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1 Theory

1.1 Indices and Labels
We adopt the following notation for orbital sets used in this work:
e A/B - monomer nuclear indices.

e 1/v - nonorthogonal atomic spatial orbital basis indices (i.e., Gaussian basis indices).

p/q - orthogonal molecular spatial orbital basis indices.

i/j - orthogonal occupied spatial orbital basis indices.

t/u - orthogonal active spatial orbital basis indices.
e a/b - orthogonal virtual spatial orbital basis indices.

Repeated indices within a monomer will be denoted with primes, e.g., p,p/,p”,p"”. When
dealing with spin-orbital quantities, we use the context specific notation of an “unbarred”
orbital index to denote o and a “barred” orbital index to denote f3, i.e., p' is an a spin-orbital
creation operator on spatial orbital index p, while p' is a 3 spin-orbital creation operator on

spatial orbital index p.

1.2 Symmetry Adapted Perturbation Theory

The interaction energy between two monomers is defined as the total energy of the combined

system minus the total energies of the two separated monomers:

Eit = Eap — E4 — Ep, (1)

where the total energies represent the full CI solution at the basis set limit. In practice,
approximate methods such as density functional theory or coupled cluster methods are used

to compute accurate enough total energies to resolve the binding energy accurately.
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An alternative approach to computing intermolecular interaction energies is symmetry
adapted perturbation theory (SAPT) which is valid for non-covalent interactions. Instead of
computing total energies, SAPT assumes that the intermolecular interactions are weak and
thus we can compute the interaction energy via perturbation theory. In particular, we can

write the Hamiltonian of the combined system as

H=Hy+Hp+V, (2)
where we assume Hx|Uy) = Ex|Ux), where |¥x) is the ground state wavefunction of

monomer X and V contains only the Coulombic interactions between monomer A and B.
With this partitioning of the Hamiltonian, we can build a perturbation theory for the inter-
molecular interaction energy directly thus avoiding computing potentially very large total

energies. More explicitly we have

Eint = Z(E[()o% + Eéxzh) (3)

n

where E and E®™ )h are nth-order polarization and exchange energies respectively. An

exc.

added benefit of SAPT is that we obtain an intuitive breakdown of the interaction energy
components, into electrostatic, induction, dispersion and exchange components which can
be used to provide chemical insight into the binding process. Truncation after the second

order gives rise to SAPTS! yielding:

Eint ~ ESAPT = E(lst + E( )h + El(n(i + E((ils)p E«S{Zh dlSp Ee(z)zZ:h ind> (4)

(S} exc

1)

where E! et corresponds to the first order electrostatics term, Eéxlh to the first order ex-

change term, Ei(ng to the first order induction term, E to the second order dispersion

disp

to the second order exchange-dispersion term, E® to the second order

exch—ind

term, E( )

exch—disp

exchange-induction term (see below for a detailed derivation). In the main manuscript, we
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combine both dispersion and inductions terms and drop the superscripts yielding:
Eint ~ Eelst + Eexch + Eind + Edisp- (5)

Ref. S2 shows that this level of SAPT (SAPTO0) using Hartee-Fock wavefunctions and a
medium-size jun-cc-pvdz basis can yield highly accurate results for a broad range of non-
covalent interactions. We discuss the relationship between the different SAPT methods in
section 3.5

As in-depth discussed in our previous work,>® we use the density matrix formulation
of SAPT®* 57 as recently fully implemented for complete active space self-consistent field
(CASSCF) wavefunctions by Hapka and et al.®® This formalism allows for the evaluation of
the terms appearing in Eq. (4) using just the ground state one- and two-particle reduced
density matrices of the monomers with additional response terms for the second order terms.
Instead of Hartee-Fock density matrices, we use a quantum computer via a VQE ansatz to
determine an accurate ground state wave function of the system (for more details on those
algorithms, see the next sections). The detailed derivation of the first order terms (E(l)

elst?

E(l)

exch

) be found in Ref.5?

The second order SAPT terms for induction and dispersion energies (as well as their
exchange counterparts) requires the calculation of excited state properties on a quantum
computer (see below for a more detailed derivation). Although several approaches have been
suggested in the literature to compute excited state properties on NISQ-era quantum com-
puters, they often require a significant measurement overhead.* 52 To reduce this burden

S13

we employ the extended random phase approximation (ERPA),>" which requires only the

one- and two-body reduced density matrices to be evaluated on the quantum computer.S
This approximation has previously been shown by others to produce quite accurate interac-

tion energies when employed in SAPT based on CASSCF wavefunctions, and we will show

that this carries over to VQE wavefunctions.

S-4



Given that NISQ-era devices are currently limited to tens of qubits (spin-orbitals), we will
use an active space approach analogous to CAS-CI methods. In the active space approach,
we partition the one-electron orbital set into N, core orbitals, N, active orbitals and N;
virtual orbitals. This partitioning gives rise to modified monomer Hamiltonian given by (for

example, for monomer A)

A ! ~
Hy = Z htt’aigat’a‘i‘

- , (6)
5 Z Z (tt” |t/t”/)aiaailala/t“/gl Qg
O'O'/ tt/t//t///

where the modified one-electron integrals hy now include core-active space interactions

- 1
hyyr = hyy + Z |:(tt/‘ii/) — §<ti’|it/) Vi - (7)

73

The key approximation in the active space approach is that a (small) set of “active” orbitals
and electrons are defined a priori, and the FCI expansion is constrained to that subset of
electrons and orbitals. The quality of the CAS-CI and VQE results depends strongly on the

selected active space. 5517

1.3 Variational Quantum Eigensolver

This section briefly summarizes the VQE ansatz used in this work, it is identical to the
approach taken in our previous work®® and discussed in more detail. The SAPT post pro-
cessing step only relies on the reduced density matrices which can in principle be generated

518 or Quantum Krylov methods.’

with a quantum algorithm such as other VQE flavors
We generate the active space wave function of the strongly correlated monomer using
the VQE ansatz described below (it is also possible that both monomer wave functions are

evaluated on the quantum computer, but in practice, usually only one monomer will exhibit

strong correlation, and thus require a VQE treatment):
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[Wvar) = Uvael|®r) (8)

where |®;) guess state (typically the Hartree—Fock).
Throughout this study, we only use real active space wavefunction |Uyqg) and they will
be a definite eigenfunction of the N,, Nﬁ, and 52 operators.

The paper is using the following Jordan-Wigner representation:

= Q4 Q Ly F )2 (10

where p* = pf and p~ = p and we order the Jordan-Wigner strings in a-then-3 order and
7 , Y and X are the usual Pauli operators.

In this work, we use a modified version of the unitary cluster Jastrow wavefunction!

(k-uCJ) which takes the form

[Tyas) = [ [exp(—K®) exp(T™) exp(+KW)|@)), (11)
k
where K® and T™ are one- and two-body operators and k is a parameter that controls the
depth of the circuit and as a result its variational freedom. The key difference in our k-uCJ
ansatz from Ref. S19 is that the two-body operator and the restriction to real anti-symmetric
matrices.

The one-body orbital transformations (spin restricted) are defined as

. % L
E®=3"x0) (0 - p''p) + 675 — 'p)] (12)

pp’
where m;’g = —HI()’,?) is a real, antisymmetric N, x N, matrix of orbital rotation generators,
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which is equivalent to the one-particle spin-restricted orbital transformation:

Uk = [eXp(li(k))}

pp

, (13)

pp

This spin-restricted orbital rotation is expressed as quantum circuits using a fabric of Givens
rotations. 520

The two-particle operator is defined as

M-1

i

BN + )+ 1) oy

p=0 p/ 5422(1 2 (14)

T+ 1)(p + 1)]

The uCJ implementation is similar but not exact to Refs.5!® and.5?! This it is denoted
as k-muCJ for clarity, with the ‘m’ standing for modified. It is important to point out that
the choice of VQE ansatz is largely irrelevant from a SAPT perspective and is not a major

point in this paper. An example of one layer of the muCJ circuit ansatz is given in Fig. S1.

{a—1a] Hal— g
a—eH , ——1e—g
X

@
i
[
o
!
]

G GH G G

Figure S1: Quantum circuit of a single layer (k = 1) k-muCJ VQE entangler circuit for
M = 2 spatial orbitals or N = 4 qubits. Even (odd) qubits represent « (/3) spin-orbitals.
The quantum circuit starts with two-qubit Givens rotation among « and 3 orbitals. The
next steps are a double substitution operator (four qubit exchange gate) and another layer
of Givens rotations.

Using the ansatz discussed above, the VQE objective function is defined as

Bvau(kl, m8) = (Uvae (k75 | H Uy (K5, 75 ) (15)

= (D1 U (w7 ) HU (1 1) | D). (16)

pr’
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The number of measurements scales O(NZ); however, we point out that efficient estima-
tion of the density matrices are currently intensively investigated by several research groups,

e.g. Ref. S22 or Ref. S23.

2 Derivation of the Second Order SAPT Terms

It is helpful to first recall standard Rayleigh-Schrédinger perturbation theory for the in-
termolecular interaction energy. To begin, we can write the Hamiltonian of the combined

system as

H=H,+Hp+V, (17)

where we assume Hx|Uy) = Ex|Ux), where |¥x) is the ground state wavefunction of

monomer X and V contains only the Coulomb interactions between monomer A and B:

gy ! 2.7
PRl ZZ!Rﬁ—w sz —rﬂzzm TR W

where it is understood that i and j are distinct indices and the sum over o/ runs over the
number of atoms in monomer A/B respectively. Under the assumption that the potential 1%
is a small perturbation (valid for weak intermolecular interactions), we can, in principle, now
use perturbation theory. Following Ref. S1, one typically starts SAPT by first constructing

a perturbation series for the so-called polarization energy

n—k)
|\ij01> _R V|\I]pol + Z EpolR |\Ij§)01 >7 (19)
where
Ry = (Hy — Eo + Py) ™' Qo, (20)
is the resolvent operator, Hy = Hx + Hg, P = [Uo)(To|, Q =1 — P and (W0 = [Wo) =

WO ¥Y). Here we have that H = Ha + Hp + V and we assume Hy|Wo) = (ES + E)[Wo).
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The first order polarization energy (usually called the electrostatic energy Fey) is then given

by

Efo) = (W[ V| %) (21)

= %p/vfqu Vaq' s (22)
where we used the definition E(nf = <\IIO\V|‘IIPOI>
For the second order polarisation energy, it is conventional in SAPT to split into the

induction and dispersion energy, i.e., E @) Fina+FEaisp- The distinction arises by considering

pol —
that the induction term accounts for contributions from terms where one monomer is in
an excited state, and the dispersion term considers contributions from terms where both
monomers are in excited states. For the induction energy we have ¥} = RAQB|WO),
where R} = (Hy — E{ + P4)"'Q4 and

Na

P =3 (VB(rz) / dr J%) (23)

i

is the effective electrostatic field of monomer B. Using the sum over states formula for the

resolvent we have then that

) = RIOP|WY) (24)
— Z |\III,:1><\PZ|QB|\I/?4> (25>
p EY — EY
from which it follows
\IJ“ QB wo
EY

with a similar expression for Ej,q(B < A). By introducing the (spin-summed) transition
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one-particle reduced density matrix
A, = (UOplp W+ + (W0 |pp | (27)

we can write Eq. (26) as
<7£p/QPP')2

Fpna(A <« B) = — . (28)
2B m
Similar expressions exist for monomer B.
For the dispersion contribution, we first define
gy TPATE WAV, 0 ) ”
‘AB>_ E}L_Eo_i_Ey_EO ’ ( )
A A B B
so that
PO (U AL A A 0
disp — El) - E} + B — B}
- o —u 2
S Z (’ypp/ Upg' fyqq/) (31)
By — B} + Ep — By

Equations (22), (28) and (31) provide all polarization energy contributions up to the
second order in the intermolecular interaction energy. Unfortunately, without further modi-
fication, one finds the RS perturbation theory does not converge for many-electron systems®>!.
Symmetry adapted perturbation theory (SAPT) attempts to fix this issue by explicitly ac-
counting for fermionic anti-symmetry in the wavefunction when electrons undergo exchange
processes between monomers.

The SAPT expression for the intermolecular interaction energy is given by>!

~ n—1 n— k n—=k
(W VAW Y — St B (o AT

pol pol

(Uo| AWg) ’

EéZ)PT = (32)

where |‘I’1(a?1> are the nth-order polarization wavefunctions given previously and A is the
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antisymmetrizer operator. With this definition, the SAPT interaction takes the following
form

E{ . =E™ 4+ EW (33)

pol exch*

If one neglects all electron exchange processes other than those that exchange a single electron

pair between monomer A and B one arrives at the so-called S? approximation to the exchange

energies (through second order) 585247526

B, = (Uo|(V = V)(P = P)| W) (34)

E® A« B) = (U0 |(V — V) (P — P)|windy0 35
exch— 1nd( < ) < A B|( )( )| A B)? ( )
EQ\ e = (WOU(V — V)(P — P)UED), (36)

where |¥Und) and |\I/d15p> have been defined previously and P is defined as the electron ex-

change operator

A Na Np A
P==% 3P (37)
i

where [f’ij exchanges an electron from monomer A to monomer B. Note a similar expression
exists for Fexen—ina(A — B).
It is helpful to note that Eqgs. (34) to (36) all share a similar structure. Let us first
example Eq. (34):
Eoxen = (WRWH|(V = V) P[5 UE) (38)

which can be written in the density matrix formalism of SAPT as

1)

D) (g2 _..~,._EP°1 dx.

Eexch(S) rylnt(X“X]) U(r“rJ) N N XmdX], (39>
AiVB

where x; and x; denote both spin and spatial coordinates of electrons in monomer A and B
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respectively, and the ‘interaction’ density matrix is defined as

Vint (X1, X;) =

— va(Xi, x;)7B(%;, %)

—/'7A(Xz‘aXj’)FB(Xj’Xj’vxj’Xi)de' (40)
—/FA(Xi,XiuXiaXj)’YB(Xj’Xi/)dXi/

—//FA(Xi,Xi/,Xi,Xj/)FB<Xj,Xj/,Xj,Xl'/)dXi/de/.

By inspection Eq. (35) is identical to Eq. (38) up to the replacement of [¥%) by the excited

state wavefunction |¥/;). Thus we have

L EY
(W00 (V7 — V) PwA el = / ) (00 ry) — =22 ) dxdx, (41
N4sNpg
where
Ve (X5, x5) =
— Ya(xi, %) 7B(%5, ;)
_ / (35, %50 D (%5, X0, X5, %) (42)

_/FZ(XivXi’7xiaxj)’yB(Xj,Xz‘/)dXi/

I3
—//FA(Xi,XZ’/,Xi,Xj/)FB<Xj,Xj/,Xj,Xi/)dXi/de/.

where v* and I'* are transition one- and two-particle density matrices. Expanding the
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transition density matrix in orbital space and performing spin summations, we find

1
(WO ULV — V)P4 Ty = 2(ypp,7qq R (43)
'7/” F q"’ ///Sp q/Ug;”q//
+ T/qq’ I:f'u‘]ggp/// Sq plvgq (44)
[FH]pr”’FZ?’q’“ Sp /g’ Sq p///’Up q
_ E(I)S N ~H )
polPpd’ Vag' Pap' Vpp' )-
(45)
It is helpful to define the exchange of functional
(46)
v — T —v TV 1 — _
F/’L = F[»y/i’F.U’fy 7F ] = _§<[fyu]pp/[7 ]CI(I qup (47>
+ [V ]ppr [fy]ggq”' Sp q’vgg, ’
+ [V aq [fu]ggp”' Se'p'Upg" (48)
+ [Fu]p//p/// [Fy] //q/// Sp q”’Sq p/’/vp
1
- EI()O)ISP(]/ [V )ag Saw [¥ ]pp ),
(49)

with the understanding that 4° = ~ etc., so that for the exchange-dispersion contribution,

we have

(WRUHI(V = V)PIWLUY) = P = F[34, T, 75, D5, (50)

which follows by inspection.

With these notational conventions, we can evaluate the exchange-induction term we have

S-13



(in the S? approximation)
Besen-ina(A = B) = (WU |(V = V)(P = P)[ 0 W), (51)

Inserting Eq. (25) into Eq. (51) and breaking the expectation value into two terms, we

find (dropping B — A notation)

> -y (UG UG|(V = V(P = P)| W4 UG (W4 UG |08 W0 wh)
exch—ind — —

. 52
E% —EY, (52)

m
Let us first look at the term in the numerator, (U4U%|(V — V)(P — P)|W*¥Y%) which we

will break down into two pieces:
(WOUR[(V — V)P uh) (53)

and

PUGU|(V — V)W U). (54)

Eq. (53) is given by F* as discussed previously while Eq. (54) is simply (note (¥%|¥4) = 0

so the PV contribution is zero)

PUOUH|V|WGUE) = PUG TG0, TE) (55)

= Py, Q0 (56)

and by inspection with Eq. (39)

_ . 1
P = (WU PIUO Ul = m/dx dx" Yim (%, X') (57)
1 _ _
= _§Spq/7qq’sqp’7pp" (58)
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So, putting all of this together, we have

FHr
Eexch—ind(B — A) = - ( (,L)M + Eind(B — A)
A

where

and we have used the fact that

with

and The full expression is then

Frir

m
Wy

Eexchfind = Eexchfind(A — B) + Eexchfind(B — A) = - (

P),

Fvtr

14
Wp

(59)

(60)

(61)

(62)

+ EindP> . (63)

The second-order exchange-dispersion energy can be found in a similar fashion. We can

start from the definition in the S? approximation

Eexch*diSp(Sz) = <\IJ?4\II%|(V - V)(P - p)|qjii41189p>’

(64)

In contrast to the induction term, the dispersion interaction includes terms where both

monomers are in an excited state. Much like the exchange-induction interaction, we can

split Eq. (64) into two terms. Inserting Eq. (29) into Eq. (64) we first have to evaluate

(WRUH(V = V)PIUGWE) = F* = F[74, T, 75, T,

S-15
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which follows by inspection. We also identify the usual induction numerator term

(WO UL Ve[ UH UYL = vg;'l’ygp,vgq, = ", (66)
Noting that
(2) (t,uu)Q
BV = — E S S 67
disp — Wffx w% ( )

and combining all of these with Eq. (58) we find

v
Eexchfdisp = - m

14
wy +wp

+ EdiSpP) . (68)

3 Extended Random Phase Approximation

Evaluating the SAPT expressions given in Section 2 requires a knowledge of the one- and
two-particle transition density matrices at a given level of theory. There are two challenges
to achieving this given current NISQ hardware. First is that we can only simulate a small
fragment of the problem in a quantum computer, which is achieved here using an active space
approach. Second is that, in principle, we would need to compute all eigenvalues and excited
states to compute the transition density matrices, which is significantly more challenging
than just computing the ground state energy.

To overcome these issues, we instead include only the subset of particle-hole excitations.
In particular, we follow Hapka et al. 53526527 and use the extended random phase approxima-
tion 513528529 (ERPA) to approximately determined excited state properties from CASSCF
quality wavefunctions. For notational clarity, in this section, we will not distinguish between

monomers, and orbitals are general spatial orbitals.
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513,529

Following Perna , in the ERPA solves the following eigenvalue problem

X, -N 0 X,
= Wy (69)
Y, 0 N Y,
where
qu,rs = <\IIO|[pTQ7 [ﬁa STT] |\II0> (70)
BP‘IJ"S = <\I}0|[qu’ [HarTSquO) (71)
Npgrs = <\110|[qu7 3T7”]|\110> = 52385@"(”(1 - np)7 (72)

where the above equations are valid in the natural spin-orbital basis corresponding to |¥y),
and we take p > ¢ and r > s. Computing the Hessian matrices in Eq. (69) is somewhat
tedious, but expressions are available in the literatureS52,

Note that using excited states from the ERPA introduces two approximations in the
quality of the resulting SAPT interaction energies. The first approximation is that even
with an exact FCI wavefunction, the ERPA will not yield all the excited states of the
Hamiltonian as only particle-hole-like excitations are included. The second issue is that the
CASSCF wavefunction is not an eigenstate of the zeroth order Hamiltonian in the SAPT
perturbation theory. In principle, this last problem can be addressed within the context of
the adiabatic-connection formalism based upon the ERPA 58526:527,830.831 \which yields the so-
called coupled approximation used in this work. This amounts to using the full Hamiltonian
in Eq. (69) with the CASSCF (or VQE) wavefunction as |V,). The adiabatic-connection
approach assumes the one- and two-particle reduced density matrices remain constant across

the adiabatic-connection pathway. This approximation appears to perform well in the sense

that SAPT(CASSCF) compares favourably to FCI interaction energiesS526:527,
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3.1 Spin-Summation

In this work, we only target singlet excited states and thus Xg, = X,p = 0; therefore, we

explicitly form the spin-restricted ERPA equations. In particular, we form

APQJ‘S = <qu|qu’ [Ha ES?"”\IJ0>
Bogrs = (Vol[Epg, [H, E,]| o)

Npgrs = (Yol[Epg Esr]| Vo) = 0psOqr(ng — 1),
where E,, = (rfs +75). It is helpful to note the following identities:

[AB,C] = A{B,C} — {A,C}B

[AB,CD] = [AB,C|D + C[AB, D)

So, for example,

A

[Er57 Eqp] = [TTS + FTE? qu + qTﬁ]

= [r's,q'p] + [r's, ¢'8] + [7'5,'p] + [7'5,7'7],

and

[r's, q'p] = [r's, q"lp + ¢'[r's, p]
= (s, q"y = ", q"Ys)p + ¢ ({5, p} — {r', p}s)
= r'pdsg — q's0r

[7'5,q'p] = 7' pdsg — 41565

(715, q'p] = [r's,q'p] = 0

S-18
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Similarly 532,
[Emny Equ} = EAmqépn - EApnémq (84)
[Ersa [Eijv EA’qu = [Ers» Ez ]5qj - [EA',"S, qu]di (85)
- Erp(;iséqj - Eisérp(qu - Erj(sqséip + Eqsérjéip (86)
[Emna épqrs} = pnémqrs - 5mqépnrs + 5rnépqms - 5msépqrna (87)

where €,qrs = p'rsq + p'Fisq + pirisq + p'rT5g. We can now evaluate the commutator on
the left hand side of Eq. (73) where we take

N . 1 R

H =3 hyy0lq+5'0) + 5 D (palrs)epgs. (88)

2

pq pqrs

Let us begin with the one-body term (dropping hats on operators for brevity, and here all
orbital labels refer to general spatial orbitals, no distinction is made between active, core or

inactive)

Z hij [E’I‘Sa [Eijv Eqp]] = Z hij(ETp5i85qj - Eisérp(sqj - Erj‘sqséip + Eqs(srjéip) (89)
ij

ij

= hagEry = > higEisry — > i EriSgs + by Eys (90)

J

If we work in the natural orbital basis (¥o|E,qe|Wo) = Fpg = Nplpg, With 0 < n, < 2!, then

we have

<Z hij|Ers: [Eij, Egpl]) = TsgOrp(ne — 1) + hyrdgs(ng — nr). (91)
]

!Note we assume n, < n, for p > ¢ (i.e. the basis is ordered in descending order of natural orbital
occupancy) which is the opposite ordering that is usually taken in the ERPA literatureS!3529
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For the two-body part, we have to evaluate expressions like (see Eq. (74))

Z(iﬂkl)[Ersv (€35 Epgl] (92)

ijkl

Let us look at

[Ers; [€ijkts Epgl] = —[Ers, [Epgs €ijnt]] = —[Ers; 0iglpjkt — Opjight + OrgCijpt — Opifijg]  (93)

= —[Ehrs; Oiglpjkt — Opjiqrt + OkqCijpl — Opi€ijhg] (94)
[Ers; 5iqépjkl] = 6iq(5psé7"jkl - 5’/‘jép8kl + 5ksépj7‘l - 5rlépjk’s) (95)
[Ers; 5pjéiqk:l] = 5pj(5iséqul - 57"qéisk:l + 5kzséiqu - 5rléiqk‘s) (96)
[Ersa 5kqéijpl] = 5k‘q(5isé7’jpl - 5rjéispl + 5psé7jjrl - 57"léijps) (97)
[Ersa 5pléijkq] = pl(éisérjkq - 5rjéiskq + 5kséijrq - 5rqéijk:s> (98)

S0,

O _(GIkD[Ers, [eigmis Bpgll) = = Y (i]kD) {@q(%sﬂjkl — 0rjpsit + OsTpjrt — 0ntT pins)
ijkl ijkl
- 5pj (5isfqul - 6rqfiskl + 5ksfiqu - 5rlfiqk5>
+ 5kq<5isfrjpl - 5rjfispl + 5psfijrl - 6rlfijps)

- 5pl(5isrrjkq - 5rjfiskq + 5k5]-:‘ijrq - 57"q]-:‘7jjks) )

(99)

where the spin-summed two-particle reduced density matrix is

qurs = <\110|épqr8|\1’0>- (100)
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Removing the Kroenecker deltas we find

%(Z(iﬂk‘l)[Ers, [€ijits Epgl]) =

ijkl

3 |:Z(qj|kl)6psrrjkl - Z(qr|kl)rpskl + Z(QﬂSl)Fmrl - Z(Qﬂkr)rpjks

ki ki jl ik

= (plkDT g + Y (iplkD)SngTisks — Y (ip|shTigr + > (iplkr)Tighs
kl

ikl il ik

+ > (51Tt = Y (irlal)Tig + > (i5la1)0psTijrs — > (i1qr) Tijps
i

il ijl ij

— > (s51kD)Trjng + Y (ir|kp)Tishg — > _(i]5p)Tijrg + Z(@'ﬂkp)fsrqrijks]
ik ik

ij ijk

(101)

which can be simplified using symmetries in the ERIs and TPDMs. Note Eq. (101) reduces

to the expression given in Ref. S13 if working in the natural spin orbital basis.

3.2 Numerical Solution

With the expressions for the Hessians at hand we can now solve Eq. (69). First, it is helpful
to bring this expression into a symmetric eigenvalue problem of half the dimension. This
has two advantages, namely the computational cost will be reduced by a factor of eight and
we can use a symmetric eigenvalue solver.

To proceed it is important to note some features of Eq. (69). First, we choose the

normalization:

YINY, - XINX, =1, (102)

Y - X)INY +X), =1. (103)
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Next, we note that

(A+B)(X +Y), =w,N(Y — X), (104)
which implies
(A+B)(X +Y),=w’NA-B)'N(X +Y), (106)
or
(A+ B)N'2NV3(X +Y), =w?N2NV3(A - B)"'N'2NY2(X +Y), (107)
AT, = wrAT'T, (108)
A_ALT, = WT, (109)

if (A — B) is positive definite, and we have defined

A, =NY?(A4 B)N~V/2 (110)
A_=N"Y*A—- B)N/2 (111)
T, = NV(X+Y),. (112)

If (A+ B) is also positive definite we can write

AVPAPA_AVPAYPT, = B2 AT, (113)
AVPA_AVPAYPT, = 2 AVPT, (114)
AVPA_AQ, = Q. (115)

(116)
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where

Qn = AYV’T, = AVPNV2(X +Y),, (117)
QiQ =1, and
(X +Y), =N"124712q,. (118)

This allows us to write combinations of the X, and Y, matrices necessary for building
transition density matrices in terms of the solutions of the Hermitian eigenvalue problem.
The factors of N~%/2 can be determined using canonical orthogonalization with a threshold

to discard small eigenvalues.

3.3 Normalization

A useful sanity check at this point is that we have
(A+B)(X+Y), =w,NY — X),. (119)
Multiplying on the right by (X + YY) we have and using Eq. (103)

(X+Y),(A+B)(X+Y) =w,(X +Y),NY — X)! (120)

(X+Y),A+B)X+Y) =w, (121)
Inserting Eq. (118) in Eq. (121) we find

(X +Y),(A+ B)(X +Y)l = QA;’N"2(A+ BINT2AT2Q, = QAT PALATPQ, =1 £ w,)

(122)
A more consistent normalization of Eq. (118) can be found by
(X +Y), = (), = Vo, N2A7%Q, (123)
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and by Eq. (103) we can deduce

from which it follows that

1
X, =5(Ty = T.),

1
YV == §(T+ —+ T7>1/-

To compute the symmetrized (spin summed) transition density matrix we follow Perna

and use the identity

oo = (Wol Epg|W,)) = (0][Epg, OF]]0),
then

g TV = INY =Xy Vs,
where

Oi = Z (X;;quq + Y;:;Eqp>

p>q

For the transition two-particle reduced density matrix, we have

T = (Wy|[Epqrs, OF]|Wo).

pgrs
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(125)

(126)

1513,833

(127)

(128)

(129)

(130)



Using Eq. (87) and looking at the X part of O} first we have

FZ‘(;? - Z Ernns €pgrs])
m>n
= — Z X pnrmqrs - 5mqunrs + 6T1’prqms
m>n

and similarly, we have

pqrs - E : nm7 equ$]>
m>n
= - § Y menqrs - 5anpmrs + 5rmrpqns
m>n

and naturally I, = o) 4 Tor)

is helpful to remove the Kroenecker deltas so that

pqrs - (

(z

p
7mqrs + Z Y;;nfmqrs
_pmrs + Z

> X

=p+1

pmrs
m=q+1
< E pqms + E pqms
m=r+1
< E : Xsm pgrm + E : Pqu
m=s+1

where M is the number of (natural) spatial orbitals. If we define

=X, Vp>q
pg = Yop V4>
Ry, =Y VP>q
Ry =X!Nq>p
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- 5msqurn) (132)
(133)
— OnsLpgrm) (134)

and we have raised the eigenvalue index for clarity. It

(135)

(136)
(137)
(138)

(139)



then we have

FZqu = Z (_ fnpfmqrs + R:rzqumrs - Zmrqums + Rrynsqurm) . (140)

m

A helpful reference point to benchmark is the Hartree-Fock limit |¥o) — |RHF) then

_ o 1 o
qurs = ’}/qu%“s - 57}73%”(1 (141)
1
= NgOpgMsOrs — §ns5pan5rq, (142)

where n; = 2 and n, = 0 for 7 and occupied MO and a a virtual MO. Let us first insert the

Coulomb like terms from Eq. (142) into the first two terms of Eq. (140). We have

> =@ Tmars + R Domrs = (R pOmpns — QiryMgOmg) b (143)
= (Rynp — Qo ng)NgOrs. (144)

Now for p > q we have

> =@ Tmars + R Dymrs = (Vg — Yyrng)ngdr (145)

= (np - nq>}/plz]n56rs (146)

and for p < g we have

> Q4 Tmgrs + Ry Dymrs = (X0 — Xgpng)ndeg (147)
= (np — ng) Xgpnsys (148)
= —(ny — ng) Xpgnsors ¥V p > ¢, (149)
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where we relabelled p and ¢ in the last line. Thus we have

v o7 v Coulomb-like
Z _Qmprmqrs + qurpmrs E— ’qunsdrsa (150)
m
and by inspection
v o1 v T Coulomb-like
Z — QL pgms + B lpgrm = VysNqOpq- (151)

For the exchange terms we just need to set ¢ — s so putting it together we find

TV v v 1 v 1 v
IR fypqnsérs + VrsMpOpg — E'ypanérq - §'yrqns(5ps. (152)

This expression is useful for checking that exchange-induction and exchange-dispersion terms

reduce to their appropriate SAPTO expressions.

3.4 Numerical Implementation of SAPT Expressions Within the
ERPA

In principle, one could proceed to evaluate the SAPT expressions in Section 2 by building the
transition one- and two-particle density matrices. Indeed, this is possible for the first-order
SAPT terms that do not contain any response term, and the second-order polarization ener-
gies which are functions of the transition one-particle reduced density matrix only. However,
forming the transition two-particle density matrix, which is required for exchange-induction
and exchange-induction is not practical in general so some work needs to be done. We follow
Refs. S8,526 and try to optimize the contraction order of the intermediate tensors. Let us

first look at the exchange-induction term. The first two terms only contain the one-particle
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(transition) density matrix; we start with the derivation of the third term:

F3, = ZQ%FZ}W'M v Upg” - (153)

m>p

Let
Tmp - Fn/l/ lllvg;lp/” (154)
and
Npq =Yg Sqrp’ (155)
then
Wom = T Ny, (156)
SO
==Y Q4 Wy (157)
m>p
Ff;) - Z R //_,I:np///ﬁ)/qq/qu p;p’” (158)
m>p'’
- Z Rmp// ( ///U Py N/) (ﬁqq/Sq/p/) (159)
m>p'!
= > R:TEY Ny, (160)
m>p’
= Z Rlzlp//wp”m- (161>
m>p'!
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Next we have

wo_ _ // 7
F3C 5 Qmp p//p/// r}/qq’ Sq 'p! pq

m>p’

= — Z Q <7 " ///U P'p W) (Yag Serp')

m>p’

- Z Qump’T

m>p’

- Z Q%p’wp'm

m>p’

and finally

// /N

E R /// p m%lq/ Sq p pq

m>p///

- Z Rﬁw’” (prm p;/ m) (Yaq Sarw)
— Z R" T p'p" N

m>p///

=3 R Wy

m>p///

“w
F3d

For the fourth term, we have to evaluate something like

—mp =aqq’ !l 1
Fly = (Z Xip > Y,;:n) T T S g Sy B8

m>p p>m

we can define

11 11

Up q = qul, ,,,’Up q Sp/q///

and

M =T, S
then

Lo = U
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(163)

(164)

(165)

(166)

(167)

(168)

(169)

(170)

(171)

(172)
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R (X, ) 4 )

m>p p>m
The exchange-dispersion part is much more verbose and lets us look at the most complex

part which contains contributions like

e (Z Xonp Z Yﬁn) (Z Xng Z YPV”) fgg’“fggq’"sp’q’” Sq'v" Vg (175)

m>p p>m n>q p>n

of which there are sixteen different terms arising from all combinations of the m and n indices
in the TPDMs. Let us go about this systematically, and build some common intermediates

526). For convenience let us use upper case indices for monomer B and

(inspired by Hapka
lower case indices for monomer A and lower all indices. Given the finite number of letters in
the alphabet, intermediates will often have reuse symbols. For safety, we will have to assume
they are only defined locally (i.e. only for one of the 16 terms), although by inspection many
of them are identical (up to permutation of indices). Let us first at least define the protected

826)

intermediates (similar to Hapka which can be used in practice:

Ny = DmgrsSsr (176)
Niigrr = TrqrsSrs (177)
ZTQEMP = qurRNMQRr@zg (178)
Ursp@ = Tpars 13 (179)

Withs = Dparsl porstip (180)

= Ursrql'Pors, (181)
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with obvious analogues if monomer B’s indices are contracted over.

~ A ~
qursFMQRSSTSSsRquPQ = qurRNﬁQRTUPqPQ

_ mAB ~
- quMQUPqPQ

A
= meMP
then

W __ O v AB
F4(1) - meMPVmpMP

= Gy pQuup-

(182)
(183)

(184)

(185)

(186)

Now there is some pattern in this, namely we will have contributions where the contracted

/R matrix index (m, M) will be in either half of the 2PDM. Let us proceed systematically

along p first then v. For the second term we have:

. A B -
FmeSFMQRSSTSSSRquPQ = NperNMQRTUPqPQ

_ mAB ~
- TpmMQUPqPQ

F, zf(l;) = RquQ]V\/[PVréfMP

= GhypQup-
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(189)
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For the third term we have:

qumSFMQRSS'I‘SSSR?}quQ = N;ngNEQRrﬁquQ
AB B
= TmRPQN MQRr
AB
= erMP or
= (SsrNirqrr)
rsPQ\PsRL{VMQRr

__1/AB
- erMP

Ff(l;,) - fnrQl]/\JPvmrMP

= Gy pQup-
For the fourth term we have:

- A -
qurmFMQRSSTSSsRquPQ = NpquNJ\EQSSquPQ

AB B
= TmSPQ N MQsS

_ AB
- VmsMP

v v AB
E 5(4) = R}, QypVismp

= G/&PQ%P-

For the fifth term we have:

- aTA B -
LingrsU PMRSSrsSsrUpqPQ = Nongr R NP RrUpgPQ

AB  ~
quPquPQ
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(193)
(194)
(195)

(196)

(197)

(198)

(199)
(200)

(201)

(202)

(203)

(204)
(205)

(206)



" v
Fis) = QnpRiiq Vg

For the sixth term we have:

- A B -
Fme‘SFPMRSSTSSSRquPQ = NperNPMRTquPQ

AB
meMquPQ

Ff(lé) - anq V mgMQ

For the seventh term we have:

~ A
qumsFPMRSS’/‘SSSRquPQ N mRNPMRTUPqPQ
=Toh mRPQ Ny

V mrMQ

FNV erRMQerMQ
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(208)

(209)
(210)

(211)

(212)

(213)

(214)
(215)

(216)

(217)
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For the eight term we have:

~ A B -
LpgrmlU MRS SrsSsrUpgPQ = Npgsm N prrssUpaPQ
_ mAB B
- TmSPQ NPMSS

AB
= VmsMQ

AB
F/W = ansRyMQVmsMQ

4(8)
=GO
MQWMQ:
For the ninth term we have:

- aTA B -
LingrsU PQrrsSrsSsrUpgP@ = Nopgr R Npousr-UpePQ
 nA AB
- qurRTMrpq

__ 1/AB
- VmpMR

uwo O v AB
F4(9) - meMRVmpMR

= G/JQRQVMR-
For the tenth term we have:

~ A B ~
Lpmrsl PuisSrsSsrUpar@ = Npmrr N ponrrUpaPQ
— NA TAB

pmrR* Mrpq

__1/AB
- quMR
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(220)

(221)

(222)

(223)

(224)
(225)

(226)

(227)

(228)

(229)
(230)
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v v AB
E f(m) = anqQMRquMR

= Gy rQir-
For the eleventh term we have:

qumsFPQMSSrSSsRﬁquQ = TrﬁfPQNgQMTSsR

__ Y/AB
- erMR

v v AB
F4H(11) = Qi QurVimr Mg

= GyrQr:
For the twelfth term we have:

- AB /B
LpgrmI PoursSrs SsrUpgrq = ThpoNpourSsk

__ 1/AB
- VmsMR

AB
Ff(qZ) = R%SQK/[RVmsMR
= G’J&RQVMR'
For the thirteenth term we have:

~ A AB
qursFPQRMSrSSsRquPQ = quSRquRM
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(233)

(234)

(235)

(236)

(237)

(238)

(239)

(240)

(241)

(242)
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Fiiis) =

= GhysQs-

bRy VAL

mpM S

For the fourteenth term we have:

~ A AB
FmeSFPQRMST‘SSSRquPQ = quSRquRM

V mqM S

Féf(li4 Rl?il quMS

= GhysQus-
For the fifteenth term we have:

~ AB
qumsFPQRM STS SsRquPQ = qums STSSSRquRM

AB
= UmsRMSTSSSR
__ 1/AB
mrMS
uv AB
F 4(15) — Q mrMS
_ M v
- CTYMSQMS :

For the sixteenth term we have:

~ AB
qurmPPQRMSTSSsRquPQ = qurerSSsRquRM

- UrmRMSTSSSR

VmsMS

S-36

(244)

(245)

(246)

(247)

(248)

(249)

(250)
(251)

(252)

(253)

(254)

(255)
(256)

(257)



sz(liﬁ) = R @SvnfsBMs (258)

= Gl&sQlfws- (259)

Naturally,

Fi" =Y " F. (260)

7
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3.5 Relationship of the SAPT expansion to SAPTO0

In this section, we to compare the SAPT truncation in this work with the popular SAPTO0

single reference method. This work (same as Eq. (4)):

+ B2 +E2 (261)

exch—disp,erpa exch—ind,erpa’

+EZ 4+ EY

ind,erpa disp,erpa

1 1
Esapr = Egg + B,
where we added an extra erpa subscript to denote that the transition densities are approxi-

mated using ERPA.
The popular SAPTO is defined as:

+EQ A+ ED, s+ EY +ol,  (262)

disp,u xch—disp exch—ind,resp

2)
W+ B

ind,resp

1 1

ESAPTO = Ee(ls)t + E(SXZ,

where the subscript resp denotes that orbital relaxation effects are included via linear re-
sponse (CP-HF), u indicates uncoupled and

+E?

exch—ind,resp) ’

+ B0+ EQ)

exch ind,resp

Siir = Bt — (BG

int elst

(263)

where EIY is supermolecular the Hartree-Fock interaction energy. The addition of (5}%

f.93% and references therein for a detailed

accounts for higher-order induction effects (see Re
derivation of the SAPTO terms).
There are three key differences in the two expansions:

First, the induction term (and its exchange counterpart) in SAPTO includes orbital relaxation
effects in response to the perturbation field of the other monomer via linear response; in
contrast, the induction term in this work uses approximate transition densities from ERPA
instead of linear response.

Second, the dispersion term (and its exchange counterpart) in SAPTO0 uses an uncoupled

approach where the above mentioned orbital response is neglected; this work uses a coupled

approach as used in SAPT(DFT) (again using approximated transition densities via ERPA).
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Third, SAPTO accounts for higher order induction effects by including the 5%, term, such a
term is omitted in our work because it would require the VQE calculation of the supersystem.
Alternatively, higher order induction effects could be approximated 5%)107«01 using the Hartee-
Fock supermolecular binding energy:

5(2) _ EHF . (E(l) 4 E(l)

approx int elst exc

+ E2) ). (264)

exch—ind,erpa

ind,erpa

1.5% suggest this approximation for their SAPT(MC) methods where they face a

Hapka et a
similar issue. They found that the SAPT(MC) methods for single reference systems (using a
very small active space) were more accurate than SAPTO using the (small) TK21 benchmark
set. We confirm this finding for the single reference HNO complexes from the main text:
The SAPT expansion with a RHF reference (SAPT(RHF)) performs similar to SAPTO even
without the addition of the higher order induction term §®. The results are summarized
in table S3. We chose to omit such an approximate term in this work because extensive
numerical testing is required to properly decide this issue. Thus, the three differences in the
SAPT expansion and the difference reference wave functions make it difficult to determine an

expected accuracy differences between SATP0 and SAPT(VQE) without extensive numerical

benchmarks.

S-39



4 Computational Details

All density functional theory calculations were performed with the pyscf software package 5
and used a Lebedev grid used for the numerical integration of the exchange correlation func-
tionals with 70, 105, 140 radial grid points and 590 770, 770 angular grid points, for atoms
of the first, second and fourth period respectively (grid level 5). The geometry optimiza-
tions were performed with pyscf and the geomeTRIC®" package. All CASSCF calculation
were performed with pyscf software package®*® and selected CI (semistochastic heat-bath
configuration interaction (SHCI)) calculations with the DICES?*5% program package via
the pyscf plugin. We used a loose screening parameter of 0.001 (sweep €) for computational
efficiency and in order to afford large active spaces. We used the 6-31G 540541 basis for the
“stretched water” dimer and a mixed basis (C: 6-31G; H: STO-3G51%5%3) for the benzene
p-benzyne dimer. We also employed a mixed basis for the [Mn(NH;);(CN),NO]% .- X (X =
HF ,H,0O,NH; and CH,), where the crucial moieties were described with the 6-31G basis (Mn,
NO and X) and the ligand framework (CN and NH;) STO-3G was used. The mixed basis
was chosen due to the memory constraints of the GPU for the subsequent ERPA calculations.
This is because our current implementation is limited in system size due to a non-optimal
treatment of core/active/virtual simpliciation and a lack of density fitting of the response
functions. Note that all VQE calculations were performed on ideal statevector simulators,
which were carried out on an GPU accelerated in-house QC Ware package (quasar/vulcan).
In addition, double factorization was used for evaluating the total energy.5*5% All SAPT
and VQE calculations were performed on the newest NVIDIA A100 GPUs provided by
Amazon Web Services.

The geometries of the water dimer and benzene were taken from the SI of our previous
study.®* The [Mn(NH,);(CN),NO]° monomer was optimized without constraints and the
geometry was frozen for subsequent geometry optimization of the hydrogen bonded dimer
complexes. This ensures that the active space orbitals remain as similar as possible in each

complex.
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The active spaces for the “stretched” water dimer and benzene p-benzyne dimer, were
selected based on MP2 natural orbitals followed by a CASSCF calculation with (8e, 80)
and (6e, 60), respectively. The active space of [Mn(NH;);(CN),NO]® was selected via the
automated construction of molecular active spaces from atomic valence orbitals (AVAS),57
where we included all Mn 3-d and the p-orbitals of the NO ligand. Additionally, we system-
atically added orbitals to the active space based on SHCI resulting in a (16e, 220) active
space. The natural occupation numbers are plotted in Fig. S2 and show several orbitals
with strong deviation from integer values confirming the multi-reference character of the
system. The subsequent CASSCEF calculation used the SHCI natural orbitals as a starting
guess and included (6e, 60) in the active space. The corresponding natural orbitals are de-
picted in Fig. S5. The strongest deviation are seen in Fig. S5 (c¢)—(f); the orbitals show both

bonding and antibonding 7 type orbitals of Mn-d,, and Mn-dy, with two NO 7* orbitals.

These orbitals correspond to metal-to-ligand m backbonding in the Dewar—Chatt—Duncanson
picture. 316547 The strong static correlation of these four electrons indicates that the elec-
tronic structure of this complex is a superposition of the two configurations [Mn(I1)-NO®]
and [Mn(IT)-NO™]. The corresponding NOONs are depicted in Fig. S2 and the values only
slightly change in comparison to the (approximate) larger active space SHCI results.

In order to converge the k-mUCJ ansatz with larger repetition factors a read-in algorithm
inspired by Ref. S48 was implemented. For a given circuit repetition number N, the optimal
VQE parameters from the N — 1 step are used as a starting guess and the remaining extra
parameters are populated with random parameters from a normal Gaussian distribution (N)
with mean p = 0.0 and variance o = 0.001 (A(0.0, 0.001)). We increased the repetition
factor in the following order: N = 1,2,4,...,m. All calculations were performed in the
dimer-centered basis (ghost atoms on the other monomer) and a gradient threshold of 1x10~°
for the L-BFGS-B solver in scipy or with a maximum iteration of 1500 whichever occurred

first. In cases when the maximum iteration was reached first we found the norm of the

gradient to be ~ 1 x 107°.
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For the subsequent SAPT calculations we constructed the one- and two-particle reduced
density matrices in the full set of natural orbitals. In the case of RHF these correspond to
the canonical Hartree—Fock orbitals. For SAPT(CASSCF) and SAPT(VQE) we used the
CASSCF natural orbitals. These density matrices were then used to construct the ERPA
and SAPT equations given in Eq. (69) and Section 3.4. We used a threshold of 1 x107° for
the canonical orthogonalization step when solving the ERPA generalized (symmetric) eigen-
value problem. The ERPA and SAPT expressions given in in Eq. (69) and Section 3.4 were

549,550

implemented in an in-house python code. NumPy was used for tensor manipulation

51 This proto-

and linear algebra operations with certain steps accelerated using CuPy
typing code does not exploit core-active-virtual partitioning and is thus limited to systems

containing roughly 130 orbitals.
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5 Additional Information for the Results Section
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5.1 Detailed SAPT Analysis of the MnNO Complexes

The detailed analysis of the energy term decomposition helps to unravel the origin of the
interaction. Fig. 5 (b) plots each component of the SAPT(VQE) (k = 4) calculation of
the series of hydrogen bonded complexes plus the “stretched” water dimer as a reference of
a typical hydrogen bond. We see that the electrostatic term dominates the interaction as
expected for hydrogen bonds. The MnNO---HF complex has the largest electrostatic contri-
bution (—11.9 kcal/mol) which is stronger than a water hydrogen bond (—11.4 kcal/mol).
The electrostatic interaction of MnNO---HOH is significantly weaker despite the fact that
the dipole moments of both H-F and H,O are around 1.8 D. When comparing the exchange
terms, we see that the terms rapidly decrease from MnNO---HF to MnNO---HCH, which can
be rationalized by the change in bond distances and by the exponential decay of this term.
Interestingly, the water dimer and MnNO---HF have similar bond distances but MnNO---HF
exhibits a significantly less repulsive term. This difference is the main driving force for the
difference in interaction energies and can be rationalized by the diffuseness of the lone pairs.
The bound NO becomes (partly) NOT, which makes the lone pair more compact in space

than the lone pair in the water dimer; thus, resulting in less exchange repulsion.

5.2 Additional Comments on the Comparison Between DFT and
SAPT(VQE)

We compare the SAPT(VQE) interaction energies to DFT based supermolecular (BSSE cor-
rected%?) interaction energies. We note that exact comparisons are difficult for two reasons:
first, the static correlation makes it difficult to generate reliable reference energies as the “gold
standard” CCSD(T) for non-covalent interactions is not reliable anymore;5** second, SAPTO
produces most accurate energies with the jun-cc-pVDZ basis set>? which cannot be employed
due to technical limits in the current implementation. However, nitrosyl complexes are an ex-

ample of non-universality problem of approximate density functionals as the hydrogen bond-
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ing moiety and the nitrosyl moiety prefer different approximate density functionalsS**5°¢ and

thus reliable prediction are only possible with careful system specific benchmarking when
experimental data is available.®®” In contrast, SAPT is expected to give accurate results
for hydrogen bonds given that proper monomer wavefunctions are used. The calculation of
accurate interaction energies poses a challenge for DFT as different types of approximate
density functionals are recommended for the different molecular moieties: non-hybrid func-

554,555 while

tionals are recommended for an accurate description of the metal-NO moiety,
for hydrogen bonds range-separated hybrids are recommended.®*® These two competing re-
quirements make these systems very sensitive to the choice of specific approximate exchange
correlation functional illustrating the non-universality problem of approximate density func-
tionals. When using DFT, careful benchmark against experimental data is necessary.>"
Our findings indicate that the k-uCJ VQE ansatz is able to accurately describe the difficult
electronic structure of the nitrosyl monomer in the hydrogen bonding complex (see Fig. S6)
To illustrate this point, Fig. 6 (main text) plots the interaction energies of SAPT(VQE),
SAPT(CAS-CI) and several popular DFT functionals (supramolecular). We included many
popular functionals as well as several top performing functionals for non-covalent interac-
tions. 5% We see in Fig. 6 (main text) that the SAPT(VQE) (k = 4) is almost identical to the
SAPT(CAS-CI) in all four cases. We also note that the DFT functionals exhibit a significant
spread for each complex. The B97-D functional predicted the smallest binding energy in all
four cases, but the highest interaction energy is predicted by a different functional. Further-
more, we see the relative ordering of the functionals change for each system (color sequence
in each plot). This illustrates the non-universality problem for approximate exchange corre-
lation functionals even for very similar nitrosyl complexes (this also holds true for larger basis
set as illustrated in Fig. S8). We note that the SAPT(CAS-CI) results are the reference for
the SAPT(VQE) calculations and do not represent the true interaction energy, thus, only the
SAPT(VQE) not the DFT interaction energies should be compared against this reference.
B97-D,5% BP86, 560561 SCAN, 562 PBE, 563 M06-1, 564 TPSSh, 565 B3LYP, 361,866,567 pRE(), 568
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MN15,%? PWB6K,5 CAM-B3LYP,5"! wB97X-D.5™ This diverse list includes local DFT
functionals, hybrid functionals with a wide range of exact exchange (10%-46%) and range

separated hybrids.
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Figure S2: Natural occupation number of the SHCI/CASSCF natural orbitals for the
strongly correlated monomer of each test case: upper panel “stretched” H,O and p-benzyne;
lower panel: [Mn(CN),(NH,),NOJ°.

Table S2: Quantum hardware resource requirements with respect to the repetition factor
k (Number of qubits, number of two qubit gates (2-Q-G), number of parameter, quantum
circuit depth) for the VQE simulations using the k-muCJ ansatz for the simulation of the
[Mn(CN),(NH,);NO]? with an (6e, 60) active space.

k 1 2 3 4 5 6 7 8

# Qubits | 12 12 12 12 12 12 12 12

# 2-Q-G | 435 750 1065 1380 1695 2010 2325 2640
# Param. | 45 75 105 135 165 195 225 255
Depth 216 378 540 702 864 1026 1188 1350
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Figure S3: (a) potential energy scan along r using SAPT(CAS-CI), SAPT(RHF) and
SAPT(4-uClJ); (b) distance dependence of each SAPT(4-uClJ) energy term with respect
to the intermolecular distance r for the “stretched” water dimer.
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Figure S4: Potential energy scan along r using SAPT(CAS-CI), SAPT(RHF) and
SAPT(VQE) (k = 4) for the p-benzyne-benzene dimer.
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2.4
=

Figure S5: Natural orbitals of the (6e, 60) CASSCF calculation of [Mn(CN),(NH,;);NOI".

(9

Figure S6: FError in the one and two particle density matrix as a function of the cir-
cuit repetition factor k for the [Mn(CN),(NH;);NO]® monomer. The errors are defined

as |Av]oo = |7cascr — Ve—mucs|oo and |Al'|oo = [Feascr — Di—mucs|oo-
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Figure S7: Term-by-term decomposition of the SAPT(4-uCJ) binding energies of each heme-
nitrosyls hydrogen complex at a fixed bond distance of r(O—H) = 2.08 A (equilibrium
distance of the H,O complex).
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Figure S8: Supramolecuar DFT interaction energies in the def2-TZVPDS™ basis for the HF,
H,0 and NHj nitrosyl hydrogen complexes.
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Figure S59: (a) Comparison between supramolecular DFT interaction energies for the nitrosyl
and azanone hydrogen complexes (small basis); (b) Comparison between supramolecular
DFT and SAPT in their most common basis sets using the azanone hydrogen complexes.
High level CCSD(T) reference interaction energies are also provided for reference (DFT:
def2-TZVPD & BSSE corrected; SAPT: SAPT in the jun-cc-pVDZ basis (skips the VQE
calculation and uses the RHF wave function instead) and CCSD(T): aug-cc-pVQZ & BSSE
corrected; for the DFT functional color coding see (c)).
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