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1 Theory

1.1 Indices and Labels

We adopt the following notation for orbital sets used in this work:

• A/B - monomer nuclear indices.

• µ/ν - nonorthogonal atomic spatial orbital basis indices (i.e., Gaussian basis indices).

• p/q - orthogonal molecular spatial orbital basis indices.

• i/j - orthogonal occupied spatial orbital basis indices.

• t/u - orthogonal active spatial orbital basis indices.

• a/b - orthogonal virtual spatial orbital basis indices.

Repeated indices within a monomer will be denoted with primes, e.g., p, p′, p′′, p′′′. When

dealing with spin-orbital quantities, we use the context specific notation of an “unbarred”

orbital index to denote α and a “barred” orbital index to denote β, i.e., p† is an α spin-orbital

creation operator on spatial orbital index p, while p̄† is a β spin-orbital creation operator on

spatial orbital index p.

1.2 Symmetry Adapted Perturbation Theory

The interaction energy between two monomers is defined as the total energy of the combined

system minus the total energies of the two separated monomers:

Eint = EAB − EA − EB, (1)

where the total energies represent the full CI solution at the basis set limit. In practice,

approximate methods such as density functional theory or coupled cluster methods are used

to compute accurate enough total energies to resolve the binding energy accurately.
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An alternative approach to computing intermolecular interaction energies is symmetry

adapted perturbation theory (SAPT) which is valid for non-covalent interactions. Instead of

computing total energies, SAPT assumes that the intermolecular interactions are weak and

thus we can compute the interaction energy via perturbation theory. In particular, we can

write the Hamiltonian of the combined system as

Ĥ = ĤA + ĤB + V̂ , (2)

where we assume ĤX |ΨX〉 = EX |ΨX〉, where |ΨX〉 is the ground state wavefunction of

monomer X and V̂ contains only the Coulombic interactions between monomer A and B.

With this partitioning of the Hamiltonian, we can build a perturbation theory for the inter-

molecular interaction energy directly thus avoiding computing potentially very large total

energies. More explicitly we have

Eint =
∑
n

(E
(n)
pol + E

(n)
exch), (3)

where E
(n)
pol and E

(n)
exch are nth-order polarization and exchange energies respectively. An

added benefit of SAPT is that we obtain an intuitive breakdown of the interaction energy

components, into electrostatic, induction, dispersion and exchange components which can

be used to provide chemical insight into the binding process. Truncation after the second

order gives rise to SAPTS1 yielding:

Eint ≈ ESAPT = E
(1)
elst + E

(1)
exch + E

(2)
ind + E

(2)
disp + E

(2)
exch−disp + E

(2)
exch−ind, (4)

where E
(1)
elst corresponds to the first order electrostatics term, E

(1)
exch to the first order ex-

change term, E
(1)
ind to the first order induction term, E

(2)
disp to the second order dispersion

term, E
(2)
exch−disp to the second order exchange-dispersion term, E

(2)
exch−ind to the second order

exchange-induction term (see below for a detailed derivation). In the main manuscript, we
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combine both dispersion and inductions terms and drop the superscripts yielding:

Eint ≈ Eelst + Eexch + Eind + Edisp. (5)

Ref. S2 shows that this level of SAPT (SAPT0) using Hartee-Fock wavefunctions and a

medium-size jun-cc-pvdz basis can yield highly accurate results for a broad range of non-

covalent interactions. We discuss the relationship between the different SAPT methods in

section 3.5

As in-depth discussed in our previous work,S3 we use the density matrix formulation

of SAPTS4–S7 as recently fully implemented for complete active space self-consistent field

(CASSCF) wavefunctions by Hapka and et al.S8 This formalism allows for the evaluation of

the terms appearing in Eq. (4) using just the ground state one- and two-particle reduced

density matrices of the monomers with additional response terms for the second order terms.

Instead of Hartee-Fock density matrices, we use a quantum computer via a VQE ansatz to

determine an accurate ground state wave function of the system (for more details on those

algorithms, see the next sections). The detailed derivation of the first order terms (E
(1)
elst,

E
(1)
exch) be found in Ref.S3

The second order SAPT terms for induction and dispersion energies (as well as their

exchange counterparts) requires the calculation of excited state properties on a quantum

computer (see below for a more detailed derivation). Although several approaches have been

suggested in the literature to compute excited state properties on NISQ-era quantum com-

puters, they often require a significant measurement overhead.S9–S12 To reduce this burden

we employ the extended random phase approximation (ERPA),S13 which requires only the

one- and two-body reduced density matrices to be evaluated on the quantum computer.S14

This approximation has previously been shown by others to produce quite accurate interac-

tion energies when employed in SAPT based on CASSCF wavefunctions, and we will show

that this carries over to VQE wavefunctions.
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Given that NISQ-era devices are currently limited to tens of qubits (spin-orbitals), we will

use an active space approach analogous to CAS-CI methods. In the active space approach,

we partition the one-electron orbital set into Nc core orbitals, Na active orbitals and Ni

virtual orbitals. This partitioning gives rise to modified monomer Hamiltonian given by (for

example, for monomer A)

ĤA

′
=
∑
tt′σ

h̃tt′a
†
tσat′σ+

1

2

∑
σσ′

∑
tt′t′′t′′′

(tt′′|t′t′′′)a†tσa
†
t′σ′at′′′σ′at′′σ

, (6)

where the modified one-electron integrals h̃tt′ now include core-active space interactions

h̃tt′ = htt′ +
∑
ii′

[
(tt′|ii′)− 1

2
(ti′|it′)

]
γii′ . (7)

The key approximation in the active space approach is that a (small) set of “active” orbitals

and electrons are defined a priori, and the FCI expansion is constrained to that subset of

electrons and orbitals. The quality of the CAS-CI and VQE results depends strongly on the

selected active space.S15–S17

1.3 Variational Quantum Eigensolver

This section briefly summarizes the VQE ansatz used in this work, it is identical to the

approach taken in our previous workS3 and discussed in more detail. The SAPT post pro-

cessing step only relies on the reduced density matrices which can in principle be generated

with a quantum algorithm such as other VQE flavorsS18 or Quantum Krylov methods.S9

We generate the active space wave function of the strongly correlated monomer using

the VQE ansatz described below (it is also possible that both monomer wave functions are

evaluated on the quantum computer, but in practice, usually only one monomer will exhibit

strong correlation, and thus require a VQE treatment):
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|ΨVQE〉 ≡ ÛVQE|ΦI〉 (8)

where |ΦI〉 guess state (typically the Hartree–Fock).

Throughout this study, we only use real active space wavefunction |ΨVQE〉 and they will

be a definite eigenfunction of the N̂α, N̂β, and Ŝ2 operators.

The paper is using the following Jordan-Wigner representation:

p± =

p′=p−1⊗
p′=0

Ẑp′(X̂p ∓ iŶp)/2, (9)

p̄± =

p′=Nα−1⊗
p′=0

Ẑp′

p̄′=p̄−1⊗
p̄′=0

Ẑp̄′(X̂p̄ ∓ iŶp̄)/2, (10)

where p+ = p† and p− = p and we order the Jordan-Wigner strings in α-then-β order and

Ẑ, Ŷ and X̂ are the usual Pauli operators.

In this work, we use a modified version of the unitary cluster Jastrow wavefunctionS19

(k-uCJ) which takes the form

|ΨVQE〉 =
∏
k

exp(−K̂(k)) exp(T̂ (k)) exp(+K̂(k))|ΦI〉, (11)

where K̂(k) and T̂ (k) are one- and two-body operators and k is a parameter that controls the

depth of the circuit and as a result its variational freedom. The key difference in our k-uCJ

ansatz from Ref. S19 is that the two-body operator and the restriction to real anti-symmetric

matrices.

The one-body orbital transformations (spin restricted) are defined as

K̂(k) ≡
∑
pp′

κ
(k)
pp′

[
(p†p′ − p′†p) + (p̄†p̄′ − p̄′†p̄)

]
(12)

where κ
(k)
pp′ = −κ(k)

p′p is a real, antisymmetric Na × Na matrix of orbital rotation generators,
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which is equivalent to the one-particle spin-restricted orbital transformation:

U
(k)
pp′ ≡

[
exp(κ(k))

]
pp′

(13)

This spin-restricted orbital rotation is expressed as quantum circuits using a fabric of Givens

rotations.S20

The two-particle operator is defined as

T̂ (k) ≡
M−1∑
p=0

M−2∑
p′=p mod 2

p+=2

τ
(k)
pp′ [(p

′ + 1)†(p′ + 1)
†
p′p̄′

− p′†p̄′†(p′ + 1)(p′ + 1)]

(14)

The uCJ implementation is similar but not exact to Refs.S18 and.S21 This it is denoted

as k-muCJ for clarity, with the ‘m’ standing for modified. It is important to point out that

the choice of VQE ansatz is largely irrelevant from a SAPT perspective and is not a major

point in this paper. An example of one layer of the muCJ circuit ansatz is given in Fig. S1.

G G

PX

G G

G G G G

G G G G

G G G G

Figure S1: Quantum circuit of a single layer (k = 1) k-muCJ VQE entangler circuit for
M = 2 spatial orbitals or N = 4 qubits. Even (odd) qubits represent α (β) spin-orbitals.
The quantum circuit starts with two-qubit Givens rotation among α and β orbitals. The
next steps are a double substitution operator (four qubit exchange gate) and another layer
of Givens rotations.

Using the ansatz discussed above, the VQE objective function is defined as

EVQE(κkpq, τ
k
pq) ≡ 〈ΨVQE(κkpq, τ

k
pq)|Ĥ|ΨVQE(κkpq, τ

k
pq)〉 (15)

= 〈ΦI|Û †(κkpq, τ kpq)ĤÛ(κkpq, τ
k
pq)|ΦI〉. (16)
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The number of measurements scales O(N4
a ); however, we point out that efficient estima-

tion of the density matrices are currently intensively investigated by several research groups,

e.g. Ref. S22 or Ref. S23.

2 Derivation of the Second Order SAPT Terms

It is helpful to first recall standard Rayleigh-Schrödinger perturbation theory for the in-

termolecular interaction energy. To begin, we can write the Hamiltonian of the combined

system as

Ĥ = ĤA + ĤB + V̂ , (17)

where we assume ĤX |ΨX〉 = EX |ΨX〉, where |ΨX〉 is the ground state wavefunction of

monomer X and V̂ contains only the Coulomb interactions between monomer A and B:

V̂ =

NA∑
i=1

NB∑
j=1

1

|ri − rj|
−

NA∑
i=1

∑
β

Zβ
|Rβ − ri|

−
NB∑
j

∑
α

Zα
|Rα − rj|

+
∑
α

∑
β

ZαZβ
|Rα −Rβ|

, (18)

where it is understood that i and j are distinct indices and the sum over α/β runs over the

number of atoms in monomer A/B respectively. Under the assumption that the potential V̂

is a small perturbation (valid for weak intermolecular interactions), we can, in principle, now

use perturbation theory. Following Ref. S1, one typically starts SAPT by first constructing

a perturbation series for the so-called polarization energy

|Ψ(n)
pol〉 = −R̂0V̂ |Ψ(n−1)

pol 〉+
n−1∑
k

E
(k)
polR̂0|Ψ(n−k)

pol 〉, (19)

where

R̂0 = (Ĥ0 − E0 + P̂0)−1Q̂0, (20)

is the resolvent operator, Ĥ0 = ĤA + ĤB, P̂ = |Ψ0〉〈Ψ0|, Q̂ = 1 − P̂ and |Ψ0
pol〉 = |Ψ0〉 =

|Ψ0
AΨ0

B〉. Here we have that Ĥ = ĤA + ĤB + V̂ and we assume Ĥ0|Ψ0〉 = (E0
A + E0

B)|Ψ0〉.
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The first order polarization energy (usually called the electrostatic energy Eelst) is then given

by

E
(1)
pol = 〈Ψ0|V̂ |Ψ0〉 (21)

= γ̄pp′v
p′q′

pq γ̄qq′ , (22)

where we used the definition E
(n)
pol = 〈Ψ0|V̂ |Ψ(n)

pol〉

For the second order polarisation energy, it is conventional in SAPT to split into the

induction and dispersion energy, i.e., E
(2)
pol = Eind+Edisp. The distinction arises by considering

that the induction term accounts for contributions from terms where one monomer is in

an excited state, and the dispersion term considers contributions from terms where both

monomers are in excited states. For the induction energy we have |Ψ(ind)
A 〉 ≡ R̂A

0 Ω̂B|Ψ0
A〉,

where R̂A
0 = (ĤA − EA

0 + P̂A)−1Q̂A and

Ω̂B =

NA∑
i

(
V̂B(ri) +

∫
drj

ρ̂B(rj)

|ri − rj|

)
(23)

is the effective electrostatic field of monomer B. Using the sum over states formula for the

resolvent we have then that

|Ψ(ind)
A 〉 ≡ R̂A

0 Ω̂B|Ψ0
A〉 (24)

= −
∑
µ

|Ψµ
A〉〈Ψ

µ
A|Ω̂B|Ψ0

A〉
Eµ
A − E0

A

, (25)

from which it follows

Eind(A← B) = −
∑
µ

|〈Ψµ
A|Ω̂B|Ψ0

A〉|2

Eµ
A − E0

A

, (26)

with a similar expression for Eind(B ← A). By introducing the (spin-summed) transition
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one-particle reduced density matrix

γ̄µpp′ = 〈Ψ0|p†p′|Ψµ〉+ 〈Ψ0|p̄†p̄′|Ψµ〉 (27)

we can write Eq. (26) as

Eind(A← B) = −
∑
µ

(γ̄µpp′Ωpp′)
2

Eµ
A − E0

A

. (28)

Similar expressions exist for monomer B.

For the dispersion contribution, we first define

|Ψdisp
AB 〉 = −|Ψ

µ
AΨν

B〉〈Ψ
µ
AΨν

B|V̂ee|Ψ0
AΨ0

B〉
Eµ
A − E0

A + Eν
B − E0

B

, (29)

so that

E
(2)
disp = −

∑
µν

|〈Ψ0
AΨ0

B|V̂ee|Ψ
µ
AΨν

B〉|2

Eµ
A − E0

A + Eν
B − E0

B

(30)

= −
∑
µν

(
γ̄µpp′v

p′q′
pq γ̄

ν
qq′

)2

Eµ
A − E0

A + Eν
B − E0

B

(31)

Equations (22), (28) and (31) provide all polarization energy contributions up to the

second order in the intermolecular interaction energy. Unfortunately, without further modi-

fication, one finds the RS perturbation theory does not converge for many-electron systemsS1.

Symmetry adapted perturbation theory (SAPT) attempts to fix this issue by explicitly ac-

counting for fermionic anti-symmetry in the wavefunction when electrons undergo exchange

processes between monomers.

The SAPT expression for the intermolecular interaction energy is given byS1

E
(n)
SAPT =

〈Ψ0|V̂ |AΨ
(n−1)
pol 〉 −

∑n−1
k=1 E

(k)
SAPT〈Ψ0|AΨ

(n−k)
pol 〉

〈Ψ0|AΨ0〉
, (32)

where |Ψ(n)
pol〉 are the nth-order polarization wavefunctions given previously and A is the
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antisymmetrizer operator. With this definition, the SAPT interaction takes the following

form

E
(n)
SAPT = E

(n)
pol + E

(n)
exch. (33)

If one neglects all electron exchange processes other than those that exchange a single electron

pair between monomer A and B one arrives at the so-called S2 approximation to the exchange

energies (through second order)S8,S24–S26:

E
(1)
exch = 〈Ψ0|(V̂ − V̄ )(P̂ − P̄ )|Ψ0〉 (34)

E
(2)
exch−ind(A← B) = 〈Ψ0

AΨ0
B|(V̂ − V̄ )(P̂ − P̄ )|Ψind

A Ψ0
B〉, (35)

E
(2)
exch−disp = 〈Ψ0

AΨ0
B|(V̂ − V̄ )(P̂ − P̄ )|Ψdisp

AB 〉, (36)

where |Ψind〉 and |Ψdisp
AB 〉 have been defined previously and P̂ is defined as the electron ex-

change operator

P̂ = −
NA∑
i

NB∑
j

P̂ij (37)

where P̂ij exchanges an electron from monomer A to monomer B. Note a similar expression

exists for Eexch−ind(A→ B).

It is helpful to note that Eqs. (34) to (36) all share a similar structure. Let us first

example Eq. (34):

Eexch = 〈Ψ0
AΨ0

B|(V̂ − V̄ )P̂ |Ψ0
AΨ0

B〉 (38)

which can be written in the density matrix formalism of SAPT as

E
(1)
exch(S2) =

∫
γint(xi,xj)

(
ṽ(ri, rj)−

E
(1)
pol

NANB

)
dxidxj, (39)

where xi and xj denote both spin and spatial coordinates of electrons in monomer A and B
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respectively, and the ‘interaction’ density matrix is defined as

γint(xi,xj) =

− γA(xi,xj)γB(xj,xi)

−
∫
γA(xi,xj′)ΓB(xj,xj′ ,xj,xi)dxj′

−
∫

ΓA(xi,xi′ ,xi,xj)γB(xj,xi′)dxi′

−
∫ ∫

ΓA(xi,xi′ ,xi,xj′)ΓB(xj,xj′ ,xj,xi′)dxi′dxj′ .

(40)

By inspection Eq. (35) is identical to Eq. (38) up to the replacement of |Ψ0
A〉 by the excited

state wavefunction |Ψµ
A〉. Thus we have

〈Ψ0
AΨ0

B|(V̂ − V̄ )P̂ |ΨA
µΨ0

B〉 =

∫
γµint(xi,xj)

(
ṽ(ri, rj)−

E
(1)
pol

NANB

)
dxidxj, (41)

where

γµint(xi,xj) =

− γµA(xi,xj)γB(xj,xi)

−
∫
γµA(xi,xj′)ΓB(xj,xj′ ,xj,xi)dxj′

−
∫

ΓµA(xi,xi′ ,xi,xj)γB(xj,xi′)dxi′

−
∫ ∫

ΓµA(xi,xi′ ,xi,xj′)ΓB(xj,xj′ ,xj,xi′)dxi′dxj′ .

(42)

where γµ and Γµ are transition one- and two-particle density matrices. Expanding the
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transition density matrix in orbital space and performing spin summations, we find

〈Ψ0
AΨ0

B|(V̂ − V̄ )P̂ |Ψµ
AΨ0

B〉 = −1

2
(γ̄µpp′ γ̄qq′ ṽ

q′p′

pq (43)

+ γ̄µpp′Γ̄
qq′

q′′q′′′Sp′q′ ṽ
q′′′q′′

pq

+ γ̄qq′ [Γ̄
µ]pp

′

p′′p′′′Sq′p′ ṽ
p′′p′′′

pq

+ [Γ̄µ]pp
′

p′′p′′′Γ̄
qq′

q′′q′′′Sp′q′′′Sq′p′′′ ṽ
p′′q′′

pq

− E(1)
polSpq′ γ̄qq′Sqp′ γ̄

µ
pp′).

(44)

(45)

It is helpful to define the exchange of functional

(46)

F µν ≡ F [γ̄µ, Γ̄µ, γ̄ν , Γ̄ν ] = −1

2
([γ̄µ]pp′ [γ̄

ν ]qq′ ṽ
q′p′

pq (47)

+ [γ̄µ]pp′ [Γ̄
ν ]qq

′

q′′q′′′Sp′q′ ṽ
q′′′q′′

pq

+ [γ̄ν ]qq′ [Γ̄
µ]pp

′

p′′p′′′Sq′p′ ṽ
p′′p′′′

pq

+ [Γ̄µ]pp
′

p′′p′′′ [Γ̄
ν ]qq

′

q′′q′′′Sp′q′′′Sq′p′′′ ṽ
p′′q′′

pq

− E(1)
polSpq′ [γ̄

ν ]qq′Sqp′ [γ̄
µ]pp

′
),

(48)

(49)

with the understanding that γ0 = γ etc., so that for the exchange-dispersion contribution,

we have

〈Ψ0
AΨ0

B|(V̂ − V̄ )P̂ |Ψµ
AΨν

B〉 = F µν = F [γ̄µA, Γ̄
µ
A, γ̄

ν
B, Γ̄

ν
B], (50)

which follows by inspection.

With these notational conventions, we can evaluate the exchange-induction term we have
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(in the S2 approximation)

Eexch−ind(A→ B) = 〈Ψ0
AΨ0

B|(V̂ − V̄ )(P̂ − P̄ )|Ψ(ind)
A Ψ0

B〉. (51)

Inserting Eq. (25) into Eq. (51) and breaking the expectation value into two terms, we

find (dropping B → A notation)

Eexch−ind = −
∑
µ

〈Ψ0
AΨ0

B|(V̂ − V̄ )(P̂ − P̄ )|Ψµ
AΨ0

B〉〈Ψ
µ
AΨ0

B|Ω̂B|Ψ0
AΨ0

B〉
Eµ
A − E0

A

. (52)

Let us first look at the term in the numerator, 〈Ψ0
AΨ0

B|(V̂ − V̄ )(P̂ − P̄ )|Ψµ
AΨ0

B〉 which we

will break down into two pieces:

〈Ψ0
AΨ0

B|(V̂ − V̄ )P̂ |Ψµ
AΨ0

B〉 (53)

and

P̄ 〈Ψ0
AΨ0

B|(V̂ − V̄ )|Ψµ
AΨ0

B〉. (54)

Eq. (53) is given by F µ as discussed previously while Eq. (54) is simply (note 〈Ψ0
A|Ψ

µ
A〉 = 0

so the P̄ V̄ contribution is zero)

P̄ 〈Ψ0
AΨ0

B|V̂ |Ψ
µ
AΨ0

B〉 = P̄ 〈Ψ0
AΨ0

B|Ω̂|Ψ
µ
AΨ0

B〉 (55)

= P̄ γ̄µpp′Ω
B
pp′ (56)

and by inspection with Eq. (39)

P̄ ≡ 〈Ψ0
AΨ0

B|P̂ |Ψ0
AΨ0

B〉 =
1

NANB

∫
dx dx′ γint(x,x

′) (57)

= −1

2
Spq′ γ̄qq′Sqp′ γ̄pp′ . (58)
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So, putting all of this together, we have

Eexch−ind(B → A) = −
(
F µtµ

ωµA
+ Eind(B → A)P̄

)
, (59)

where

tµ = γµpp′Ω
B
pp′ , (60)

and we have used the fact that

(γ̄µpp′Ω
B
pp′)

2

ωµA
≡ −Eind(B → A). (61)

with

ωµA = Eµ
A − E

0
A (62)

and The full expression is then

Eexch−ind = Eexch−ind(A→ B) + Eexch−ind(B → A) = −
(
F µtµ

ωµA
+
F νtν

ωνB
+ EindP̄

)
. (63)

The second-order exchange-dispersion energy can be found in a similar fashion. We can

start from the definition in the S2 approximation

Eexch−disp(S2) = 〈Ψ0
AΨ0

B|(V̂ − V̄ )(P̂ − P̄ )|Ψdisp
AB 〉, (64)

In contrast to the induction term, the dispersion interaction includes terms where both

monomers are in an excited state. Much like the exchange-induction interaction, we can

split Eq. (64) into two terms. Inserting Eq. (29) into Eq. (64) we first have to evaluate

〈Ψ0
AΨ0

B|(V̂ − V̄ )P̂ |Ψµ
AΨν

B〉 = F µν = F [γ̄µA, Γ̄
µ
A, γ̄

ν
B, Γ̄

ν
B], (65)
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which follows by inspection. We also identify the usual induction numerator term

〈Ψ0
AΨ0

B|Vee|Ψ
µ
AΨν

B〉 = vp
′q′

pq γ
µ
pp′γ

ν
qq′ = tµν . (66)

Noting that

E
(2)
disp = −

∑
µν

(tµν)2

ωµA + ωνB
(67)

and combining all of these with Eq. (58) we find

Eexch−disp = −
(
F µνtµν

ωµA + ωνB
+ EdispP̄

)
. (68)

3 Extended Random Phase Approximation

Evaluating the SAPT expressions given in Section 2 requires a knowledge of the one- and

two-particle transition density matrices at a given level of theory. There are two challenges

to achieving this given current NISQ hardware. First is that we can only simulate a small

fragment of the problem in a quantum computer, which is achieved here using an active space

approach. Second is that, in principle, we would need to compute all eigenvalues and excited

states to compute the transition density matrices, which is significantly more challenging

than just computing the ground state energy.

To overcome these issues, we instead include only the subset of particle-hole excitations.

In particular, we follow Hapka et al.S8,S26,S27 and use the extended random phase approxima-

tionS13,S28,S29 (ERPA) to approximately determined excited state properties from CASSCF

quality wavefunctions. For notational clarity, in this section, we will not distinguish between

monomers, and orbitals are general spatial orbitals.
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Following PernalS13,S29, in the ERPA solves the following eigenvalue problem

A B

B A


Xν

Yν

 = ων

−N 0

0 N


Xν

Yν

 . (69)

where

Apq,rs = 〈Ψ0|[p†q, [Ĥ, s†r]|Ψ0〉 (70)

Bpq,rs = 〈Ψ0|[p†q, [Ĥ, r†s]|Ψ0〉 (71)

Npq,rs = 〈Ψ0|[p†q, s†r]|Ψ0〉 = δpsδqr(nq − np), (72)

where the above equations are valid in the natural spin-orbital basis corresponding to |Ψ0〉,

and we take p > q and r > s. Computing the Hessian matrices in Eq. (69) is somewhat

tedious, but expressions are available in the literatureS13,S29.

Note that using excited states from the ERPA introduces two approximations in the

quality of the resulting SAPT interaction energies. The first approximation is that even

with an exact FCI wavefunction, the ERPA will not yield all the excited states of the

Hamiltonian as only particle-hole-like excitations are included. The second issue is that the

CASSCF wavefunction is not an eigenstate of the zeroth order Hamiltonian in the SAPT

perturbation theory. In principle, this last problem can be addressed within the context of

the adiabatic-connection formalism based upon the ERPAS8,S26,S27,S30,S31 which yields the so-

called coupled approximation used in this work. This amounts to using the full Hamiltonian

in Eq. (69) with the CASSCF (or VQE) wavefunction as |Ψ0〉. The adiabatic-connection

approach assumes the one- and two-particle reduced density matrices remain constant across

the adiabatic-connection pathway. This approximation appears to perform well in the sense

that SAPT(CASSCF) compares favourably to FCI interaction energiesS8,S26,S27.
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3.1 Spin-Summation

In this work, we only target singlet excited states and thus Xβα = Xαβ = 0; therefore, we

explicitly form the spin-restricted ERPA equations. In particular, we form

Apq,rs = 〈Ψ0|Êpq, [Ĥ, Êsr]|Ψ0〉 (73)

Bpq,rs = 〈Ψ0|[Êpq, [Ĥ, Êrs]|Ψ0〉 (74)

Npq,rs = 〈Ψ0|[Êpq, Êsr]|Ψ0〉 = δpsδqr(nq − np), (75)

where Êrs = (r†s+ r̄†s̄). It is helpful to note the following identities:

[AB,C] = A{B,C} − {A,C}B (76)

[AB,CD] = [AB,C]D + C[AB,D] (77)

So, for example,

[Êrs, Êqp] = [r†s+ r̄†s̄, q†p+ q̄†p̄]

= [r†s, q†p] + [r†s, q̄†p̄] + [r̄†s̄, q†p] + [r̄†s̄, q̄†p̄],

(78)

and

[r†s, q†p] = [r†s, q†]p+ q†[r†s, p] (79)

= (r†{s, q†} − {r†, q†}s)p+ q†(r†{s, p} − {r†, p}s) (80)

= r†pδsq − q†sδrp (81)

[r̄†s̄, q̄†p̄] = r̄†p̄δs̄q̄ − q̄†s̄δr̄p̄ (82)

[r̄†s̄, q†p] = [r†s, q̄†p̄] = 0 (83)
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SimilarlyS32,

[Êmn, Êpq] = Êmqδpn − Êpnδmq (84)

[Êrs, [Êij, Êqp]] = [Êrs, Êip]δqj − [Êrs, Êqj]δip (85)

= Êrpδisδqj − Êisδrpδqj − Êrjδqsδip + Êqsδrjδip (86)

[Êmn, êpqrs] = δpnêmqrs − δmqêpnrs + δrnêpqms − δmsêpqrn, (87)

where êpqrs = p†r†sq + p†r̄†s̄q + p̄†r†sq̄ + p̄†r̄†s̄q̄. We can now evaluate the commutator on

the left hand side of Eq. (73) where we take

Ĥ =
∑
pq

hpq(p
†q + p̄†q̄) +

1

2

∑
pqrs

(pq|rs)êpqrs. (88)

Let us begin with the one-body term (dropping hats on operators for brevity, and here all

orbital labels refer to general spatial orbitals, no distinction is made between active, core or

inactive)

∑
ij

hij[Ers, [Eij, Eqp]] =
∑
ij

hij(Êrpδisδqj − Êisδrpδqj − Êrjδqsδip + Êqsδrjδip) (89)

= hsqÊrp −
∑
i

hiqÊisδrp −
∑
j

hpjÊrjδqs + hprÊqs (90)

If we work in the natural orbital basis 〈Ψ0|Êpq|Ψ0〉 = γ̄pq = npδpq, with 0 ≤ np ≤ 21, then

we have

〈
∑
ij

hij[Ers, [Eij, Eqp]]〉 = hsqδrp(nr − ns) + hprδqs(nq − nr). (91)

1Note we assume np < nq for p > q (i.e. the basis is ordered in descending order of natural orbital
occupancy) which is the opposite ordering that is usually taken in the ERPA literatureS13,S29
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For the two-body part, we have to evaluate expressions like (see Eq. (74))

∑
ijkl

(ij|kl)[Ers, [eijkl, Epq]] (92)

Let us look at

[Ers, [eijkl, Epq]] = −[Ers, [Epq, eijkl]] = −[Ers, δiqêpjkl − δpj êiqkl + δkqêijpl − δplêijkq] (93)

= −[Ers, δiqêpjkl − δpj êiqkl + δkqêijpl − δplêijkq] (94)

[Êrs, δiqêpjkl] = δiq(δpsêrjkl − δrj êpskl + δksêpjrl − δrlêpjks) (95)

[Êrs, δpj êiqkl] = δpj(δisêrqkl − δrqêiskl + δksêiqrl − δrlêiqks) (96)

[Êrs, δkqêijpl] = δkq(δisêrjpl − δrj êispl + δpsêijrl − δrlêijps) (97)

[Êrs, δplêijkq] = δpl(δisêrjkq − δrj êiskq + δksêijrq − δrqêijks) (98)

so,

〈
∑
ijkl

(ij|kl)[Ers, [eijkl, Epq]]〉 = −
∑
ijkl

(ij|kl)
[
δiq(δpsΓ̄rjkl − δrjΓ̄pskl + δksΓ̄pjrl − δrlΓ̄pjks)

− δpj(δisΓ̄rqkl − δrqΓ̄iskl + δksΓ̄iqrl − δrlΓ̄iqks)

+ δkq(δisΓ̄rjpl − δrjΓ̄ispl + δpsΓ̄ijrl − δrlΓ̄ijps)

− δpl(δisΓ̄rjkq − δrjΓ̄iskq + δksΓ̄ijrq − δrqΓ̄ijks)
]
,

(99)

where the spin-summed two-particle reduced density matrix is

Γ̄pqrs = 〈Ψ0|êpqrs|Ψ0〉. (100)
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Removing the Kroenecker deltas we find

1

2
〈
∑
ijkl

(ij|kl)[Ers, [eijkl, Epq]]〉 =

− 1

2

[∑
jkl

(qj|kl)δpsΓ̄rjkl −
∑
kl

(qr|kl)Γ̄pskl +
∑
jl

(qj|sl)Γ̄pjrl −
∑
jk

(qj|kr)Γ̄pjks

−
∑
kl

(sp|kl)Γ̄rqkl +
∑
ikl

(ip|kl)δrqΓ̄iskl −
∑
il

(ip|sl)Γ̄iqrl +
∑
ik

(ip|kr)Γ̄iqks

+
∑
jl

(sj|ql)Γ̄rjpl −
∑
il

(ir|ql)Γ̄ispl +
∑
ijl

(ij|ql)δpsΓ̄ijrl −
∑
ij

(ij|qr)Γ̄ijps

−
∑
jk

(sj|kp)Γ̄rjkq +
∑
ik

(ir|kp)Γ̄iskq −
∑
ij

(ij|sp)Γ̄ijrq +
∑
ijk

(ij|kp)δrqΓ̄ijks
]
(101)

which can be simplified using symmetries in the ERIs and TPDMs. Note Eq. (101) reduces

to the expression given in Ref. S13 if working in the natural spin orbital basis.

3.2 Numerical Solution

With the expressions for the Hessians at hand we can now solve Eq. (69). First, it is helpful

to bring this expression into a symmetric eigenvalue problem of half the dimension. This

has two advantages, namely the computational cost will be reduced by a factor of eight and

we can use a symmetric eigenvalue solver.

To proceed it is important to note some features of Eq. (69). First, we choose the

normalization:

Y †νNYν −X†νNXν = 1, (102)

(Y −X)†νN(Y +X)ν = 1. (103)
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Next, we note that

(A+B)(X + Y )ν = ωνN(Y −X)ν (104)

(A−B)(Y −X)ν = ωνN(X + Y )ν , (105)

which implies

(A+B)(X + Y )ν = ω2
νN(A−B)−1N(X + Y )ν (106)

or

(A+B)N−1/2N1/2(X + Y )ν = ω2
νN

1/2N1/2(A−B)−1N1/2N1/2(X + Y )ν (107)

A+Tν = ω2
νA
−1
− Tν (108)

A−A+Tν = ω2
νTν (109)

if (A−B) is positive definite, and we have defined

A+ = N−1/2(A+B)N−1/2 (110)

A− = N−1/2(A−B)N−1/2 (111)

Tν = N1/2(X + Y )ν . (112)

If (A+B) is also positive definite we can write

A
1/2
+ A

1/2
+ A−A

1/2
+ A

1/2
+ Tν = ω2

nA+Tν (113)

A
1/2
+ A−A

1/2
+ A

1/2
+ Tν = ω2

nA
1/2
+ Tν (114)

A
1/2
+ A−A

1/2
+ Qν = ω2

nQν (115)

(116)
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where

Qn = A
1/2
+ Tν = A

1/2
+ N1/2(X + Y )ν , (117)

Q†Q = 1, and

(X + Y )ν = N−1/2A
−1/2
+ Qν . (118)

This allows us to write combinations of the Xν and Yν matrices necessary for building

transition density matrices in terms of the solutions of the Hermitian eigenvalue problem.

The factors of N−1/2 can be determined using canonical orthogonalization with a threshold

to discard small eigenvalues.

3.3 Normalization

A useful sanity check at this point is that we have

(A+B)(X + Y )ν = ωνN(Y −X)ν . (119)

Multiplying on the right by (X + Y )† we have and using Eq. (103)

(X + Y )ν(A+B)(X + Y )†ν = ων(X + Y )νN(Y −X)†ν (120)

(X + Y )ν(A+B)(X + Y )†ν = ων (121)

Inserting Eq. (118) in Eq. (121) we find

(X + Y )ν(A+B)(X + Y )†ν = QνA
−1/2
+ N−1/2(A+B)N−1/2A

−1/2
+ Qν = QνA

−1/2
+ A+A

−1/2
+ Qν = 1 6= ων !

(122)

A more consistent normalization of Eq. (118) can be found by

(X + Y )ν ≡ (T+)ν =
√
ωνN

−1/2A
−1/2
+ Qν (123)
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and by Eq. (103) we can deduce

(Y −X)ν ≡ (T−)ν =
1
√
ων
N−1/2A

1/2
+ Qν (124)

from which it follows that

Xν =
1

2
(T+ − T−)ν (125)

Yν =
1

2
(T+ + T−)ν . (126)

To compute the symmetrized (spin summed) transition density matrix we follow PernalS13,S33

and use the identity

γ̄νpq = 〈Ψ0|Êpq|Ψν〉 = 〈0|[Êpq, Ô†ν ]|0〉, (127)

then

γνpq + γνqp = [N(Y −X)]νpq ∀p>q, (128)

where

Ô†ν =
∑
p>q

(
Xν
pqÊpq + Y ν

pqÊqp

)
(129)

For the transition two-particle reduced density matrix, we have

Γ̄νpqrs = 〈Ψ0|[êpqrs, Ô†ν ]|Ψ0〉. (130)
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Using Eq. (87) and looking at the X part of Ô†ν first we have

Γ̄ν(X)
pqrs = −

∑
m>n

Xν
mn〈[Êmn, êpqrs]〉 (131)

= −
∑
m>n

Xν
mn

(
δpnΓ̄mqrs − δmqΓ̄pnrs + δrnΓ̄pqms − δmsΓ̄pqrn

)
(132)

and similarly, we have

Γ̄ν(Y )
pqrs = −

∑
m>n

Y ν
mn〈[Ênm, êpqrs]〉 (133)

= −
∑
m>n

Y ν
mn

(
δpmΓ̄nqrs − δnqΓ̄pmrs + δrmΓ̄pqns − δnsΓ̄pqrm

)
(134)

and naturally Γ̄νpqrs = Γ̄
ν(X)
pqrs + Γ̄

ν(Y )
pqrs , and we have raised the eigenvalue index for clarity. It

is helpful to remove the Kroenecker deltas so that

Γ̄νpqrs =−

(
M∑

m=p+1

Xν
mpΓ̄mqrs +

p∑
m=0

Y ν
pmΓ̄mqrs

)

+

(
q∑

m=0

Xν
qmΓ̄pmrs +

M∑
m=q+1

Y ν
mqΓ̄pmrs

)

−

(
M∑

m=r+1

Xν
mrΓ̄pqms +

r∑
m=0

Y ν
rmΓ̄pqms

)

+

(
s∑

m=0

Xν
smΓ̄pqrm +

M∑
m=s+1

Y ν
smΓ̄pqrm

)
,

(135)

where M is the number of (natural) spatial orbitals. If we define

Qν
pq = Xν

pq ∀ p > q (136)

Qν
pq = Y ν

qp ∀ q > p (137)

Rν
pq = Y ν

pq ∀ p > q (138)

Rν
pq = Xν

qp ∀ q > p (139)
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then we have

Γ̄νpqrs =
∑
m

(
−Qν

mpΓ̄mqrs +Rν
mqΓ̄pmrs −Qν

mrΓ̄pqms +Rν
msΓ̄pqrm

)
. (140)

A helpful reference point to benchmark is the Hartree–Fock limit |Ψ0〉 → |RHF〉 then

Γ̄pqrs = γ̄pqγ̄rs −
1

2
γ̄psγ̄rq (141)

= nqδpqnsδrs −
1

2
nsδpsnqδrq, (142)

where ni = 2 and na = 0 for i and occupied MO and a a virtual MO. Let us first insert the

Coulomb like terms from Eq. (142) into the first two terms of Eq. (140). We have

∑
m

−Qν
mpΓ̄mqrs +Rν

mqΓ̄pmrs →
∑
m

(Rν
mqnpδmpns −Qν

mpnqδmq)nsδrs (143)

= (Rν
pqnp −Qν

qpnq)nsδrs. (144)

Now for p > q we have

∑
m

−Qν
mpΓ̄mqrs +Rν

mqΓ̄pmrs → (Y ν
pqnp − Y ν

pqnq)nsδrs (145)

= (np − nq)Y ν
pqnsδrs (146)

and for p < q we have

∑
m

−Qν
mpΓ̄mqrs +Rν

mqΓ̄pmrs → (Xν
qpnp −Xqpnq)nsδrs (147)

= (np − nq)Xqpnsδrs (148)

= −(np − nq)Xpqnsδrs ∀ p > q, (149)
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where we relabelled p and q in the last line. Thus we have

∑
m

−Qν
mpΓ̄mqrs +Rν

mqΓ̄pmrs
Coulomb-like−−−−−−−→ γνpqnsδrs, (150)

and by inspection

∑
m

−Qν
mrΓ̄pqms +Rν

msΓ̄pqrm
Coulomb-like−−−−−−−→ γνrsnqδpq. (151)

For the exchange terms we just need to set q → s so putting it together we find

Γ̄νpqrs = γνpqnsδrs + γνrsnpδpq −
1

2
γνpsnqδrq −

1

2
γνrqnsδps. (152)

This expression is useful for checking that exchange-induction and exchange-dispersion terms

reduce to their appropriate SAPT0 expressions.

3.4 Numerical Implementation of SAPT Expressions Within the

ERPA

In principle, one could proceed to evaluate the SAPT expressions in Section 2 by building the

transition one- and two-particle density matrices. Indeed, this is possible for the first-order

SAPT terms that do not contain any response term, and the second-order polarization ener-

gies which are functions of the transition one-particle reduced density matrix only. However,

forming the transition two-particle density matrix, which is required for exchange-induction

and exchange-induction is not practical in general so some work needs to be done. We follow

Refs. S8,S26 and try to optimize the contraction order of the intermediate tensors. Let us

first look at the exchange-induction term. The first two terms only contain the one-particle
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(transition) density matrix; we start with the derivation of the third term:

F µ
3a = −

∑
m>p

Q̃µ
mpΓ̄

mp′

p′′p′′′ γ̄qq′Sq′p′ ṽ
p′′p′′′

pq . (153)

Let

Tmp
′

pq = Γ̄mp
′

p′′p′′′ ṽ
p′′p′′′

pq (154)

and

Np′q = γ̄qq′Sq′p′ (155)

then

Wpm = Tmp
′

pq Np′q (156)

so

F µ
3a = −

∑
m>p

Q̃µ
mpWpm. (157)

F µ
3b =

∑
m>p′′

R̃µ
mp′′Γ̄

pp′

mp′′′ γ̄qq′Sq′p′ ṽ
p′′p′′′

pq (158)

=
∑
m>p′′

R̃µ
mp′′

(
Γ̄pp

′

mp′′′ ṽ
p′′p′′′

pq

)
(γ̄qq′Sq′p′) (159)

=
∑
m>p′′

R̃µ
mp′′T

p′′p′

mq Np′q (160)

=
∑
m>p′′

R̃µ
mp′′Wp′′m. (161)
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Next we have

F µ
3c = −

∑
m>p′

Q̃µ
mp′Γ̄

pm
p′′p′′′ γ̄qq′Sq′p′ ṽ

p′′p′′′

pq (162)

= −
∑
m>p′

Q̃µ
mp′

(
Γ̄pmp′′p′′′ ṽ

p′′p′′′

pq

)
(γ̄qq′Sq′p′) (163)

= −
∑
m>p′

Q̃µ
mp′TmqNp′q (164)

= −
∑
m>p′

Q̃µ
mp′Wp′m (165)

and finally

F µ
3d =

∑
m>p′′′

R̃µ
mp′′′Γ̄

pp′

p′mγ̄qq′Sq′p′ ṽ
p′′p′′′

pq (166)

=
∑
m>p′′′

R̃µ
mp′′′

(
Γ̄pp

′

p′′mṽ
p′′p′′′

pq

)
(γ̄qq′Sq′p′) (167)

=
∑
m>p′′′

R̃µ
mp′′′T

p′p′′′

mq Np′q (168)

=
∑
m>p′′′

R̃µ
mp′′′Wp′′m. (169)

For the fourth term, we have to evaluate something like

F µ
4a =

(∑
m>p

Xν
mp +

∑
p>m

Y ν
pm

)
Γ̄mp

′

p′′p′′′Γ̄
qq′

q′′q′′′Sp′q′′′Sq′p′′′ ṽ
p′′q′′

pq (170)

we can define

Up′′q′

pp′ = Γ̄qq
′

q′′q′′′ ṽ
p′′q′′

pq Sp′q′′′ (171)

and

Mmp′

p′′q′ = Γ̄mp
′

p′′p′′′Sq′p′′′ (172)

then

Zpm = Up′′q′

pp′ M
mp′

p′′q′ (173)
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F µ
4a =

(∑
m>p

Xν
mp +

∑
p>m

Y ν
pm

)
Zpm (174)

The exchange-dispersion part is much more verbose and lets us look at the most complex

part which contains contributions like

F µν
4 =

(∑
m>p

Xµ
mp +

∑
p>m

Y µ
pm

)(∑
n>q

Xν
nq +

∑
p>n

Y ν
pn

)
Γ̄mp

′

p′′p′′′Γ̄
nq′

q′′q′′′Sp′q′′′Sq′p′′′ ṽ
p′′q′′

pq (175)

of which there are sixteen different terms arising from all combinations of the m and n indices

in the TPDMs. Let us go about this systematically, and build some common intermediates

(inspired by HapkaS26). For convenience let us use upper case indices for monomer B and

lower case indices for monomer A and lower all indices. Given the finite number of letters in

the alphabet, intermediates will often have reuse symbols. For safety, we will have to assume

they are only defined locally (i.e. only for one of the 16 terms), although by inspection many

of them are identical (up to permutation of indices). Let us first at least define the protected

intermediates (similar to HapkaS26) which can be used in practice:

NA
mqrR = ΓmqrsSsR (176)

NB
MQRr = ΓMQRSSrS (177)

ZAB
mpMP = NmqrRNMQRrṽ

qQ
pP (178)

UrsPQ = Γpqrsṽ
qQ
pP (179)

WAB
rsRS = ΓpqrsΓPQRS ṽ

qQ
pP (180)

= UrsPQΓPQRS, (181)
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with obvious analogues if monomer B’s indices are contracted over.

ΓmqrsΓMQRSSrSSsRṽpqPQ = NA
mqrRN

B
MQRrṽpqPQ (182)

= TABmqMQṽpqPQ (183)

= V AB
mpMP (184)

then

F µν
4(1) = Qµ

mpQ
ν
MPV

AB
mpMP (185)

= Gµ
MPQ

ν
MP . (186)

Now there is some pattern in this, namely we will have contributions where the contracted

Q/R matrix index (m,M) will be in either half of the 2PDM. Let us proceed systematically

along µ first then ν. For the second term we have:

ΓpmrsΓMQRSSrSSsRṽpqPQ = NA
pmrRN

B
MQRrṽpqPQ (187)

= TABpmMQṽpqPQ (188)

= V AB
mqMP (189)

F µν
4(2) = Rµ

mqQ
ν
MPV

AB
mqMP (190)

= Gµ
MPQ

ν
MP . (191)
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For the third term we have:

ΓpqmsΓMQRSSrSSsRṽpqPQ = NA
pqmRN

B
MQRrṽpqPQ (192)

= TABmRPQN
B
MQRr (193)

= V AB
mrMP or (194)

= UrsPQ(SsRN
B
MQRr) (195)

= V AB
mrMP (196)

F µν
4(3) = Qµ

mrQ
ν
MPVmrMP (197)

= Gµ
MPQ

ν
MP . (198)

For the fourth term we have:

ΓpqrmΓMQRSSrSSsRṽpqPQ = NA
pqSmN

B
MQsS ṽpqPQ (199)

= TABmSPQN
B
MQsS (200)

= V AB
msMP (201)

F µν
4(4) = Rµ

msQ
ν
MPV

AB
msMP (202)

= Gµ
MPQ

ν
MP . (203)

For the fifth term we have:

ΓmqrsΓPMRSSrSSsRṽpqPQ = NA
mqrRN

B
PMRrṽpqPQ (204)

= TABmqMP ṽpqPQ (205)

= V AB
mpMQ (206)
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F µν
4(5) = Qµ

mpR
ν
MQV

AB
mpMQ (207)

= Gµ
MQR

ν
MQ. (208)

For the sixth term we have:

ΓpmrsΓPMRSSrSSsRṽpqPQ = NA
pmrRN

B
PMRrṽpqPQ (209)

= TABpmPM ṽpqPQ (210)

= V AB
mqMQ (211)

F µν
4(6) = Rµ

mqR
ν
MQV

AB
mqMQ (212)

= Gµ
MQR

ν
MQ. (213)

For the seventh term we have:

ΓpqmsΓPMRSSrSSsRṽpqPQ = NA
pqmRN

B
PMRrṽpqPQ (214)

= TABmRPQN
B
PMRr (215)

= V AB
mrMQ (216)

F µν
4(7) = Qµ

mrR
ν
MQVmrMQ (217)

= Gµ
MQR

ν
MQ. (218)
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For the eight term we have:

ΓpqrmΓPMRSSrSSsRṽpqPQ = NA
pqSmN

B
PMsS ṽpqPQ (219)

= TABmSPQN
B
PMsS (220)

= V AB
msMQ (221)

F µν
4(8) = Rµ

msR
ν
MQV

AB
msMQ (222)

= Gµ
MQQ

ν
MQ. (223)

For the ninth term we have:

ΓmqrsΓPQMSSrSSsRṽpqPQ = NA
mqrRN

B
PQMrṽpqPQ (224)

= NA
mqrRT

AB
Mrpq (225)

= V AB
mpMR (226)

F µν
4(9) = Qµ

mpQ
ν
MRV

AB
mpMR (227)

= Gµ
MRQ

ν
MR. (228)

For the tenth term we have:

ΓpmrsΓPQMSSrSSsRṽpqPQ = NA
pmrRN

B
PQMrṽpqPQ (229)

= NA
pmrRT

AB
Mrpq (230)

= V AB
mqMR (231)
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F µν
4(10) = Rµ

mqQ
ν
MRV

AB
mqMR (232)

= Gµ
MRQ

ν
MR. (233)

For the eleventh term we have:

ΓpqmsΓPQMSSrSSsRṽpqPQ = TABmsPQN
B
PQMrSsR (234)

= V AB
mrMR (235)

F µν
4(11) = Qµ

mrQ
ν
MRV

AB
mrMR (236)

= Gµ
MRQ

ν
MR. (237)

For the twelfth term we have:

ΓpqrmΓPQMSSrSSsRṽpqPQ = TABmrPQN
B
PQMrSsR (238)

= V AB
msMR (239)

F µν
4(12) = Rµ

msQ
ν
MRV

AB
msMR (240)

= Gµ
MRQ

ν
MR. (241)

For the thirteenth term we have:

ΓmqrsΓPQRMSrSSsRṽpqPQ = NA
mqSRT

AB
pqRM (242)

= V AB
mpMS (243)
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F µν
4(13) = Qµ

mpR
ν
MSV

AB
mpMS (244)

= Gµ
MSQ

ν
MS. (245)

For the fourteenth term we have:

ΓpmrsΓPQRMSrSSsRṽpqPQ = NA
mqSRT

AB
pqRM (246)

= V AB
mqMS (247)

F µν
4(14) = Rµ

mqR
ν
MSV

AB
mqMS (248)

= Gµ
MSQ

ν
MS. (249)

For the fifteenth term we have:

ΓpqmsΓPQRMSrSSsRṽpqPQ = ΓpqmsSrSSsRT
AB
pqRM (250)

= UAB
msRMSrSSsR (251)

= V AB
mrMS (252)

F µν
4(15) = Qµ

mrR
ν
MSV

AB
mrMS (253)

= Gµ
MSQ

ν
MS. (254)

For the sixteenth term we have:

ΓpqrmΓPQRMSrSSsRṽpqPQ = ΓpqrmSrSSsRT
AB
pqRM (255)

= UAB
rmRMSrSSsR (256)

= V AB
msMS (257)
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F µν
4(16) = Rµ

msR
ν
MSV

AB
msMS (258)

= Gµ
MSQ

ν
MS. (259)

Naturally,

F µν
4 =

∑
i

F µν
4(i). (260)
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3.5 Relationship of the SAPT expansion to SAPT0

In this section, we to compare the SAPT truncation in this work with the popular SAPT0

single reference method. This work (same as Eq. (4)):

ESAPT = E
(1)
elst + E

(1)
exch + E

(2)
ind,erpa + E

(2)
disp,erpa + E

(2)
exch−disp,erpa + E

(2)
exch−ind,erpa, (261)

where we added an extra erpa subscript to denote that the transition densities are approxi-

mated using ERPA.

The popular SAPT0 is defined as:

ESAPT0 = E
(1)
elst + E

(1)
exch + E

(2)
ind,resp + E

(2)
disp,u + E

(2)
exch−disp + E

(2)
exch−ind,resp + δ

(2)
HF , (262)

where the subscript resp denotes that orbital relaxation effects are included via linear re-

sponse (CP-HF), u indicates uncoupled and

δ
(2)
HF = EHF

int − (E
(1)
elst + E

(1)
exch + E

(2)
ind,resp + E

(2)
exch−ind,resp), (263)

where EHF
int is supermolecular the Hartree-Fock interaction energy. The addition of δ

(2)
HF

accounts for higher-order induction effects (see Ref.S34 and references therein for a detailed

derivation of the SAPT0 terms).

There are three key differences in the two expansions:

First, the induction term (and its exchange counterpart) in SAPT0 includes orbital relaxation

effects in response to the perturbation field of the other monomer via linear response; in

contrast, the induction term in this work uses approximate transition densities from ERPA

instead of linear response.

Second, the dispersion term (and its exchange counterpart) in SAPT0 uses an uncoupled

approach where the above mentioned orbital response is neglected; this work uses a coupled

approach as used in SAPT(DFT) (again using approximated transition densities via ERPA).
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Third, SAPT0 accounts for higher order induction effects by including the δ
(2)
HF term, such a

term is omitted in our work because it would require the VQE calculation of the supersystem.

Alternatively, higher order induction effects could be approximated δ
(2)
approx using the Hartee-

Fock supermolecular binding energy:

δ(2)
approx = EHF

int − (E
(1)
elst + E

(1)
exch + E

(2)
ind,erpa + E

(20)
exch−ind,erpa). (264)

Hapka et al.S35 suggest this approximation for their SAPT(MC) methods where they face a

similar issue. They found that the SAPT(MC) methods for single reference systems (using a

very small active space) were more accurate than SAPT0 using the (small) TK21 benchmark

set. We confirm this finding for the single reference HNO complexes from the main text:

The SAPT expansion with a RHF reference (SAPT(RHF)) performs similar to SAPT0 even

without the addition of the higher order induction term δ(2). The results are summarized

in table S3. We chose to omit such an approximate term in this work because extensive

numerical testing is required to properly decide this issue. Thus, the three differences in the

SAPT expansion and the difference reference wave functions make it difficult to determine an

expected accuracy differences between SATP0 and SAPT(VQE) without extensive numerical

benchmarks.
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4 Computational Details

All density functional theory calculations were performed with the pyscf software packageS36

and used a Lebedev grid used for the numerical integration of the exchange correlation func-

tionals with 70, 105, 140 radial grid points and 590 770, 770 angular grid points, for atoms

of the first, second and fourth period respectively (grid level 5). The geometry optimiza-

tions were performed with pyscf and the geomeTRICS37 package. All CASSCF calculation

were performed with pyscf software packageS36 and selected CI (semistochastic heat-bath

configuration interaction (SHCI)) calculations with the DICES38,S39 program package via

the pyscf plugin. We used a loose screening parameter of 0.001 (sweep ε) for computational

efficiency and in order to afford large active spaces. We used the 6-31GS40,S41 basis for the

“stretched water” dimer and a mixed basis (C: 6-31G; H: STO-3GS42,S43) for the benzene

p-benzyne dimer. We also employed a mixed basis for the [Mn(NH3)3(CN)2NO]0· · ·X (X =

HF,H2O,NH3 and CH4), where the crucial moieties were described with the 6-31G basis (Mn,

NO and X) and the ligand framework (CN and NH3) STO-3G was used. The mixed basis

was chosen due to the memory constraints of the GPU for the subsequent ERPA calculations.

This is because our current implementation is limited in system size due to a non-optimal

treatment of core/active/virtual simpliciation and a lack of density fitting of the response

functions. Note that all VQE calculations were performed on ideal statevector simulators,

which were carried out on an GPU accelerated in-house QC Ware package (quasar/vulcan).

In addition, double factorization was used for evaluating the total energy.S44,S45 All SAPT

and VQE calculations were performed on the newest NVIDIA A100 GPUs provided by

Amazon Web Services.

The geometries of the water dimer and benzene were taken from the SI of our previous

study.S3 The [Mn(NH3)3(CN)2NO]0 monomer was optimized without constraints and the

geometry was frozen for subsequent geometry optimization of the hydrogen bonded dimer

complexes. This ensures that the active space orbitals remain as similar as possible in each

complex.
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The active spaces for the “stretched” water dimer and benzene p-benzyne dimer, were

selected based on MP2 natural orbitals followed by a CASSCF calculation with (8e, 8o)

and (6e, 6o), respectively. The active space of [Mn(NH3)3(CN)2NO]0 was selected via the

automated construction of molecular active spaces from atomic valence orbitals (AVAS),S17

where we included all Mn 3-d and the p-orbitals of the NO ligand. Additionally, we system-

atically added orbitals to the active space based on SHCI resulting in a (16e, 22o) active

space. The natural occupation numbers are plotted in Fig. S2 and show several orbitals

with strong deviation from integer values confirming the multi-reference character of the

system. The subsequent CASSCF calculation used the SHCI natural orbitals as a starting

guess and included (6e, 6o) in the active space. The corresponding natural orbitals are de-

picted in Fig. S5. The strongest deviation are seen in Fig. S5 (c)–(f); the orbitals show both

bonding and antibonding π type orbitals of Mn-dxz and Mn-dyz with two NO π∗ orbitals.

These orbitals correspond to metal-to-ligand π backbonding in the Dewar–Chatt–Duncanson

picture.S46,S47 The strong static correlation of these four electrons indicates that the elec-

tronic structure of this complex is a superposition of the two configurations [Mn(II)-NO•]

and [Mn(II)-NO+]. The corresponding NOONs are depicted in Fig. S2 and the values only

slightly change in comparison to the (approximate) larger active space SHCI results.

In order to converge the k-mUCJ ansatz with larger repetition factors a read-in algorithm

inspired by Ref. S48 was implemented. For a given circuit repetition number N , the optimal

VQE parameters from the N − 1th step are used as a starting guess and the remaining extra

parameters are populated with random parameters from a normal Gaussian distribution (N )

with mean µ = 0.0 and variance σ2 = 0.001 (N (0.0, 0.001)). We increased the repetition

factor in the following order: N = 1, 2, 4, . . . ,m. All calculations were performed in the

dimer-centered basis (ghost atoms on the other monomer) and a gradient threshold of 1×10−6

for the L-BFGS-B solver in scipy or with a maximum iteration of 1500 whichever occurred

first. In cases when the maximum iteration was reached first we found the norm of the

gradient to be ≈ 1× 10−5.
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For the subsequent SAPT calculations we constructed the one- and two-particle reduced

density matrices in the full set of natural orbitals. In the case of RHF these correspond to

the canonical Hartree–Fock orbitals. For SAPT(CASSCF) and SAPT(VQE) we used the

CASSCF natural orbitals. These density matrices were then used to construct the ERPA

and SAPT equations given in Eq. (69) and Section 3.4. We used a threshold of 1 ×10−5 for

the canonical orthogonalization step when solving the ERPA generalized (symmetric) eigen-

value problem. The ERPA and SAPT expressions given in in Eq. (69) and Section 3.4 were

implemented in an in-house python code. NumPyS49,S50 was used for tensor manipulation

and linear algebra operations with certain steps accelerated using CuPyS51. This proto-

typing code does not exploit core-active-virtual partitioning and is thus limited to systems

containing roughly 130 orbitals.
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5 Additional Information for the Results Section
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5.1 Detailed SAPT Analysis of the MnNO Complexes

The detailed analysis of the energy term decomposition helps to unravel the origin of the

interaction. Fig. 5 (b) plots each component of the SAPT(VQE) (k = 4) calculation of

the series of hydrogen bonded complexes plus the “stretched” water dimer as a reference of

a typical hydrogen bond. We see that the electrostatic term dominates the interaction as

expected for hydrogen bonds. The MnNO···HF complex has the largest electrostatic contri-

bution (−11.9 kcal/mol) which is stronger than a water hydrogen bond (−11.4 kcal/mol).

The electrostatic interaction of MnNO···HOH is significantly weaker despite the fact that

the dipole moments of both H−F and H2O are around 1.8 D. When comparing the exchange

terms, we see that the terms rapidly decrease from MnNO···HF to MnNO···HCH3 which can

be rationalized by the change in bond distances and by the exponential decay of this term.

Interestingly, the water dimer and MnNO···HF have similar bond distances but MnNO···HF

exhibits a significantly less repulsive term. This difference is the main driving force for the

difference in interaction energies and can be rationalized by the diffuseness of the lone pairs.

The bound NO becomes (partly) NO+, which makes the lone pair more compact in space

than the lone pair in the water dimer; thus, resulting in less exchange repulsion.

5.2 Additional Comments on the Comparison Between DFT and

SAPT(VQE)

We compare the SAPT(VQE) interaction energies to DFT based supermolecular (BSSE cor-

rectedS52) interaction energies. We note that exact comparisons are difficult for two reasons:

first, the static correlation makes it difficult to generate reliable reference energies as the “gold

standard” CCSD(T) for non-covalent interactions is not reliable anymore;S53 second, SAPT0

produces most accurate energies with the jun-cc-pVDZ basis setS2 which cannot be employed

due to technical limits in the current implementation. However, nitrosyl complexes are an ex-

ample of non-universality problem of approximate density functionals as the hydrogen bond-
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ing moiety and the nitrosyl moiety prefer different approximate density functionalsS54–S56 and

thus reliable prediction are only possible with careful system specific benchmarking when

experimental data is available.S57 In contrast, SAPT is expected to give accurate results

for hydrogen bonds given that proper monomer wavefunctions are used. The calculation of

accurate interaction energies poses a challenge for DFT as different types of approximate

density functionals are recommended for the different molecular moieties: non-hybrid func-

tionals are recommended for an accurate description of the metal-NO moiety,S54,S55 while

for hydrogen bonds range-separated hybrids are recommended.S58 These two competing re-

quirements make these systems very sensitive to the choice of specific approximate exchange

correlation functional illustrating the non-universality problem of approximate density func-

tionals. When using DFT, careful benchmark against experimental data is necessary.S57

Our findings indicate that the k-uCJ VQE ansatz is able to accurately describe the difficult

electronic structure of the nitrosyl monomer in the hydrogen bonding complex (see Fig. S6)

To illustrate this point, Fig. 6 (main text) plots the interaction energies of SAPT(VQE),

SAPT(CAS-CI) and several popular DFT functionals (supramolecular). We included many

popular functionals as well as several top performing functionals for non-covalent interac-

tions.S58 We see in Fig. 6 (main text) that the SAPT(VQE) (k = 4) is almost identical to the

SAPT(CAS-CI) in all four cases. We also note that the DFT functionals exhibit a significant

spread for each complex. The B97-D functional predicted the smallest binding energy in all

four cases, but the highest interaction energy is predicted by a different functional. Further-

more, we see the relative ordering of the functionals change for each system (color sequence

in each plot). This illustrates the non-universality problem for approximate exchange corre-

lation functionals even for very similar nitrosyl complexes (this also holds true for larger basis

set as illustrated in Fig. S8). We note that the SAPT(CAS-CI) results are the reference for

the SAPT(VQE) calculations and do not represent the true interaction energy, thus, only the

SAPT(VQE) not the DFT interaction energies should be compared against this reference.

B97-D,S59 BP86,S60,S61 SCAN,S62 PBE,S63 M06-L,S64 TPSSh,S65 B3LYP,S61,S66,S67 PBE0,S68
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MN15,S69 PWB6K,S70 CAM-B3LYP,S71 ωB97X-D.S72 This diverse list includes local DFT

functionals, hybrid functionals with a wide range of exact exchange (10%–46%) and range

separated hybrids.
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Figure S2: Natural occupation number of the SHCI/CASSCF natural orbitals for the
strongly correlated monomer of each test case: upper panel “stretched” H2O and p-benzyne;
lower panel: [Mn(CN)2(NH3)3NO]0.

Table S2: Quantum hardware resource requirements with respect to the repetition factor
k (Number of qubits, number of two qubit gates (2-Q-G), number of parameter, quantum
circuit depth) for the VQE simulations using the k-muCJ ansatz for the simulation of the
[Mn(CN)2(NH3)3NO]0 with an (6e, 6o) active space.

k 1 2 3 4 5 6 7 8

# Qubits 12 12 12 12 12 12 12 12
# 2-Q-G 435 750 1065 1380 1695 2010 2325 2640
# Param. 45 75 105 135 165 195 225 255
Depth 216 378 540 702 864 1026 1188 1350
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Figure S3: (a) potential energy scan along r using SAPT(CAS-CI), SAPT(RHF) and
SAPT(4-uCJ); (b) distance dependence of each SAPT(4-uCJ) energy term with respect
to the intermolecular distance r for the “stretched” water dimer.
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Figure S4: Potential energy scan along r using SAPT(CAS-CI), SAPT(RHF) and
SAPT(VQE) (k = 4) for the p-benzyne-benzene dimer.
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Figure S5: Natural orbitals of the (6e, 6o) CASSCF calculation of [Mn(CN)2(NH3)3NO]0.
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Figure S6: Error in the one and two particle density matrix as a function of the cir-
cuit repetition factor k for the [Mn(CN)2(NH3)3NO]0 monomer. The errors are defined
as |∆γ|∞ = |γCASCI − γk−muCJ|∞ and |∆Γ|∞ = |ΓCASCI − Γk−muCJ|∞.
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Figure S7: Term-by-term decomposition of the SAPT(4-uCJ) binding energies of each heme-
nitrosyls hydrogen complex at a fixed bond distance of r(O−H) = 2.08 Å (equilibrium
distance of the H2O complex).
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Figure S9: (a) Comparison between supramolecular DFT interaction energies for the nitrosyl
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DFT and SAPT in their most common basis sets using the azanone hydrogen complexes.
High level CCSD(T) reference interaction energies are also provided for reference (DFT:
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