (PE/EA = 30:1), 76% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (dd, J = 13.4, 7.3 Hz, 2H), 7.61 (d, J = 7.3 Hz, 2H), 7.57-7.43 (m, 4H), 7.42-7.36 (m, 2H), 1.28 (d, J = 18.6 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 132.45 (d, J = 2.1 Hz), 132.35 (d, J = 10.4 Hz), 131.84 (d, J = 3.2 Hz), 130.51 (s), 129.66 (d, J = 83.8 Hz), 128.60 (s), 128.10 (d, J = 12.6 Hz), 120.42 (d, J = 4.2 Hz), 105.33 (d, J = 20.5 Hz), 80.20 (d, J = 135.8 Hz), 36.69 (d, J = 59.9 Hz), 24.33 (d, J = 2.8 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 45.70. HRMS (ESI) calcd for C₁₈H₂₀PS⁺ [M+H] ⁺ 299.1018, Found 299.1025. The enantiomeric excess was determined by Daicel Chiralcel AD-H (86% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 254$ nm, *t* (major) = 6.88 min, *t* (minor) = 5.44 min. [α]_D²⁰ = -16.4 (*c* = 1.24, acetone).

Colorless oil, $R_f = 0.30$ (PE/EA = 10:1), 68% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.95 – 7.86 (m, 2H), 7.62 – 7.58 (m, 2H), 7.53 (dd, J = 8.1, 2.4 Hz, 1H), 7.51 – 7.46 (m, 2H), 7.46 – 7.42 (m, 1H), 7.41 – 7.37 (m, 2H), 1.23 (d, J = 15.5 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 133.34 (d, J = 9.9 Hz), 132.41 (d, J = 1.5 Hz), 131.56 (d, J = 2.6 Hz), 130.29 (s), 128.58 (s), 128.39 (d, J = 10.6 Hz), 125.98 (d, J = 57.0

Hz), 120.81 (d, J = 3.0 Hz), 108.05 (d, J = 12.9 Hz), 77.85 (d, J = 99.9 Hz), 31.36 (d, J = 35.3 Hz), 25.27 (d, J = 3.5 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 25.41 (dd, J = 40.4, 17.2 Hz). HRMS (ESI) calcd for C₁₈H₂₂BNaP⁺ [M+Na] ⁺ 303.1444, Found 303.1459. The enantiomeric excess was determined by Daicel Chiralcel IA-H (84% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 252$ nm, *t* (major) = 5.64 min, *t* (minor) = 4.39 min. [α]_D²⁰ = 67.5 (*c* = 1.20, acetone).

Colorless oil, $R_f = 0.30$ (PE/EA = 10:1), 78% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.97 (ddd, J = 9.5, 6.8, 2.3 Hz, 2H), 7.61 – 7.58 (m, 2H), 7.47 – 7.42 (m, 1H), 7.41 – 7.36 (m, 2H), 7.02 – 6.97 (m, 2H), 3.86 (s, 3H), 1.27 (d, J = 18.6 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 162.57 (d, J = 3.2 Hz),

134.17 (d, J = 12.1 Hz), 132.41 (d, J = 1.7 Hz), 130.45 (s), 128.59 (s), 120.48 (d, J = 93.8 Hz), 120.47 (d, J = 4.1 Hz), 113.67 (d, J = 13.8 Hz), 104.93 (d, J = 20.5 Hz), 80.52 (d, J = 134.8 Hz), 55.46 (s), 36.82 (d, J = 61.3 Hz), 24.32 (d, J = 2.8 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 44.88. HRMS (ESI) calcd for C₁₉H₂₂OPS⁺ [M+H] ⁺ 329.1123, Found 329.1127. The enantiomeric excess was determined by Daicel Chiralcel AD-H (76% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 254$ nm, *t* (major) = 14.92 min, *t* (minor) = 8.47 min. [α]_D²⁰ = +3.4 (*c* =0.19, acetone)

Colorless oil, $R_f = 0.30$ (PE/EA = 30:1), 73% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.01 – 7.95 (m, 2H), 7.61 – 7.58 (m, 2H), 7.50 (dd, J = 8.5, 2.9 Hz, 2H), 7.46 – 7.42 (m, 1H), 7.38 (dd, J = 8.0, 6.7 Hz, 2H), 1.34 (s, 9H), 1.28 (d, J = 18.6 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 155.34 (d, J = 3.3 Hz), 132.41 (d, J =

1.7 Hz), 132.26 (d, J = 10.8 Hz), 130.45 (s), 128.59 (s), 126.31 (d, J = 89.8 Hz), 125.17 (d, J = 12.9 Hz), 120.49 (d, J = 3.8 Hz), 104.99 (d, J = 20.7 Hz), 80.49 (d, J = 134.6 Hz), 36.69 (d, J = 60.1 Hz), 34.98 (s), 31.17 (s), 24.37 (d, J = 3.0 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 45.28. HRMS (ESI) calcd for C₂₂H₂₈PS⁺ [M+H] ⁺ 355.1644, Found 355.1646. The enantiomeric excess was determined by Daicel

Chiralcel IB-H (90% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 254$ nm, *t* (major) = 7.29 min, *t* (minor) = 4.48 min. [α]_D²⁰ = +3.4 (*c* =4.80, acetone).

Colorless oil, $R_f = 0.35$ (PE/EA = 30:1), 72% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.94 (dd, J = 13.3, 8.1 Hz, 2H), 7.62 – 7.59 (m, 2H), 7.47 – 7.43 (m, 1H), 7.39 (dd, J = 11.5, 4.4 Hz, 2H), 7.30 (dd, J = 8.0, 2.7 Hz, 2H), 2.42 (s, 3H), 1.27 (d, J = 18.6 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 142.40 (d, J = 3.0

Hz), 132.43 (d, J = 2.0 Hz), 132.33 (s), 130.43 (s), 128.86 (d, J = 13.1 Hz), 128.58 (s), 126.30 (d, J = 89.9 Hz), 120.52 (d, J = 3.7 Hz), 105.04 (d, J = 20.6 Hz), 80.43 (d, J = 134.8 Hz), 36.68 (d, J = 60.4 Hz), 24.34 (d, J = 2.8 Hz), 21.54 (s). ³¹P NMR (202 MHz, CDCl₃) δ 45.46. HRMS (ESI) calcd for C₁₉H₂₂PS⁺ [M+H] ⁺ 313.1174, Found 313.1178. The enantiomeric excess was determined by Daicel Chiralcel OD-H (84% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 254$ nm, *t* (major) = 9.89 min, *t* (minor) = 5.06 min. $[\alpha]_D^{20} = -10.2$ (*c* =0.80, acetone).

Colorless oil, $R_f = 0.35$ (PE/EA = 30:1), 68% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.07 (ddd, J = 12.9, 8.6, 5.5 Hz, 2H), 7.61 (d, J = 7.2 Hz, 2H), 7.47 (t, J = 7.5 Hz, 1H), 7.40 (t, J = 7.5 Hz, 2H), 7.19 (td, J = 8.6, 2.0 Hz, 2H), 1.27 (d, J = 18.8 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 165.14 (dd, J = 12.9 Min (126 MHz, CDCl₃) δ 165.14 (dd, J = 12.9 Min (126 MHz, CDCl₃) δ 165.14 (dd, J = 12.9 Min (126 MHz, CDCl₃) δ 165.14 (dd, J = 12.9 Min (126 MHz, CDCl₃) δ 165.14 (dd, J = 12.9 Min (126 MHz, CDCl₃) δ 165.14 (dd, J = 12.9 Min (126 MHz, CDCl₃) δ 165.14 (dd, J = 12.9 Min (126 MHz, CDCl₃) δ 165.14 (dd, J = 12.9 Min (126 MHz, CDCl₃) δ 165.14 (dd, J = 12.9 Min (126 MHz, CDCl₃) δ 165.14 (dd, J = 12.9 Min (126 MHz, CDCl₃) δ 165.14 (dd, J = 12.9 Min (126 MHz, CDCl₃) δ 165.14 (dd, J = 12.9 Min (126 MHz, CDCl₃) δ 165.14 (dd, J = 12.9 Min (126 Min (126 Min (126 Mz)) (128 Mz) (1

253.8, 3.6 Hz), 134.81 (dd, J = 12.3, 8.9 Hz), 132.45 (d, J = 1.9 Hz), 130.63 (s), 128.63 (s), 125.58 (dd, J = 90.4, 3.4 Hz), 120.24 (d, J = 3.8 Hz), 115.42 (dd, J = 21.4, 13.9 Hz), 105.56 (d, J = 21.1 Hz), 79.99 (d, J = 136.6 Hz), 36.79 (d, J = 60.9 Hz), 24.28 (d, J = 2.8 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 44.70. ¹⁹F NMR (471 MHz, CDCl₃) δ -107.33. HRMS (ESI) calcd for C₁₈H₁₉FPS⁺ [M+H] ⁺ 317.0924, Found 317.0938. The enantiomeric excess was determined by Daicel Chiralcel AD-H (90% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 254$ nm, *t* (major) = 7.07 min, *t* (minor) = 5.47 min. [α]_D²⁰ = -20.2 (*c* = 0.59, acetone).

Colorless oil, $R_f = 0.25$ (PE/EA = 30:1), 64% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.00 (dd, J = 12.8, 8.4 Hz, 2H), 7.60 (d, J = 7.3 Hz, 2H), 7.50-7.45 (m, 3H), 7.40 (t, J = 7.5 Hz, 2H), 1.27 (d, J = 18.8 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 138.57 (d, J = 3.6 Hz), 133.73 (d, J = 11.8 Hz), 132.47 (d, J = 1.7 Hz), 130.66

(s), 128.64 (s), 128.41 (d, J = 13.4 Hz), 128.39 (d, J = 88.4 Hz), 120.18 (d, J = 4.1 Hz), 105.71 (d, J = 21.2 Hz), 79.79 (d, J = 136.8 Hz), 36.81 (d, J = 60.6 Hz), 24.27 (d, J = 2.8 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 44.88. HRMS (ESI) calcd for C₁₈H₁₉ClPS⁺ [M+H] ⁺ 333.0628, Found 333.0631. The enantiomeric excess was determined by Daicel Chiralcel AD-H (83% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 254$ nm, *t* (major) = 8.18 min, *t* (minor) = 5.61 min. [α]_D²⁰ = -16.2 (*c* = 0.63, acetone).

Colorless oil, $R_f = 0.35$ (PE/EA = 30:1), 63% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.21 (dd, J = 12.8, 8.1 Hz, 2H), 7.76 (d, J = 6.5 Hz, 2H), 7.62 (d, J = 8.3 Hz, 2H), 7.48 (t, J = 7.5 Hz, 1H), 7.41 (t, J = 7.5 Hz, 2H), 1.29 (d, J = 18.9 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 134.48 (d, J = 84.8 Hz), 133.59

(qd, J = 32.9, 3.3 Hz), 132.87 (d, J = 11.0 Hz), 132.49 (d, J = 2.1 Hz), 130.82 (s), 128.69 (s), 125.10 – 124.81 (m), 123.63 (q, J = 273.0 Hz), 119.99 (d, J = 4.1 Hz), 106.18 (d, J = 21.5 Hz), 79.45 (d, J = 138.0 Hz), 36.86 (d, J = 60.0 Hz), 24.25 (d, J = 2.7 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 44.96. ¹⁹F NMR (471 MHz, CDCl₃) δ -63.07. HRMS (ESI) calcd for C₁₉H₁₉F₃PS⁺ [M+H] ⁺367.0892, Found 367.0900. The

enantiomeric excess was determined by Daicel Chiralcel AD-H (84% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 254$ nm, *t* (major) = 6.10 min, *t* (minor) = 4.53 min. [α]_D²⁰ = -22.9 (*c* = 0.70, acetone).

Colorless oil, $R_f = 0.3$ (PE/EA = 40:1), 64% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.85 (dd, J = 19.2, 10.9 Hz, 2H), 7.61 (d, J = 7.1 Hz, 2H), 7.46 (t, J = 7.4 Hz, 1H), 7.43 – 7.31 (m, 4H), 2.43 (s, 3H), 1.27 (d, J = 18.6 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 138.00 (d, J = 13.0 Hz), 132.75 (d, J = 11.5 Hz), 132.68 (d, J = 3.4 Hz), 132.44 (d, J = 1.6 Hz), 130.44 (s), 129.50 (d, J = 10.2 Hz),

129.44 (d, J = 87.2 Hz), 128.58 (s), 127.90 (d, J = 13.4 Hz), 120.52 (d, J = 3.9 Hz), 105.21 (d, J = 20.9 Hz), 80.36 (d, J = 135.2 Hz), 36.66 (d, J = 60.1 Hz), 24.37 (d, J = 2.8 Hz), 21.54 (s). ³¹P NMR (202 MHz, CDCl₃) δ 45.80. HRMS (ESI) calcd for C₁₉H₂₂PS⁺ [M+H] ⁺ 313.1174, Found 313.1178. The enantiomeric excess was determined by Daicel Chiralcel OJ-H (75% ee), *n*-Hexanes/IPA = 80/20, 1 mL/min, $\lambda = 254$ nm, *t* (major) = 9.84 min, *t* (minor) = 4.67 min. [α]_D²⁰ = -14.5 (*c* = 1.00, acetone).

Colorless oil, $R_f = 0.25$ (PE/EA = 30:1), 70% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.85 (dd, J = 12.8, 7.7 Hz, 1H), 7.82 – 7.75 (m, 1H), 7.63 – 7.57 (m, 2H), 7.52 – 7.43 (m, 2H), 7.39 (t, J = 7.4 Hz, 2H), 7.27 – 7.20 (m, 1H), 1.32 – 1.24 (m, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 162.22 (dd, J = 249.9, 17.5 Hz), 132.71 (dd,

J = 86.2, 5.7 Hz).132.46 (d, J = 1.7 Hz), 130.75 (s), 129.96 (dd, J = 14.6, 7.5 Hz), 128.07 (dd, J = 9.9, 2.9 Hz), 120.08 (d, J = 3.8 Hz), 119.28 (dd, J = 23.3, 12.0 Hz), 119.03 (dd, J = 21.3, 2.6 Hz), 105.81 (d, J = 21.3 Hz), 79.67 (d, J = 137.6 Hz), 36.85 (d, J = 59.9 Hz), 24.30 (d, J = 2.7 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 46.14. ¹⁹F NMR (471 MHz, CDCl₃) δ -111.37. HRMS (ESI) calcd for C₁₈H₂₂PS⁺ [M+H] ⁺ 317.0924, Found 317.0928. The enantiomeric excess was determined by Daicel Chiralcel OD-H (82% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, λ = 254 nm, *t* (major) = 8.40 min, *t* (minor) = 6.36 min. [α]_D²⁰ = -10.73 (*c* = 1.24, acetone).

Colorless oil, $R_f = 0.30$ (PE/EA = 30:1), 68% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.21 (dd, J = 15.6, 7.6 Hz, 1H), 7.62 – 7.57 (m, 2H), 7.47 – 7.42 (m, 1H), 7.40 (q, J = 7.4 Hz, 3H), 7.30 (t, J = 7.6 Hz, 1H), 7.27 – 7.23 (m, 1H), 2.89 (s, 3H), 1.32 (d, J = 18.6 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 142.79 (d, J = 10.8 Hz),

134.77 (d, J = 11.8 Hz), 132.85 (d, J = 11.8 Hz), 132.21 (d, J = 1.7 Hz), 131.71 (d, J = 2.8 Hz), 130.36 (s), 128.58 (s), 126.27 (d, J = 83.3 Hz), 125.36 (d, J = 12.5 Hz), 120.74 (d, J = 3.7 Hz), 106.17 (d, J = 20.8 Hz), 81.94 (d, J = 136.6 Hz), 38.64 (d, J = 58.9 Hz), 24.75 (d, J = 3.2 Hz), 23.20 (d, J = 2.8 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 46.72. HRMS (ESI) calcd for C₁₉H₂₂PS⁺ [M+H] ⁺ 313.1174, Found 313.1181. The enantiomeric excess was determined by Daicel Chiralcel AD-H (90% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 254$ nm, *t* (major) = 7.60 min, *t* (minor) = 5.56 min. [α]_D²⁰ = -31.4 (*c* = 0.61, acetone).

Colorless oil, $R_f = 0.30$ (PE/EA = 10:1), 73% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.27 (ddd, J = 16.7, 7.8, 1.7 Hz, 1H), 7.59 – 7.55 (m, 2H), 7.51 (ddd, J = 8.9, 2.8, 1.4 Hz, 1H), 7.44 – 7.39 (m, 1H), 7.39 – 7.34 (m, 2H), 7.10 (td, J = 8.1, 1.4 Hz, 1H), 6.95 (dd, J = 8.1, 5.7 Hz, 1H), 3.87 (s, 3H), 1.31 (d, J = 19.2 Hz, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 160.68 (d, J = 1.8 Hz), 136.40 (d, J = 10.8 Hz), 134.03 (d, J = 2.1 Hz), 132.20 (d, J = 1.7 Hz), 130.02 (s), 128.50 (s), 121.22 (d, J = 4.3 Hz), 120.74 (d, J = 13.4 Hz), 117.28 (d, J = 1.7 Hz), 120.74 (d, J = 13.4 Hz), 117.28 (d, J = 1.7 Hz), 120.74 (d,

J = 84.5 Hz), 111.87 (d, J = 6.4 Hz), 104.21 (d, J = 23.0 Hz), 81.40 (d, J = 142.7 Hz), 55.47 (s), 38.08 (d, J = 61.6 Hz), 24.98 (d, J = 3.6 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 41.45. HRMS (ESI) calcd for C₁₉H₂₂OPS⁺ [M+H] ⁺ 329.1123, Found 329.1128. The enantiomeric excess was determined by Daicel Chiralcel IB-H (76% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 254$ nm, *t* (major) = 6.97 min, *t* (minor) = 5.93 min. [α]_D²⁰ = -31.4 (*c* = 0.61, acetone).

Colorless oil, $R_f = 0.15$ (PE/EA = 10:1), 56% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.63-7.59 (m, 3H), 7.50 (dd, J = 12.6, 1.5 Hz, 1H), 7.48 – 7.43 (m, 1H), 7.42 – 7.37 (m, 2H), 6.92 (dd, J = 8.0, 2.5 Hz, 1H), 6.05 (s, 2H), 1.27 (d, J = 18.7 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 150.90 (d, J = 2.7 Hz), 147.67 (d, J = 19.4

Hz), 132.44 (d, J = 1.7 Hz), 130.49 (s), 128.59 (s), 127.87 (d, J = 12.0 Hz), 122.64 (d, J = 91.7 Hz), 120.39 (d, J = 4.1 Hz), 112.04 (d, J = 14.1 Hz), 108.17 (d, J = 16.0 Hz), 105.18 (d, J = 21.1 Hz), 101.78 (s), 80.32 (d, J = 135.8 Hz), 36.93 (d, J = 60.9 Hz), 24.39 (d, J = 2.8 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 45.96. HRMS (ESI) calcd for C₁₉H₂₀O₂PS⁺ [M+H] ⁺ 343.0916, Found 343.0919. The enantiomeric excess was determined by Daicel Chiralcel AD-H (86% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 254$ nm, *t* (major) = 6.88 min, *t* (minor) = 5.44 min. [α]_D²⁰ = -1.9 (*c* = 0.30, acetone).

White solid, $R_f = 0.30$ (PE/EA = 20:1), 60% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.63 (d, J = 15.8 Hz, 1H), 8.09 – 8.02 (m, 1H), 7.97 (d, J = 7.9 Hz, 1H), 7.92 (dd, J = 8.5, 3.1 Hz, 1H), 7.88 (d, J = 7.9 Hz, 1H), 7.65 – 7.61 (m, 2H), 7.61 – 7.53 (m, 2H), 7.45 (t, J = 7.4 Hz, 1H), 7.39 (t, J = 7.4 Hz, 2H), 1.31 (d,

J = 18.7 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 134.73 (d, J = 2.5 Hz), 134.29 (d, J = 10.8 Hz), 132.50 (d, J = 1.7 Hz), 132.27 (d, J = 14.1 Hz), 130.60 (s), 129.09 (s), 128.67 (s), 128.33 (s), 127.80 (s), 127.70 (s), 127.33 (d, J = 11.0 Hz), 127.00 (s), 126.82 (d, J = 87.4 Hz), 120.42 (d, J = 4.2 Hz), 105.55 (d, J = 21.0 Hz), 80.35 (d, J = 135.4 Hz), 37.08 (d, J = 60.4 Hz), 24.47 (d, J = 2.7 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 45.80. HRMS (ESI) calcd for C₂₂H₂₂PS⁺ [M+H] ⁺ 349.1174, Found 349.1182. The enantiomeric excess was determined by Daicel Chiralcel AD-H (80% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 254$ nm, *t* (major) = 13.02 min, *t* (minor) = 7.53 min. [α]_D²⁰ = -0.7 (*c* = 0.30, acetone).

Colorless oil, $R_f = 0.20$ (PE/EA = 30:1), 41% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.77 – 7.70 (m, 2H), 7.59 (d, J = 7.3 Hz, 2H), 7.45 (t, J = 7.4 Hz, 1H), 7.39 (t, J = 7.5 Hz, 2H), 7.22 – 7.18 (m, 1H), 1.35 (d, J = 19.7 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 136.94 (d, J = 10.1 Hz), 133.94 (s), 132.44 (d, J = 1.7 Hz), 132.37

(d, J = 97.2 Hz), 130.57 (s), 128.58 (s), 128.20 (d, J = 14.6 Hz), 120.24 (d, J = 3.9 Hz), 104.67 (d, J = 22.1 Hz), 80.80 (d, J = 138.8 Hz), 37.16 (d, J = 65.0 Hz), 24.30 (d, J = 3.0 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 35.51. HRMS (ESI) calcd for C₁₆H₁₈PS₂⁺ [M+H] ⁺ 305.0582, Found 305.0592. The enantiomeric excess was determined by Daicel Chiralcel AD-H (72% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 254$ nm, *t* (major) = 8.00 min, *t* (minor) = 7.42 min. [α]_D²⁰ = -13.0 (*c* = 0.75, acetone).

Colorless oil, $R_f = 0.2$ (PE/EA = 30:1), 63% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.15 (dd, J = 15.1, 8.4 Hz, 1H), 7.62 – 7.56 (m, 2H), 7.46 (t, J = 4.9 Hz, 1H), 7.40 (t, J = 7.4 Hz, 2H), 7.29 (d, J = 8.5 Hz, 1H), 7.26 (d, J = 3.7 Hz, 1H), 2.87 (s, 3H), 1.31 (d, J = 18.8 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 144.62

(d, J = 11.8 Hz), 137.98 (d, J = 3.6 Hz), 136.24 (d, J = 12.8 Hz), 132.56 (d, J = 12.0 Hz), 132.23 (d, J = 12.0 Hz), 132.24 (d, J = 12.0 Hz), 132.24 (d, J = 12.0 Hz), 132.23 (d, J = 12.0 Hz), 132.24 (d, J = 12.0 Hz), 132.

2.2 Hz), 130.55 (s), 128.64 (s), 125.63 (d, J = 13.5 Hz), 125.03 (d, J = 84.6 Hz), 120.47 (d, J = 3.8 Hz), 106.61 (d, J = 21.5 Hz), 81.48 (d, J = 137.9 Hz), 38.75 (d, J = 59.3 Hz), 24.68 (d, J = 3.2 Hz), 23.09 (d, J = 2.6 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 46.04. HRMS (ESI) calcd for C₁₉H₂₁ClPS⁺ [M+H] ⁺ 347.0785, Found 347.0790. The enantiomeric excess was determined by Daicel Chiralcel AD-H (90% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 254$ nm, *t* (major) = 8.44 min, *t* (minor) = 5.50 min. [α]_D²⁰ = -13.0 (*c* = 0.75, acetone).

 $\begin{array}{l} & \text{Colorless oil, } R_f = 0.25 \text{ (PE/EA} = 30:1), 58\% \text{ yield. }^{1}\text{H NMR} (500 \text{ MHz, CDCl}_3) \\ & \delta 8.02 \text{ (d, } J = 16.3 \text{ Hz}, 1\text{H}), 7.59 \text{ (d, } J = 7.1 \text{ Hz}, 2\text{H}), 7.44 \text{ (t, } J = 7.4 \text{ Hz}, 1\text{H}), \\ & 7.39 \text{ (t, } J = 7.4 \text{ Hz}, 2\text{H}), 7.21 \text{ (d, } J = 7.6 \text{ Hz}, 1\text{H}), 7.17 - 7.10 \text{ (m, 1H)}, 2.83 \text{ (s, } \\ & 3\text{H}), 2.36 \text{ (s, 3H)}, 1.32 \text{ (d, } J = 18.6 \text{ Hz}, 9\text{H}). \, ^{13}\text{C NMR} (126 \text{ MHz, CDCl}_3) \delta \end{array}$

139.42 (d, *J* = 10.1 Hz), 135.12 (d, *J* = 12.0 Hz), 134.88 (d, *J* = 12.8 Hz), 132.77 (d, *J* = 12.4 Hz), 132.60 (d, *J* = 3.0 Hz), 132.16 (d, *J* = 1.7 Hz), 130.36 (s), 128.61 (s), 125.86 (d, *J* = 82.8 Hz), 120.79 (d, *J* = 4.0 Hz), 106.18 (d, *J* = 21.0 Hz), 82.04 (d, *J* = 136.0 Hz), 38.57 (d, *J* = 59.1 Hz), 24.76 (d, *J* = 2.9 Hz), 22.77 (d, *J* = 2.9 Hz), 21.18 (s). ³¹P NMR (202 MHz, CDCl₃) δ 46.28. HRMS (ESI) calcd for C₂₀H₂₄PS⁺ [M+H] ⁺ 327.1331, Found 327.1349. The enantiomeric excess was determined by Daicel Chiralcel OD-H (92% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, λ = 254 nm, *t* (major) = 4.52 min, *t* (minor) = 5.10 min. [α]_D²⁰ = -20.44 (*c* = 3.05, acetone)

Ph S Me Pr 3ua Colorless oil, $R_f = 0.20$ (PE/EA = 30:1), 68% yield.¹H NMR (500 MHz, CDCl₃) δ 8.29 (dd, J = 16.7, 7.7 Hz, 1H), 7.59 – 7.55 (m, 2H), 7.46 – 7.40 (m, 2H), 7.36 (dt, J = 15.9, 7.7 Hz, 3H), 7.29 – 7.25 (m, 1H), 2.80 (s, 3H), 2.66 (dq, J = 13.9, 6.9 Hz, 1H), 1.32 (dd, J = 20.7, 6.9 Hz, 3H), 1.21 (dd, J = 21.3, 6.9 Hz, 3H). ¹³C

NMR (126 MHz, CDCl₃) δ 140.31 (d, J = 10.2 Hz), 133.76 (d, J = 12.1 Hz), 132.30 (d, J = 1.7 Hz), 132.13 (d, J = 11.4 Hz), 131.89 (d, J = 2.8 Hz), 130.41 (s), 128.54 (s), 128.34 (d, J = 88.0 Hz), 125.96 (d, J = 13.0 Hz), 120.48 (d, J = 4.1 Hz), 105.57 (d, J = 22.0 Hz), 80.80 (d, J = 136.8 Hz), 32.49 (d, J = 62.5 Hz), 21.84 (d, J = 3.7 Hz), 17.06 (d, J = 2.3 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 37.80. HRMS (ESI) calcd for C₁₈H₂₀PS⁺ [M+H] ⁺ 299.1018, Found 299.1028. The enantiomeric excess was determined by Daicel Chiralcel OD-H (88% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 254$ nm, *t* (major) = 5.44 min, *t* (minor) = 6.78 min. [α]_D²⁰ = 7.18(*c* = 1.65, acetone)

Colorless oil, $R_f = 0.20$ (PE/EA = 30:1), 50% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.56 – 7.52 (m, 2H), 7.45 – 7.41 (m, 1H), 7.37 (m, 2H), 6.90 (d, J = 4.2 Hz, 2H), 2.87 – 2.82 (m, 1H), 2.82 (s, 6H), 2.28 (s, 3H), 1.52 (dd, J = 21.3, 6.8 Hz, 3H), 1.20

3va (dd, J = 20.7, 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 141.27 (d, J = 10.9 Hz), 140.89 (d, J = 3.0 Hz), 132.00 (s), 131.98 (s), 131.53 (d, J = 11.9 Hz), 126.19 (d, J = 91.3 Hz), 120.94 (d, J = 3.8 Hz), 105.21 (d, J = 21.2 Hz), 82.47 (d, J = 132.6 Hz), 34.77 (d, J = 60.7 Hz), 24.16 (d, J = 5.2Hz), 20.89 (d, J = 1.3 Hz), 17.23 (d, J = 1.7 Hz), 16.06 (s). ³¹P NMR (202 MHz, CDCl₃) δ 34.88. HRMS (ESI) calcd for C₂₀H₂₄PS⁺ [M+H] ⁺ 327.1331, Found 327.1349. The enantiomeric excess was determined by Daicel Chiralcel AD-H (80% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 254$ nm, *t* (major) = 9.50 min, *t* (minor) = 8.41 min. [α]_D²⁰ = 2.23(*c* = 0.61, acetone)

Colorless oil, $R_f = 0.3$ (PE/EA = 1:1), 64% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.90 (ddd, J = 14.6, 8.1, 1.2 Hz, 1H), 7.63 – 7.56 (m, 2H), 7.47 – 7.35 (m, 4H), 7.28-7.26 (m, 2H), 2.79 (s, 3H), 1.27 (d, J = 16.7 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 143.89 (d, J = 10.0 Hz), 133.94 (d, J = 11.8 Hz), 132.41 (d, J = 1.4 Hz),

132.24 (d, J = 11.9 Hz), 131.81 (d, J = 2.7 Hz), 130.41 (s), 128.59 (s), 126.59 (d, J = 106.0 Hz), 124.91 (d, J = 12.6 Hz), 120.42 (d, J = 3.6 Hz), 103.99 (d, J = 23.4 Hz), 82.78 (d, J = 148.7 Hz), 35.71 (d, J = 81.9 Hz), 24.29 (d, J = 1.3 Hz), 21.97 (d, J = 2.5 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 36.43. HRMS (ESI) calcd for C₁₉H₂₂OP⁺ [M+H] ⁺ 297.1403, Found 297.1409. The enantiomeric excess was determined by Daicel Chiralcel IH (90% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 254$ nm, *t* (major) = 13.04 min, *t* (minor) = 10.34 min. [α]_D²⁰ = -3.59 (*c* = 4.00, acetone).

Colorless oil, $R_f = 0.20$ (PE/EA = 2:1), 58% yield.¹H NMR (500 MHz, DMSO- d_6) δ 7.87 (dd, J = 14.3, 7.7 Hz, 1H), 7.63 (d, J = 8.2 Hz, 2H), 7.55-7.50 (m, 3H), 7.41-7.35 (m, 2H), 2.69 (s, 3H), 1.29 (s, 9H), 1.16 (d, J = 16.6 Hz, 9H). ¹³C NMR (126 MHz, DMSO- d_6) δ 154.45 (s), 143.50 (d, J = 9.5

Hz), 134.03 (d, J = 11.6 Hz), 132.67 (d, J = 11.8 Hz), 132.57 (s), 132.54 (s), 126.82 (d, J = 105.2 Hz), 126.40 (s), 125.73 (d, J = 12.5 Hz), 116.83 (d, J = 3.5 Hz), 104.05 (d, J = 23.1 Hz), 82.63 (d, J = 139.8Hz), 35.56 (d, J = 81.9 Hz), 35.26 (s), 31.20 (s), 24.22 (s), 21.66 (d, J = 1.9 Hz). ³¹P NMR (202 MHz, DMSO- d_6) δ 34.17. HRMS (ESI) calcd for C₂₃H₃₀OP⁺ [M+H] ⁺ 353.2029, Found 353.2035. The enantiomeric excess was determined by Daicel Chiralcel AD-H (93% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 254$ nm, *t* (major) = 13.24 min, *t* (minor) = 11.64 min. [α]_D²⁰ = -49.35 (*c* = 0.43, acetone).

Colorless oil, $R_f = 0.2$ (PE/EA = 2:1), 62% yield.¹H NMR (500 MHz, CDCl₃) δ 7.93 (dd, J = 14.7, 7.3 Hz, 1H), 7.67 (d, J = 8.3 Hz, 2H), 7.62 – 7.56 (m, 4H), 7.48 – 7.40 (m, 3H), 7.38 (t, J = 7.4 Hz, 1H), 7.28 (dt, J = 7.5, 2.0 Hz, 2H), 2.80 (s, 3H), 1.28 (d, J = 16.7 Hz, 9H). ¹³C NMR (126

MHz, CDCl₃) δ 143.91 (d, J = 9.7 Hz), 143.20 (s), 139.83 (s), 133.98 (d, J = 11.9 Hz), 132.89 (d, J = 1.4 Hz), 132.27 (d, J = 11.9 Hz), 131.84 (d, J = 2.7 Hz), 129.01 (s), 128.15 (s), 127.20 (d, J = 13.9 Hz), 126.64 (d, J = 106.4 Hz), 124.94 (d, J = 12.8 Hz), 119.15 (d, J = 3.7 Hz), 103.99 (d, J = 23.5 Hz), 83.42 (d, J = 148.4 Hz), 35.75 (d, J = 81.9 Hz), 24.33 (s), 22.01 (d, J = 2.4 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 36.45. HRMS (ESI) calcd for C₂₅H₂₆OP⁺ [M+H] + 373.1716, Found 373.1719. The enantiomeric excess was determined by Daicel Chiralcel IB-H (91% ee), n-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 254$ nm, t (major) = 8.65 min, t (minor) = 10.08 min. $[\alpha]_D^{20} = -34.67$ (c = 2.96, acetone).

Colorless oil, $R_f = 0.3$ (PE/EA = 2:1), 62% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.88 (ddd, J = 14.6, 8.1, 1.3 Hz, 1H), 7.62 – 7.57 (m, 2H), 7.43 (ddd, J = 9.0, 3.0, 1.5 Hz, 1H), 7.27 (dd, J = 6.6, 4.8 Hz, 2H), 7.11 – 7.06 (m, 2H), 2.78 (s, 3H), 1.26 (d, J = 16.8 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃)

δ 163.72 (d, J = 253.1 Hz), 143.88 (d, J = 10.0 Hz), 134.63 (dd, J = 9.1, 1.6 Hz), 133.89 (s), 132.29 (d, J = 12.0 Hz), 131.91 (d, J = 2.7 Hz), 126.33 (d, J = 106.4 Hz), 124.93 (d, J = 12.8 Hz), 116.49 (t, J = 3.6 Hz), 116.10 (d, J = 22.2 Hz), 103.06 (d, J = 23.8 Hz), 82.56 (d, J = 147.7 Hz), 35.68 (d, J = 82.0 Hz), 24.24 (d, J = 1.2 Hz), 21.94 (d, J = 2.5 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 36.82. ¹⁹F NMR (471 MHz, CDCl₃) δ -106.67. HRMS (ESI) calcd for C₁₉H₂₁FOP⁺ [M+H] ⁺ 315.1309, Found 315.1320. The

enantiomeric excess was determined by Daicel Chiralcel OD-H (86% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 254$ nm, *t* (major) = 6.62 min, *t* (minor) = 5.98 min. [α]_D²⁰ = -5.04 (*c* = 0.60, acetone).

Colorless oil, $R_f = 0.20$ (PE/EA = 2:1), 51% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.86 (dd, J = 14.5, 7.7 Hz, 1H), 7.53 (d, J = 8.4 Hz, 2H), 7.45 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 7.5 Hz, 1H), 7.28 (dd, J = 11.2, 4.0 Hz, 2H), 2.78 (s, 3H), 1.26 (d, J = 16.8 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ

143.91 (d, J = 9.9 Hz), 133.84 (s), 133.74 (s), 132.30 (d, J = 12.0 Hz), 131.96 (s), 131.91 (d, J = 2.7 Hz), 126.33 (d, J = 106.0 Hz), 125.08 (s), 124.93 (d, J = 12.8 Hz), 119.30 (d, J = 3.6 Hz), 102.71 (d, J = 23.3 Hz), 84.06 (d, J = 146.0 Hz), 35.70 (d, J = 81.8 Hz), 24.26 (s), 21.94 (d, J = 2.5 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 36.33. HRMS (ESI) calcd for C₁₉H₂₁BrOP⁺ [M+H] ⁺ 375.0508, Found 375.0508. The enantiomeric excess was determined by Daicel Chiralcel IB-H (84% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 254$ nm, *t* (major) = 6.58 min, *t* (minor) = 7.50 min. [α]_D²⁰ = -14.43 (*c* = 1.88, acetone).

Colorless oil, $R_f = 0.20$ (PE/EA = 2:1), 65% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.91 (ddd, J = 14.7, 8.1, 1.2 Hz, 1H), 7.44-7.39 (m, 3H), 7.30 – 7.22 (m, 4H), 2.79 (s, 3H), 2.35 (s, 3H), 1.27 (d, J = 16.7 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 143.85 (d, J = 9.5 Hz), 138.39 (s), 133.96 (d, J = 11.7

Hz), 132.82 (d, J = 1.4 Hz), 132.21 (d, J = 11.9 Hz), 131.78 (d, J = 2.7 Hz), 131.33 (s), 129.53 (s), 128.49 (s), 126.64 (d, J = 106.4 Hz), 124.90 (d, J = 12.7 Hz), 120.20 (d, J = 3.6 Hz), 104.30 (d, J = 23.7 Hz), 82.37 (d, J = 149.7 Hz), 35.69 (d, J = 81.9 Hz), 24.29 (s), 21.97 (d, J = 2.6 Hz), 21.22 (s). ³¹P NMR (202 MHz, CDCl₃) δ 36.3. HRMS (ESI) calcd for C₂₀H₂₄OP⁺ [M+H] ⁺ 311.1559, Found 311.1563. The enantiomeric excess was determined by Daicel Chiralcel AD-H (90% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 254$ nm, *t* (major) = 8.58 min, *t* (minor) = 7.64 min. [α]_D²⁰ = -14.55 (*c* = 1.00, acetone).

Colorless oil, $R_f = 0.20$ (PE/EA = 2:1), 57% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.87 (ddd, J = 14.6, 8.1, 1.2 Hz, 1H), 7.43 (t, J = 7.5 Hz, 1H), 7.40 – 7.34 (m, 2H), 7.30-7.28 (m, 1H), 7.28 – 7.26 (m, 2H), 7.19 – 7.14 (m, 1H), 2.79 (s, 3H), 1.27 (d, J = 16.8 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 162.20

(d, J = 248.2 Hz), 143.91 (d, J = 10.0 Hz), 133.76 (d, J = 11.9 Hz), 132.29 (d, J = 12.0 Hz), 131.92 (d, J = 2.7 Hz), 130.38 (d, J = 8.5 Hz), 128.36 (d, J = 1.9 Hz), 126.25 (d, J = 106.5 Hz), 124.94 (d, J = 12.6 Hz), 122.12 (dd, J = 9.2, 3.6 Hz), 119.13 (dd, J = 23.8, 1.4 Hz), 117.91 (d, J = 21.1 Hz), 102.23 (dd, J = 22.9, 3.4 Hz), 83.72 (d, J = 145.3 Hz), 35.71 (d, J = 81.8 Hz), 24.22 (s), 21.92 (d, J = 2.3 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -111.65. ³¹P NMR (202 MHz, CDCl₃) δ 36.74. HRMS (ESI) calcd for C₁₉H₂₁FOP⁺ [M+H] ⁺ 315.1309, Found 315.1310. The enantiomeric excess was determined by Daicel Chiralcel AD-H (84% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 254$ nm, *t* (major) = 10.85 min, *t* (minor) = 7.59 min. [α]_D²⁰ = -10.73 (*c* = 1.24, acetone).

Colorless oil, $R_f = 0.15$ (PE/EA = 1:1), 61% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.01 (ddd, J = 14.7, 8.1, 1.2 Hz, 1H), 7.50 (dd, J = 7.6, 1.7 Hz, 1H), 7.42 – 7.36 (m, 2H), 7.28-7.23 (m, 2H), 6.95 – 6.88 (m, 2H), 3.88 (s, 3H), 2.79 (s, 3H), 1.28 (d, J = 16.7 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 161.56 (s),

143.79 (d, *J* = 9.5 Hz), 134.35 (d, *J* = 11.9 Hz), 133.93 (d, *J* = 1.6 Hz), 132.06 (d, *J* = 11.8 Hz), 131.92 (s), 131.66 (d, *J* = 2.7 Hz), 126.80 (d, *J* = 106.0 Hz), 124.81 (d, *J* = 12.8 Hz), 120.46 (s), 110.79 (s),

109.79 (d, J = 3.7 Hz), 100.87 (d, J = 24.8 Hz), 86.60 (d, J = 152.2 Hz), 55.78 (s), 35.75 (d, J = 81.9 Hz), 24.23 (s), 21.97 (d, J = 2.6 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 36.31. HRMS (ESI) calcd for C₂₀H₂₄O₂P⁺ [M+H] ⁺ 327.1508, Found 327.1508. The enantiomeric excess was determined by Daicel Chiralcel AD (90% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 300$ nm, *t* (major) =15.46 min, *t* (minor) = 10.12 min. [α]_D²⁰ = -8.83 (*c* = 1.15, acetone).

Colorless oil, $R_f = 0.20$ (PE/EA = 2:1), 53% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.13 (s, 1H), 7.96 (dd, J = 14.5, 7.7 Hz, 1H), 7.85 – 7.80 (m, 3H), 7.58 (d, J = 8.4 Hz, 1H), 7.56 – 7.50 (m, 2H), 7.42 (t, J = 7.5 Hz, 1H), 7.31 – 7.25 (m, 2H), 2.81 (s, 3H), 1.30 (d, J = 16.7 Hz, 9H). ¹³C NMR (126 MHz,

CDCl₃) δ 143.91 (d, J = 9.8 Hz), 134.04 (s), 133.94 (s), 133.69 (s), 133.36 (d, J = 1.6 Hz), 132.60 (s), 132.32 (s), 132.23 (s), 131.86 (d, J = 2.7 Hz), 128.43 (s), 128.08 (s), 127.92 (s), 127.46 (d, J = 97.6 Hz), 126.21 (s), 124.96 (d, J = 12.8 Hz), 117.56 (d, J = 3.7 Hz), 104.47 (d, J = 23.7 Hz), 83.00 (d, J = 148.3 Hz), 35.77 (d, J = 82.0 Hz), 24.35 (d, J = 1.1 Hz), 22.01 (d, J = 2.3 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 36.53. HRMS (ESI) calcd for C₂₃H₂₄OP⁺ [M+H] ⁺ 347.1559, Found 347.1558. The enantiomeric excess was determined by Daicel Chiralcel AD-H (81% ee), *n*-Hexanes/IPA = 80/20, 1 mL/min, $\lambda = 254$ nm, *t* (major) =17.07 min, *t* (minor) = 12.04 min. [α]_D²⁰ = -26.96 (*c* = 3.21, acetone).

Colorless oil, $R_f = 0.40$ (PE/EA = 2:1), 40% yield. ¹H NMR (500 MHz, DMSO- d_6) δ 8.26 (d, J = 1.9 Hz, 1H), 7.85 (dd, J = 14.3, 7.7 Hz, 1H), 7.74 (dd, J = 4.8, 2.9 Hz, 1H), 7.52 (t, J = 7.4 Hz, 1H), 7.43 – 7.33 (m, 3H), 2.68 (s, 3H), 1.15 (d, J = 16.6 Hz, 9H). ¹³C NMR (126 MHz, DMSO- d_6) δ 143.51

(d, J = 9.9 Hz), 134.84 (d, J = 1.4 Hz), 134.05 (d, J = 11.6 Hz), 132.66 (d, J = 11.8 Hz), 132.53 (d, J = 2.4 Hz), 130.20 (s), 128.29 (s), 126.82 (d, J = 104.8 Hz), 125.73 (d, J = 12.3 Hz), 118.79 (d, J = 3.7 Hz), 99.45 (d, J = 23.5 Hz), 82.78 (d, J = 145.8 Hz), 35.53 (d, J = 81.9 Hz), 24.23 (s), 21.65 (d, J = 1.8 Hz). ³¹P NMR (202 MHz, DMSO- d_6) δ 34.36. HRMS (ESI) calcd for C₁₇H₂₀OPS⁺ [M+H] ⁺ 303.0967, Found 303.0976. The enantiomeric excess was determined by Daicel Chiralcel IB-H (78% ee), *n*-Hexanes/IPA = 97.5/2.5, 1 mL/min, $\lambda = 254$ nm, *t* (major) =26.53 min, *t* (minor) = 29.90 min. [α]_D²⁰ = -15.08 (*c* = 0.48, acetone).

White solid, $R_f = 0.20$ (PE/EA = 10:1), 33% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.17 (dd, J = 15.8, 7.8 Hz, 2H), 7.81 (s, 1H), 7.66 (dd, J = 7.8, 1.5 Hz, 2H), 7.46 – 7.40 (m, 3H), 7.32 (t, J = 7.6 Hz, 2H), 7.28 – 7.24 (m, 2H), 2.88 (s, 6H), 1.33 (dd, J = 18.8, 1.0 Hz, 18H). ¹³C NMR (126 MHz, CDCl₃) δ 142.83 (d, J = 10.9 Hz), 135.53 (d, J = 2.0 Hz),

134.65 (d, J = 11.4 Hz), 133.70 (s), 132.96 (d, J = 11.8 Hz), 131.87 (d, J = 2.8 Hz), 129.04 (s), 126.19 (s), 125.46 (d, J = 12.9 Hz), 121.51 (d, J = 3.7 Hz), 104.16 (d, J = 20.1 Hz), 83.42 (d, J = 132.4 Hz), 38.73 (d, J = 58.6 Hz), 24.75 (d, J = 3.2 Hz), 23.23 (d, J = 2.9 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 47.46 (s). HRMS (ESI) calcd for C₃₂H₃₇P₂S₂⁺ [M+H]⁺ 547.1806, Found 547.1810. The enantiomeric excess was determined by Daicel Chiralcel IB-H (97% ee, 5:1 dr), *n*-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 254$ nm, *t* (major) =7.08 min, $t_1 = 7.84$ min, $t_2 = 8.87$ min. [α]_D²⁰ = -1.95 (*c* = 0.40, acetone).

Colorless oil, $R_f = 0.30$ (PE/EA = 2:1), 38% yield.¹H NMR (500 MHz, CDCl₃) δ 7.82 (ddd, J = 14.6, 8.0, 1.2 Hz, 1H), 7.39 (td, J = 7.5, 1.5 Hz, 1H), 7.24 (t, J = 6.5 Hz, 2H), 2.74 (s, 3H), 2.44 (td, J = 7.1, 3.3 Hz, 2H), 1.67 – 1.60 (m, 2H), 1.49 – 1.41 (m, 2H), 1.31 (td, J = 7.0, 3.2 Hz, 4H),

1.19 (d, J = 16.6 Hz, 9H), 0.90 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 143.77 (d, J = 9.5 Hz), 133.99 (d, J = 12.0 Hz), 132.10 (d, J = 11.8 Hz), 131.60 (d, J = 2.7 Hz), 126.85 (d, J = 105.9 Hz), 124.69 (d, J = 12.8 Hz), 107.94 (d, J = 24.5 Hz), 74.44 (d, J = 155.1 Hz), 35.33 (d, J = 82.5 Hz), 31.17 (s), 28.58 (s), 27.65 (s), 24.19 (d, J = 1.3 Hz), 22.49 (s), 21.89 (d, J = 2.5 Hz), 19.67 (d, J = 2.7 Hz), 14.00 (s). ³¹P NMR (202 MHz, CDCl₃) δ 35.67. HRMS (ESI) calcd for C₁₉H₃₀OP⁺ [M+H] ⁺ 305.2029, Found 305.2028. The enantiomeric excess was determined by Daicel Chiralcel IH-H (93% ee), n-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 271$ nm, *t* (major) =6.60 min, *t* (minor) = 5.33 min. [α]_D²⁰ = 2.63 (*c* = 2.41, acetone).

Colorless oil, $R_f = 0.30$ (PE/EA = 2:1), 40% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.82 (dd, J = 14.4, 7.6 Hz, 1H), 7.39 (t, J = 7.5 Hz, 1H), 7.26 – 7.21 (m, 2H), 2.74 (s, 3H), 2.69-2.60 (m, 1H), 1.92-1.83 (m, 2H), 1.79-1.69 (m, 2H), 1.65 – 1.49 (m, 3H), 1.45-1.32 (m, 3H), 1.19 (d, J = 16.5 Hz, 9H). ¹³C NMR (126 MHz,

CDCl₃) δ 143.76 (d, J = 9.7 Hz), 134.02 (d, J = 11.8 Hz), 132.08 (d, J = 11.9 Hz), 131.57 (d, J = 2.7 Hz), 126.94 (d, J = 105.8 Hz), 124.71 (d, J = 12.7 Hz), 111.28 (d, J = 23.5 Hz), 74.21 (d, J = 154.8 Hz), 35.36 (d, J = 82.6 Hz), 31.52 (s), 29.67 (d, J = 1.7 Hz), 25.64 (s), 24.58 (s), 24.23 (d, J = 1.2 Hz), 21.94 (d, J = 2.1 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 35.34. HRMS (ESI) calcd for C₁₉H₂₈OP⁺ [M+H] ⁺ 303.1872, Found 303.1878. The enantiomeric excess was determined by Daicel Chiralcel AD-H (90% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, λ = 271 nm, *t* (major) =7.03 min, *t* (minor) = 6.02 min. [α]_D²⁰ = -8.02 (*c* = 1.00, acetone).

Colorless oil, $R_f = 0.30$ (PE/EA = 2:1), 35% yield.¹H NMR (500 MHz, CDCl₃) δ 7.79 (dd, J = 14.7, 7.5 Hz, 1H), 7.40 (t, J = 7.5 Hz, 1H), 7.28 – 7.21 (m, 2H), 3.67 (t, J = 6.2 Hz, 2H), 2.74 (s, 3H), 2.66 (td, J = 6.9, 3.3 Hz, 2H), 2.11 – 2.05 (m, 2H), 1.19 (d, J = 16.7 Hz, 9H). ¹³C NMR (126 MHz,

CDCl₃) δ 143.80 (d, J = 9.5 Hz), 133.84 (d, J = 11.9 Hz), 132.18 (d, J = 11.9 Hz), 131.75 (d, J = 2.7 Hz), 126.55 (d, J = 106.4 Hz), 124.80 (d, J = 12.6 Hz), 105.44 (d, J = 23.8 Hz), 75.67 (d, J = 151.4 Hz), 43.34 (s), 35.35 (d, J = 81.9 Hz), 30.27 (d, J = 1.3 Hz), 24.16 (s), 21.87 (d, J = 2.1 Hz), 17.09 (d, J = 2.7 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 36.03. HRMS (ESI) calcd for C₁₆H₂₃ClOP⁺ [M+H] ⁺ 297.1170, Found 297.1169. The enantiomeric excess was determined by Daicel Chiralcel AD-H (84% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, λ = 271 nm, *t* (major) = 8.82 min, *t* (minor) = 7.27 min. [α]_D²⁰ = 0.54 (*c* = 0.50, acetone).

White solid, $R_f = 0.20$ (PE/EA = 1:1), 32% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.74 (m, 3H), 7.71 – 7.66 (m, 2H), 7.42 – 7.37 (m, 1H), 7.27 – 7.21 (m, 2H), 7.20 – 7.11 (m, 5H), 5.17 (dd, J = 11.2, 5.3 Hz, 1H), 4.40 – 4.25 (m, 2H), 3.64 – 3.47 (m, 2H), 2.72 (s, 3H), 2.46 (tdd, J

= 7.1, 3.2, 1.5 Hz, 2H), 2.01 – 1.92 (m, 2H), 1.17 (dd, J = 16.7, 2.4 Hz, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.73 (s), 167.40 (s), 143.77 (d, J = 9.6 Hz), 136.55 (s), 134.23 (s), 133.89 (d, J = 11.9 Hz), 132.14 (d, J = 11.9 Hz), 131.72 (d, J = 2.8 Hz), 131.46 (s), 128.70 (d, J = 25.9 Hz), 126.90 (s), 126.50 (d, J = 106.2 Hz), 124.83 (d, J = 12.8 Hz), 123.50 (s), 105.62 (d, J = 23.8 Hz), 77.28 (s), 75.45 (d, J = 2.8 Hz)

151.4 Hz), 64.10 (s), 53.25 (s), 35.33 (d, J = 82.2 Hz), 34.77 (s), 26.84 (d, J = 1.0 Hz), 24.15 (d, J = 1.1 Hz), 21.86 (d, J = 2.3 Hz), 16.31 (d, J = 2.7 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 36.09. HRMS (ESI) calcd for C₂₅H₃₁O₃P⁺ [M+H] ⁺ 410.2005, Found 410.2029. dr = 9:1(δ 38.10: δ 36.09 of ³¹P NMR). [α]_D²⁰ = -61.06 (c = 4.15, acetone).

Colorless solid, $R_f = 0.30$ (PE/EA = 1:2), 73% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.10 - 8.07 (m, 2H), 7.57 - 7.50 (m, 2H), 7.42 (t, J = 7.7 Hz, 2H), 7.37 (t, J = 7.5 Hz, 1H), 7.25 (t, J = 7.5 Hz, 1H), 7.21 (dd, J = 7.6, 3.8 Hz, 1H), 4.06 (dd, J = 15.3, 13.3 Hz, 1H), 3.80 (dd, J = 13.2, 10.6 Hz, 1H), 2.67 (s, 3H), 1.23 (d, J = 15.3 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 194.07 (d, J = 6.2 Hz), 144.86 (d, J = 7.1 Hz), 137.34 (s), 133.36 (s), 133.05 (d, J = 11.8 Hz), 132.59 (d, J = 10.6 Hz), 131.67 (d, J = 2.7 Hz), 129.61 (s), 128.37 (s), 125.93 (d, J = 88.9 Hz), 124.55 (d, J = 12.0 Hz), 38.92 (d, J = 48.1 Hz), 35.81 (d, J = 69.0 Hz), 24.56 (s), 22.00 (d, J = 2.3 Hz). ³¹P NMR (202 MHz, CDCl₃) δ 49.52 (s). HRMS (ESI) calcd for C₁₉H₂₄O₂P⁺ [M+H] ⁺ 315.1508, Found 315.1506. The enantiomeric excess was determined by Daicel Chiralcel OD-H (84% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 254$ nm, *t* (major) = 10.11 min, *t* (minor) = 12.33 min. [α]D²⁰ = 1.95 (c = 0.40, acetone).

Colorless solid, $R_f = 0.30$ (EA), 58% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.12 (ddd, J = 12.3, 7.8, 1.6 Hz, 2H), 7.79 (t, J = 7.3 Hz, 1H), 7.65 (d, J = 4.7 Hz, 1H), 7.54 – 7.41 (m, 7H), 7.29 (s, 1H), 7.13 (ddd, J = 10.5, 8.8, 4.4 Hz, 2H), 7.06 – 6.99 (m, 3H), 6.91 (s, 1H), 6.60 (d, J = 4.9 Hz, 1H), 1.16 (d, J = 16.1 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 169.57 (dd, J = 11.5, 3.9 Hz), 142.65 (dd, J = 24.8, 14.7 Hz),

134.76 (d, J = 4.9 Hz), 133.91 (d, J = 5.0 Hz), 133.06 (dd, J = 13.0, 6.5 Hz), 132.68 (s), 132.51 (d, J = 9.8 Hz), 131.87 (d, J = 2.8 Hz), 131.70 (d, J = 5.1 Hz), 131.60 (s), 130.96 (d, J = 4.9 Hz), 130.65 (d, J = 9.4 Hz), 130.38 (d, J = 9.4 Hz), 130.36 (s), 129.47 (d, J = 8.8 Hz), 128.91 (s), 127.79 (dd, J = 12.5, 5.9 Hz), 127.69 (dd, J = 65.3, 3.7 Hz), 126.98 (d, J = 60.8 Hz), 125.47 (d, J = 10.1 Hz), 34.15 (d, J = 68.7 Hz), 24.68 (s). ³¹P NMR (202 MHz, CDCl₃) δ 64.16 (d, J = 31.8 Hz, 1P), 16.61 (d, J = 30.4 Hz, 1P). HRMS (ESI) calcd for C₃₀H₂₉O₂P₂⁺ [M+H] ⁺ 483.1637, Found 483.1645. The enantiomeric excess was determined by Daicel Chiralcel AD-H (86% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 254$ nm, *t* (major) = 31.22 min, *t* (minor) = 22.36 min. [α]_D²⁰ = -4.78 (*c* = 2.25, acetone).

Colorless solid, $R_f = 0.30$ (PE/EA = 1: 3), 64% yield. ¹H NMR (500 MHz, d_6 -acetone) δ 8.15 (dd, J = 15.3, 7.7 Hz, 1H), 7.65 (t, J = 7.4 Hz, 1H), 7.58 – 7.48 (m, 3H), 7.45 (d, J = 7.9 Hz, 3H), 7.34 (d, J = 6.9 Hz, 3H), 7.09 (t, J = 7.8 Hz, 1H), 6.97 (d, J = 8.0 Hz, 2H), 6.84 (s, 1H), 6.80 (d, J = 7.4 Hz, 2H), 3.82 (s, 3H), 3.67 (s, 3H). ¹³C NMR (126 MHz, Acetone) δ 161.58 (s), 158.93 (s), 146.18 (d, J = 10.3 Hz), 141.59 (d, J = 4.6 Hz), 134.18 (d, J = 1.4 Hz), 133.99

(d, J = 122.2 Hz), 132.89 (d, J = 11.8 Hz), 132.64 (d, J = 119.6 Hz), 132.09 (d, J = 2.5 Hz), 131.46 (d, J = 1.2 Hz), 131.41 (d, J = 6.2 Hz), 130.75 (d, J = 11.0 Hz), 128.57 (s), 128.17 (d, J = 13.3 Hz), 127.15 (d, J = 13.0 Hz), 122.41 (s), 115.36 (s), 114.37 (s), 113.74 (s), 111.73 (d, J = 3.9 Hz), 104.85 (d, J = 30.0 Hz), 82.91 (d, J = 171.1 Hz), 55.08 (s), 54.55 (s). ³¹P NMR (202 MHz, Acetone) δ 5.83 (s). HRMS (ESI) calcd for C₂₈H₂₄O₃P⁺ [M+H] + 439.1458, Found 439.1460. The enantiomeric excess was determined by

Daicel Chiralcel IB-H (48% ee), *n*-Hexanes/IPA = 90/10, 1 mL/min, $\lambda = 254$ nm, *t* (major) = 23.91 min, *t* (minor) = 29.01 min. [α]_D²⁰ = 2.54 (*c* = 0.90, acetone).

Colorless solid, $R_f = 0.20$ (PE/EA = 1: 3), 53% yield. ¹H NMR (500 MHz, CD₂Cl₂) δ 8.10 (dd, J = 11.7, 7.7 Hz, 1H), 7.73 (s, 2H), 7.60 (dt, J = 14.5, 10.1 Hz, 2H), 7.48 (d, J = 7.4 Hz, 1H), 7.38 (dd, J = 12.9, 7.6 Hz, 2H), 7.22 (t, J = 7.2 Hz, 1H), 7.12 (t, J = 7.0 Hz, 2H), 7.01 (s, 2H), 6.79 (d, J = 7.7 Hz, 2H), 6.73 (s, 1H), 6.60 (dd, J = 13.9, 8.3 Hz, 3H), 6.42 (d, J = 8.8 Hz, 1H), 3.68 (s, 6H), 2.29 (s, 3H). ¹³C NMR (126 MHz, CD₂Cl₂) δ 158.51 (d, J = 57.4 Hz), 148.89 (d, J = 11.2 Hz), 141.92 (s), 140.89 (d, J = 10.6 Hz), 136.59 (d, J = 1.2

Hz), 136.24 (d, J = 99.2 Hz), 135.91 (d, J = 92.5 Hz), 135.12 (d, J = 15.1 Hz), 133.93 (d, J = 5.7 Hz), 133.33 (s), 133.07 (d, J = 51.5 Hz), 132.63 (d, J = 49.2 Hz), 132.25 (s), 131.94 (d, J = 10.0 Hz), 131.81 (d, J = 1.8 Hz), 131.35 (s), 130.91 (d, J = 2.4 Hz), 130.43 (d, J = 6.2 Hz), 130.09 (d, J = 10.3 Hz), 129.80 (d, J = 11.3 Hz), 128.51 (d, J = 12.2 Hz), 128.40 (s), 127.75 (d, J = 12.6 Hz), 127.63 (d, J = 10.9 Hz), 113.95 (d, J = 76.0 Hz), 112.80 (s), 55.37 (s), 55.08 (s), 20.99 (s). ³¹P NMR (202 MHz, CD₂Cl₂) δ 19.36. HRMS (ESI) calcd for C₃₅H₃₀O₃P⁺ [M+H] ⁺ 529.1927, Found 529.1937. The enantiomeric excess was determined by Daicel Chiralcel IB-H (64% ee), *n*-Hexanes/IPA = 70/30, 1 mL/min, $\lambda = 318$ nm, *t* (major) = 10.21 min, *t* (minor) = 4.87 min. [α]_D²⁰ = -702.44 (*c* = 0.05, acetone). 30% yield, and 99% ee from recrystal.

8. Copies of NMR spectroscopy.

90 80 f1 (ppm) -10

90 80 f1 (ppm) 30 170

20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

S48

20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

S58

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S80

20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

^{80 7} f1 (ppm) -10

S100

^{180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

130 120 160 150 f1 (ppm)

9. Copies of HPLC

S112

3

4

Area 323529

6087791

6411319

5

2

Ret. Time

5.466

7,069

7

8 min

6

Area%

5.046

94.954

100.000

0-

PDA Ch1 254nm Peak#

Ó

1

 $\mathbf{2}$

Total

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Area%	
1	8.414	2120876	10. 147	
2	9, 499	18781580	89.853	
Total		20902456	100.000	-

10.343

12.5

Area%

5.127

94. 873

100.000

15.0 min

10.0

50-

25-

0-

0.0 PDA Ch1 254nm

Peak#

1 2

Total

5.0

7.5

 Area

135265

2503146

2638410

2.5

Ret. Time

10.343

13,043

S141

12.328

12.5

min

10.0

Area%

92.265

7.735

100.000

100-

0-

PDA Ch1 254nm Peak#

0.0

1 2

Total

2.5

Ret. Time

10.106

12.328

5.0

S149

7.5

Area

8191052

686736

8877788

0	5	10	15	20	20	50	min
PDA Ch1 254nm							
Peak#	Ret. Time		Area		Area%		
1	22.	358	4752	37	7.16	57	
2	31.	217	61558	899	92.8	33	
Total			66311	136	100. 0)00	

10. References

- S1. F. A. Kortmann, M. C. Chang, E. Otten, E. P. Couzijn, M. Lutzc, A. J. Minnaard, *Chem. Sci.*, 2014, 5, 1322-1327.
- S2. R. Beaud, R. J. Phipps, M. J. Gaunt, J. Am. Chem. Soc., 2016, 138, 13183-13186.
- S3. L. Duan, K. Zhao, Z. Wang, F. L. Zhang, Z. Gu, ACS Catal., 2019, 9, 9852-9858.
- S4. Y. Liu, B. Ding, D. Liu, Z. Zhang, Y. Liu, W. Zhang, Res. Chem. Intermed., 2017, 43, 4959-4966.
- S5. B. M. Trost, S. M. Spohr, A. B. Rolka, C. A. Kalnmals, J. Am. Chem. Soc., 2019, 141, 14098-14103.
- S6. Z. Chen, H. Jiang, Y. Li, C. Qi, Chem. Commun., 2010, 46, 8049-8051.
- S7. Y. Gao, G. Wu, Q. Zhou, J.-B. Wang, Angew. Chem. Int. Ed., 2018, 57, 2716-2720.
- S8. J. Santandrea, C. Minozzi, C. Cruch, S. K. Collins, Angew. Chem. Int. Ed., 2017, 56, 12255-12259.
- S9. W. Wang, F. Wei, Y. Ma, C.-H. Tung, Z. Xu, Org. Lett., 2016, 18, 4158-4161.