Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2023

Supporting Information for

Deaminative coupling of benzylamines and arylboronic acids

Giedre Sirvinskaite, Julia C. Reisenbauer and Bill Morandi*

*bill.morandi@org.chem.ethz.ch

Table of contents

1.	General experimental details	S2
2.	Optimisation of reaction conditions	S3
3.	Preparation of starting materials	S9
4.	Benzylamine substrate scope	S14
5.	Arylboronic acid substrate scope	S29
6.	Unsuccessful substrates	S37
7.	Mechanistic experiments	S38
8.	NMR spectra	S44
9.	References	S133

1. General experimental details

Materials: Unless otherwise stated, reagents were used as supplied from commercial sources without any further purification. Isoamyl nitrite was purchased from Acros, phenylboronic acid from Fluorochem, benzylamine from Sigma-Aldrich, and sodium carbonate from VWR. Extra-dry chloroform was purchased from Acros and stored over 4 Å molecular sieves under N₂ atmosphere. Commercially available benzylamine hydrochloride salts (4-nitrobenzylamine hydrochloride from Sigma Aldrich, 3nitrobenzylamine hydrochloride from ABCR, methyl 4-(aminomethyl)benzoate hydrochloride from Fluorochem and methyl 3-(aminomethyl)benzoate hydrochloride from Fluorochem) were dissolved in dichloromethane, washed with 1M NaOH and brine, dried over MgSO₄ and concentrated under reduced pressure to obtain the corresponding salt-free benzylamines. All reactions were carried out in 16 mL oven-dried vials under N₂ atmosphere unless stated otherwise.

NMR: ¹H-, ²H-, ¹³C- and ¹⁹F-NMR spectra were recorded on a Bruker AVIII 400 MHz, a Bruker Neo 400 MHz, a Bruker Neo 500 MHz or a Bruker AVIII 600 MHz spectrometer and are reported in parts per million (ppm). ¹H-NMR spectra are calibrated with respect to the corresponding solvent residual peak (CHCl₃: 7.26 ppm; DMSO: 2.50 ppm, acetone: 2.05 ppm). ¹³C-NMR spectra are calibrated with respect to the corresponding solvent residual peak (CHCl₃: 7.26 ppm; DMSO: 2.50 ppm, acetone: 2.05 ppm). ¹³C-NMR spectra are calibrated with respect to the corresponding solvent residual peak (CHCl₃: 77.16 ppm; DMSO: 39.52 ppm, acetone: 206.26 ppm). ¹⁹F-{¹H} NMR spectra are calibrated with respect to hexafluorobenzene as an external standard (C₆F₆: -161.64 ppm). Multiplet signals are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, h = heptet, m = multiplet, or combinations thereof. ¹³C signals are acquired with proton decoupling and are singlets unless otherwise stated. The isomer ratios using ¹³C NMR were determined by integrating the signals for the carbons at the benzylic position in all different isomeric products. The isomer ratios using ¹⁹F NMR were determined using zg ig pulse sequence with relaxation delay (d1) of 30 s and acquisition time of 2.3 s.

Gas chromatography (GC) was recorded on a Shimadzu GC-2025 (capillary column: Macherey-Nagel OPTIMA 5, $30.0 \text{ m} \times 0.25 \times 0.25 \text{ }\mu\text{m}$; carrier gas: H₂). Calibration curves using *n*-dodecane as an internal standard were generated to determine GC yields.

Analytical thin-layer chromatography (TLC) was performed using silica gel 60 F254 coated aluminum sheets (Merck). Visualization was achieved by ultraviolet fluorescence (λ = 254 nm) and/or staining with phosphomolybdic acid (Note: the diarylmethane products are only weakly fluorescent at λ = 254 nm and staining using phosphomolybdic acid is required to visualize the compounds).

Flash column chromatography was performed with silica gel 60 (pore size = 60 Å, mesh: 40-63 μ m from Sigma-Aldrich or SiliCycle) using Biotage Isolera One system with Sfär columns (collection wavelength λ = 220 nm).

High resolution mass spectrometry (HRMS): HRMS data were obtained by the mass spectrometry service in the Laboratorium für Organische Chemie at ETH Zürich on VG-TRIBRIB for electron impact ionization (EI), a Varian IonSpec Spectrometer for electrospray ionization (ESI) or an IonSpec Ultima. Fourier transform mass spectrometer for matrix-assisted laser desorption/ionization (MALDI) are reported as (m/z).

2. Optimisation of reaction conditions

A 4 mL glass vial equipped with a stirring bar was charged with phenylboronic acid (30.5 mg, 0.250 mmol, 1.00 equiv.). Chloroform (1.0 mL) was then added followed by benzylamine (27.3 μ L, 0.275 mmol, 1.10 equiv.) and isoamyl nitrite (36.9 μ L, 0.275 mmol, 1.10 equiv.). The vial was sealed under air and the reaction was heated at 60°C for 4 h. The crude reaction mixture was allowed to cool down to room temperature and analysed with GC using *n*-dodecane (25 μ L) as an internal standard.

Nitrite donor screen

A 4 mL glass vial equipped with a stirring bar was charged with phenylboronic acid (30.5 mg, 0.250 mmol, 1.00 equiv.). Chloroform (1.0 mL) was then added followed by benzylamine (27.3 μ L, 0.275 mmol, 1.10 equiv.) and nitrite donor (0.275 mmol, 1.10 equiv.). The vial was sealed under air and the reaction was heated at 60°C for 4 h. The crude reaction mixture was allowed to cool down to room temperature and analysed with GC using *n*-dodecane (25 μ L) as an internal standard.

Entry	Nitrite donor	Solvent	Time, h	GC yield of 3a [%]
1	Tert-butyl nitrite	Chloroform	4	3
2	NOBF ₄	Chloroform	4	0
3	Isoamyl nitrite	Chloroform	4	15

Time and equivalent screen

A 4 mL glass vial equipped with a stirring bar was charged with phenylboronic acid (30.5 mg, 0.250 mmol, 1.00 equiv.). Chloroform (1.0 mL) was then added followed by benzylamine (x equiv.) and

isoamyl nitrite (y equiv.). The reaction was sealed under air and heated at 60° C for the indicated time. The crude reaction mixture was allowed to cool down to room temperature and analysed with GC using *n*-dodecane (25 µL) as an internal standard.

Entry	Benzylamine equiv.	Phenylboronic acid equiv.	ⁱ AmONO equiv.	Time, h	GC yield of 3a [%]
1	1.1	1.0	1.1	4	10
2	1.1	1.0	1.1	6	12
3	1.1	1.0	1.1	8	14
4	1.1	1.0	1.1	24	15
5	1.5	1.0	1.5	4	15
6	1.5	1.0	1.5	6	19
7	1.5	1.0	1.5	8	21
8	1.5	1.0	1.5	24	23
9	2.0	1.0	2.0	4	21
10	2.0	1.0	2.0	6	25
11	2.0	1.0	2.0	8	26
12	2.0	1.0	2.0	24	28
13	4.0	1.0	4.0	4	31
14	4.0	1.0	4.0	6	40
15	4.0	1.0	4.0	8	44
16	4.0	1.0	4.0	24	51

Solvent and temperature screen

A 4 mL glass vial equipped with a stirring bar was charged with phenylboronic acid (30.5 mg, 0.250 mmol, 1.00 equiv.). The indicated solvent (1.0 mL) was then added followed by benzylamine (109 μ L, 1.00 mmol, 4.00 equiv.) and isoamyl nitrite (134 μ L, 1.00 mmol, 4.00 equiv.). The reaction was sealed under air and heated at 60°C for 24 h. The crude reaction mixture was allowed to cool down to room temperature and analysed with GC using *n*-dodecane (25 μ L) as an internal standard.

Entry	Solvent	Temperature	GC yield of 3a [%]
1	Chloroform	60	51
2	MeCN	60	29
3	PhCl	60	42
4	DMF	60	10
5	DMSO	60	8
6	Dioxane	60	27
7	EtOAc	60	33
8	1,2-Dichloroethane	60	37
9	THF	60	16
10	Toluene	60	40

11	Xylene	60	42
12	DME	60	26
13	Anhydrous chloroform	60	61
14	Anhydrous MeCN	80	40
15	Anhydrous PhCl	80	11
16	Anhydrous dioxane	80	29
17	Anhydrous EtOAc	80	32
18	Anhydrous 1,2-dichloroethane	80	37
19	Anhydrous toluene	80	37
20	Anhydrous xylene	80	36
21	Anhydrous DME	80	23
22	Anhydrous PhCl	100	34
23	Anhydrous dioxane	100	31
24	Anhydrous toluene	100	35
25	Anhydrous xylene	100	36
26	Anhydrous chloroform	40	31
27 Anhydrous chloroform		rt	11

Concentration screen

A 4 mL oven-dried glass vial equipped with a stirring bar was charged with phenylboronic acid (30.5 mg, 0.25 mmol, 1.00 equiv.). The vial was sealed with a septum cap and evacuated and refilled with N₂ three times. Anhydrous chloroform (x mL) was then added followed by benzylamine (109 μ L, 1.00 mmol, 4.00 equiv.) and isoamyl nitrite (134 μ L, 1.00 mmol, 4.00 equiv.). The reaction was heated at 60°C for 24 h. The crude reaction mixture was allowed to cool down to room temperature and analysed with GC using *n*-dodecane (25 μ L) as a standard.

Entry	Concentration	GC yield of 3a [%]
1	1.0 M	69
2	0.8 M	71
3 0.67 M		72
4	0.5 M	71
5	0.4 M	72
6	0.2 M	72
7	0.1 M	61

Base screening

A 4 mL oven-dried glass vial equipped with a stirring bar was charged with phenylboronic acid (30.5 mg, 0.250 mmol, 1.00 equiv.) and a base (0.25 mmol, 1.00 equiv.). The vial was sealed with a septum cap and evacuated and refilled with N₂ three times. Anhydrous chloroform (0.60 mL) was then added followed by benzylamine (109 μ L, 1.00 mmol, 4.00 equiv.) and isoamyl nitrite (134 μ L, 1.00 mmol, 4.00 equiv.). The reaction was heated at 60°C for 24 h. The crude reaction mixture was allowed to cool down to room temperature and analysed with GC using *n*-dodecane (25 μ L) as a standard.

Entry	Base	GC yield of 3a [%]
1	Na ₂ CO ₃	82
2	Li ₂ CO ₃	66
3	CaCO₃	62
4	Cs ₂ CO ₃	8
5	BaCO₃	59
6	K ₂ CO ₃	67
7	K₃PO₄	33
8	Na₃PO₄	82
9	CaCl ₂	63
10	CaSO ₄	68
11	CaO	68
12	BaO	34

Solvent and temperature screen

A 4 mL oven-dried glass vial equipped with a stirring bar was charged with phenylboronic acid (30.5 mg, 0.250 mmol, 1.00 equiv.) and sodium carbonate (26.5 mg, 0.500 mmol, 1.00 equiv.). The vial was sealed with a septum cap, then evacuated and refilled with N₂ three times. The indicated anhydrous solvent (0.60 mL) was then added followed by benzylamine (109 μ L, 1.00 mmol, 4.00 equiv.) and isoamyl nitrite (134 μ L, 1.00 mmol, 4.00 equiv.). The reaction was heated at the indicated temperature for 24 h. The crude reaction mixture was allowed to cool down to room temperature and analysed with GC using *n*-dodecane (25 μ L) as an internal standard.

Entry	Solvent	Temperature	GC yield of 3a [%]
1	Chloroform	60	72
2	MeCN	60	41
3	PhCl	60	64
4	Dioxane	60	43
5	EtOAc	60	65
6	1,2-Dichloroethane	60	61
7	THF	60	20
8	Toluene	60	62
9	Xylene	60	61
10	DME	60	35
11	MeCN	80	64
12	PhCl	80	70
13	Dioxane	80	59
14	EtOAc	80	78
15	1,2-Dichloroethane	80	63
16	Toluene	80	67
17	Xylene	80	66
18	DME	80	49
19	PhCl	100	52
20	Dioxane	100	52
21	Toluene	100	51
22	Xylene	100	54

Equivalent screen

A 4 mL oven-dried glass vial equipped with a stirring bar was charged with phenylboronic acid (30.5 mg, 0.250 mmol, 1.00 equiv.) and base (0.500 mmol, 1.00 equiv.). The vial was sealed with a septum cap, then evacuated and refilled with N₂ three times. Anhydrous chloroform (0.60 mL) was then added followed by benzylamine (x equiv.) and isoamyl nitrite (y equiv.). The reaction was heated at 60°C for 24 h. The crude reaction mixture was allowed to cool down to room temperature and analysed with GC using *n*-dodecane (25 μ L) as an internal standard.

Entry	Benzylamine equiv.	ⁱ AmONO equiv.	Base	GC yield of 3a [%]
1	4.0	4.0	Na ₂ CO ₃	82
2	4.0	5.0	Na ₂ CO ₃	81
3	4.0	6.0	Na ₂ CO ₃	86
4	3.0	3.75	Na ₂ CO ₃	72
5	3.0	4.5	Na ₂ CO ₃	70
6	4.0	5.0	Na ₃ PO ₄	79
7	4.0	6.0	Na ₃ PO ₄	79
8	3.0	3.75	Na ₃ PO ₄	69
9	3.0	4.5	Na ₃ PO ₄	70

Control experiments

A 16 mL oven-dried glass vial equipped with a stirring bar was charged with phenylboronic acid (61 mg, 0.50 mmol, 1.00 equiv.) and sodium carbonate (53 mg, 0.50 mmol, 1.00 equiv.). The vial was sealed with a septum cap, then evacuated and refilled with N₂ three times. Anhydrous chloroform (1.25 mL) was then added followed by benzylamine (218 μ L, 2.00 mmol, 4.00 equiv.) and isoamyl nitrite (335 μ L, 2.50 mmol, 5.00 equiv.). The reaction was heated at 60°C for 24 h. The crude reaction mixture was allowed to cool down to room temperature and analysed with GC using *n*-dodecane (50 μ L) as an internal standard.

Entry	Deviation from the standard conditions	GC yield of 3a [%]
1	No deviation	80
2	No ⁱ AmONO	0
3	No base	72
4	2 equiv. of benzylamine instead of 4 equiv.	58
5	^t BuONO instead of ⁱ AmONO	23
6	Na ₃ PO ₄ instead of Na ₂ CO ₃	79
7	Addition of 1 equiv. B(OH)₃	70
8	Pinacol ester instead of phenylboronic acid	0

3. Preparation of starting materials

3-(*Tert*-butyl)benzonitrile

3-(*Tert*-butyl)benzonitrile was synthesised according to the modified procedure¹. To a mixture of 1bromo-3-*tert*-butylbenzene (3.41 mL, 20.0 mmol, 1.00 equiv.) and CuCN (3.58 mg, 40.0 mmol, 2.00 equiv.) in a 100 mL Schlenk flask was added *N*-methylpyrrolidone (30 mL). The mixture was heated to reflux under nitrogen atmosphere until full conversion was indicated by TLC analysis. The mixture was cooled to room temperature and aqueous NH₄OH was added at 0 °C. The reaction mixture was extracted with ethyl acetate (3 x 100 mL). The combined organic phases were washed with brine, dried over anhydrous MgSO₄, filtered, and evaporated under reduced pressure. The residue was purified by flash column chromatography (0 – 5% ethyl acetate in hexanes) to give 3-(*tert*butyl)benzonitrile as a colourless oil (2.55 g, 16.0 mmol, 80% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.70 – 7.67 (m, 1H), 7.65 (ddd, *J* = 7.9, 2.1, 1.3 Hz, 1H), 7.53 – 7.45 (m, 1H), 7.42 (td, *J* = 7.8, 0.6 Hz, 1H), 1.35 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 152.60, 130.16, 129.36, 129.31, 129.01, 119.51, 112.22, 35.01, 31.16. **HRMS** (ESI) m/z: [M]⁺ Calculated for C₁₁H₁₃N⁺ 159.1043; Found 159.1041.

3-(Tert-butyl)benzylamine

^tBu NH_2

To 3-(*tert*-butyl)benzonitrile (2.55 g, 16.0 mmol, 1.00 equiv.) in anhydrous THF (40 mL) at 0 °C was added lithium aluminum hydride (1.21 g, 32.0 mmol, 2.00 equiv.) in one portion. The reaction mixture was allowed to warm to room temperature and stirred for 2 h at room temperature. The reaction was quenched with an aqueous 10% potassium hydroxide solution (1.2 mL) and water (2.4 mL). The white precipitate was filtered through celite, and the filter cake was washed with diethyl ether (3 x 40 mL). The combined filtrate was concentrated to give a pale yellow oil. The residue was purified by flash column chromatography (ethyl acetate) to give 3-*tert*-butylbenzylamine as a pale yellow oil (1.97 g, 12.0 mmol, 75% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.33 (m, 1H), 7.34 – 7.27 (m, 2H), 7.22 – 7.12 (m, 1H), 3.90 (s, 2H), 1.52 (s, 2H), 1.36 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 151.58, 143.06, 128.40, 124.31, 124.18, 123.94, 46.96, 34.81, 31.51. HRMS (ESI) m/z: [M-H]⁺ Calculated for C₁₁H₁₆N⁺ 162.1777; Found 162.1277.

p-Tolylmethan-d2-amine

p-Tolylmethan-*d*₂-amine was synthesised according to the modified procedure². A 16 mL oven-dried vial was charged with lithium aluminum deuteride (98 atom % D, 523 mg, 12.5 mmol, 2.50 equiv.) and the vial was evacuated and refilled with N₂ three times. Anhydrous diethyl ether (6 mL) was added and the reaction mixture was cooled in an ice bath to 0 °C. 4-Methylbenzonitrile (600 μ L, 5.00 mmol, 1.00 equiv.) was added dropwise over 10 min. After vigorous H₂ gas evolution ceased, the mixture was allowed to warm to room temperature and stirred for 48 h at room temperature. The solution was diluted with 5 mL of diethyl ether, cooled to 0 °C, and quenched by the successive dropwise addition of 0.4 mL of 10% NaOH solution and 1.2 mL of water. The colourless precipitate was filtered through celite, and the filter cake was washed with diethyl ether (3 x 20 mL). The combined filtrate was concentrated to give a pale yellow oil. The resulting oil was purified by flash column chromatography (ethyl acetate) to give *p*-tolylmethan-*d*₂-amine as a pale yellow oil (377 mg, 3.10 mmol, 61% yield, 98.5% deuterium incorporation).

¹H NMR (600 MHz, CDCl₃) δ 7.23 – 7.17 (m, 2H), 7.17 – 7.10 (m, 2H), 3.85 – 3.76 (m, 0.025H), 2.34 (s, 3H), 1.47 (s, 2H). ²H NMR (92 MHz, CDCl₃) δ 3.79. ¹³C NMR (151 MHz, CDCl₃) δ 140.48, 136.49, 129.34, 127.17, 45.71 (p, *J* = 20.4 Hz), 21.18. HRMS (ESI) m/z: $[M+H]^+$ Calculated for C₈H₁₀D₂N⁺ 124.1090; Found 124.1089.

(2-Bromo-5-fluorophenyl)(phenyl)methanol

(2-Bromo-5-fluorophenyl)(phenyl)methanol was synthesised according to the modified procedure³. A solution of PhMgBr (3.0 M in diethyl ether, 5.5 mL, 16.5 mmol, 1.10 equiv.) was added dropwise to a solution of 2-bromo-5-fluorobenzaldehyde (3.04 g, 15.0 mmol, 1.00 equiv.) in anhydrous THF (37.5 mL) at 0 °C. The reaction mixture was warmed to room temperature and stirred until completion indicated by TLC (10% ethyl acetate in hexanes). The reaction mixture was quenched with saturated aqueous NH₄Cl solution. The aqueous phase was extracted with diethyl ether three times. The combined organic phases were washed with brine, dried over anhydrous MgSO₄, filtered and evaporated under reduced pressure. The residue was purified by flash column chromatography (0 – 10% ethyl acetate in hexanes) to give (2-bromo-5-fluorophenyl)(phenyl)methanol as a colourless oil (3.68 g, 13.1 mmol, 87% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.50 (dd, J = 8.7, 5.2 Hz, 1H), 7.44 – 7.29 (m, 6H), 6.91 (ddd, J = 8.8, 7.7, 3.1 Hz, 1H), 6.11 (s, 1H), 2.63 (s, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 162.41 (d, J = 247.2 Hz), 144.81 (d, J = 6.8 Hz), 141.56, 134.12 (d, J = 7.8 Hz), 128.73, 128.22, 127.25, 116.55 (d, J = 3.2 Hz), 116.36 (d, J = 22.7 Hz), 115.67 (d, J = 24.1 Hz), 74.71 (d, J = 1.3 Hz). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -113.57. **HRMS** (ESI) m/z: [M]⁺ Calculated for C₁₃H₁₀BrFO⁺ 279.9894; Found 279.9890.

2-Benzyl-1-bromo-4-flurobenzene

2-Benzyl-1-bromo-4-flurobenzene was synthesised according to the modified procedure⁴. (2-Bromo-5-fluorophenyl)(phenyl)methanol (3.68 g, 13.1 mmol, 1.00 equiv.) was dissolved in dichloromethane (52 mL) under nitrogen atmosphere. Trifluoroacetic acid (4.00 ml, 52.4 mmol, 4.00 equiv.) was added dropwise to the reaction mixture at 0 °C. The reaction mixture was stirred for 10 min at 0 °C, and then triethylsilane (4.20 mL, 26.2 mmol, 2.00 equiv.) was added. The resulting mixture was stirred at room temperature overnight. The solvent was then removed under reduced pressure and the residue purified by flash column chromatography (hexanes) to yield 2-benzyl-1-bromo-4-flurobenzene as a colourless oil (2.31 g, 8.73 mmol, 67% yield).

 ^{1}H NMR (400 MHz, CDCl₃) δ 7.59 – 7.49 (m, 1H), 7.38 – 7.32 (m, 2H), 7.32 – 7.23 (m, 1H), 7.25 – 7.19 (m, 2H), 6.90 – 6.78 (m, 2H), 4.11 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 162.15 (d, J = 246.6 Hz), 142.78 (d, J = 7.3 Hz), 138.76, 133.98 (d, J = 8.1 Hz), 129.19, 128.79, 126.73, 118.94 (d, J = 3.2 Hz), 118.02 (d, J = 23.0 Hz), 115.17 (d, J = 22.4 Hz), 41.95 (d, J = 1.4 Hz).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -114.81.

HRMS (ESI) m/z: $[M]^+$ Calculated for $C_{13}H_{10}BrF^+$ 263.9944; Found 263.9942.

(2-Benzyl-4-fluorophenyl)boronic acid

(2-Benzyl-4-fluorophenyl)boronic acid was synthesised according to the modified procedure⁵. *n*-BuLi (1.6 M in hexanes, 3.50 mL, 5.60 mmol, 1.10 equiv.) was added dropwise to a solution of 2-benzyl-1bromo-4-flurobenzene (1.36 g, 5.10 mmol, 1.00 equiv.) in anhydrous THF (128 mL) at -78 °C under nitrogen atmosphere. The reaction mixture was stirred for 45 minutes, while the temperature was allowed to slowly rise to -50 °C. The reaction mixture was then cooled again to -78 °C and trimethyl borate (5.40 mL, 48.6 mmol, 9.50 equiv.) was added. The resulting solution was allowed to warm slowly to room temperature and stirred overnight. Distilled water was added to the reaction mixture and the resulting solution was acidified with 1M HCl solution. The aqueous phase was extracted with ethyl acetate three times. The combined organic phases were washed with brine, dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by recrystallisation from pentane to give (2-benzyl-4-fluorophenyl)boronic acid as a white solid (0.74 g, 3.20 mmol, 63% yield).

¹**H NMR** (400 MHz, Acetone) δ 7.67 (dd, *J* = 8.3, 6.8 Hz, 1H), 7.28 – 7.18 (m, 4H), 7.18 – 7.08 (m, 1H), 6.87 (td, *J* = 8.6, 2.6 Hz, 1H), 6.80 (dd, *J* = 10.9, 2.6 Hz, 1H), 4.29 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 164.42 (d, *J* = 245.7 Hz), 150.28 (d, *J* = 6.9 Hz), 142.62, 137.39 (d, *J* = 8.0 Hz), 129.69, 129.05, 126.56, 116.53 (d, *J* = 20.1 Hz), 112.46 (d, *J* = 19.7 Hz), 41.18 (d, *J* = 1.8 Hz). ¹⁹**F NMR** (377 MHz, Acetone) δ -113.74.

HRMS data could not be obtained due to the instability of the compound.

1-Bromo-4-(tert-butyl)benzene-2,6-d2

1-Bromo-4-(*tert*-butyl)benzene-2,6- d_2 was synthesised according to the previously reported procedure⁶. 1-Bromo-4-(*tert*-butyl)benzene (1.73 mL, 10.00 mmol, 1.00 equiv.) was added to a vigorously stirred solution of silver carbonate (551 mg, 2.00 mmol, 0.20 equiv.), cyclohexyldiphenylphosphine (1.3 g, 5.0 mmol, 0.50 equiv.), potassium carbonate (1.87 g, 10.0 mmol, 1.00 equiv.), and D₂O (3.60 mL, 200 mmol, 20.0 equiv.) in toluene (1 mL) under nitrogen atmosphere. The reaction mixture was stirred at 120 °C for 24 h. After allowing the reaction to cool to room temperature, the reaction was quenched with saturated aqueous NH₄Cl solution and the aqueous phase was extracted with dichloromethane three times. The combined organic phases were washed with brine, dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexanes) to give 1-bromo-4-(*tert*-butyl)benzene-2,6- d_2 as a colourless oil (1.83 g, 8.50 mmol, 85% yield).

¹**H NMR** (600 MHz, DMSO) δ 7.48 – 7.44 (m, 0.22H, 89% deuterium incorporation), 7.36 – 7.32 (m, 1.66H, 12% deuterium incorporation), 1.25 (s, 9H).

²H NMR (92 MHz, DMSO) δ 7.48, 7.36.

¹³**C NMR** (151 MHz, DMSO) δ 150.03, 149.96 (minor), 130.79 (minor), 130.73 – 130.27 (m), 127.56 (minor), 127.44, 118.40 (minor), 118.29, 34.28, 30.90.

HRMS (ESI) m/z: [M]⁺ Calculated for C₁₀H₁₁D₂Br⁺ 214.0321; Found 214.0322.

(4-(*Tert*-butyl)phenyl-2,6-*d*₂)boronic acid

HO_B_OH

(4-(*Tert*-butyl)phenyl-2,6-*d*₂)boronic acid was synthesised according to the modified procedure⁵. *n*-BuLi (1.6 M in hexanes, 5.8 mL, 9.4 mmol, 1.1 equiv.) was added dropwise to a solution of 1-bromo-4-(*tert*-butyl)benzene-2,6-*d*₂ (1.83 g, 8.50 mmol, 1.00 equiv.) in dry THF (85 mL) at -78 °C under nitrogen atmosphere. The reaction mixture was stirred for 45 minutes, while the temperature was allowed to slowly rise to -50 °C. Then the reaction mixture was cooled down to -78 °C and trimethyl borate (2.80 mL, 25.5 mmol, 3.00 equiv.) was added. The resulting solution was allowed to warm slowly to room temperature and was stirred at room temperature overnight. Distilled water was added to the reaction mixture and the resulting solution was acidified with 1M HCl solution. The aqueous phase was extracted with ethyl acetate three times. The combined organic phases were washed with brine, dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by recrystallisation from pentane to give (4-(*tert*-butyl)phenyl-2,6-*d*₂)boronic acid as a white solid (0.89 g, 4.9 mmol, 58% yield).

¹**H NMR** (600 MHz, Acetone) δ 7.78 – 7.75 (m, 0.24H, 88% deuterium incorporation), 7.36 – 7.34 (m, 1.78H, 11% deuterium incorporation), 1.26 (s, 9H).

²**H NMR** (92 MHz, Acetone) δ 7.78, 7.36.

¹³**C NMR** (151 MHz, Acetone) δ 150.54, 150.47 (minor), 131.57 (minor), 131.49 – 130.92 (m), 127.52, 121.73 (minor), 121.61, 31.71, 28.08.

HRMS (ESI) m/z: [M+Na]⁺ Calculated for C₁₀H₁₃D₂BNaO₂⁺ 203.1183; Found 203.1185.

4. Benzylamine substrate scope

General procedure A for benzylamine scope

A 16 mL oven-dried glass vial equipped with a stirring bar was charged with phenylboronic acid (61 mg, 0.50 mmol, 1.00 equiv.), sodium carbonate (53 mg, 0.50 mmol, 1.00 equiv.) and the corresponding benzylamine (if solid, 2.00 mmol, 4.00 equiv). The vial was sealed with a septum cap and evacuated and refilled with N₂ three times. Anhydrous chloroform (1.25 mL) was then added followed by the corresponding benzylamine (if liquid, 2.00 mmol, 4.00 equiv.) and isoamyl nitrite (335 μ L, 2.50 mmol, 5.00 equiv.). The reaction was heated at 60°C for 24 h. The crude reaction mixture was allowed to cool down to room temperature, concentrated and purified by flash column chromatography.

Diphenylmethane

Diphenylmethane was prepared according to the general procedure A using benzylamine (219 μ L, 2.00 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the product as a colourless oil (59 mg, 0.35 mmol, 70% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.29 (m, 4H), 7.29 – 7.23 (m, 6H), 4.08 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.26, 129.08, 128.60, 126.21, 42.09. HRMS (ESI) m/z: [M]⁺ Calculated for C₁₃H₁₂⁺ 168.0934; Found 168.0931.

The spectral data are consistent with those reported in the literature⁷.

1-Benzyl-4-methylbenzene

1-Benzyl-4-methylbenzene was prepared according to the general procedure A using 4-methylbenzylamine (255 μ L, 2.00 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the product as a colourless oil (54 mg, 0.30 mmol, 59% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.31 (m, 2H), 7.31 – 7.22 (m, 3H), 7.21 – 7.15 (m, 4H), 4.03 (s, 2H), 2.40 (s, 3H).

 $^{13}\textbf{C}$ NMR (101 MHz, CDCl₃) δ 141.55, 138.21, 135.66, 129.28, 129.01, 128.95, 128.56, 126.11, 41.65, 21.14.

HRMS (ESI) m/z: $[M]^+$ Calculated for C₁₄H₁₄⁺ 182.1090; Found 182.1086.

The spectral data are consistent with those reported in the literature⁸.

1-Benzyl-4-(*tert*-butyl)benzene

3c

1-Benzyl-4-(*tert*-butyl)benzene was prepared according to the general procedure A using 4-*tert*-butylbenzylamine (352 μ L, 2.00 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the product as a colourless oil (57 mg, 0.25 mmol, 51% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.32 (m, 4H), 7.31 – 7.24 (m, 3H), 7.22 – 7.17 (m, 2H), 4.02 (s, 2H), 1.37 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 148.97, 141.43, 138.22, 129.11, 128.65, 128.57, 126.14, 125.49, 41.58, 34.51, 31.54. HRMS (ESI) m/z: [M]⁺ Calculated for C₁₇H₂₀⁺ 224.1560; Found 224.1558.

The spectral data are consistent with those reported in the literature⁸.

4-Benzyl-1,1'-biphenyl

4-Benzyl-1,1'-biphenyl was prepared according to the general procedure A using [1,1'-biphenyl]-4ylmethanamine (367 mg, 2.00 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the product as a white solid (72 mg, 0.30 mmol, 60% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.60 (m, 2H), 7.59 – 7.53 (m, 2H), 7.52 – 7.21 (m, 10H), 4.07 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.15, 141.15, 140.39, 139.19, 129.46, 129.11, 128.86, 128.66, 127.35, 127.22, 127.15, 126.29, 41.73. HRMS (ESI) m/z: $[M]^+$ Calculated for C₁₉H₁₆⁺ 244.1247; Found 244.1242.

The spectral data are consistent with those reported in the literature⁹.

1-Benzyl-4-fluorobenzene

1-Benzyl-4-fluorobenzene was prepared according to the general procedure A using 4-fluorobenzylamine (229 μ L, 2.00 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the product as a colourless oil (47 mg, 0.25 mmol, 51% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.31 (m, 2H), 7.30 – 7.25 (m, 1H), 7.25 – 7.14 (m, 4H), 7.08 – 6.97 (m, 2H), 4.01 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 161.56 (d, J = 244.0 Hz), 141.08 (d, J = 0.9 Hz), 136.91 (d, J = 3.2 Hz), 130.42 (d, J = 7.8 Hz), 128.97, 128.67, 126.34, 115.34 (d, J = 21.2 Hz), 41.21. ¹⁹F NMR (377 MHz, CDCl₃) δ -117.31. HRMS (ESI) m/z: [M]⁺ Calculated for C₁₃H₁₁F⁺ 186.0839; Found 186.0835.

The spectral data are consistent with those reported in the literature⁸.

1-Benzyl-4-chlorobenzene

1-Benzyl-4-chlorobenzene was prepared according to the general procedure A using 4-chlorobenzylamine (243 μ L, 2.00 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the product as a colourless oil (77 mg, 0.38 mmol, 76% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.34 (m, 2H), 7.34 – 7.26 (m, 3H), 7.26 – 7.22 (m, 2H), 7.21 – 7.15 (m, 2H), 4.02 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 140.68, 139.71, 132.02, 130.38, 128.99, 128.70, 128.69, 126.42, 41.36. **HRMS** (ESI) m/z: [M]⁺ Calculated for C₁₃H₁₁Cl⁺ 202.0544; Found 202.0542.

The spectral data are consistent with those reported in the literature⁸.

1-Benzyl-4-bromobenzene

1-Benzyl-4-bromobenzene was prepared according to the general procedure A using 4-bromobenzylamine (253 μ L, 2.00 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the product as a colourless oil (105 mg, 0.43 mmol, 85% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.52 – 7.44 (m, 2H), 7.42 – 7.34 (m, 2H), 7.34 – 7.27 (m, 1H), 7.26 – 7.21 (m, 2H), 7.17 – 7.07 (m, 2H), 4.00 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 140.55, 140.21, 131.63, 130.78, 128.98, 128.69, 126.42, 120.06, 41.41. **HRMS** (ESI) m/z: [M]⁺ Calculated for C₁₃H₁₁Br⁺ 246.0039; Found 246.0035.

The spectral data are consistent with those reported in the literature⁸.

1-Benzyl-4-iodobenzene

3h

1-Benzyl-4-iodobenzene was prepared according to the general procedure A using 4-iodobenzylamine (466 mg, 2.00 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the product as a light-sensitive colourless oil that turns light purple upon light exposure (131 mg, 0.44 mmol, 89% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.65 (m, 2H), 7.42 – 7.33 (m, 2H), 7.33 – 7.27 (m, 1H), 7.28 – 7.19 (m, 2H), 7.07 – 6.98 (m, 2H), 3.99 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 140.86, 140.47, 137.58, 131.11, 128.96, 128.67, 126.40, 91.45, 41.50. HRMS (ESI) m/z: [M]⁺ Calculated for $C_{13}H_{11}I^+$ 293.9900; Found 293.9895.

The spectral data are consistent with those reported in the literature¹⁰.

4-Benzylbenzonitrile

3i

4-Benzylbenzonitrile was prepared according to the general procedure A using 4-(aminomethyl)benzonitrile (238 μ L, 2.00 mmol). Flash column chromatography (0–60% CH₂Cl₂ in hexanes) of the crude reaction mixture afforded the product as a colourless oil (88 mg, 0.46 mmol, 91% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.56 (m, 2H), 7.43 – 7.25 (m, 5H), 7.25 – 7.16 (m, 2H), 4.07 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 146.76, 139.37, 132.28, 129.65, 128.98, 128.78, 126.68, 119.01, 110.01, 41.96.

HRMS (ESI) m/z: [M]⁺ Calculated for C₁₄H₁₁N⁺ 193.0886; Found 193.0882.

The spectral data are consistent with those reported in the literature¹¹.

1-Benzyl-4-nitrobenzene

1-Benzyl-4-nitrobenzene was prepared according to the general procedure A using 4-nitrobezylamine (304 mg, 2.00 mmol). Flash column chromatography (0–40% CH_2Cl_2 in hexanes) of the crude reaction mixture afforded the product as a colourless oil (61 mg, 0.29 mmol, 57% yield).

 ^{1}H NMR (400 MHz, CDCl₃) δ 8.21 – 8.12 (m, 2H), 7.42 – 7.32 (m, 4H), 7.32 – 7.25 (m, 1H), 7.25 – 7.17 (m, 2H), 4.11 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 148.99, 146.61, 139.30, 129.75, 129.06, 128.92, 126.85, 123.84, 41.82. **HRMS** (ESI) m/z: [M]⁺ Calculated for C₁₃H₁₁NO₂⁺ 213.0784; Found 213.0781.

The spectral data are consistent with those reported in the literature¹².

Methyl 4-benzylbenzoate

Methyl 4-benzylbenzoate was prepared according to the general procedure A using methyl 4-(aminomethyl)benzoate (330 mg, 2.00 mmol). Flash column chromatography (0-50% CH₂Cl₂ in hexanes) of the crude reaction mixture afforded the product as a colourless oil (99 mg, 0.44 mmol, 88% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.04 – 7.99 (m, 2H), 7.39 – 7.20 (m, 7H), 4.07 (s, 2H), 3.94 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.10, 146.60, 140.19, 129.90, 129.02, 129.02, 128.68, 128.18, 126.45, 52.05, 41.98. HRMS (ESI) m/z: [M]⁺ Calculated for C₁₅H₁₄O₂⁺ 226.0988; Found 226.0987.

The spectral data are consistent with those reported in the literature¹².

1-Benzyl-4-(methylsulfonyl)benzene

1-Benzyl-4-(methylsulfonyl)benzene was prepared according to the general procedure A using methyl 4-(methylsulfonyl)benzylamine (371 mg, 2.00 mmol). Flash column chromatography (0–100% CH_2Cl_2 in hexanes) of the crude reaction mixture afforded the product as a white solid (115 mg, 0.47 mmol, 93% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 – 7.78 (m, 2H), 7.44 – 7.38 (m, 2H), 7.37 – 7.31 (m, 2H), 7.30 – 7.24 (m, 1H), 7.23 – 7.17 (m, 2H), 4.09 (s, 2H), 3.05 (s, 3H).

 $^{13}\textbf{C}$ NMR (101 MHz, CDCl₃) δ 147.73, 139.44, 138.40, 129.82, 128.99, 128.79, 127.64, 126.70, 44.59, 41.83.

HRMS (ESI) m/z: [M]⁺ Calculated for C₁₄H₁₁O₂S⁺ 246.0709; Found 246.0705.

The spectral data are consistent with those reported in the literature¹³.

1-Benzyl-4-(trifluoromethoxy)benzene

1-Benzyl-4-(trifluoromethoxy)benzene was prepared according to the general procedure A using 4-trifluoromethoxybenzylamine (305 μ L, 2.00 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the product as a colourless oil (85 mg, 0.34 mmol, 68% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.34 (m, 2H), 7.33 – 7.23 (m, 5H), 7.22 – 7.17 (m, 2H), 4.05 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 147.75, 140.58, 140.04, 130.27, 129.05, 128.76, 126.51, 121.16, 120.68 (q, J = 256.9 Hz), 41.34. ¹⁹F NMR (377 MHz, CDCl₃) δ -57.77. HRMS (ESI) m/z: [M]⁺ Calculated for C₁₄H₁₁F₃O⁺252.0757; Found 252.0752.

The spectral data are consistent with those reported in the literature⁸.

1-Benzyl-4-(difluoromethoxy)benzene

1-Benzyl-4-(difluoromethoxy)benzene was prepared according to the general procedure A using 4difluoromethoxybenzylamine (281 μ L, 2.00 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the product as a colourless oil (66 mg, 0.28 mmol, 56% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.32 (m, 2H), 7.32 – 7.27 (m, 1H), 7.27 – 7.20 (m, 4H), 7.15 – 7.03 (m, 2H), 6.52 (t, J = 74.2 Hz, 1H), 4.03 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 149.69 (t, J = 2.8 Hz), 140.85, 138.57, 130.32, 129.00, 128.71, 126.41, 119.76 (d, J = 0.9 Hz), 116.19 (t, J = 259.3 Hz), 41.29. ¹⁹F NMR (377 MHz, CDCl₃) δ -80.39. HRMS (ESI) m/z: [M]⁺ Calculated for C₁₄H₁₂F₂O⁺ 234.0851; Found 234.0846.

The spectral data are consistent with those reported in the literature¹⁴.

(4-Benzylphenyl)(trifluoromethyl)sulfane

(4-Benzylphenyl)(trifluoromethyl)sulfane was prepared according to the general procedure A using 4-(trifluoromethylthio)benzylamine (316 μ L, 2.00 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the product as a colourless oil (114 mg, 0.43 mmol, 85% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.67 – 7.62 (m, 2H), 7.42 – 7.36 (m, 2H), 7.34 – 7.28 (m, 3H), 7.28 – 7.23 (m, 2H), 4.08 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 144.62, 140.09, 136.68, 130.17, 129.81 (q, *J* = 308.0 Hz), 129.13, 128.81, 126.62, 121.90 (q, *J* = 2.1 Hz), 41.76.

 ^{19}F NMR (377 MHz, CDCl₃) δ -42.83.

HRMS (ESI) m/z: [M]⁺ Calculated for C₁₄H₁₁F₃S⁺ 268.0528; Found 268.0524.

1-Benzyl-4-(trifluoromethyl)benzene

1-Benzyl-4-(trifluoromethyl)benzene was prepared according to the general procedure A using 4-trifluoromethylbenzylamine (285 μ L, 2.00 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the product as a colourless oil (103 mg, 0.44 mmol, 87% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.1 Hz, 2H), 7.45 – 7.36 (m, 4H), 7.36 – 7.30 (m, 1H), 7.30 – 7.25 (m, 2H), 4.12 (s, 2H). ¹³**C** NMR (101 MHz, CDCl₃) δ 145.73 – 145.09 (m), 140.14, 129.34, 129.09, 128.82, 128.63 (q, *J* = 32.3 Hz) 126.63, 125.54 (q, *J* = 3.8 Hz), 124.50 (q, *J* = 271.9 Hz), 41.85. ¹⁹**F** NMR (377 MHz, CDCl₃) δ -62.16. **HRMS** (ESI) m/z: [M]⁺ Calculated for C₁₄H₁₁F₃⁺ 236.0807; Found 236.0804.

The spectral data are consistent with those reported in the literature⁸.

1-Benzyl-3-methylbenzene

1-Benzyl-3-methylbenzene was prepared according to the general procedure A using 3-methylbenzylamine (251 μ L, 2.00 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the product as a colourless oil (56 mg, 0.31 mmol, 62% yield).

 ^{1}H NMR (400 MHz, CDCl₃) δ 7.39 – 7.32 (m, 2H), 7.33 – 7.22 (m, 4H), 7.15 – 7.03 (m, 3H), 4.03 (s, 2H), 2.40 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 141.39, 141.16, 138.16, 129.85, 129.06, 128.57, 128.48, 126.96, 126.15, 126.12, 42.03, 21.54.

HRMS (ESI) m/z: [M]⁺ Calculated for C₁₄H₁₄⁺ 182.1090; Found 182.1086.

The spectral data are consistent with those reported in the literature¹⁰.

1-Benzyl-3-(tert-butyl)benzene

1-Benzyl-3-(*tert*-butyl)benzene was prepared according to the general procedure A using 3-(*tert*-butyl)benzylamine (327 mg, 2.00 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the product as a colourless oil (79.4 mg, 0.35 mmol, 71% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.27 (m, 8H), 7.13 – 7.05 (m, 1H), 4.11 (s, 2H), 1.43 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 151.39, 141.43, 140.75, 129.05, 128.55, 128.28, 126.18, 126.16, 126.11, 123.16, 42.33, 34.75, 31.53. HRMS (ESI) m/z: [M]⁺ Calculated for C₁₇H₂₀⁺ 224.1560; Found 224.1558.

The spectral data are consistent with those reported in the literature¹⁵.

3-Benzyl-1,1'-biphenyl

3-Benzyl-1,1'-biphenyl was prepared according to the general procedure A using [1,1'-biphenyl]-3ylmethanamine (367 mg, 2.00 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the product as a colourless oil (92 mg, 0.38 mmol, 75% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.52 (m, 2H), 7.45 – 7.36 (m, 4H), 7.35 – 7.24 (m, 4H), 7.24 – 7.10 (m, 4H), 4.02 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.71, 141.54, 141.34, 141.10, 129.07, 129.01, 128.83, 128.63, 128.03, 127.95, 127.34, 127.31, 126.26, 125.12, 42.15. HRMS (ESI) m/z: $[M]^+$ Calculated for C₁₉H₁₆⁺ 244.1247; Found 224.1243.

The spectral data are consistent with those reported in the literature¹⁶.

1-Benzyl-3-fluorobenzene

1-Benzyl-3-fluorobenzene was prepared according to the general procedure A using 3-fluorobenzylamine (228 μ L, 2.00 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the product as a colourless oil (73 mg, 0.39 mmol, 79% yield).

 ^{1}H NMR (400 MHz, CDCl₃) δ 7.41 – 7.35 (m, 2H), 7.35 – 7.23 (m, 4H), 7.10 – 7.02 (m, 1H), 7.02 – 6.93 (m, 2H), 4.05 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 163.11 (d, J = 245.6 Hz), 143.82 (d, J = 7.2 Hz), 140.42, 129.96 (d, J = 8.3 Hz), 129.06, 128.72, 126.48, 124.67 (d, J = 2.8 Hz), 115.91 (d, J = 21.2 Hz), 113.11 (d, J = 21.1 Hz), 41.76. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -113.41.

HRMS (ESI) m/z: $[M]^+$ Calculated for $C_{13}H_{11}F^+$ 186.0839; Found 186.0835.

The spectral data are consistent with those reported in the literature¹⁰.

1-Benzyl-3-chlorobenzene

1-Benzyl-3-chlorobenzene was prepared according to the general procedure A using 3-chlorobenzylamine (244 μ L, 2.00 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the product as a colourless oil (91 mg, 0.45 mmol, 89% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.33 (m, 2H), 7.33 – 7.21 (m, 6H), 7.18 – 7.10 (m, 1H), 4.02 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 143.28, 140.31, 134.38, 129.81, 129.14, 129.05, 128.73, 127.23, 126.50, 126.43, 41.69. HRMS (ESI) m/z: [M]⁺ Calculated for C₁₃H₁₁Cl⁺ 202.0544; Found 202.0544.

The spectral data are consistent with those reported in the literature¹⁰.

1-Benzyl-3-bromobenzene

1-Benzyl-3-bromobenzene was prepared according to the general procedure A using 3-bromobenzylamine (251 μ L, 2.00 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the product as a colourless oil (99 mg, 0.40 mmol, 80% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.33 (m, 4H), 7.33 – 7.14 (m, 5H), 4.01 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 143.57, 140.28, 132.04, 130.12, 129.35, 129.04, 128.73, 127.69, 126.50, 122.69, 41.65. HRMS (ESI) m/z: [M]⁺ Calculated for C₁₃H₁₁Br⁺ 246.0039; Found 246.0035.

The spectral data are consistent with those reported in the literature¹⁰.

1-Benzyl-3-iodobenzene

1-Benzyl-3-iodobenzene was prepared according to the general procedure A using 3-iodobenzylamine (266 μ L, 2.00 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the product as a colourless oil (127 mg, 0.43 mmol, 87% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.72 – 7.52 (m, 2H), 7.42 – 7.32 (m, 2H), 7.31 – 7.26 (m, 1H), 7.26 – 7.17 (m, 3H), 7.07 (t, *J* = 7.7 Hz, 1H), 3.98 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 143.63, 140.29, 137.96, 135.31, 130.30, 129.01, 128.71, 128.33, 126.47, 94.74, 41.54. **HRMS** (ESI) m/z: $[M]^+$ Calculated for C₁₃H₁₁I⁺ 293.9900; Found 293.9894.

The spectral data are consistent with those reported in the literature¹⁷.

3-Benzylbenzonitrile

NC 3x

3-Benzylbenzonitrile was prepared according to the general procedure A using 3- (aminomethyl)benzonitrile (264 μ L, 2.00 mmol). Flash column chromatography (0–45% CH₂Cl₂ in hexanes) of the crude reaction mixture afforded the product as an orange oil (84 mg, 0.44 mmol, 87% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.55 – 7.45 (m, 3H), 7.44 – 7.39 (m, 1H), 7.39 – 7.33 (m, 2H), 7.32 – 7.26 (m, 1H), 7.25 – 7.17 (m, 2H), 4.05 (s, 2H). ¹³C NMP (101 MHz, CDCl.) δ 142 66 120 47 122 46 122 27 120 04 120 28 128 06 128 82 126 71

¹³**C NMR** (101 MHz, CDCl₃) δ 142.66, 139.47, 133.46, 132.37, 129.94, 129.28, 128.96, 128.82, 126.71, 118.96, 112.52, 41.42.

HRMS (ESI) m/z: $[M]^+$ Calculated for $C_{14}H_{11}N^+$ 193.0886; Found 193.0883.

The spectral data are consistent with those reported in the literature¹⁸.

1-Benzyl-3-nitrobenzene

O₂N 3y

1-Benzyl-3-nitrobenzene was prepared according to the general procedure A using 3nitrobenzylamine (249 μ L, 2.00 mmol). Flash column chromatography (0–40% CH₂Cl₂ in hexanes) of the crude reaction mixture afforded the product as a colourless oil (95 mg, 0.44 mmol, 89% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.16 – 8.04 (m, 2H), 7.61 – 7.52 (m, 1H), 7.52 – 7.43 (m, 1H), 7.41 – 7.33 (m, 2H), 7.33 – 7.24 (m, 1H), 7.28 – 7.19 (m, 2H), 4.12 (s, 2H).

 $^{13}\textbf{C}$ NMR (101 MHz, CDCl₃) δ 148.49, 143.29, 139.47, 135.18, 129.43, 128.99, 128.91, 126.82, 123.77, 121.41, 41.58.

HRMS (ESI) m/z: $[M]^+$ Calculated for $C_{13}H_{11}NO_2^+$ 213.0784; Found 213.0783.

The spectral data are consistent with those reported in the literature¹⁹.

Methyl 3-benzylbenzoate

Methyl 3-benzylbenzoate was prepared according to the general procedure A using methyl 4- (aminomethyl)benzoate (330 mg, 2.00 mmol). Flash column chromatography (0-40% CH₂Cl₂ in hexanes) of the crude reaction mixture afforded the product as a colourless oil (98 mg, 0.43 mmol, 86% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.89 (m, 2H), 7.46 – 7.30 (m, 4H), 7.30 – 7.21 (m, 3H), 4.07 (s, 2H), 3.94 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.21, 141.56, 140.57, 133.62, 130.44, 130.12, 128.96, 128.67, 128.63, 127.53, 126.39, 52.14, 41.80. HRMS (ESI) m/z: [M]⁺ Calculated for C₁₅H₁₄O₂⁺ 226.0988; Found 226.0986.

The spectral data are consistent with those reported in the literature²⁰.

1-Benzyl-3-(trifluoromethoxy)benzene

1-Benzyl-3-(trifluoromethoxy)benzene was prepared according to the general procedure A using 3trifluoromethoxybenzylamine (301 μ L, 2.00 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the product as a colourless oil (96 mg, 0.38 mmol, 76% yield).

 ^1H NMR (400 MHz, CDCl₃) δ 7.43 – 7.28 (m, 4H), 7.28 – 7.24 (m, 2H), 7.22 – 7.17 (m, 1H), 7.17 – 7.12 (m, 2H), 4.07 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 149.59 (q, J = 1.9 Hz), 143.62, 140.19, 129.84, 129.07, 128.79, 127.44, 126.59, 121.59 (q, J = 1.0 Hz), 120.67 (q, J = 256.8 Hz), 118.62 (q, J = 1.1 Hz), 41.72. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -57.58. **HRMS** (ESI) m/z: [M]⁺ Calculated for C₁₄H₁₁F₃O⁺ 252.0757; Found 252.0752.

1-Benzyl-3-(trifluoromethyl)benzene

1-Benzyl-3-(trifluoromethyl)benzene was prepared according to the general procedure A using 3-trifluoromethylbenzylamine (287 μ L, 2.00 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the product as a colourless oil (92 mg, 0.39 mmol, 78% yield).

 ^{1}H NMR (400 MHz, CDCl₃) δ 7.58 – 7.51 (m, 2H), 7.50 – 7.35 (m, 4H), 7.34 – 7.27 (m, 1H), 7.28 – 7.21 (m, 2H), 4.10 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 142.18, 140.17, 132.62 – 132.32 (m), 130.92 (q, *J* = 32.0 Hz), 129.05, 129.04, 128.82, 126.62, 125.73 (q, *J* = 3.8 Hz), 124.38 (q, *J* = 272.3 Hz), 123.18 (q, *J* = 3.8 Hz), 41.82. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -62.39. **HRMS** (ESI) m/z: [M]⁺ Calculated for C₁₄H₁₁F₃⁺ 236.0807; Found 236.0803.

The spectral data are consistent with those reported in the literature¹⁹.

1-Benzyl-2-methylbenzene

1-Benzyl-2-methylbenzene was prepared according to the general procedure A using 2-methylbenzylamine (248 μ L, 2.00 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the product as a colourless oil (39 mg, 0.22 mmol, 43% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.32 (m, 2H), 7.30 – 7.16 (m, 7H), 4.07 (s, 2H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.53, 139.06, 136.77, 130.42, 130.08, 128.88, 128.52, 126.59, 126.12, 126.05, 39.59, 19.81. HRMS (ESI) m/z: [M]⁺ Calculated for C₁₄H₁₄⁺ 182.1090; Found 182.1088.

The spectral data are consistent with those reported in the literature¹⁰.

1-Benzyl-2-fluorobenzene

1-Benzyl-2-fluorobenzene was prepared according to the general procedure A using 2-fluorobenzylamine (229 μ L, 2.00 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the product as a colourless oil (65 mg, 0.35 mmol, 70% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.32 (m, 2H), 7.32 – 7.17 (m, 5H), 7.14 – 7.06 (m, 2H), 4.08 (s, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 161.11 (d, J = 245.3 Hz), 139.99, 131.16 (d, J = 4.6 Hz), 128.94, 128.64, 128.21 (d, J = 16.1 Hz), 128.07 (d, J = 8.0 Hz), 126.36, 124.19 (d, J = 3.6 Hz), 115.45 (d, J = 22.1 Hz), 34.94 (d, J = 3.0 Hz). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -117.77.

HRMS (ESI) m/z: [M]⁺ Calculated for C₁₃H₁₁F⁺ 186.0839; Found 186.0834.

The spectral data are consistent with those reported in the literature¹⁰.

1-Benzyl-2-bromobenzene

1-Benzyl-2-bromobenzene was prepared according to the general procedure A using 2-bromobenzylamine (250 μ L, 2.00 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the product as a colourless oil (81 mg, 0.33 mmol, 66% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.60 (dd, J = 8.0, 1.3 Hz, 1H), 7.36 – 7.30 (m, 2H), 7.29 – 7.20 (m, 4H), 7.18 – 7.15 (m, 1H), 7.11 (ddd, J = 7.9, 7.3, 1.8 Hz, 1H), 4.16 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 140.52, 139.63, 133.00, 131.24, 129.14, 128.62, 128.03, 127.61, 126.40, 125.05, 41.87. HRMS (ESI) m/z: [M]⁺ Calculated for C₁₃H₁₁Br⁺ 246.0039; Found 246.0037.

The spectral data are consistent with those reported in the literature¹⁰.

1-Benzyl-2-(trifluoromethyl)benzene

1-Benzyl-2-(trifluoromethyl)benzene was prepared according to the general procedure A using 2-trifluoromethylbenzylamine (281 μ L, 2.00 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the product as a colourless oil (74 mg, 0.31 mmol, 63% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.73 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.48 (td, *J* = 7.6, 1.4 Hz, 1H), 7.42 - 7.32 (m, 3H), 7.32 - 7.26 (m, 1H), 7.27 - 7.19 (m, 3H), 4.26 (s, 2H).
¹³C NMR (101 MHz, CDCl₃) δ 140.02, 139.66 (q, *J* = 2.0 Hz), 131.91 (q, *J* = 1.0 Hz), 131.87, 129.29, 128.86

(q, J = 30.3 Hz), 128.66, 126.47, 126.35, 126.01 (q, J = 5.8 Hz), 124.76 (q, J = 273.9 Hz), 37.94. ¹⁹F NMR (377 MHz, CDCl₃) δ -59.51. HPMS (ESI) m/z; [M]⁺ Calculated for CuHuEr⁺ 236.0807; Found 236.0807

HRMS (ESI) m/z: $[M]^+$ Calculated for $C_{14}H_{11}F_3^+$ 236.0807; Found 236.0807.

The spectral data are consistent with those reported in the literature²¹.

1-Benzyl-4-chloro-2-fluorobenzene

3ag

1-Benzyl-4-chloro-2-fluorobenzene was prepared according to the general procedure A using 4-chloro-2-fluorobenzylamine (251 μ L, 2.00 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the product as a colourless oil (92 mg, 0.42 mmol, 83% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.34 (m, 2H), 7.34 – 7.25 (m, 3H), 7.20 – 7.07 (m, 3H), 4.04 (s, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 160.78 (d, J = 249.0 Hz), 139.34 – 139.32 (m), 132.83 (d, J = 10.2 Hz), 131.79 (d, J = 5.5 Hz), 128.91 – 128.82 (m), 128.74, 126.94 (d, J = 16.1 Hz), 126.57, 124.55 (d, J = 3.7 Hz), 116.24 (d, J = 25.7 Hz), 34.46.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -114.97.

HRMS (ESI) m/z: [M]⁺ Calculated for C₁₃H₁₀ClF⁺ 220.0450; Found 220.0449.

2-Benzyl-1,3-difluorobenzene

2-Benzyl-1,3-difluorobenzene was prepared according to the general procedure A using 2,6-difluorobenzylamine (239 μ L, 2.00 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the product as a colourless oil (87 mg, 0.42 mmol, 85% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.34 (m, 4H), 7.31 – 7.15 (m, 2H), 6.94 (ddd, J = 8.0, 6.5, 1.1 Hz, 2H), 4.10 (t, J = 1.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 161.54 (dd, J = 247.1, 8.6 Hz), 139.32, 128.63, 128.58, 127.99 (t, J = 10.2

Hz), 126.45, 117.01 (t, J = 20.3 Hz), 111.69 – 110.84 (m), 28.30. ¹⁹E NMP (277 MHz, CDCL) & 114.90

¹⁹**F NMR** (377 MHz, CDCl₃) δ -114.89.

HRMS (ESI) m/z: $[M]^+$ Calculated for $C_{13}H_{10}F_2^+$ 204.0745; Found 204.0746.

The spectral data are consistent with those reported in the literature²².

1-Benzyl-3,5-dimethylbenzene

1-Benzyl-3,5-dimethylbenzene was prepared according to the general procedure A using 3,5dimethylbenzylamine (284 μ L, 2.00 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the product as a colourless oil (60 mg, 0.31 mmol, 62% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.34 (m, 2H), 7.34 – 7.25 (m, 3H), 6.99 – 6.88 (m, 3H), 4.01 (s, 2H), 2.38 (s, 6H).

 $^{13}\textbf{C}$ NMR (101 MHz, CDCl_3) δ 141.49, 141.10, 138.04, 129.04, 128.54, 127.86, 126.91, 126.09, 41.97, 21.40.

HRMS (ESI) m/z: $[M]^+$ Calculated for $C_{15}H_{16}^+$ 196.1247; Found 196.1244.

The spectral data are consistent with those reported in the literature²³.

4-Benzylpyridine

4-Benzylpyridine was prepared according to the general procedure using pyridine-4-ylmethanamine (203 μ L, 2.00 mmol). Flash column chromatography (0–50% CH₂Cl₂ in hexanes) of the crude reaction mixture afforded the product as a colourless oil (52 mg, 0.31 mmol, 62% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.57 – 8.40 (m, 2H), 7.39 – 7.31 (m, 2H), 7.31 – 7.23 (m, 1H), 7.23 – 7.17 (m, 2H), 7.16 – 7.08 (m, 2H), 3.99 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 150.21, 149.91, 138.97, 129.17, 128.87, 126.82, 124.33, 41.38. **HRMS** (ESI) m/z: [M]⁺ Calculated for C₁₂H₁₁N⁺ 169.0886; Found 169.0883.

The spectral data are consistent with those reported in the literature²⁴.

5. Arylboronic acid substrate scope

General procedure B for arylboronic acid scope

A 16 mL oven-dried glass vial equipped with a stirring bar was charged with arylboronic acid (0.50 mmol, 1.00 equiv.) and sodium carbonate (53 mg, 0.50 mmol, 1.00 equiv.) The vial was evacuated and refilled with N₂ three times. Anhydrous chloroform (1.25 mL) was then added followed by benzylamine (218 μ L, 2.00 mmol, 4.00 equiv.) and isoamyl nitrite (335 μ L, 2.50 mmol, 5.00 equiv). The reaction was heated at 60°C for 24 h. The crude reaction mixture was allowed to cool down to room temperature, concentrated and purified by flash column chromatography.

1-Benzyl-4-methylbenzene

1-Benzyl-4-methylbenzene was prepared according to the general procedure B using 4methylphenylboronic acid (68 mg, 0.50 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the products 1-benzyl-4-methylbenzene and 1-benzyl-3-methylbenzene as a colourless oil (53 mg, 0.29 mmol, 58% yield, *para:meta* = 92:8).

¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.33 (m, 2H), 7.33 – 7.24 (m, 3H), 7.24 – 7.07 (m, 4H), 4.10 – 4.02 (m, 2H), 2.47 – 2.37 (m, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 141.54, 141.38 (meta), 141.16 (meta), 138.21, 138.15 (meta), 135.65, 129.85 (meta), 129.28, 129.05 (meta), 129.00, 128.95, 128.56, 128.48 (meta), 126.95 (meta), 126.14 (meta), 126.11, 42.03 (meta), 41.65, 21.54 (meta), 21.14.

1-Benzyl-4-(*tert*-butyl)benzene

4b

1-Benzyl-4-(*tert*-butyl)benzene was prepared according to the general procedure B using 4-*tert*-butylphenylboronic acid (89 mg, 0.50 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the products 1-benzyl-4-(*tert*-butyl)benzene and 1-benzyl-3-(*tert*-butyl)benzene as a colourless oil (47 mg, 0.21 mmol, 42% yield, *para:meta* = 91:9).

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.33 (m, 4H), 7.33 – 7.24 (m, 3H), 7.24 – 7.16 (m, 2H), 7.12 – 6.99 (m, 1H, meta), 4.07 (s, 2H, meta), 4.04 (s, 2H), 1.39 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 151.39 (meta), 148.96, 141.42, 140.75 (meta), 138.22, 129.11, 129.05 (meta), 128.65, 128.56, 128.55 (meta), 128.28 (meta), 126.17 (meta), 126.16 (meta), 126.13, 126.11 (meta), 125.48, 123.15 (meta), 42.33 (meta), 41.58, 34.75 (meta), 34.50, 31.54.

4-Benzyl-1,1'-biphenyl

4-Benzyl-1,1'-biphenyl was prepared according to the general procedure B using 4-biphenylboronic acid (99 mg, 0.50 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the products 4-benzyl-1,1'-biphenyl and 3-benzyl-1,1'-biphenyl as a white solid (90 mg, 0.37 mmol, 74% yield, *para:meta* = 93:7).

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 – 7.60 (m, 2H), 7.59 – 7.54 (m, 2H), 7.51 – 7.43 (m, 2H), 7.40 – 7.20 (m, 8H), 4.10 (s, 2H, meta), 4.07 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 141.71 (meta), 141.55 (meta), 141.35 (meta), 141.13, 141.12, 140.37, 139.16, 129.45, 129.10, 129.01 (meta), 128.85, 128.65, 128.03 (meta), 127.96 (meta), 127.34, 127.20, 127.13, 126.28, 125.12 (meta), 42.16 (meta), 41.71.

1-Benzyl-4-fluorobenzene

1-Benzyl-4-fluorobenzene was prepared according to the general procedure B using 4-fluorophenylboronic acid (70 mg, 0.50 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the products 1-benzyl-4-fluorobenzene and 1-benzyl-3-fluorobenzene as a colourless oil (62 mg, 0.33 mmol, 67% yield, *para:meta* = 93:7).

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.32 (m, 2H), 7.32 – 7.15 (m, 5H), 7.03 (td, J = 8.8, 2.0 Hz, 2H), 6.97 – 6.91 (m, 2H, meta), 4.04 (s, 2H, meta), 4.02 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 161.56 (d, J = 243.9 Hz), 141.08, 140.42 (meta), 136.90 (d, J = 3.2 Hz), 130.42 (d, J = 7.8 Hz), 129.96 (d, J = 8.3 Hz, meta), 129.06 (meta), 128.97, 128.72 (meta), 128.67, 126.48 (meta), 126.34, 124.68 (meta), 115.91 (d, J = 21.4 Hz, meta), 115.34 (d, J = 21.2 Hz), 113.11 (d, J = 21.1 Hz, meta), 41.76 (d, J = 1.7 Hz, meta), 41.21.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -113.40 (meta), -117.26.

1-Benzyl-4-chlorobenzene

1-Benzyl-4-chlorobenzene was prepared according to the general procedure B using 4-chlorophenylboronic acid (78 mg, 0.50 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the products 1-benzyl-4-chlorobenzene and 1-benzyl-3-chlorobenzene as a colourless oil (76 mg, 0.37 mmol, 75% yield, *para:meta* = 94:6).

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.34 (m, 2H), 7.34 – 7.21 (m, 5H), 7.21 – 7.12 (m, 2H), 4.01 (s, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 143.28 (meta), 140.67, 140.31 (meta), 139.71, 134.37 (meta), 132.02, 130.38, 129.81 (meta), 129.14 (meta), 129.05 (meta), 128.99, 128.73 (meta), 128.69, 128.69, 127.23 (meta), 126.50 (meta), 126.42, 41.69 (meta), 41.36.

1-Benzyl-4-bromobenzene

1-Benzyl-4-bromobenzene was prepared according to the general procedure B using 4bromophenylboronic acid (100 mg, 0.50 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the products 1-benzyl-4-bromobenzene and 1-benzyl-3-bromobenzene as a colourless oil (81 mg, 0.33 mmol, 65% yield, *para:meta* = 95:5).

¹**H NMR** (400 MHz, CDCl₃) δ 7.49 – 7.43 (m, 2H), 7.42 – 7.32 (m, 2H), 7.31 – 7.26 (m, 1H), 7.25 – 7.20 (m, 2H), 7.20 – 7.15 (m, 2H, meta), 7.15 – 7.09 (m, 2H), 4.01 (s, 2H, meta), 3.99 (s, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 143.57 (meta), 140.56, 140.28 (meta), 140.22, 132.04 (meta), 131.63, 130.79, 130.12 (meta), 129.35 (meta), 129.04 (meta), 128.98, 128.73 (meta), 128.70, 127.69 (meta), 126.50 (meta), 126.43, 122.69 (meta), 120.06, 41.65 (meta), 41.42.

1-Benzyl-4-iodobenzene

1-Benzyl-4-iodobenzene was prepared according to the general procedure B using 4iodophenylboronic acid (124 mg, 0.50 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the products 1-benzyl-4-iodobenzene and 1-benzyl-3-iodobenzene as a colourless oil (116 mg, 0.39 mmol, 79% yield, *para:meta* = 96:4).

¹**H NMR** (400 MHz, CDCl₃) δ 7.72 – 7.65 (m, 2H), 7.64 – 7.57 (m, 2H, meta), 7.40 – 7.33 (m, 2H), 7.32 – 7.26 (m, 1H), 7.26 – 7.19 (m, 2H), 7.08 (t, *J* = 7.7 Hz, 1H, meta), 7.04 – 6.93 (m, 2H), 3.99 (s, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 143.63 (meta), 140.87, 140.48, 140.28 (meta), 137.95 (meta), 137.59, 135.30 (meta), 131.12, 130.29 (meta), 129.00 (meta), 128.97, 128.71 (meta), 128.68, 128.32 (meta), 126.47 (meta), 126.41, 94.74 (meta), 91.45, 41.53 (meta), 41.51.

1-Benzyl-4-(trifluoromethoxy)benzene

1-Benzyl-4-(trifluoromethoxy)benzene was prepared according to the general procedure B using 4trifluoromethoxyphenylboronic acid (103 mg, 0.50 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the products 1-benzyl-4-(trifluoromethoxy)benzene and 1-benzyl-3-(trifluoromethoxy)benzene as a colourless oil (80 mg, 0.32 mmol, 63% yield, *para:meta* = 94:6).

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.33 (m, 2H), 7.32 – 7.22 (m, 5H), 7.19 (d, J = 8.3 Hz, 2H), 7.12 (d, J = 8.3 Hz, 2H, meta), 4.05 (s, 2H, meta), 4.04 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 147.76 (d, J = 1.9 Hz), 143.60 (meta), 140.58, 140.18 (meta), 140.04, 130.27, 129.84 (meta), 129.05, 128.76, 127.43 (meta), 126.58 (meta), 126.51, 121.58 (meta), 121.16 (q, J = 1.0 Hz), 120.68 (q, J = 256.7 Hz), 118.62 (meta), 41.72 (meta), 41.34. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -57.58 (meta), -57.78.

1-Benzyl-4-(trifluoromethyl)benzene

1-Benzyl-4-(trifluoromethyl)benzene was prepared according to the general procedure B using 4trifluoromethylphenylboronic acid (95 mg, 0.50 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the products 1-benzyl-4-(trifluoromethyl)benzene and 1-benzyl-3-(trifluoromethyl)benzene as a colourless oil (76 mg, 0.32 mmol, 65% yield, *para:meta* = 92:8).

¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.56 (m, 2H), 7.55 – 7.41 (m, 6H, meta), 7.41 – 7.34 (m, 4H), 7.33 – 7.27 (m, 1H), 7.27 – 7.20 (m, 2H), 4.09 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 145.73 – 145.09 (m), 142.17 (meta), 140.16 (meta), 140.13, 132.46 (q, J = 1.0 Hz, meta), 129.34, 129.08, 129.05 (meta), 129.04 (meta), 128.81, 128.63 (q, J = 32.3 Hz), 126.62, 125.72 (q, J = 3.8 Hz, meta), 125.54 (q, J = 3.8 Hz), 124.50 (q, J = 271.9 Hz), 123.17 (q, J = 3.9 Hz, meta), 41.85, 41.82 (meta).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -62.18, -62.37 (meta).

1-Benzyl-3-methylbenzene

1-Benzyl-3-methylbenzene was prepared according to the general procedure B using 3methylphenylboronic acid (68 mg, 0.50 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the products 1-benzyl-3-methylbenzene, 1-benzyl-4-methylbenzene and 1benzyl-2-methylbenzene as a colourless oil (64 mg, 0.35 mmol, 70% yield, *meta:para:ortho* = 94:3:3).

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.33 (m, 2H), 7.33 – 7.22 (m, 4H), 7.23 – 7.17 (m, 4H, minor isomer), 7.15 – 7.05 (m, 3H), 4.08 (s, 2H, minor isomer), 4.04 (s, 2H), 2.41 (s, 3H), 2.34 (s, 3H, minor isomer). ¹³**C NMR** (101 MHz, CDCl₃) δ 141.38, 141.16, 140.52 (ortho), 138.15, 130.41 (ortho), 130.08 (ortho), 129.85, 129.28 (para), 129.05, 129.04 (para), 128.95 (para), 128.87 (ortho), 128.56, 128.51 (ortho), 128.48, 126.96, 126.59 (ortho), 126.14, 126.12, 126.05 (ortho), 42.03, 41.65 (para), 39.58 (ortho), 21.54, 21.14 (para), 19.80 (ortho). 1-Benzyl-3-fluorobenzene

1-Benzyl-3-fluorobenzene was prepared according to the general procedure B using 3-fluorophenylboronic acid (70 mg, 0.50 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the products 1-benzyl-3-fluorobenzene, 1-benzyl-4-fluorobenzene and 1-benzyl-2-fluorobenzene as a colourless oil (63 mg, 0.34 mmol, 67% yield, *meta:para:ortho* = 96:2:2).

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.33 (m, 2H), 7.33 – 7.20 (m, 4H), 7.08 – 7.01 (m, 1H), 7.01 – 6.90 (m, 2H), 4.07 (s, 2H, minor isomer), 4.03 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 163.11 (d, J = 245.6 Hz), 143.82 (d, J = 7.1 Hz), 140.42, 129.96 (d, J = 8.3 Hz), 129.07, 128.97 (para), 128.93 (ortho), 128.72, 126.48, 126.36 (ortho), 124.67 (d, J = 2.8 Hz), 115.92 (d, J = 21.2 Hz), 115.34 (d, J = 21.1 Hz, para), 113.11 (d, J = 21.0 Hz), 41.76 (d, J = 1.8 Hz), 41.21 (para). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -113.45, -117.30 (para), -117.78 (ortho).

1-Benzyl-3-chlorobenzene

1-Benzyl-3-chlorobenzene was prepared according to the general procedure B using 3-chlorophenylboronic acid (78 mg, 0.50 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the products 1-benzyl-3-chlorobenzene, 1-benzyl-4-chlorobenzene and 1-benzyl-2-chlorobenzene as a colourless oil (71 mg, 0.35 mmol, 70% yield, *meta:para:ortho* = 94:4:2).

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 – 7.42 (m, 2H, minor isomer), 7.43 – 7.34 (m, 2H), 7.34 – 7.22 (m, 6H), 7.21 – 7.17 (m, 3H, minor isomer), 7.17 – 7.12 (m, 1H), 4.19 (s, 2H, minor isomer), 4.02 (s, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 143.28, 140.31, 139.71 (para), 134.37, 132.02 (para), 131.15 (ortho), 130.38 (para), 129.81, 129.66 (ortho), 129.14, 129.05, 128.99 (para), 128.91 (ortho), 128.73, 128.69 (para), 128.60 (ortho), 127.78 (ortho), 127.23, 126.95 (ortho), 126.50, 126.43, 126.37 (ortho), 41.69, 41.36 (para), 39.31 (ortho).

The spectral data for the ortho isomer are consistent with those reported in the literature²⁵.

1-Benzyl-3-bromobenzene

1-Benzyl-3-bromobenzene was prepared according to the general procedure B using 3bromophenylboronic acid (100 mg, 0.50 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the products 1-benzyl-3-bromobenzene, 1-benzyl-4-bromobenzene and 1benzyl-2-bromobenzene as a colourless oil (83 mg, 0.34 mmol, 67% yield, *meta:para:ortho* = 89:7:4). ¹**H NMR** (400 MHz, CDCl₃) δ 7.64 (dd, J = 8.0, 1.3 Hz, 1H, minor isomer), 7.50 – 7.45 (m, 2H, minor isomer), 7.44 – 7.33 (m, 4H), 7.33 – 7.15 (m, 5H), 7.13 (d, J = 8.3 Hz, 2H, minor isomer), 4.20 (s, 2H, minor isomer), 4.01 (s, 2H), 4.00 (s, 2H, minor isomer).

¹³C NMR (101 MHz, CDCl₃) δ 143.57, 140.55 (para), 140.28, 140.22 (para), 139.60 (ortho), 132.97 (ortho), 132.03, 131.63 (para), 131.21 (ortho), 130.78 (para), 130.12, 129.35, 129.12 (ortho), 129.03, 128.98 (para), 128.73, 128.70 (para), 128.60 (ortho), 128.01 (ortho), 127.69, 127.58 (ortho), 126.50, 126.43 (para), 122.68, 120.06 (para), 41.85 (ortho), 41.65, 41.42 (para).

1-Benzyl-3-(trifluoromethoxy)benzene

1-Benzyl-3-(trifluoromethoxy)benzene was prepared according to the general procedure B using 3trifluoromethoxyphenylboronic acid (103 mg, 0.50 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the products 1-benzyl-3-(trifluoromethoxy)benzene and 1benzyl-4-(trifluoromethoxy)benzene as a colourless oil (65 mg, 0.26 mmol, 52% yield, meta:para = 98:2).

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.30 (m, 3H), 7.31 – 7.25 (m, 1H), 7.27 – 7.19 (m, 2H), 7.20 – 7.12 (m, 1H), 7.13 – 7.08 (m, 2H), 4.04 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 149.57 (q, J = 1.8 Hz), 143.60, 140.18, 130.27 (para), 129.84, 129.06, 128.79, 127.43, 126.58, 121.58 (q, J = 1.0 Hz), 121.16 (para), 120.65 (d, J = 256.8 Hz), 118.62 (q, J = 1.2 Hz), 41.72, 41.35 (para).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -57.60, -57.80 (para).

1-Benzyl-3-(trifluoromethyl)benzene

1-Benzyl-3-(trifluoromethyl)benzene was prepared according to the general procedure B using 3trifluoromethylphenylboronic acid (95 mg, 0.50 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the products 1-benzyl-3-(trifluoromethyl)benzene, 1-benzyl-4-(trifluoromethyl)benzene and 1-benzyl-2-(trifluoromethyl)benzene as a colourless oil (82 mg, 0.35 mmol, 70% yield, *meta:para* = 96:4).

¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.58 (m, 2H, para), 7.56 – 7.48 (m, 2H), 7.48 – 7.34 (m, 4H), 7.33 – 7.27 (m, 1H), 7.27 – 7.21 (m, 2H), 4.10 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 142.18, 140.17, 132.46 (q, *J* = 1.4 Hz), 130.92 (q, *J* = 32.0 Hz), 129.34 (para), 129.05, 129.04, 128.82, 128.61 (q, J = 32.2 Hz, para), 126.62, 125.73 (q, J = 3.9 Hz), 125.54 (q, J = 3.8 Hz, para), 124.38 (q, J = 273.3 Hz), 123.18 (q, J = 3.8 Hz), 41.82. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -62.22 (para), -62.41.

1-Benzyl-2-methylbenzene

1-Benzyl-2-methylbenzene was prepared according to the general procedure B using 2methylphenylboronic acid (68 mg, 0.50 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the products 1-benzyl-2-methylbenzene and 1-benzyl-3-methylbenzene as a colourless oil (46 mg, 0.25 mmol, 51% yield, *ortho:meta* = 94:6).

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.30 (m, 2H), 7.30 – 7.13 (m, 7H), 7.15 – 7.03 (m, 3H, meta), 4.06 (s, 2H), 4.01 (s, 2H, meta), 2.38 (s, 3H, meta), 2.31 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 141.38 (meta), 141.17 (meta), 140.53, 139.06, 138.17 (meta), 136.77, 130.42, 130.08, 129.86 (meta), 129.06 (meta), 128.88, 128.57 (meta), 128.52, 128.48 (meta), 126.96 (meta), 126.59, 126.15 (meta), 126.12, 126.05, 42.03 (meta), 39.59, 21.54 (meta), 19.81.

1-Benzyl-2-fluorobenzene

1-Benzyl-2-fluorobenzene was prepared according to the general procedure B using 2-fluorophenylboronic acid (70 mg, 0.50 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the products 1-benzyl-2-fluorobenzene and 1-benzyl-3-fluorobenzene as a colourless oil (34 mg, 0.18 mmol, 36% yield, *ortho:meta* = 96:4).

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.30 (m, 2H), 7.30 – 7.15 (m, 5H), 7.14 – 7.05 (m, 2H), 7.04 – 6.81 (m, 4H, meta), 4.05 (s, 2H), 4.02 (s, 2H, meta).

¹³**C NMR** (101 MHz, CDCl₃) δ 161.11 (d, J = 245.4 Hz), 140.00, 131.17 (d, J = 4.7 Hz), 129.97 (d, J = 8.2 Hz, meta), 129.07 (meta), 128.94 (d, J = 0.8 Hz), 128.72 (meta), 128.64, 128.21 (d, J = 16.2 Hz), 128.07 (d, J = 8.0 Hz), 126.48 (meta), 126.36, 124.67 (d, J = 2.7 Hz, meta), 124.20 (d, J = 3.6 Hz), 115.45 (d, J = 22.1 Hz), 113.11 (d, J = 21.5 Hz, meta), 34.94 (d, J = 3.0 Hz). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -113.48 (meta), -117.80.

1-Benzyl-3,5-dimethylbenzene

1-Benzyl-3,5-dimethylbenzene was prepared according to the general procedure B using 3,5dimethylphenylboronic acid (75 mg, 0.50 mmol). Flash column chromatography (hexanes) of the crude reaction mixture afforded the products 1-benzyl-3,5-dimethylbenzene and 1-benzyl-2,4-dimethylbenzene as a colourless oil (56 mg, 0.28 mmol, 57% yield, *major:minor* = 99:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.31 (m, 2H), 7.31 – 7.23 (m, 3H), 6.95 – 6.86 (m, 3H), 3.99 (s, 2H), 2.36 (s, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 141.50, 141.11, 138.06, 131.26 (minor), 130.04 (minor), 129.05, 128.83 (minor), 128.55, 128.49 (minor), 127.86, 126.92, 126.73 (minor), 126.10, 125.96 (minor), 41.97, 39.18 (minor), 21.41, 21.08 (minor), 19.73 (minor).

The spectral data for the major and minor isomer are consistent with those reported in the literature²³.
6. Unsuccessful substrates

Benzylamines

Arylboronic acids

7. Mechanistic experiments

7.1. Probing the isomer formation in the diazo pathway

1-Benzyl-4-methylbenzene

1-Benzyl-4-methylbenzene was synthesised according to the previously reported procedure²⁶. A 16 mL oven-dried glass vial equipped with a stirring bar was charged with dry dioxane (4 mL), benzaldehyde (102 μ L, 1.00 mmol, 1.00 equiv.) and tosylhydrazide (187 mg, 1.00 mmol, 1.00 equiv.) and the reaction mixture was stirred at 80 °C for 90 min. Potassium carbonate (207 mg, 1.50 mmol, 1.50 equiv.) and 4-methylphenylboronic acid (204 mg, 1.50 mmol, 1.50 equiv.) were then added. The reaction mixture was stirred at 110 °C for 4 h. The crude reaction mixture was allowed to cool down to room temperature and a saturated aqueous solution of NaHCO₃ and dichloromethane were added. The layers were separated and the aqueous phase was extracted with dichloromethane three times. The combined organic layers were washed with brine, dried over MgSO₄ and filtered. The solvent was removed under reduced pressure and the residue purified by flash column chromatography (hexanes) to yield 1-benzyl-4-methylbenzene as a colourless oil (110 mg, 0.60 mmol, 60% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.29 (m, 2H), 7.27 – 7.20 (m, 3H), 7.17 – 7.10 (m, 4H), 3.99 (s, 2H), 2.36 (s, 3H).

 $^{13}\textbf{C}$ NMR (101 MHz, CDCl_3) δ 141.56, 138.22, 135.68, 129.29, 129.01, 128.95, 128.57, 126.11, 41.66, 21.15.

7.2. Deuterium-hydrogen scrambling

1-Methyl-4-(phenylmethyl-d₂)benzene and 1-methyl-4-(phenylmethyl-d)benzene

A 16 mL oven-dried glass vial equipped with a stirring bar was charged with phenylboronic acid (61 mg, 0.50 mmol, 1.00 equiv.) and sodium carbonate (53 mg, 0.50 mmol, 1.00 equiv.). The vial was sealed with a septum cap and evacuated and refilled with N₂ three times. Dry chloroform (1.25 mL) was then added followed by *p*-tolylmethan-*d*₂-amine (246 mg, 2.00 mmol, 4.00 equiv.) and isoamyl nitrite (335 μ L, 2.50 mmol, 5.00 equiv.). The reaction was heated at 60 °C for 24 h. The crude reaction mixture was concentrated and purified by flash column chromatography (hexanes) to yield a mixture of 1-methyl-4-(phenylmethyl-*d*₂)benzene and 1-methyl-4-(phenylmethyl-*d*)benzene as a colourless oil (40 mg, 0.22 mmol, 43% yield, 0.77H incorporation per benzylic position).

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.32 (m, 2H), 7.31 – 7.24 (m, 3H), 7.21 – 7.11 (m, 4H), 4.02 – 3.99 (m, 0.77H), 2.40 (s, 3H).

²H NMR (92 MHz, CDCl₃) δ 3.94, 3.92, 3.87.

¹³C NMR (101 MHz, CDCl₃) δ 141.52, 138.18, 135.68, 129.28, 129.00, 128.94, 128.57, 126.12, 41.71 − 40.85 (m), 21.15.

HRMS (ESI) m/z: $[M]^+$ Calculated for $C_{14}H_{13}D^+$ 183.1153; Found 183.1151.

7.3. Probing the isomer ratio using an electron-deficient benzylamine

A 16 mL oven-dried glass vial equipped with a stirring bar was charged with 4-methylphenylboronic acid (68 mg, 0.50 mmol, 1.00 equiv.) and sodium carbonate (53 mg, 0.50 mmol, 1.00 equiv.). The vial was sealed with a septum cap and evacuated and refilled with N₂ three times. Dry chloroform (1.25 mL) was then added followed by 4-trifluoromethylbenzylamine (285 mg, 2.00 mmol, 4.00 equiv.) and isoamyl nitrite (335 μ L, 2.50 mmol, 5.00 equiv.). The reaction was heated at 60 °C for 24 h. The crude reaction mixture was concentrated and purified by flash column chromatography (hexanes) to yield products 1-methyl-4-(4-(trifluoromethyl)benzyl)benzene and 1-methyl-3-(4-trifluoromethyl) benzyl)benzene as a colourless oil (102 mg, 0.41 mmol, 81% yield, 95:5 *p:m* isomer ratio).

¹**H NMR** (400 MHz, CDCl₃) δ 7.66 – 7.57 (m, 2H), 7.42 – 7.34 (m, 2H), 7.33 – 7.25 (m, 1H, minor isomer), 7.24 – 7.19 (m, 2H), 7.17 (d, *J* = 8.2 Hz, 2H), 7.14 – 7.05 (m, 1H, minor isomer), 4.08 (s, 2H), 2.42 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 145.70 (q, J = 1.4 Hz), 145.52 (meta), 140.06 (meta), 138.46 (meta), 137.10, 136.18, 129.86 (meta), 129.51, 129.31 (meta), 129.26, 128.96, 128.70 (meta), 127.38 (meta), 126.12 (meta), 125.51 (q, J = 3.8 Hz), 124.51 (q, J = 271.8 Hz), 41.81 (meta), 41.44, 21.49 (meta), 21.11. (signal of the aromatic quaternary carbon *ipso* to CF₃ is missing due to overlap)

¹⁹F NMR (377 MHz, CDCl₃) δ -62.24.

HRMS (ESI) m/z: $[M]^+$ Calculated for $C_{15}H_{13}F_3^+$ 250.0964; Found 250.0963.

1-Methyl-3-(4-trifluoromethyl)benzyl)benzene (synthesis of the minor isomer)

A 16 mL oven-dried glass vial equipped with a stirring bar was charged with 3-methylphenylboronic acid (68 mg, 0.50 mmol, 1.0 equiv.) and sodium carbonate (53 mg, 0.50 mmol, 1.00 equiv.). The vial was sealed with an septum cap and evacuated and refilled with N₂ three times. Dry chloroform (1.25 mL) was then added followed by 4-trifluoromethylbenzylamine (285 mg, 2.00 mmol, 4.00 equiv.) and isoamyl nitrite (335 μ L, 2.50 mmol, 5.00 equiv.). The reaction was heated at 60 °C for 24 h. The crude reaction mixture was concentrated and purified by flash column chromatography (hexanes) to yield 1-methyl-3-(4-(trifluoromethyl)benzyl)benzene as a colourless oil (108 mg, 0.43 mmol, 86% yield).

¹**H NMR** (400 MHz, CDCl₃) (major isomer) δ 7.65 – 7.57 (m, 2H), 7.40 – 7.34 (m, 2H), 7.31 – 7.25 (m, 1H), 7.17 – 7.09 (m, 1H), 7.10 – 7.04 (m, 2H), 4.07 (s, 2H), 2.41 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) (major isomer) δ 145.52 (q, J = 1.5 Hz), 140.06, 138.46, 129.86, 129.32, 128.70, 127.38, 126.12, 125.52 (q, J = 3.8 Hz), 124.51 (q, J = 271.8 Hz), 41.81, 21.50. (signal of the aromatic quaternary carbon *ipso* to CF₃ is missing due to overlap) ¹⁹**F NMR** (377 MHz, CDCl₃) δ -62.26.

 $\mathbf{LDMS} (\mathbf{FSI}) = (\mathbf{N}\mathbf{I}^{\dagger} \mathbf{Coloridated for } \mathbf{C} + \mathbf{L} \mathbf{E}^{\dagger} \mathbf{2} \mathbf{FO} \mathbf{O}$

HRMS (ESI) m/z: $[M]^+$ Calculated for $C_{15}H_{13}F_3^+$ 250.0964; Found 250.0961.

7.4. Probing pathway 1 for the minor isomer formation

1-Benzyl-4-fluorobenzene

A 16 mL oven-dried glass vial equipped with a stirring bar was charged with 4-fluorophenylboronic acid (70 mg, 0.50 mmol, 1.0 equiv.), (2-benzyl-4-fluorophenyl)boronic acid (12 mg, 0.05 mmol, 0.10 equiv.) and sodium carbonate (53 mg, 0.50 mmol, 1.00 equiv.). The vial was sealed with a septum cap and evacuated and refilled with N₂ three times. Dry chloroform (1.25 mL) was then added followed by benzylamine (218 μ L, 2.00 mmol, 4.00 equiv.) and isoamyl nitrite (335 μ L, 2.50 mmol, 5.00 equiv.). The reaction was heated at 60 °C for 24 h. The crude reaction mixture was concentrated and purified by flash column chromatography (hexanes) to yield products 1-benzyl-4-fluorobenzene and 1-benzyl-3-fluorobenzene as a colourless oil (52 mg, 0.28 mmol, 55% yield, 94:6 *p:m* isomer ratio).

7.5. Probing pathway 2 for the minor isomer formation

1-Benzyl-(4-(*tert*-butyl)benzene-2,6-d₂ and 1-benzyl-3-(*tert*-butyl)benzene-5,6-d₂

A 16 mL oven-dried glass vial equipped with a stirring bar was charged with (4-(*tert*-butyl)phenyl-2,6- d_2)boronic acid (90 mg, 0.50 mmol, 1.0 equiv.) and sodium carbonate (53 mg, 0.50 mmol, 1.00 equiv.). The vial was sealed with a septum cap and evacuated and refilled with N₂ three times. Anhydrous chloroform (1.25 mL) was then added followed by benzylamine (218 µL, 2.00 mmol, 4.00 equiv.) and isoamyl nitrite (335 µL, 3.00 mmol, 5.00 equiv.). The reaction was heated at 60 °C for 24 h. The crude reaction mixture was concentrated and purified by flash column chromatography (hexanes) to yield a mixture of 1-benzyl-4-(*tert*-butyl)benzene-2,6- d_2 and 1-benzyl-3-(*tert*-butyl)benzene-5,6- d_2 as a colourless oil (62 mg, 0.28 mmol, 55% yield, *para:meta* = 92:8).

¹H NMR (600 MHz, CDCl₃) δ 7.42 - 7.32 (m, 4H), 7.32 - 7.26 (m, 3H, major), 7.24 - 7.19 (m, 3H, minor), 4.08 (s, 2H, minor), 4.05 (s, 2H, major), 1.40 (s, 9H, minor), 1.40 (s, 9H, major).
²H NMR (92 MHz, CDCl₃) δ 7.35, 7.17, 7.03.
¹³C NMP (151 MHz, CDCl₃) δ 151 39 (minor), 148 95, 148 88 (minor), 141 42, 140 66 (minor), 143 95, 148 88 (minor), 141 42, 140 66 (minor), 143 95, 148 88 (minor), 141 42, 140 66 (minor), 143 95, 148 88 (minor), 141 42, 140 66 (minor), 143 95, 148 88 (minor), 141 42, 140 66 (minor), 143 95, 148 88 (minor), 141 42, 140 66 (minor), 143 95, 148 88 (minor), 141 42, 140 66 (minor), 143 95, 148 88 (minor), 141 42, 140 66 (minor), 143 95, 148 88 (minor), 141 42, 140 66 (minor), 143 95, 148 88 (minor), 141 42, 140 66 (minor), 143 95, 148 88 (minor), 144 95, 148 88 (minor), 141 42, 140 66 (minor), 143 95, 148 88 (minor), 144 95, 148 88 (minor), 141 42, 140 66 (minor), 143 95, 148 88 (minor), 144 95, 148 88 (minor), 141 42, 140 66 (minor), 143 95, 148 88 (minor), 144 95, 148 88 (minor), 141 42, 140 66 (minor), 143 95, 148 88 (minor), 148 95, 148 88 (minor), 141 42, 140 66 (minor), 148 95, 148 88 (minor), 148 95, 1

¹³**C NMR** (151 MHz, CDCl₃) δ 151.39 (minor), 148.95, 148.88 (minor), 141.42, 140.66 (minor), 138.13 (minor), 138.05, 129.11, 129.05 (minor), 128.65 (minor), 128.57, 128.50 – 128.13 (m), 126.13, 125.48 (minor), 125.37, 123.04 (minor), 41.53 (minor), 41.48, 34.75 (minor), 34.50, 31.55. **HRMS** (ESI) m/z: $[M+Na]^+$ Calculated for C₁₇H₁₈D₂+ 226.1685; Found 226.1683.

Incorporation of the deuterium in the *para* position to the *tert*-butyl isomer was calculated as follows: The integral of the two hydrogens at the benzylic position (4.08 ppm) for the minor isomer was set to

2.00 and compared to the integral in the range of 7.13 - 7.05 ppm (area ratio 0.14). Deuterium incorporation in this position was hence calculated to be ((2/1)-0.14)*100% = 86%.

In the HMBC spectrum, coupling was observed between the hydrogen at 7.13 - 7.05 ppm with the benzylic carbon (42.33 ppm) but not with the quaternary carbon of the *tert*-butyl group (34.75 ppm) or the quaternary aromatic carbon with *tert*-butyl group attached (151.39 ppm), therefore the peak at 7.13 - 7.05 ppm has been assigned to the hydrogen *para* instead of *ortho* to the *tert*-butyl group.

S43

8. NMR spectra

30 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -25 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

30 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -200 -210 -220 -220 -240 -25 ppm

20 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -25 ppm

20 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -25 ppm

ppm

30 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -200 -210 -220 -220 -240 -25 ppm

20 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -25 ppm

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

S99

S103

S106

S109

S112

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S125

30 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -25 f1 (ppm)

x0 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -25 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

9. References

- 1. X.-C. Wang, W. Gong, L.-Z. Fang, R.-Y. Zhu, S. Li, K. M. Engle and J.-Q. Yu, *Nature*, 2015, **519**, 334-338.
- 2. S. Kim, J. W. Ginsbach, J. Y. Lee, R. L. Peterson, J. J. Liu, M. A. Siegler, A. A. Sarjeant, E. I. Solomon and K. D. Karlin, *J. Am. Chem. Soc.*, 2015, **137**, 2867-2874.
- 3. M. Winters, J. B. DuHadaway, K. N. Pham, A. Lewis-Ballester, S. Badir, J. Wai, E. Sheikh, S. R. Yeh, G. C. Prendergast, A. J. Muller and W. P. Malachowski, *Eur. J. Med. Chem.*, 2019, **162**, 455-464.
- 4. D.-M. Yan, Q.-Q. Zhao, L. Rao, J.-R. Chen and W.-J. Xiao, *Chem. Eur. J.*, 2018, **24**, 16895-16901.
- 5. T. Mohy El Dine, W. Erb, Y. Berhault, J. Rouden and J. Blanchet, *J. Org. Chem.*, 2015, **80**, 4532-4544.
- 6. G.-Q. Hu, J.-W. Bai, E.-C. Li, K.-H. Liu, F.-F. Sheng and H.-H. Zhang, *Org. Lett.*, 2021, **23**, 1554-1560.
- 7. M. A. Tandiary, Y. Masui and M. Onaka, *Tetrahedron Lett.*, 2014, **55**, 4160-4162.
- 8. G. Toupalas, G. Thomann, L. Schlemper, M. A. Rivero-Crespo, H. L. Schmitt and B. Morandi, ACS Catal., 2022, **12**, 8147-8154.
- 9. J. R. Schmink and N. E. Leadbeater, Org. Lett., 2009, **11**, 2575-2578.
- 10. T. He, H. F. T. Klare and M. Oestreich, *ACS Catal.*, 2021, **11**, 12186-12193.
- 11. X. Li, Y. Feng, L. Lin and G. Zou, *J. Org. Chem.*, 2012, **77**, 10991-10995.
- 12. Z. Guan, B. Li, G. Hai, X. Yang, T. Li and B. Tan, *RSC Adv.*, 2014, **4**, 36437-36443.
- 13. P. Maity, D. M. Shacklady-McAtee, G. P. A. Yap, E. R. Sirianni and M. P. Watson, *J. Am. Chem. Soc.*, 2013, **135**, 280-285.
- 14. D. R. Willcox, G. S. Nichol and S. P. Thomas, *ACS Catal.*, 2021, **11**, 3190-3197.
- 15. G. Wu, S. Xu, Y. Deng, C. Wu, X. Zhao, W. Ji, Y. Zhang and J. Wang, *Tetrahedron*, 2016, **72**, 8022-8030.
- 16. Y.-Y. Sun, J. Yi, X. Lu, Z.-Q. Zhang, B. Xiao and Y. Fu, *Chem. Commun.*, 2014, **50**, 11060-11062.
- 17. J. Zhu, M. Pérez, C. B. Caputo and D. W. Stephan, *Angew. Chem. Int. Ed.*, 2016, **55**, 1417-1421.
- 18. H.-S. Jung and S.-H. Kim, *Synlett*, 2015, **26**, 666-670.
- 19. P. Zhang, J. Xu, Y. Gao, X. Li, G. Tang and Y. Zhao, *Synlett*, 2014, **25**, 2928-2932.
- 20. J. C. Tellis, D. N. Primer and G. A. Molander, *Science*, 2014, **345**, 433-436.
- 21. J. Zhu, M. Pérez and D. W. Stephan, *Angew. Chem. Int. Ed.*, 2016, **55**, 8448-8451.
- 22. Y. Makida, Y. Matsumoto and R. Kuwano, *Synlett*, 2017, **28**, 2573-2576.
- 23. T. Wang, J. Guo, X. Wang, H. Guo, D. Jia, H. Wang and L. Liu, *RSC Adv.*, 2019, **9**, 5738-5741.
- 24. N. Henry, C. Enguehard-Gueiffier, I. Thery and A. Gueiffier, *Eur. J. Org. Chem.*, 2008, **2008**, 4824-4827.
- 25. J. Tang, L. Lv, X.-J. Dai, C.-C. Li, L. Li and C.-J. Li, *Chem. Commun.*, 2018, **54**, 1750-1753.
- 26. J. Barluenga, M. Tomás-Gamasa, F. Aznar and C. Valdés, *Nat. Chem.*, 2009, **1**, 494-499.