## Table of Content

General ..... 2
Structure of the Iron Complexes ..... 3
Synthesis of the Fluoro-Substituted Porphyrin Ligands ..... 4
Synthesis of the Chloro- and $\mu$-Oxo-porphyrin-Iron Complexes ..... 7
UV-Vis Spectra of the Porphyrin-Iron Complexes and of the Reaction Mixture of the Oxidative Coupling ..... 11
Substrate Synthesis ..... 12
Oxidative C-C Coupling of Diarylamines ..... 12
Asymmetric Oxidative C-C Coupling of Diarylamines ..... 16
Oxidative C-C Coupling for the Synthesis of 1,1'- and 4,4'-Bicarbazoles ..... 19
Oxidative C-C Coupling for the Synthesis of $3,3^{\prime}$-Bicarbazoles ..... 24
Wacker-type Oxidation of Olefins ..... 26
References ..... 29
NMR Spectra ..... 30

## General

All reactions were carried out in oven-dried glassware. All iron-porphyrin catalyzed reactions were carried out with non-dried solvents in an atmosphere of air, unless stated otherwise. All other reactions were carried out with dry solvents in an atmosphere of argon. Dichloromethane, THF, and toluene were dried by using a solvent purification system (MBraun-SPS). All solvents used for flash chromatography were distilled prior to use. Isohexane was additionally filtrated through a silica gel column before use. All chemicals were used as received from commercial sources, unless stated otherwise. Automated flash chromatography was performed on a Büchi Sepacore system equipped with an UV monitor on silica gel (Acros Organics; $0.035-0.070 \mathrm{~mm}$ ). TLC analysis was performed on TLC plates from Merck (60 F254) with UV light, Cer(IV), or anisaldehyde solution for visualization. Melting points were measured on a Gallenkamp MPD 3504 melting-point apparatus. UV spectra were recorded on a PerkinElmer 25 UV/Vis spectrometer, shoulders are labelled with sh. Fluorescence spectra were measured on a Varian Cary Eclipse spectrophotometer. IR spectra were recorded on a Thermo Nicolet Avatar 360 FTIR spectrometer by using the attenuated total reflectance (ATR) technique. NMR spectra were recorded on Bruker DRX 500 and Avance III 600 spectrometers. Chemical shifts $\delta$ are reported in ppm with the solvent signal as an internal standard. The following abbreviations have been used: $s=$ singlet, $d=d o u b l e t, t=t r i p l e t, ~ q=q u a r t e t, ~ q u i n=q u i n t e t, ~ s p t=s e p t e t, ~$ $m=m u l t i p l e t, ~ a n d ~ b r=b r o a d$. El mass spectra were recorded by GC-MS coupling on an Agilent Technologies 6890 N GC system equipped with a 5973 mass-selective detector (electron impact=70 eV). ESI mass spectra were recorded on a Bruker Esquire LC with an ion-trap detector. Positive and negative ions were detected. High Resolution Mass Spectrometry (HRMS) was conducted on a Waters Xevo G2-XS QTOF equipped with a Waters Zspray ESI ionizer. Elemental analyses were measured on a EuroVector EuroEA3000 elemental analyzer. Weight portions are given in percent. High performance liquid chromatography (HPLC) was performed with an Agilent 1100 Series equipped with a Chiralpak IA column ( $250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$, particle size $5 \mu \mathrm{~m}$ ) and a flow rate of $0.6 \mathrm{~mL} / \mathrm{min}$ at $25^{\circ} \mathrm{C}$. The detection was performed with a diode array UV-Vis detector.



FeTPPCI $\quad R^{1}=R^{2}=H$
4a $\mathrm{FeTPPF}_{8} \mathrm{Cl} \mathrm{R}^{1}=\mathrm{F}, \mathrm{R}^{2}=\mathrm{H}$
4b FeTPPF ${ }_{20} \mathrm{Cl}^{1} \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{F}$
4c $\mathrm{FeTPPF}_{28} \mathrm{Cl} \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{F}$


5b $\left(\mathrm{FeTPPF}_{20}\right)_{2} \mathrm{O} \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{F}$
5c $\left(\mathrm{FeTPPF}_{28}\right)_{2} \mathrm{O} \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{F}$

## Synthesis of the Fluoro-Substituted Porphyrin Ligands

The following procedure for the synthesis of the $\beta$-fluoro-substituted porphyrins $\mathrm{H}_{2}$ TPPF $_{8}$ (3a) and $\mathrm{H}_{2}$ TPPF $_{28}$ (3c) represents a modified version of the synthesis of 3,4 -difluoropyrrole (2a) and subsequent porphyrin synthesis described by DiMagno et al. ${ }^{1,2}$


General Procedure I: a) 3,3,4,4-Tetrafluoropyrrolidinium chloride (1) (1.0 equiv) was given in a round-bottom Schlenk flask equipped with a magnetic stirring bar and dissolved in dry DMSO ( $0.1 \mathrm{~mL} / \mathrm{mg}$ 3,3,4,4tetrafluoropyrrolidinium chloride) at room temperature. The mixture was cooled to $15^{\circ} \mathrm{C}$ in a cold-water bath, then potassium tert-butoxide (4.0 equiv) was slowly added under an argon counter flow under constant stirring over a period of 5 minutes. The mixture was stirred for 30 minutes at room temperature, then cooled to $0^{\circ} \mathrm{C}$ and quenched by addition of ice water. Due to the reactivity and volatility of the 3,4-difluoro-1 H -pyrrole (2a), the work up and follow up reaction should be done in rapid succession to ensure reproducibility. After all solids were dissolved, the reaction mixture was neutralized by addition of aqueous $\mathrm{HCl}(1 \mathrm{M})$ and extracted six times with dichloromethane. The combined organic layers were washed four times with water and once with brine and dried over magnesium sulfate and diluted with dry dichloromethane until the concentration of the crude product was 0.01 m (assuming quantitative yield). The solution was filtered, transferred to a round-bottom Schlenk flask, equipped with a magnetic stirring bar, and then degassed in an argon stream for 15 minutes.
b) The corresponding benzaldehyde (1.1 equiv) and boron trifluoride diethyl etherate were added under vigorous stirring. The reaction mixture was stirred for the given time at room temperature under argon.
c) Pyridine and DDQ were added and the reaction mixture was stirred overnight at room temperature. The suspension was filtered through a short silica gel column and rinsed with dichloromethane until the eluent became colorless. The obtained crude product was further purified as described below to afford the porphyrins $\mathbf{3 a}$ and $\mathbf{c}$.


3a
General Procedure I: a) $\mathbf{1}(400 \mathrm{mg}, 2.23 \mathrm{mmol}, 1.0$ equiv), reaction time: 1 h. b) Benzaldehyde ( $248 \mu \mathrm{~L}, 2.45 \mathrm{mmol}$, 1.1 equiv), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\left(330 \mu \mathrm{~L}, 2.67 \mathrm{mmol}, 1.2\right.$ equiv), reaction time: 2 h . After addition of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, the reaction mixture turns from yellow to orange and then deep red. c) Pyridine ( $3.6 \mathrm{~mL}, 44.6 \mathrm{mmol}, 20$ equiv), DDQ ( 658 mg , $2.90 \mathrm{mmol}, 1.3$ equiv), stirring overnight (black solution and a precipitate was formed). The crude product was washed first three times with isohexane ( 7 mL ), then three times with ethanol ( 7 mL ), and crystallized from toluene/isohexane to provide $\mathrm{H}_{2} \mathrm{TPPF}_{8}(\mathbf{3 a})(232 \mathrm{mg}, 0.310 \mathrm{mmol}, 55 \%)$ as violet microcrystals. M.p. $>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=-4.16(\mathrm{~s}, 2 \mathrm{H}), 7.72(\mathrm{t}, J=7.5 \mathrm{~Hz}, 8 \mathrm{H}), 7.78(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 8.05(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 8 \mathrm{H})$ ppm; ${ }^{19}$ F NMR (CDCl3, 471 MHz ): $\delta=-146.21$ (br s, 4F), -141.23 ppm (br s, 4F); IR (ATR): $\tilde{v}=3329,3056,3021$, 2920, 2850, 2635, 2539, 2056, 2030, 2008, 1917, 1889, 1844, 1771, 1735, 1717, 1678, 1630, 1600, 1577, 1554, $1519,1458,1434,1351,1268,1224,1208,1167,1132,1087,1032,1002,987,906,847,772,722,741,700,681$, $640 \mathrm{~cm}^{-1}$; UV $/ \mathrm{Vis}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ : $\lambda_{\text {max }}=404,500,532,582,638 \mathrm{~nm}$; fluorescence $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ : $\lambda_{\text {ex }}=404 \mathrm{~nm}$; $\lambda_{\text {em }}=666 \mathrm{~nm}$; MS (ESI, +10 V ): $m / z=759.4[\mathrm{M}+\mathrm{H}]^{+}$, (ESI, -100 V ): m/z=757.0 [M-H]; HRMS (ESI): m/z calcd for $\mathrm{C}_{44} \mathrm{H}_{23} \mathrm{~F}_{8} \mathrm{~N}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 759.1789 ; found: 759.1805. The physical and spectroscopic data are in agreement with those reported in the literature. ${ }^{2}$

2,3,7,8,12,13,17,18-Octafluoro-5,10,15,20-tetrakis(pentafluorophenyl)porphyrin ( $\mathrm{H}_{2}$ TPPF $_{28}$ ) (3c)


General Procedure I: a) $\mathbf{1}$ ( $540 \mathrm{mg}, 3.00 \mathrm{mmol}, 1.0$ equiv), reaction time: 50 min . b) Pentafluorobenzaldehyde ( 650 $\mathrm{mg}, 3.30 \mathrm{mmol}, 1.1$ equiv), $\mathrm{BF}_{3} . \mathrm{OEt}_{2}\left(1.5 \mathrm{~mL}, 3.3 \mathrm{mmol}, 4.0\right.$ equiv), reaction time: 1 h . After addition of $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$, the reaction mixture turns from colorless to deep red over a period of several minutes. c) Pyridine ( $4.0 \mathrm{~mL}, 49.6$ mmol, 16.5 equiv), DDQ ( $690 \mathrm{mg}, 3.04 \mathrm{mmol}, 1.0$ equiv), stirring overnight (black solution and a precipitate was formed), reaction time: 18 h . The reaction mixture was filtered through a pad of silica gel and eluted with
$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (95:5). The deep purple solution was concentrated under reduced pressure and purified by column chromatography on silica gel with pure pentane as eluent. The first fraction (deep yellow/orange on the column and in diluted solution) afforded $\mathrm{H}_{2}$ TPPF $_{28}$ ( $\mathbf{3 c}$ ) ( $179 \mathrm{mg}, 0.160 \mathrm{mmol}, 21 \%$ ) as dark red/violet crystals after removing the solvent in vacuo. Sometimes, the product was contaminated with a green by-product. In this case, the solid product was washed with cold pentane ( $3 \times 1.0 \mathrm{~mL}$ ) until the supernatant turns from deep green to pale yellow affords pure $\mathbf{3 c}$. The product must be dried with care due to its tendency to sublime slowly under reduced pressure. M.p. $>300{ }^{\circ} \mathrm{C}$; ${ }^{1 \mathrm{H}}$ NMR ( $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$ ): $\left.\delta=-4.23 \mathrm{ppm}(\mathrm{s}, 2 \mathrm{H}) ;{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(CDCl} 3,471 \mathrm{MHz}, 240 \mathrm{~K}\right): \delta=-160.77(\mathrm{t}$, $J=18.8 \mathrm{~Hz}, 8 \mathrm{~F}),-149.31(\mathrm{t}, \mathrm{J}=20.9 \mathrm{~Hz}, 4 \mathrm{~F}),-147.73$ ( $\mathrm{s}, 4 \mathrm{~F}$ ), -142.72 ( $\mathrm{s}, 4 \mathrm{~F}),-138.24 \mathrm{ppm}(\mathrm{m}, 8 \mathrm{~F})$; IR (ATR): $\tilde{v}=3329,2921,2852,2644,1735,1698,1650,1623,1558,1527,1498,1473,1457,1427,1350,1273,1166,1130$, 1077, 1045, 1030, 984, 964, 943, 790, 754, 720, 676, 649, $624 \mathrm{~cm}^{-1}$; UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ : $\lambda_{\max }=392,493,578 \mathrm{~nm}$; fluorescence $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ : $\lambda_{\text {ex }}=392 \mathrm{~nm}$; $\lambda_{\text {em }}=642,703 \mathrm{~nm}$; MS (ESI, +100 V ): m/z=1119.2 [M+H]+, (ESI, -10 V ): $\mathrm{m} / \mathrm{z}=1117.1[\mathrm{M}-\mathrm{H}]^{-} ; \mathrm{HRMS}$ (ESI): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{44} \mathrm{H}_{3} \mathrm{~F}_{28} \mathrm{~N}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 1118.9905$; found: 1118.9904. The physical and spectroscopic data are in agreement with those in the literature. ${ }^{2}$

5,10,15,20-Tetrakis(pentafluorophenyl)porphyrin ( $\mathrm{H}_{2}$ TPPF $_{20}$ ) (3b)


Conditions: This synthesis follows a literature procedure. ${ }^{3}$ a) 1 H -Pyrrole (2b) ( $268 \mathrm{mg}, 4.0 \mathrm{mmol}, 1.0$ equiv) and pentafluorobenzaldehyde ( $490 \mu \mathrm{~L}, 4.0 \mathrm{mmol}, 1.0$ equiv) were dissolved in dichloromethane ( 80 mL ) in a roundbottom flask equipped with a magnetic stirring bar. Boron trifluoride diethyl etherate ( $100 \mu \mathrm{~L}, 0.8 \mathrm{mmol}, 0.2$ equiv) was added slowly. The reaction mixture was stirred at room temperature overnight (during the course of the reaction, the colorless solution changes to deep red). b) Then, pyridine ( $320 \mu \mathrm{~L}, 4.0 \mathrm{mmol}, 1.0$ equiv) and DDQ ( 908 mg , $4.0 \mathrm{mmol}, 1.0$ equiv) were added, and the solution was heated under reflux for 2 h . The reaction mixture was then filtered through a short silica gel column and rinsed with dichloromethane until the eluent became colorless. The solvent was removed in vacuo and the residue was adsorbed on silica gel. The crude product was then purified by column chromatography on silica gel with isohexane/dichloromethane (3:2). After removing the solvent in vacuo, the first fraction afforded $\mathrm{H}_{2}$ TPPF $_{20}$ ( $\mathbf{3 b}$ ) ( $279 \mathrm{mg}, 0.310 \mathrm{mmol}, 31 \%$ ) as dark red/violet crystals. M.p. $>300{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$
 $7.7 \mathrm{~Hz}, 8 \mathrm{~F}),-151.83$ (t, J=21.4 Hz, 4F), -137.13 ppm(dd, J=23.2, 7.7 Hz, 8F); IR (ATR): $\tilde{v}=3318,3100,2919,2717$, 2625, 2539, 1676, 1648, 1558, 1539, 1498, 1482, 1435, 1400, 1342, 1323, 1262, 1246, 1147, 1078, 1044, 984, 917, $831,806,770,754,723,698,636 \mathrm{~cm}^{-1}$; UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ : $\lambda_{\max }=413,506,582 \mathrm{~nm}$; fluorescence $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ : $\lambda_{\mathrm{ex}}=392 \mathrm{~nm} ; \lambda_{\mathrm{em}}=640,706 \mathrm{~nm} ;$ MS (ESI, +10 V): m/z=975.3 [M+H]+; MS (ESI, -50 V): m/z=973.2 [M-H]-. HRMS
(ESI): $m / z$ calcd for $\mathrm{C}_{44} \mathrm{H}_{11} \mathrm{~F}_{20} \mathrm{~N}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 975.0659$; found: 975.0670 . The physical and spectroscopic data are in agreement with those reported in the literature. ${ }^{3}$

## Synthesis of the Chloro- and $\mu$-Oxo-porphyrin-Iron Complexes



General Procedure II: a) The porphyrins 3a-c were placed in a sealed tube equipped with a magnetic stirring bar and suspended in acetonitrile ( $c=10 \mathrm{mg} / \mathrm{mL}$ ). Then, iron(II) chloride ( 10 equiv) was added and the reaction mixture was stirred for 1.5 h at room temperature under air. Subsequently, the reaction mixture was heated to $120^{\circ} \mathrm{C}$ and the suspension turned to a dark but clear solution. After 30 minutes, the mixture was cooled to room temperature. Then, additional iron(II) chloride (10 equiv) was added at room temperature. After 1.5 h , the solution was again heated to $120^{\circ} \mathrm{C}$ for 30 minutes. After cooling to room temperature, the solution was diluted with dichloromethane and washed three times with 1 M aqueous HCl . The organic layer was dried over magnesium sulfate and the solvent was removed in vacuo. The crude products were purified by washing to provide the chloro-porphyrin-iron complexes 4a-c.
b) The chloro-porphyrin-iron complexes 4a-c were eluted through an activated alumina pad with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (95:5) under ambient air until the eluent became colorless. The solvent was removed in vacuo to afford the $\mu$-oxo-porphyrin-iron complexes 5b-c.
(2,3,7,8,12,13,17,18-Octafluorotetraphenylporphyrinato)iron(III) chloride (FeTPPF ${ }_{8} \mathrm{CI}$ ) ( $\mathbf{4 a}$ )

$4 a$
General Procedure II: a) $\mathrm{H}_{2} \mathrm{TPPF}_{8}(\mathbf{3 a})(50.0 \mathrm{mg}, 66 \mu \mathrm{~mol}, 1.0$ equiv). Workup: the crude product was washed three times with cold acetone. Yield: $59 \%(33.2 \mathrm{mg}, 39.0 \mu \mathrm{~mol})$ FeTPPF ${ }_{8} \mathrm{Cl}(\mathbf{4 a})$, green solid. M.p. $>300{ }^{\circ} \mathrm{C}$; IR (ATR) $\tilde{v}=3068,3023,2162,1991,1914,1871,1717,1658,1474,1442,1376,1334,1233,1183,1155,1075,1009,909$,

873, $790,753,698,666,621 \mathrm{~cm}^{-1}$; UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }=396 \mathrm{~nm}$; MS (ESI, +50 V ): $\mathrm{m} / \mathrm{z}=812.2[\mathrm{M}-\mathrm{Cl}]^{+}$; elemental analysis calcd (\%) for $\mathrm{C}_{44} \mathrm{H}_{20} \mathrm{ClF}_{8} \mathrm{FeN}_{4}$ : C 62.32, H 2.38, N 6.61; found: C 62.52, H 2.47, N 6.55.
$\left[5,10,15,20-\right.$ Tetrakis(pentafluorophenyl)porphyrinato]iron(III) chloride $\left(\mathrm{FeTPPF}_{20} \mathrm{CI}\right)(\mathbf{4 b})$


4b

General Procedure II: a) $\mathrm{H}_{2} \mathrm{TPPF}_{20}(\mathbf{3 b})(50.1 \mathrm{mg}, 51 \mu \mathrm{~mol}, 1.0$ equiv). Workup: the crude product was washed three times with isohexane. Yield: $96 \%$ ( $52.1 \mathrm{mg}, 49 \mu \mathrm{~mol}$ ) FeTPPF ${ }_{20} \mathrm{Cl}(4 \mathrm{~b})$, deep green powder. M.p. $>300^{\circ} \mathrm{C}$; IR (ATR) $\tilde{v}=2021,1649,1623,1558,1512,1483,1459,1421,1363,1336,1209,1161,1082,1052,985,936,837$, $806,758,725,706 \mathrm{~cm}^{-1}$; UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ : $\lambda_{\max }=351,410,503,630 \mathrm{~nm}$; MS (ESI, +50 V ): m/z=1028.4[M-CI]+;MS (ESI, -25 V): $m / z=1146.2[\mathrm{M}+2 \mathrm{OAc}]^{-}$; elemental analysis calcd (\%) for $\mathrm{C}_{44} \mathrm{H}_{8} \mathrm{ClF}_{20} \mathrm{FeN} \mathrm{N}_{4}$ : C 49.68, H 0.76, N 5.27; found: C 49.35, H 0.50, N 5.55 .
[2,3,7,8,12,13,17,18-Octafluoro-5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato]iron(III) chloride $\left(\mathrm{FeTPPF}_{28} \mathrm{CI}\right)(\mathbf{4 c})$


General Procedure II: a) $\mathrm{H}_{2}$ TPPF $_{28}$ (3c) $(50.2 \mathrm{mg}, 45 \mu \mathrm{~mol}, 1.0$ equiv). Work-up: the crude product was washed three times with isohexane. Yield: $92 \%(49.7 \mathrm{mg}, 45 \mu \mathrm{~mol})$ FeTPPF ${ }_{28} \mathrm{Cl}(4 \mathrm{c})$, deep green powder. M.p. $>300^{\circ} \mathrm{C}$; IR (ATR) $\tilde{v}=2130,2056,2026,1842,1735,1673,1653,1557,1499,1477,1434,1386,1335,1179,1146,1052$, 986, 964, 803, 730, 679, $635 \mathrm{~cm}^{-1}$; UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }=365,403,496,618 \mathrm{~nm} ; \mathrm{MS}(E S I,+25 \mathrm{~V}): \mathrm{m} / \mathrm{z}=1172.1$ [ $\mathrm{M}-\mathrm{Cl}]^{+}$; MS (ESI, -25 V ): $m / z=1289.5[\mathrm{M}+2 \mathrm{OAc}]^{-}$; $\mathrm{MS}(E S I,-100 \mathrm{~V}): m / z=1230.6[\mathrm{M}+\mathrm{OAc}]^{-}$; elemental analysis calcd (\%) for $\mathrm{C}_{44} \mathrm{CIF}_{28} \mathrm{FeN}_{4}$ : C 43.76, N 4.64 ; found: C 43.40, N 4.78.
$\mu$-Oxo-bis $\left\{\left[5,10,15,20\right.\right.$-tetrakis(pentafluorophenyl)porphyrinato]iron(III)\} $\left(\text { FeTPPF }_{20}\right)_{2} \mathrm{O}$ (5b)


5b

General Procedure II: a) $\mathrm{H}_{2}$ TPPF $_{28}$ ( $\mathbf{3 b}$ ) $(50.0 \mathrm{mg}, 51 \mu \mathrm{~mol}, 1.0$ equiv). b) The crude product $\mathbf{4 b}$ from step a) was eluted through alumina. The color of the solution changes from deep green (chloro-porphyrin-iron complex) to deep red. The column was rinsed with dichloromethane $/ \mathrm{MeOH}$ (95:5) until the eluent became colorless. Yield: $98 \%$ ( $51.8 \mathrm{mg}, 50 \mu \mathrm{~mol})\left(\mathrm{FeTPPF}_{20}\right)_{2} \mathrm{O}(5 b)$, deep red crystals. $R_{\mathrm{f}}=0.85\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right)$; M.p. $>300^{\circ} \mathrm{C}$; IR (ATR) $\tilde{v}=3636,2807,1976,1648,1558,1538,1483,1421,1378,1335,1208,1160,1080,1048,984,935,837,804,758$, $705 \mathrm{~cm}^{-1}$; UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ : $\lambda_{\max }=351,410,502,630 \mathrm{~nm} ; \mathrm{MS}(E S I,+50 \mathrm{~V}): m / z=1028.4[0.5(\mathrm{M}-\mathrm{O})]^{+} ; \mathrm{MS}(E S I,-100$ $\mathrm{V}): m / z=1187.0$ [0.5(M-O)+OAc] $]^{-}$; elemental analysis calcd (\%) for $\mathrm{C}_{88} \mathrm{H}_{16} \mathrm{~F}_{40} \mathrm{Fe}_{2} \mathrm{~N}_{8} \mathrm{O}: \mathrm{C} 50.99, \mathrm{H} 0.78$, N 5.41 ; found: C 50.73, H 0.87, N 5.62 .
$\mu$-Oxo-bis $\{[2,3,7,8,12,13,17,18$-octafluoro-5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato]iron(III)]\} $\left(\mathrm{FeTPPF}_{28}\right)_{2} \mathrm{O}(5 \mathbf{c})$


General Procedure II: a) $\mathrm{H}_{2}$ TPPF $_{28}$ ( $\mathbf{3 c}$ ) ( $175 \mathrm{mg}, 156 \mu \mathrm{~mol}, 1.0$ equiv). b) The crude product $\mathbf{4 c}$ from step a) was eluted through alumina. The color of the solution changes from deep green to deep red. The column was rinsed with dichloromethane $/ \mathrm{MeOH}$ (95:5) until the eluent became colorless. Yield: $>99 \%$ ( $184.6 \mathrm{mg}, 78 \mu \mathrm{~mol}$ ) (FeTPPF $\left.{ }_{28}\right)_{2} \mathrm{O}(5 \mathbf{c})$, deep red crystals. $R_{\mathrm{f}}=0.9\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right)$; M.p. $>300^{\circ} \mathrm{C}$; IR (ATR) $\tilde{\mathrm{v}}=2056,2029,2008$, $1845,1772,1735,1717,1698,1677,1654,1622,1556,1498,1477,1432,1381,1336,1260,1179,1050,988$, 963, 851, 803, 731, 678, $634 \mathrm{~cm}^{-1}$; UV/Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }=367,497,550,618 \mathrm{~nm} ; \mathrm{MS}(E S I,+75 \mathrm{~V}): m / z=1172.1$ [0.5((M-O)] ${ }^{+}$; MS (ESI, -100 V): m/z=1230.6 [0.5(M-O)+OAc] ${ }^{-}$; elemental analysis calcd (\%) for $\mathrm{C}_{88} \mathrm{~F}_{56} \mathrm{Fe}_{2} \mathrm{~N}_{8} \mathrm{O}: \mathrm{C}$ 44.77, N 4.75; found: C 45.04, N 4.67.

Crystallographic data for $\mu$-Oxo-bis $\{[2,3,7,8,12,13,17,18$-octafluoro-5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato]iron(III)]\} (FeTPPF $\left.{ }_{28}\right)_{2} \mathrm{O}$ (5c):

Crystallization of $\mathbf{5 c}$ from dichloromethane afforded single crystals suitable for X-ray analysis.
$\mathrm{C}_{88} \mathrm{~F}_{56} \mathrm{Fe}_{2} \mathrm{~N}_{8} \mathrm{O}_{1}+2 \mathrm{H}_{2} \mathrm{O}, M=2396.69 \mathrm{~g} \mathrm{~mol}^{-1}$, crystal size: $0.255 \times 0.274 \times 0.291 \mathrm{~mm}$, tetragonal, space group P4/ncc, $a=29.489(7), b=29.489, c=20.678(5) \AA, V=17982$ (10) $\AA^{3}, Z=8, \rho_{\text {calcd }}=1.771 \mathrm{~g} / \mathrm{cm}^{3}$, $\mu=0.495 \mathrm{~mm}^{-1}, \lambda=0.71073 \AA, T=150(2) \mathrm{K}, \theta$ range: $2.09-26.50^{\circ}$, reflections collected: 116202 , independent: 9318 ( $R_{\text {int }}=0.0590$ ), 716 parameters. The structure was solved by direct methods and refined by full-matrix leastsquares on $F^{2}$; final $R$ indices $[/>2 \sigma(\Lambda)]: R_{1}=0.0461$, w $R_{2}=0.1568$; maximal residual electron density: $0.835 \mathrm{e}^{-3}{ }^{-3}$; CCDC 2209883 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

## UV-Vis Spectra of the Porphyrin-Iron Complexes and of the Reaction Mixture of the Oxidative Coupling

All spectra were recorded in a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Fig. S1). The reaction mixture was prepared using $50 \mathrm{~mol} \%$ (FeTPPF $_{28)_{2} \mathrm{O}}(5 \mathrm{c})(2.38 \mathrm{mg}, 1.00 \mu \mathrm{~mol}), 1.0 \mathrm{eq}$. TfOH ( $300 \mu \mathrm{~g}, 2.00 \mu \mathrm{~mol}$ ), and 1.0 eq . $N$-phenyl-2-naphthylamine $(430 \mu \mathrm{~g}, 2.00 \mu \mathrm{~mol})$. The relative intensity of the spectra was set to 1.0 (Soret peak).







Fig. S1 UV-Vis spectra of different iron species proposed for the oxidative coupling reaction (overlayed and single spectra, 230-1000 nm).

## Substrate Synthesis

The diarylamines 10a-d were prepared according to our previous report. ${ }^{4}$

3-Hydroxy-1,2-dimethyl-9H-carbazole (13c) (sorazolon E) was published by us previously as an intermediate for the synthesis of 4-deoxycarbazomycin B. ${ }^{5,6}$

9-Methyl-9H-carbazole (15a) was synthesized according to a literature procedure. ${ }^{7}$

9-Benzyl-9H-carbazole (15b)


15b
Sodium hydride ( $96 \mathrm{mg}, 60 \mathrm{wt} \%$ in mineral oil, 2.4 mmol ) was given in a round-bottom flask equipped with a magnetic stirring bar and then dry DMF ( 5 mL ) was added. A solution of 9 H -carbazole ( $334 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.0$ equiv) in DMF ( 5 mL ) was added slowly to the suspension at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 15 min at $0^{\circ} \mathrm{C}$. Then, benzyl bromide ( $411 \mathrm{mg}, 2.40 \mathrm{mmol}$ ) was added slowly at $0^{\circ} \mathrm{C}$, and the yellow solution became colorless. After 1 h , water ( 15 mL ) was added to the reaction mixture. The product precipitated as a colorless microcrystalline powder, which was filtrated and washed thoroughly with water and cold ethanol. 15b: Colorless powder, $496 \mathrm{mg}(1.93 \mathrm{mmol}, 96 \%)$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.53(\mathrm{~s}, 2 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.21-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{ddd}, J=8.1,7.1,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.14(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR and DEPT ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=46.81\left(\mathrm{CH}_{2}\right), 109.13(2 \mathrm{CH}), 119.44(2 \mathrm{CH}), 120.63(2 \mathrm{CH}), 123.26(2 \mathrm{C}), 126.08(2 \mathrm{CH})$, $126.65(\mathrm{CH}), 127.68(2 \mathrm{CH}), 129.01(2 \mathrm{CH}), 137.42(\mathrm{C}), 140.91(2 \mathrm{C}) ; \mathrm{MS}(\mathrm{EI}): m / z(\%)=257\left(32, \mathrm{M}^{+}\right), 180(5), 166$ (15), 152 (4), 140 (12), 91 (100), 65 (13).

## Oxidative C-C Coupling of Diarylamines



General Procedure III: The diarylamine 6 or 10 ( 1.0 equiv), iron catalyst ( $3.0 \mathrm{~mol} \%$ chloro- or $1.5 \mathrm{~mol} \% ~ \mu$-oxo complex), and the additive ( $20 \mathrm{~mol} \%$ ) were placed in a round-bottom flask equipped with a magnetic stirring bar and dissolved in dichloromethane ( $\mathrm{c} \sim 50 \mathrm{mM}$ ). To minimize solvent loss by evaporation a splash head was placed on top of the flask and the reaction mixture was stirred vigorously at room temperature under ambient air. After completion of the reaction (TLC analysis), triethylamine (about 10 equiv) was added. The reaction mixture was filtered through a short pad of silica with dichloromethane as eluent. The solvent was removed in vacuo, and the residue was adsorbed on silica gel. The crude product was purified by column chromatography on silica gel.
$N^{2}, N^{2}$-diphenyl-(1,1'-binaphthalene)-2,2'-diamine (7) and $\quad N^{2}$-phenyl- $N^{2}$-[4-(2-(phenylamino)naphthalen-1-yl]phenyl)-(1,1'-binaphthalene)-2,2'-diamine (9)


7


9

Method 1 (General Procedure III, Lewis acid additive): $N$-Phenylnaphthalen-2-amine (6) ( $21.7 \mathrm{mg}, 99.0 \mu \mathrm{~mol}$ ), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(10.3 \mathrm{mg}, 20.0 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%)$, ( $\left.\mathrm{FeTPPF}_{28}\right)_{2} \mathrm{O}(5 \mathrm{c})(3.6 \mathrm{mg}, 1.5 \mu \mathrm{~mol}, 1.5 \mathrm{~mol} \%)$, reaction time: 18 h. Column chromatography: isohexane/dichloromethane (3:1). 7, yield: $80 \%$ ( $17.9 \mathrm{mg}, 41.0 \mu \mathrm{~mol}$ ); $7 \%$ of 6 were reisolated.
Method 2 (General Procedure III, Brønsted acid additive): 6 ( $21.8 \mathrm{mg}, 99.0 \mu \mathrm{~mol}$ ), $\mathrm{TfOH}(3.1 \mathrm{mg}, 21 \mu \mathrm{~mol}, 21$ mol\%), ( FeTPPF $_{28)_{2} \mathrm{O}}$ (5c) ( $3.5 \mathrm{mg}, 1.5 \mu \mathrm{~mol}, 1.5 \mathrm{~mol} \%$ ), reaction time: 48 h . Column chromatography: isohexane/dichloromethane (3:1). 7, yield: $78 \%(18.5 \mathrm{mg}, 42 \mu \mathrm{~mol}) ; 9$, yield: $9 \%$ ( $2.1 \mathrm{mg}, 3.0 \mu \mathrm{~mol}$ ).
Method 3 (water-free conditions): $6\left(21.7 \mathrm{mg}, 99 \mu \mathrm{~mol}, 1.0 \text { equiv), ( } \mathrm{FeTPPF}_{28}\right)_{2} \mathrm{O}$ ( $\mathbf{5 c}$ ) ( $3.6 \mathrm{mg}, 1.5 \mu \mathrm{~mol}, 1.5$ mol\%) were placed in a Schlenk flask equipped with a magnetic stir bar and a septum. The flask was evacuated and filled with dry air (compressed air dried with calcium chloride), in three repeated cycles. The starting materials were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$, then $\mathrm{BF}_{3}$. $\mathrm{OEt} 2(2.5 \mu \mathrm{~L}, 0.02 \mathrm{mmol}, 0.2$ equiv) was added. The reaction mixture was stirred vigorously for 5 h . Column chromatography: isohexane/dichloromethane (3:1). 7, yield: 84\% ( $17.9 \mathrm{mg}, 41 \mu \mathrm{~mol}$ ).
7: Colorless solid; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$ acetone): $\delta=6.46$ (br s, 2H), 6.86 (t, J=7.4, 2H), 7.04-7.09 (m, 6H), 7.137.17 (m, 4H), 7.20 (ddd, J=8.3, 6.9, 1.4 Hz, 2H), 7.28 (ddd, J=8.0, 6.9, $1.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.68 (dd, J=9.0, $3.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.88 (d, J=8.0 Hz, 2H), $7.93 \mathrm{ppm}(\mathrm{d}, \mathrm{J}=9.1 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR und DEPT (151 MHz, [D $\mathrm{D}_{6}$ ]acetone): $\delta=118.35$ (C), 118.39 (C) $119.45(\mathrm{CH}), 119.47(\mathrm{CH}), 120.18(2 \mathrm{CH}), 120.24(2 \mathrm{CH}), 122.20(2 \mathrm{CH}), 124.06(2 \mathrm{CH}), 125.26(2 \mathrm{CH})$, $127.41(2 \mathrm{CH}), 129.09(2 \mathrm{CH}), 129.85(4 \mathrm{CH}), 129.94(2 \mathrm{CH}), 130.57(2 \mathrm{C}), 135.22(2 \mathrm{C}), 141.58(\mathrm{C}), 141.67(\mathrm{C})$, 144.15 (C), $144.24 \mathrm{ppm}(\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$ ): $\delta=6.69(\mathrm{~s}, 2 \mathrm{NH}), 6.79$ (tt, J=11.0, $1.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 6.97 (d, J=9.1 Hz, 2H), 6.98-7.01 (m, 4H), 7.10-7.15 (m, 4H), 7.18 (ddd, J=8.4, 6.9, 1.4 Hz, 2H), 7.27 (ddd, J=8.1, 6.9,
$1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR und DEPT ( 151 MHz , [D6]DMSO): $\delta=118.29$ (4CH), 118.87 (2C), 119.48 (2CH), $120.43(2 \mathrm{CH}), 123.14$ (2CH), 124.20 (2CH), 126.32 $(2 \mathrm{CH}), 128.05(2 \mathrm{CH}), 128.77(2 \mathrm{CH}), 128.84(4 \mathrm{CH}), 129.36(2 \mathrm{C}), 133.77(2 \mathrm{C}), 140.23(2 \mathrm{C}), 143.50 \mathrm{ppm}(2 \mathrm{C})$; MS (ESI, +10 V ): $m / z=437.0[\mathrm{M}+\mathrm{H}]^{+}$.
9: Colorless solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta(\mathrm{ppm})=5.66(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 6.89-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.02(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.22-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.32$ (m, 2H), 7.32-7.39 (m, 3H), 7.57 (d, J=9.0 Hz, 1H), 7.71 (d, J=9.0 Hz, 1H), 7.74 (d, J=8.7 Hz, 1H), 7.75-7.79 (m, $1 \mathrm{H}), 7.85(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=8.1,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR und DEPT ( $\mathrm{CDCl}_{3}, 151 \mathrm{MHz}$ ): $\delta(\mathrm{ppm})=116.54(\mathrm{C}), 117.17(\mathrm{C}), 118.08(\mathrm{CH}), 118.27(\mathrm{CH}), 118.70(2 \mathrm{CH}), 118.77$ $(\mathrm{CH}), 119.50(\mathrm{CH}), 119.79(2 \mathrm{CH}), 119.82(\mathrm{CH}), 121.46(\mathrm{CH}), 122.22(2 \mathrm{CH}), 123.28(\mathrm{CH}), 123.57(\mathrm{CH}), 123.75$ $(\mathrm{CH}), 124.57(\mathrm{CH}), 124.65(\mathrm{CH}), 124.90(\mathrm{C}), 125.05(\mathrm{CH}), 126.23(\mathrm{CH}), 127.11(\mathrm{CH}), 127.15(\mathrm{CH}), 127.93(\mathrm{CH})$, $128.13(\mathrm{CH}), 128.29(2 \mathrm{CH}), 129.29(\mathrm{C}), 129.30(2 \mathrm{CH}), 129.31(2 \mathrm{CH}), 129.41(\mathrm{C}), 129.52(2 \mathrm{CH}), 129.70(\mathrm{C}), 131.82$ (2CH), 134.01 (C), 134.03 (C), 134.05 (C), 138.18 (C), 139.75 (C), 140.33 (C), 142.28 (C), 142.58 (C), 143.51 (C); MS (ESI, +10 V ): m/z=654.4 [M+H]+; MS (ESI, -25 V ): m/z=652.1[M-H] .

5,5'-Dimethyl- $N^{2}, N^{2}$-diphenyl-4,4'-bis[(triisopropylsilyl)oxy]-(1,1'-biphenyl)-2,2'-diamine (11a)


General Procedure III: $35.9 \mathrm{mg}(101 \mu \mathrm{~mol})$ 10a, additive: $2.8 \mathrm{mg}(20 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%) \mathrm{BF}_{3}$.OEt $2,3.5 \mathrm{mg}(1.5 \mu \mathrm{~mol}$, $1.5 \mathrm{~mol} \%)_{( }\left(\text {FeTPPF }_{28}\right)_{2} \mathrm{O}(\mathbf{5 c})$, reaction time: 24 h . Column chromatography: isohexane/EtOAc (5:1). Colorless solid; 11a, yield: $70 \%(24.9 \mathrm{mg}, 35 \mu \mathrm{~mol})$; $8 \%$ of starting material 10a ( $2.9 \mathrm{mg}, 8 \mu \mathrm{~mol}$ ) were reisolated. $11 \mathrm{a}:{ }^{1} \mathrm{H}$
 $2 \mathrm{H}), 6.82-6.90(\mathrm{~m}, 6 \mathrm{H}), 6.97(\mathrm{~s}, 2 \mathrm{H}), 7.13-7.19 \mathrm{ppm}(\mathrm{m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR and DEPT ( $125 \mathrm{MHz}, \mathrm{CDCl} 3$ ): $\delta=12.91$ $(6 \mathrm{CH}), 16.26\left(2 \mathrm{CH}_{3}\right), 18.02\left(12 \mathrm{CH}_{3}\right), 106.84(2 \mathrm{CH}), 118.23(4 \mathrm{CH}), 120.44(2 \mathrm{C}), 120.84(2 \mathrm{CH}), 121.27(2 \mathrm{C}), 129.12$ (4CH), $133.78(2 \mathrm{CH}), 139.75(2 \mathrm{C}), 143.28(2 \mathrm{C}), 154.12 \mathrm{ppm}(2 \mathrm{C}) ; \mathrm{MS}(\mathrm{ESI},+10 \mathrm{~V}): m / z=710.0[\mathrm{M}+\mathrm{H}]^{+}$.
\{[5,5'-Dimethyl-4,4'-bis[(triisopropylsilyl)oxy]-(1,1'-biphenyl)-2,2'-diyl]bis(azanediyl)\}bis(3,1-phenylene) bis(2,2dimethylpropanoate) (11b)


General Procedure III: $32.3 \mathrm{mg}(71 \mu \mathrm{~mol})$ 10b, additive: $2.0 \mathrm{mg}(14 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%) \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, 2.5 \mathrm{mg}(1.1 \mu \mathrm{~mol}$, $1.5 \mathrm{~mol} \%)\left(\mathrm{FeTPPF}_{28}\right)_{2} \mathrm{O}(5 \mathrm{c})$, reaction time: 20 h . Column chromatography: isohexane/EtOAc (30:1). Yellow oil; 11b, yield: $75 \%$ ( $24.4 \mathrm{mg}, 29 \mu \mathrm{~mol}$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.10$ (d, J=7.3 Hz, 36H), 1.20-1.29 (m, 6H), $1.32(\mathrm{~s}, 18 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}), 5.55(\mathrm{~s}, 2 \mathrm{H}), 6.53(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.67$ (dd, J=8.1, 1.7 $\mathrm{Hz}, 2 \mathrm{H}), 6.79(\mathrm{~s}, 2 \mathrm{H}), 6.96(\mathrm{~s}, 2 \mathrm{H}), 7.13 \mathrm{ppm}(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR and DEPT ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=13.07$ $(6 \mathrm{CH}), 16.48\left(2 \mathrm{CH}_{3}\right), 18.22\left(12 \mathrm{CH}_{3}\right), 27.30\left(6 \mathrm{CH}_{3}\right), 39.13(2 \mathrm{C}), 107.60(2 \mathrm{CH}), 110.28(2 \mathrm{CH}), 113.68(2 \mathrm{CH}), 115.07$ $(2 \mathrm{CH}), 120.92(2 \mathrm{C}), 122.20(2 \mathrm{C}), 129.90(2 \mathrm{CH}), 133.94(2 \mathrm{CH}), 139.01(2 \mathrm{C}), 144.73(2 \mathrm{C}), 152.21(2 \mathrm{C}), 154.36$ (2C), $176.92 \mathrm{ppm}(2 \mathrm{C}=\mathrm{O})$; $\mathrm{MS}(\mathrm{ESI},+10 \mathrm{~V}): m / z=909.9[\mathrm{M}+\mathrm{H}]^{+}$.
\{[5,5'-Dimethyl-4,4'-bis[(triisopropylsilyl)oxy]-(1,1'-biphenyl)-2,2'-diyl]bis(azanediyl)\}bis(4,1-phenylene) bis(2,2dimethylpropanoate) (11c)


General Procedure III: $32.0 \mathrm{mg}(70 \mu \mathrm{~mol})$ 10c, additive: $2.1 \mathrm{mg}(15 \mu \mathrm{~mol}, 21 \mathrm{~mol} \%) \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, 2.7 \mathrm{mg}(1.1 \mu \mathrm{~mol}$, $1.6 \mathrm{~mol} \%)\left(\mathrm{FeTPPF}_{28}\right)_{2} \mathrm{O}(\mathbf{5 c})$, reaction time: 22 h . Column chromatography: isohexane/EtOAc (30:1). Colorless foam; 11c, yield: 78\% (24.9 mg, $27 \mu \mathrm{~mol}) .{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.09(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 36 \mathrm{H})$, 1.18-1.29 (m, $6 \mathrm{H}), 1.34(\mathrm{~s}, 18 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}), 6.76(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{~s}, 8 \mathrm{H}), 6.97 \mathrm{ppm}(\mathrm{s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR and DEPT ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=13.07(6 \mathrm{CH}), 16.45\left(2 \mathrm{CH}_{3}\right), 18.18\left(12 \mathrm{CH}_{3}\right), 27.31\left(6 \mathrm{CH}_{3}\right), 39.13(2 \mathrm{C}), 107.50(2 \mathrm{CH}), 119.41(4 \mathrm{CH}), 120.57$ (2C), 122.23 (4CH), 133.96 (2CH), 139.59 (2C), 140.59 (2C), 145.56 (2C), 154.50 (4C), $177.32 \mathrm{ppm}(2 \mathrm{C}=\mathrm{O})$; MS (ESI, +10 V ): $m / z=909.9[\mathrm{M}+\mathrm{H}]^{+},(E S I,-50 \mathrm{~V}): m / z=907.4[\mathrm{M}-\mathrm{H}]^{-}$.

Table S1 Variation of Catalyst and Additive for the Oxidative C-C Coupling of Diarylamines ${ }^{\text {a }}$


| Entry | Diarylamine | [Fe] (mol\%) | Additive (mol\%) | time [h] | Yield 11 [\%] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 14 | 10a | $\mathrm{FePcF}_{16}$ (3.0) | MsOH (10) | 0.2 | 57 |
| $2^{\text {b }}$ | 10a | $\left(\mathrm{FeTPPF}_{28}\right)_{2} \mathrm{O}(1.5)$ | TfOH (20) | 48 | 52 |
| $3^{\text {c }}$ | 10a | $\left(\mathrm{FeTPPF}_{28}\right)_{2} \mathrm{O}(1.5)$ | $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(20)$ | 24 | 70 |
| $4{ }^{4}$ | 10b | FePcF16 (3.0) | MsOH (10) | 1.5 | 65 |
| $5^{\text {d }}$ | 10b | $\left(\mathrm{FeTPPF}_{28}\right)_{2} \mathrm{O}(1.5)$ | TfOH (20) | 48 | 55 |
| 6 | 10b | $\left(\mathrm{FeTPPF}_{28}\right)_{2} \mathrm{O}(1.5)$ | $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(20)$ | 20 | 76 |
| 74 | 10c | $\mathrm{FePcF}_{16}$ (3.0) | MsOH (10) | 0.5 | 73 |
| 8 | 10c | $\left(\mathrm{FeTPPF}_{28}\right)_{2} \mathrm{O}(1.5)$ | $\mathrm{TfOH}(20)$ | 48 | 63 |
| 9 | 10c | $\left(\mathrm{FeTPPF}_{28}\right)_{2} \mathrm{O}(1.5)$ | $\mathrm{BF}_{3} \cdot \mathrm{OEt} 2$ (20) | 22 | 78 |

${ }^{\text {a }}$ Reaction conditions: $10(0.1 \mathrm{mmol})$, solvent ( 2 mL ), additive, air, room temperature; all yields refer to isolated products. ${ }^{\text {b }}$ Reisolated 10a: 12\%. c Reisolated 10a: 8\%. d Reisolated 10b: 36\%. e Reisolated 10c: 23\%. ${ }^{4}$ Reference 4 (see page 29). Pc = phthalocyanine, TPP = tetraphenylporphyrin.

## Asymmetric Oxidative C-C Coupling of Diarylamines


$N^{2}, N^{\prime}$ '-Bis(2,6-dimethylphenyl)-5,5',6,6'-tetramethyl-4,4'-bis[(triisopropylsilyl)oxy]-(1, $1^{\prime}$-biphenyl)-2,2'-diamine (11d)


General Procedure III (racemic synthesis): 10d ( $39.6 \mathrm{mg}, 100 \mu \mathrm{~mol}$ ), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(3.0 \mathrm{mg}, 21 \mu \mathrm{~mol}, 21 \mathrm{~mol} \%$ ), $\left(\text { FeTPPF }_{28}\right)_{2} \mathrm{O} \quad(\mathbf{5 c})(3.6 \mathrm{mg}, 1.5 \mu \mathrm{~mol}, 1.5 \mathrm{~mol} \%)$, reaction time: 24 h . Column chromatography: isohexane/dichloromethane 20:1. Colorless solid; 11d, yield: $71 \%$ ( $28.3 \mathrm{mg}, 36 \mu \mathrm{~mol}$ ). ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=0.94(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 18 \mathrm{H}), 0.95(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 18 \mathrm{H}), 1.01(\mathrm{spt}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.01$ (spt, J=7.2 Hz, 3H), $1.99(\mathrm{~s}, 6 \mathrm{H})$, $2.14(\mathrm{br} \mathrm{s}, 18 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H}), 5.61(\mathrm{~s}, 2 \mathrm{H}), 7.00-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.08 \mathrm{ppm}(\mathrm{m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR and DEPT (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.50\left(2 \mathrm{CH}_{3}\right), 12.88(6 \mathrm{CH}), 17.33\left(2 \mathrm{CH}_{3}\right), 18.07\left(12 \mathrm{CH}_{3}\right), 18.54\left(4 \mathrm{CH}_{3}\right), 99.85(4 \mathrm{CH}), 115.34(2 \mathrm{C})$, $116.04(2 \mathrm{C}), 125.92(2 \mathrm{CH}), 128.46(4 \mathrm{CH}), 138.22(2 \mathrm{C}), 138.84(2 \mathrm{C}), 143.37(4 \mathrm{C}), 154.16 \mathrm{ppm}(2 \mathrm{C}) ; \mathrm{MS}(\mathrm{ESI},+10$ V): $m / z=793.7[\mathrm{M}+\mathrm{H}]^{+}$, (ESI, -50 V ): $m / z=791.2[\mathrm{M}-\mathrm{H}]^{-}$.

General Procedure III (asymmetric synthesis): 10d ( $39.6 \mathrm{mg}, 100 \mu \mathrm{~mol}$ ), ( $R$ )-12 (17.9 mg, $21 \mu \mathrm{~mol}, 21 \mathrm{~mol} \%$ ), $\left(\text { FeTPPF }_{28}\right)_{2} \mathrm{O}(\mathbf{5 c})(3.6 \mathrm{mg}, 1.5 \mu \mathrm{~mol}, 1.5 \mathrm{~mol} \%)$, reaction time: 24 h . Column chromatography: isohexane/dichloromethane 20:1. White solid; 11d, yield: $64 \%$ ( $25.1 \mathrm{mg}, 32 \mu \mathrm{~mol}$ ), $96 \%$ ee.

Chiral HPLC: For the determination of the enantiomeric excess by chiral HPLC, 11d was converted into 11e 11d ( 1 mg ) was dissolved in THF ( $50 \mu \mathrm{~L}$ ) under an argon atmosphere. A 1 M solution of TBAF in THF ( $20 \mu \mathrm{~L}$ ) was added and the mixture was stirred for 5 min at rt . Then, 1 M aqueous $\mathrm{HCl}(0.5 \mathrm{~mL})$ was added and the solution was stirred for another 5 min . The reaction mixture was extracted three times with $\mathrm{Et}_{2} \mathrm{O}(0.2 \mathrm{~mL})$ and the combined organic layers were dried in vacuo to afford the bisphenol 11e, which was dissolved in $\mathrm{iPrOH}(1.0 \mathrm{~mL})$.



Fig. S2 Chiral HPLC of rac-11e, hexane/isopropanol, 95:5, 250 nm ), $\mathrm{t}_{1}: 20.77 \mathrm{~min}(50.1 \%), \mathrm{t}_{2}: 23.66 \mathrm{~min}(49.9 \%)$.


Fig. S3 Chiral HPLC of enantioenriched 11e, hexane/isopropanol, 95:5, 250 nm ), $\mathrm{t}_{1}: 21.06 \mathrm{~min}(98.0 \%), \mathrm{t}_{2}: 24.03$ $\min (2.0 \%)$.

## Oxidative C-C Coupling for the Synthesis of 1,1'- and 4,4'-Bicarbazoles



General Procedure IV (Synthesis of 1,1'-Bicarbazoles): Carbazole (1.0 equiv), $\mu$-oxo iron catalyst (FeTPPF 28$)_{2} \mathrm{O}$ (5c) $1.5 \mathrm{~mol} \%$ ) and additive ( $20 \mathrm{~mol} \%$ ) were placed in a round-bottom flask equipped with a magnetic stirring bar and dissolved in dichloromethane ( $\mathrm{c} \sim 50 \mathrm{mM}$ ). To minimize solvent loss by evaporation a splash head was placed on top of the flask. The reaction mixture was stirred vigorously at room temperature under ambient air. The reaction was monitored by TLC analysis. After completion of the reaction, triethylamine (10 equiv) was added. The reaction mixture was then filtered through a short silica pad and rinsed with dichloromethane. The solvent was removed in vacuo and the residue was adsorbed on silica gel. The crude product was purified by column chromatography on silica gel.

Bis-2-hydroxy-3-methylcarbazole (3,3'-Dimethyl-9H,9H'-[1,1'-bicarbazole]-2,2'-diol) (14a)

$14 a$
General Procedure IV: 13a ( $29.5 \mathrm{mg}, 0.15 \mathrm{mmol}$ ), $\mathrm{BF}_{3}$. $\mathrm{OEt} \mathrm{t}_{2}(4.4 \mathrm{mg}, 30 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%)$, (FeTPPF28) ${ }_{2} \mathrm{O}$ ( 5 c ) ( 5.4 $\mathrm{mg}, 2.3 \mu \mathrm{~mol}, 1.5 \mathrm{~mol} \%$ ), reaction time: 2 h . Column chromatography: isohexane/ dichloromethane/ethyl acetate (7:2:1). Pale yellow/gray solid; 14a, yield: $84 \%$ ( $24.7 \mathrm{mg}, 63 \mu \mathrm{~mol}$ ); $7 \%$ of starting material 13a were reisolated. 14a: ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$ acetone): $\delta=2.46(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 6 \mathrm{H}$ ), 7.11 (ddd, J=8.0, 7.0, 1.0 Hz, 2H), 7.20 (ddd, $J=8.1,7.0,1.1 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.28 (dd, J=8.0, $1.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.40(\mathrm{~s}, 2 \mathrm{H}), 7.90(\mathrm{~s}, 2 \mathrm{H}), 8.01$ (d, J=7.7 Hz, 2H), 9.62 ppm (br s, 2H); ${ }^{13} \mathrm{C}$ NMR and DEPT (151 MHz, [D6]acetone): $\delta=17.39\left(\mathrm{CH}_{3}\right), 17.41\left(\mathrm{CH}_{3}\right), 102.52(2 \mathrm{C}), 111.54(\mathrm{CH})$, $111.59(\mathrm{CH}), 116.97(2 \mathrm{C}), 118.24(2 \mathrm{C}), 119.36(\mathrm{CH}), 119.37(\mathrm{CH}) 119.60(2 \mathrm{CH}), 122.47(2 \mathrm{CH}), 124.50(2 \mathrm{CH})$, 124.70 (CH), 124.74 (CH), 140.13 (C), 140.25 (C), 140.89 (C), 141.03 (C), 153.36 (C), $153.47 \mathrm{ppm}(\mathrm{C})$; MS (ESI, $+10 \mathrm{~V}): \mathrm{m} / \mathrm{z}=393.1[\mathrm{M}+\mathrm{H}]^{+}, 785.4[2 \mathrm{M}+\mathrm{H}]^{+},(\mathrm{ESI},-50 \mathrm{~V}): m / z=391.1[\mathrm{M}-\mathrm{H}]^{-},(\mathrm{ESI},-50 \mathrm{~V}): m / z=805.2[2(\mathrm{M}-\mathrm{H})+\mathrm{Na}]^{-}$.

Biscarbalexine B (8,8'-Dimethoxy-3,3'-dimethyl-9H,9H'-[1,1'-bicarbazole]-2,2'-diol) (14b)


General Procedure IV: 13b ( $34.1 \mathrm{mg}, 150 \mu \mathrm{~mol}$ ), $\mathrm{BF}_{3}$.OEt2 $(4.3 \mathrm{mg}, 30 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%)$, $\left(\mathrm{FeTPPF}_{28}\right)_{2} \mathrm{O}$ ( 5 c ) ( 5.3 $\mathrm{mg}, 2.3 \mu \mathrm{~mol}, 1.5 \mathrm{~mol} \%$ ), reaction time: 5 h . Column chromatography: isohexane/ dichloromethane/ethyl acetate (7:2:1). Gray solid; 14b, yield: $45 \%$ ( $15.5 \mathrm{mg}, 34 \mu \mathrm{~mol}) .{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$ ): $\delta=2.43(\mathrm{~s}, 6 \mathrm{H}), 3.81$ (s, $6 \mathrm{H}), 6.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~s}, 2 \mathrm{H}), 7.95(\mathrm{~s}, 2 \mathrm{H}), 9.31 \mathrm{ppm}(\mathrm{s}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR and DEPT (125 MHz, [D6]DMSO): $\delta=17.64\left(2 \mathrm{CH}_{3}\right), 55.08\left(2 \mathrm{CH}_{3}\right), 104.44(2 \mathrm{C}), 104.73(2 \mathrm{CH}), 111.63$ (2CH), $115.96(2 \mathrm{C}), 117.57(2 \mathrm{C}), 118.94(2 \mathrm{CH}), 120.83(2 \mathrm{CH}), 124.78(2 \mathrm{C}), 129.14(2 \mathrm{C}), 139.03(2 \mathrm{C}), 145.34(2 \mathrm{C})$, 152.22 ppm (2C); MS (ESI, +10 V): m/z=453.2 [M+H]+; MS (ESI, -50 V ): $m / z=450.9[\mathrm{M}-\mathrm{H}]^{-}$.


General Procedure V (Synthesis of 4,4'-Bicarbazoles): Carbazole (1.0 equiv), $\mu$-oxo iron catalyst (FeTPPF 28$)_{2} \mathrm{O}$ ( $5 \mathbf{c}$ ) ( $1.5 \mathrm{~mol} \%$ ) and additive ( $20 \mathrm{~mol} \%$ ) were placed in a round-bottom flask equipped with a magnetic stirring bar and suspended in dichloromethane ( $\mathrm{c} \sim 12.5 \mathrm{mM}$ ). To minimize solvent loss by evaporation a splash head was placed on top of the flask and the reaction mixture was stirred vigorously at room temperature under ambient air. After completion of the reaction, the mixture was worked up as described below. The 4,4'-bicarbazoles are very sensitive to oxidation when heated, especially in the presence of traces of iron catalyst. Thus, high temperatures and exposure to air should be minimized during workup.

Sorazolon E2 (1,1',2,2'-Tetramethyl-9H,9'H-[4,4'-bicarbazole]-3,3'-diol) (14c)


14c

General Procedure V: Sorazolon E (13c) ( $29.7 \mathrm{mg}, 0.141 \mathrm{mmol}$ ), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(4.3 \mathrm{mg}, 30 \mu \mathrm{~mol}, 21 \mathrm{~mol} \%$ ), (FeTPPF $\left.{ }_{28}\right)_{2} \mathrm{O}(5 \mathbf{c})(5.2 \mathrm{mg}, 2.2 \mu \mathrm{~mol}, 1.6 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$, reaction time: 24 h . Workup: The reaction mixture was filtered through a short silica gel pad and rinsed with dichloromethane. The first fraction (deep red, catalyst) was portioned off and the crude product was then collected. The solvent was degassed and removed under argon atmosphere and reduced pressure. The crude product was adsorbed on silica gel and purified by column chromatography: isohexane/ethyl acetate/MeOH 89:9:2. Brown solid; 14c, yield: 74\% ( $21.9 \mathrm{mg}, 52 \mu \mathrm{~mol}$ ). (Remark: If the workup is not executed with the appropriate care, an oxidized quinone by-product can be observed as deep brown fraction eluting directly after the desired product. Reduction of this fraction with $\mathrm{NaBH}_{4}$ (excess) in MeOH at rt (10 min affords the desired product 14c.) M.p. $>300^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$ acetone): $\delta=2.45(\mathrm{~s}, 6 \mathrm{H})$, $2.66(\mathrm{~s}, 6 \mathrm{H}), 6.50(\mathrm{~s}, 2 \mathrm{OH}), 6.53$ (ddd, $\mathrm{J}=8.0,7.1,0.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), $6.64(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06$ (ddd, J=8.1, 7.1, 1.1 $\mathrm{Hz}, 2 \mathrm{H}$ ), $7.34(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 10.05 \mathrm{ppm}(\mathrm{s}, 2 \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR and DEPT (151 MHz, [D $\left.\mathrm{D}_{6}\right]$ acetone $): \delta=13.07\left(2 \mathrm{CH}_{3}\right)$, $14.30\left(2 \mathrm{CH}_{3}\right), 111.14(2 \mathrm{CH}), 111.66(2 \mathrm{C}), 118.58(2 \mathrm{CH}), 120.09(2 \mathrm{C}), 120.27(2 \mathrm{C}), 122.01(2 \mathrm{CH}), 123.09(2 \mathrm{C})$, 124.62 (2C), 125.16 (2CH), 135.38 (2C), 141.27 (2C), 147.81 ppm (2C); IR (ATR): $\tilde{v}=3772,3526,3494,3443,3375$, 3051, 2920, 2850, 1704, 1612, 1583, 1500, 1452, 1389, 1345, 1308, 1257, 1216, 1166, 1147, 1108, 1084, 1060, 1015, 925, 889, 847, 801, 775, 731, 691, 664, $643 \mathrm{~cm}^{-1}$; UV/Vis (MeOH): $\lambda_{\max }=216,234,265,302,341,353 \mathrm{~nm}$; fluorescence $(\mathrm{MeOH})$ : $\lambda_{e x}=216 \mathrm{~nm}$; $\lambda_{e m}=388 \mathrm{~nm} ;$ HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2^{+}}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 421.1911$; found: 421.1910.

Crystallographic data for Sorazolon E2 (14c):

Crystallization of $\mathbf{1 4 c}$ from dichloromethane/methanol afforded single crystals suitable for X-ray analysis.
$\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{CH}_{3} \mathrm{OH}, M=452.53$ gmol $^{-1}$, crystal size: $0.130 \times 0.379 \times 0.491 \mathrm{~mm}$, triclinic, space group $P \overline{1}$, $a=8.7151(3), b=9.8582(3), c=14.9790(4) \AA, V=1135.83(6) \AA^{3}, Z=2, \rho_{\text {calcd }}=1.323 \mathrm{~g} / \mathrm{cm}^{3}, \mu=0.086 \mathrm{~mm}^{-1}$, $\lambda=0.71073 \AA, T=150(2) \mathrm{K}, \theta$ range: $2.64-28.33^{\circ}$, reflections collected: 58937, independent: 5640 ( $R_{\mathrm{int}}=0.0936$ ), 332 parameters. The structure was solved by direct methods and refined by full-matrix least-squares on $F^{2}$; final $R$ indices $[/>2 \sigma(\Lambda)]: R_{1}=0.0573, w R_{2}=0.1551$; maximal residual electron density: 0.570 e $^{-3} ; C C D C 2209872$ contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Integerrine B (6,6'-Dimethyl-9H, $\mathbf{9}^{\prime}$ 'H-[4,4'-bicarbazole]-3,3'-diol) (14d)


General Procedure V: 13d (29.4 mg, $0.149 \mathrm{mmol}^{2}$ ), $\mathrm{BF}_{3} . \mathrm{OEt}_{2}(4.5 \mathrm{mg}, 32 \mu \mathrm{~mol}, 21 \mathrm{~mol} \%)$, (FeTPPF 28$)_{2} \mathrm{O}$ (5c) (5.2 $\mathrm{mg}, 2.3 \mu \mathrm{~mol}, 1.5 \mathrm{~mol} \%)$, reaction time: 23.5 h . Workup: The reaction mixture was filtered through a short pad of silica gel and rinsed with dichloromethane, the first fraction (deep red, catalyst) was portioned off and the crude product was then collected. The solvent was degassed and removed under argon atmosphere and reduced pressure. The crude product was adsorbed on silica gel and purified by column chromatography: isohexane/ethyl acetate/acetic acid 64:35:1. Gray solid, 35\% yield 14d (10.3 mg, $26 \mu \mathrm{~mol}$ ). M.p. $>300^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR ( 600 MHz , [D6]acetone): $\delta=1.99(\mathrm{~s}, 6 \mathrm{H}), 6.52(\mathrm{~s}, 2 \mathrm{H}), 6.95(\mathrm{dd}, \mathrm{J}=8.3,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$, 2 H ), 7.50 ( $\mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), $9.99 \mathrm{ppm}(\mathrm{s}, 2 \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR and DEPT (151 MHz, [D $\left.{ }_{6}\right]$ acetone $): \delta=21.51\left(2 \mathrm{CH}_{3}\right)$, $110.83(2 \mathrm{CH}), 111.83(2 \mathrm{CH}), 115.69(2 \mathrm{CH}), 115.97(2 \mathrm{C}), 122.44(2 \mathrm{CH}), 123.35(2 \mathrm{C}), 124.51(2 \mathrm{C}), 127.05(2 \mathrm{CH})$, 127.05 (2C), 136.04 (2C), 140.06 (2C), $149.18 \mathrm{ppm}(2 C)$; IR (ATR): $\tilde{v}=3403,3028,2949,2918,2853,2198,1733$, 1627, 1580, 1492, 1437, 1374, 1339, 1288, 1256, 1149, 1062, 1031, 939, 876, 797, $638 \mathrm{~cm}^{-1}$; UV/Vis (MeOH): $\lambda_{\max }=220,236,264,302,355 \mathrm{~nm}$; fluorescence (MeOH): $\lambda_{\mathrm{ex}}=220 \mathrm{~nm}$; $\lambda_{\mathrm{em}}=391 \mathrm{~nm}$; HRMS (ESI): m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 393.1598$; found: 393.1599.

Table S2 Comparison of synthetic 14d with the natural product (atom numbering according to isolation paper), ${ }^{8}$ solvent: [D6]acetone


Integerrine B (14d)

| position (H) | natural product ${ }^{8}$ $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}}$ in ppm ( J in Hz) | synthetic product $600 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}}$ in ppm ( J in Hz) |
| :---: | :---: | :---: |
| 1/1' | 7.24, d (8.2) | 7.24, d (8.2) |
| 2/2' | 6.95, dd (8.2, 1.6) | 6.95 , dd (8.3, 1.1) |
| 4/4 | 6.52, d (1.6) | 6.52, s |
| 7/7 ${ }^{\text {c }}$ | 7.19, d (8.6) | 7.19, d (8.6) |
| 8/8' | 7.50, d (8.6) | 7.50, d (8.6) |
| 3-Me/3'-Me | 1.99, s | 1.99, s |
| 9 | 10.0, br s | 9.99, s |


| position (C) | natural product ${ }^{8}$ $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{c}}$ in ppm | synthetic product $151 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{c}}$ in ppm |
| :---: | :---: | :---: |
| 1/1 ${ }^{\text {' }}$ | 110.9, CH | 110.8, CH |
| 2/2' | 127.2, CH | 127.1, CH |
| 3/3' | 127.2, C | 127.1 C |
| $3-\mathrm{Me} / 3^{\prime}-\mathrm{Me}$ | 21.6, $\mathrm{CH}_{3}$ | 21.5, $\mathrm{CH}_{3}$ |
| 4/4 | 122.5, CH | 122.4, CH |
| 4a/4a' | 124.6, C | 124.5, C |
| 4b/4b' | 123.4, C | 123.4, C |
| 5/5' | 116.1, C | 116.0, C |
| 6/6' | 149.3, C | 149.2, C |
| 717 | 115.8, CH | 115.7, CH |
| 8/8' | 111.9, CH | 111.8, CH |
| 8a/8a' | 136.1, C | 136.0, C |
| $9 a / 9 a '$ | 140.1, C | 140.1, C |

## Oxidative C-C Coupling for the Synthesis of 3,3'-Bicarbazoles



General Procedure VI (Synthesis of 3,3'-Bicarbazoles): The $N$-substituted carbazole 15 (1.0 equiv) and iron catalyst $\left(\mathrm{FeTPPF}_{28}\right)_{2} \mathrm{O}(\mathbf{5 c})$ were placed in a round bottom flask equipped with a magnetic stir bar and suspended in trifluoroacetic acid (TFA). To minimize solvent loss by evaporation a splash head was placed on top of the flask and the reaction mixture was stirred vigorously. Small aliquots of the reaction mixture were neutralized with saturated aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and extracted with dichloromethane in a GC vial to monitor the reaction by TLC. After consumption of the starting material, the solution was transferred to a separatory funnel, diluted with water, and then neutralized with saturated $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution. The aqueous layer was then extracted three times with dichloromethane. The combined organic layers were washed once with water and with brine and then dried over magnesium sulfate. The crude product obtained after evaporation of the solvent in vacuo was further purified by chromatography on silica gel.

9,9'-Dimethyl-9H,9'H-3,3'-bicarbazole (16a)


16a
General Procedure VI: 9-Methyl-9H-carbazole (15a) ( $18.4 \mathrm{mg}, 102 \mu \mathrm{~mol}$ ), ( $\left.\mathrm{FeTPPF}_{28}\right)_{2} \mathrm{O}(\mathbf{5 c})(3.5 \mathrm{mg}, 1.5 \mu \mathrm{~mol}$, $1.5 \mathrm{~mol} \%)$, TFA ( 2.0 mL ), reaction time: 1.5 h . The crude product was adsorbed on silica gel and purified by column chromatography: isohexane/ethyl acetate $9: 1$. Colorless solid, $82 \%$ yield $\mathbf{1 6 a}(14.8 \mathrm{mg}, 41 \mu \mathrm{~mol}) .{ }^{1} \mathrm{H}$ NMR ( 600 MHz, [D $\mathrm{D}_{6}$ ]DMSO): $\delta=3.93(\mathrm{~s}, 6 \mathrm{H}), 7.24(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.46-7.52$ (m, 2H), 7.61 (d, J=8.2 Hz, 2H), 7.70 (d, J=8.5 $\mathrm{Hz}, 2 \mathrm{H}), 7.92$ (dd, J=8.5, $1.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.29$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.58$ (d, $J=1.62 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR and DEPT ( 151 $\left.\mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): ~ \delta=29.09\left(2 \mathrm{CH}_{3}\right), 109.20(2 \mathrm{CH}), 109.22(2 \mathrm{CH}), 118.20(2 \mathrm{CH}), 118.72(2 \mathrm{CH}), 120.47(2 \mathrm{CH})$, 122.26 (2C), 122.67 (2C), 125.01 (2CH), 125.77 (2CH), 132.25 (2C), 139.71 (2C), 141.09 (2C); MS (ESI, +10 V ): $\mathrm{m} / \mathrm{z}=361.2[\mathrm{M}+\mathrm{H}]^{+}$. The physical and spectroscopic data are in agreement with those reported in the literature. ${ }^{9}$

9,9'-Dibenzyl-9H,9'H-3,3'-bicarbazole (16b)


16b
General Procedure VI: 9-Benzyl-9H-carbazole (15b) ( $25.9 \mathrm{mg}, 101 \mu \mathrm{~mol}$ ), ( FeTPPF $\left._{28}\right)_{2} \mathrm{O}(5 \mathrm{c}) 3.6 \mathrm{mg}(1.5 \mu \mathrm{~mol}$, $1.5 \mathrm{~mol} \%)$, TFA ( 3.0 mL ), reaction time: 18 h . The crude product was adsorbed on silica gel and purified by column chromatography: isohexane/ethyl acetate 9:1. Colorless solid; 16b, yield: 71\% (18.4 mg, $36 \mu \mathrm{~mol}) .{ }^{1} \mathrm{H}$ NMR ( 600 $\left.\mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): \delta=5.71(\mathrm{~s}, 4 \mathrm{H}), 7.20-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.29(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.43-7.48(\mathrm{~m}$, 2H), 7.65 (d, J=8.2 Hz, 2H), 7.73 (d, J=8.5 Hz, 2H), 7.86 (dd, J=8.5, $1.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), 8.30 (d, J=7.7 Hz, 2H), 8.59 (d, $J=1.6 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR and DEPT ( $\left.151 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): \delta=45.67\left(2 \mathrm{CH}_{2}\right), 109.64(2 \mathrm{CH}), 109.89(2 \mathrm{CH}), 118.48$ $(2 \mathrm{CH}), 119.05(2 \mathrm{CH}), 120.60(2 \mathrm{CH}), 122.51(2 \mathrm{C}), 122.94(2 \mathrm{C}), 125.25(2 \mathrm{CH}), 125.93(2 \mathrm{CH}), 126.76(4 \mathrm{CH}), 127.25$ (2CH), 128.59 (4CH), 132.63 (2C), 137.88 (2C), 139.26 (2C), 140.63 (2C); MS (ESI, +25 V): m/z=513.4 [M+H] , $1025.7[2 \mathrm{M}+\mathrm{H}]^{+}$. The physical and spectroscopic data are in agreement with those reported in literature. ${ }^{10}$

9,9'-Diphenyl-9H,9'H-3,3'-bicarbazole (16c)


16c
General Procedure VI: 9-Phenyl-9H-carbazole (15c) (24.3 mg, $100 \mu \mathrm{~mol}$ ), (FeTPPF $\left.{ }_{28}\right)_{2} \mathrm{O}(5 \mathrm{c})(6.2 \mathrm{mg}, 2.6 \mu \mathrm{~mol}$, $2.6 \mathrm{~mol} \%)$, TFA ( 4.0 mL ), reaction time: 4.5 h . The crude product was adsorbed on silica gel and purified by column chromatography: pentane/ethyl acetate $30: 1$. Colorless solid; 16c, yield: $82 \%$ ( $19.7 \mathrm{mg}, 41 \mu \mathrm{~mol}$ ). ${ }^{1} \mathrm{H}$ NMR ([D $\left.{ }_{6}\right]$ DMSO) $\delta=7.34$ (ddd, $J=7.8,7.0,0.9 \mathrm{~Hz}, 2 H$ ), $7.42(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.47 (ddd, J=8.2, $7.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.50 (d, J=8.5 Hz, 2H), $7.56(\mathrm{tt}, J=10.9,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.70-7.75(\mathrm{~m}, 4 \mathrm{H}), 7.89(\mathrm{dd}, J=8.5,1.9 \mathrm{~Hz}, 2 \mathrm{H})$, 8.40 (td, J=7.8, $0.9 \mathrm{~Hz}, 2 \mathrm{H}$ ), 8.70 (d, J=1.6 Hz, 2H). ${ }^{13} \mathrm{C}$ NMR and DEPT ( 151 MHz , [D ${ }_{6}$ DMSO): $\delta=109.71$ (2CH), $110.01(2 \mathrm{CH}), 118.55(2 \mathrm{CH}), 120.12(2 \mathrm{CH}), 120.83(2 \mathrm{CH}), 122.99(2 \mathrm{C}), 123.48(2 \mathrm{C}), 125.54(2 \mathrm{CH}), 126.42(2 \mathrm{CH})$, $126.65(4 \mathrm{CH}), 127.68(2 \mathrm{CH}), 130.24(4 \mathrm{CH}), 133.28(2 \mathrm{C}), 136.91(2 \mathrm{C}), 139.29(2 \mathrm{C}), 140.60(2 \mathrm{C}) ; \mathrm{MS}(\mathrm{ESI},+10 \mathrm{~V}):$ $m / z=485.3[\mathrm{M}+\mathrm{H}]^{+}$. The physical and spectroscopic data are in agreement with those reported in literature. ${ }^{10}$

## Wacker-type Oxidation of Olefins



General Procedure VII: Olefin 17a-h (1.0 equiv), FeTPPF ${ }_{28} \mathrm{Cl}(\mathbf{4 c})\left(5.0 \mathrm{~mol} \% \text { ) or (FeTPPF }{ }_{28}\right)_{2} \mathrm{O}$ (5c) (2.5 mol\%), and $\mathrm{PhSiH}_{3}$ were given in a round-bottom flask equipped with a magnetic stirring bar and dissolved in ethanol (c $\sim$ 50 mM ). To minimize solvent loss by evaporation, a splash head was placed on top of the flask and the reaction mixture was stirred vigorously at room temperature under ambient air. After completion of the reaction, the mixture was filtered through a short pad of silica, and rinsed with ethyl acetate. The solvent was removed in vacuo and the residue was adsorbed on silica gel. The crude product was purified by column chromatography on silica gel. The ketones 18a, 18d, and 18f-h are less polar than the corresponding alcohols 19a, 19d, and 19f-h; only the ketone 18 e is more polar than the corresponding alcohol 19 e .

1-(Naphthalen-2-yl)ethanone (18a) and 1-(Naphthalen-2-yl)ethanol (19a)


General Procedure VII (under ambient air): 2-Vinylnaphthalene (17a) ( $31.2 \mathrm{mg}, 202 \mu \mathrm{~mol}$ ), $\mathrm{PhSiH}_{3}(43.8 \mathrm{mg}, 0.40$ mmol, 2.0 equiv), (FeTPPF 28 $\left._{2}\right)_{2} \mathrm{O}(\mathbf{5 c})(11.8 \mathrm{mg}, 5 \mu \mathrm{~mol}, 2.5 \mathrm{~mol} \%)$, reaction time: 40 h . Column chromatography: isohexane/ethyl acetate (7:1, twice). 18a: Colorless solid; yield: $87 \%$ ( $30.1 \mathrm{mg}, 176 \mu \mathrm{~mol}$ ). ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\mathrm{CDCl}_{3}$ ): $\delta=2.74(\mathrm{~s}, 3 \mathrm{H}), 7.56$ (ddd, $J=8.1,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.61 (ddd, $\left.J=8.1,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.89(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}$, 2 H ), 7.97 (d, J=8.1 Hz, 1H), 8.04 (dd, J=8.6, $1.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), $8.47 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR and DEPT ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=26.70\left(\mathrm{CH}_{3}\right), 123.89(\mathrm{CH}), 126.77(\mathrm{CH}), 127.78(\mathrm{CH}), 128.41(\mathrm{CH}), 128.46(\mathrm{CH}), 129.54(\mathrm{CH}), 130.19(\mathrm{CH})$, 132.50 (C), 134.48 (C), 135.58 (C), 198.12 ppm (C=O). MS (EI): $m / z=170$ (34, M+), 155 (70), 128 (12), 127 (100), 126 (33), 43 (31). 19a: Traces detected by GC-MS, not isolated. MS (EI): m/z=172 (31, M ${ }^{+}$), 157 (30), 129 (100), 128 (82), 127 (47), 126 (18), 43 (14).

General Procedure VII (under 1 atm of $\mathrm{O}_{2}$ ): 2-Vinylnaphthalene (17a) ( $30.4 \mathrm{mg}, 197 \mu \mathrm{~mol}$ ), $\mathrm{PhSiH}_{3}(44.5 \mathrm{mg}, 0.41$ mmol, 2.0 equiv), $\operatorname{FeTPPF}_{28} \mathrm{Cl}(\mathbf{4 c})(12.1 \mathrm{mg}, 10 \mu \mathrm{~mol}, 5.0 \mathrm{~mol} \%)$, reaction time: 24 h . Protocol according to the general procedure VII but with an oxygen balloon placed on top of the round-bottom flask. 18a: Colorless solid; yield: $76 \%$ ( $25.6 \mathrm{mg}, 150 \mu \mathrm{~mol}$ ). 19a: reddish solid; yield: $9 \%(3.0 \mathrm{mg}, 17 \mu \mathrm{~mol}) .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.59$ (d, J=6.5 Hz, 3H), 5.08 (q, J=6.5 Hz, 1H), 7.48 (ddt, J=12.6, 7.2, 1.7 Hz, 2H), 7.51 (dd, J=8.5, 1.6 Hz, 1H), 7.80-7.86 ppm (m, 4H); ${ }^{13} \mathrm{C}$ NMR and DEPT (151 MHz, CDCl 3 ): $\delta=25.39\left(\mathrm{CH}_{3}\right), 70.81(\mathrm{CH}), 124.06(2 \mathrm{CH}), 126.05(\mathrm{CH})$, $126.40(\mathrm{CH}), 127.92(\mathrm{CH}), 128.18(\mathrm{CH}), 128.57(\mathrm{CH}), 133.17$ (C), 133.57 (C), 143.42 (C); MS (EI): m/z=172 (31, $\mathrm{M}^{+}$), 157 (30), 129 (100), 128 (82), 127 (47), 126 (18), 43 (14).

## 4-Acetylbenzonitrile (18b)



General Procedure VII: 4-Vinylbenzonitrile (17b) ( $24.7 \mathrm{mg}, 192 \mu \mathrm{~mol}$ ), $\mathrm{PhSiH}_{3}(44.1 \mathrm{mg}, 2.0 \text { equiv), (FeTPPF } 28)_{2} \mathrm{O}$ (5c) ( $11.9 \mathrm{mg}, 5 \mu \mathrm{~mol}, 2.5 \mathrm{~mol} \%$ ), reaction time: 24 h . Column chromatography: isohexane/ethyl acetate 10:1. 18b: Yellow solid; yield: $90 \%(25.7 \mathrm{mg}, 177 \mu \mathrm{~mol}) .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=2.65(\mathrm{~s}, 3 \mathrm{H}), 7.78$ (dt, J=8.4, 1.7 Hz , 2 H ), $8.04 \mathrm{ppm}(\mathrm{dt}, \mathrm{J}=8.5,1.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR and DEPT ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=26.88\left(\mathrm{CH}_{3}\right), 116.61$ (C), 118.06 (C), 128.64 (2CH), 132.67 (2CH), 140.10 (C), 196.62 ppm (C=O). MS (El): m/z (\%)=145 (18, M+), 130 (100), 116 (2), 102 (61), 89 (2), 75 (23), 50 (15), 43 (20), 39 (3).

1-(4-Bromophenyl)ethanone (18c)


18c

General Procedure VII: 4-Bromostyrene (17c) ( $36.9 \mathrm{mg}, 201 \mu \mathrm{~mol}$ ), $\mathrm{PhSiH}_{3}(3 \times 21.6 \mathrm{mg}, 3 \times 1.0$ equiv), $\left(\text { FeTPPF }_{28}\right)_{2} \mathrm{O}(\mathbf{5 c})(11.9 \mathrm{mg}, 5 \mu \mathrm{~mol}, 2.5 \mathrm{~mol} \%)$, reaction time: 76 h . Column chromatography: isohexane/ethyl acetate 10:1. 18c: Colorless solid; yield: $89 \%(33.9 \mathrm{mg}, 170 \mu \mathrm{~mol}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=2.59(\mathrm{~s}, 3 \mathrm{H})$, 7.61 (dt, J=8.7, $1.9 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.82 \mathrm{ppm}(\mathrm{dt}, \mathrm{J}=8.8,1.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR and DEPT ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=25.79$ $\left(\mathrm{CH}_{3}\right), 127.55(\mathrm{C}), 129.08(2 \mathrm{CH}), 131.14(2 \mathrm{CH}), 135.05(\mathrm{C}), 196.28 \mathrm{ppm}(\mathrm{C}=\mathrm{O}) . \mathrm{MS}(\mathrm{El}): m / z(\%)=200(28), 198$ (29, M+), 185 (99), 183 (100), 156 (46), 155 (46), 76 (33), 75 (32), 74 (22), 50 (30), 43 (21).

1-(4-Methoxyphenyl)ethanone (18d) and 1-(4-Methoxyphenyl)ethanol (19d)


18d


19d

General Procedure VII: 4-Methoxystyrene (17d) ( $26.9 \mathrm{mg}, 200 \mu \mathrm{~mol}$ ), $\mathrm{PhSiH}_{3}(2 \times 21.6 \mathrm{mg}, 2 \times 1.0$ equiv), (FeTPPF $\left._{28}\right)_{2} \mathrm{O}$ (5c) $11.8 \mathrm{mg}(5 \mu \mathrm{~mol}, 2.5 \mathrm{~mol} \%$ ), reaction time: 48 h . Column chromatography: gradient isohexane/ethyl acetate 10:1-6:1. 18d: Colorless solid; yield: $85 \%$ ( $25.6 \mathrm{mg}, 170 \mu \mathrm{~mol}$ ). ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=2.56(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 6.91-6.96(\mathrm{~m}, 2 \mathrm{H}), 7.92-7.96(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR and DEPT (151 MHz, CDCl 3 ): $\delta=26.49$ $\left(\mathrm{CH}_{3}\right), 55.61\left(\mathrm{CH}_{3}\right), 113.82(2 \mathrm{CH}), 130.52(\mathrm{C}), 130.74(2 \mathrm{CH}), 163.63(\mathrm{C}), 196.97(\mathrm{C}=\mathrm{O}) . \mathrm{MS}(\mathrm{El}): m / z(\%)=150(29$, $\mathrm{M}^{+}$), 135 (100), 107 (14), 92 (21), 77 (29), 43 (9). 19d: Reddish solid; yield: $7 \%$ ( $2.0 \mathrm{mg}, 13 \mu \mathrm{~mol}$ ). MS (EI): $m / z(\%)=152\left(24, M^{+}\right), 137(100), 135(11), 109(45), 94(30), 92(7), 91(11), 77(31), 43(20)$.

2,2,8-Trimethyl-5-nitrochroman-4-one (18e) and 2,2,8-Trimethyl-5-nitrochroman-4-ol (19e)


General Procedure VII: 2,2,8-Trimethyl-5-nitro-2H-chromene (17e) ( $33.3 \mathrm{mg}, 152 \mu \mathrm{~mol}$ ), $\mathrm{PhSiH}_{3}$ ( $32.5 \mathrm{mg}, 2.0$ equiv), $\left(\mathrm{FeTPPF}_{28}\right)_{2} \mathrm{O}(5 \mathrm{c}) 8.8 \mathrm{mg}(3.7 \mu \mathrm{~mol}, 2.5 \mathrm{~mol} \%)$, reaction time: 62 h . Column chromatography: gradient isohexane/ethyl acetate 10:1-6:1. 18e: Yellow solid; yield: $79 \%$ ( $28.1 \mathrm{mg}, 119 \mu \mathrm{~mol}$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.50(\mathrm{~s}, 6 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~s}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=7.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR and DEPT ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=16.35\left(\mathrm{CH}_{3}\right), 26.77\left(2 \mathrm{CH}_{3}\right), 48.82\left(\mathrm{CH}_{2}\right), 80.48(\mathrm{C}), 111.53(\mathrm{C}), 114.42(\mathrm{CH}), 131.86(\mathrm{C})$, 135.52 (CH), 147.19 (C) 158.31 (C), $189.12 \mathrm{ppm}(\mathrm{C}=\mathrm{O})$; MS (El): m/z (\%)=235 (50, M+), 220 (52), 180 (82), 179 (53), 174 (18), 165 (12), 150 (25), 149 (93), 133 (14), 121 (100), 106 (12), 105 (33), 103 (10), 93 (12), 91 (15), 77 (52), 65 (34). 19e: Yellow solid; yield: $11 \%$ ( $3.8 \mathrm{mg}, 16 \mathrm{mmol}$ ). MS (EI): m/z (\%)=237 (78, M+), 219 (23), 204 (100), 182 (45), 181 (22), 174 (15), 163 (87), 158 (21), 151 (72), 134 (19), 133 (38), 118 (13), 106 (22), 105 (30), 91 (37), 79 (13), 78 (19), 77 (79), 65 (13).

2,2-Dimethyl-4-oxochromane-6-carbonitrile (18f) and 4-Hydroxy-2,2-dimethylchroman-6-carbonitrile (19f)


18f


19 f

General Procedure VII: 2,2-Dimethyl-2H-chromene-6-carbonitrile (17f) ( $37.2 \mathrm{mg}, 201 \mu \mathrm{~mol}$ ), $\mathrm{PhSiH}_{3}(3 \times 22 \mathrm{mg}$, $3 \times 1.0$ equiv), $\left(\text { FeTPPF }_{28}\right)_{2} \mathrm{O}(5 \mathrm{c}) 11.6 \mathrm{mg}(5 \mu \mathrm{~mol}, 2.5 \mathrm{~mol} \%$ ), reaction time: 71 h . Column chromatography: gradient isohexane/ethyl acetate 6:1-4:1. 18f: Colorless solid; yield: $93 \%$ ( $37.8 \mathrm{mg}, 188 \mu \mathrm{~mol}$ ). ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\mathrm{CDCl}_{3}$ ): $\delta=1.49(\mathrm{~s}, 6 \mathrm{H}), 2.77(\mathrm{~s}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=8.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR and DEPT (151 MHz, CDCl 3 ): $\delta=26.71\left(2 \mathrm{CH}_{3}\right), 48.56\left(\mathrm{CH}_{2}\right), 80.99(\mathrm{C}), 104.70(\mathrm{C}), 118.33(\mathrm{C}), 120.05$ $(\mathrm{CH}), 120.52(\mathrm{C}), 131.98(\mathrm{CH}), 138.58(\mathrm{CH}), 162.75(\mathrm{CN}), 190.52(\mathrm{C}=\mathrm{O}) . \mathrm{MS}(\mathrm{El}): \mathrm{m} / \mathrm{z}(\%)=201\left(19, \mathrm{M}^{+}\right), 186(100)$, 146 (41), 145 (24), 117 (30). 19f: Red solid; yield: $6 \%$ ( $2.5 \mathrm{mg}, 12 \mu \mathrm{~mol}$ ): MS (EI): m/z (\%)=203 (62, M+), 185 (8), 171 (20), 170 (100), 148 (98), 147 (75), 146 (90), 129 (18), 56 (24).

1-Tetralone ( $\mathbf{1 8 g}$ ) and 1-Tetralol ( $\mathbf{1 9 g}$ )


General Procedure VII: 1,2-Dihydronaphthalene (17g) ( $26.1 \mathrm{mg}, 200 \mu \mathrm{~mol}$ ), $\mathrm{PhSiH}_{3}(2 \times 21.8 \mathrm{mg}, 2 \times 1.0$ equiv), $\left(\mathrm{FeTPPF}_{28}\right)_{2} \mathrm{O}(5 \mathrm{c})(11.7 \mathrm{mg}, 5 \mu \mathrm{~mol}, 2.5 \mathrm{~mol} \%$ ), reaction time: 48 h . Column chromatography: gradient isohexane/ethyl acetate 6:1-4:1. 18g: Yellow oil; yield: $89 \%(26.5 \mathrm{mg}, 178 \mu \mathrm{~mol}) .{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=2.15$ (quin, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.66(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.97(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ (ddd, J=7.9,
$7.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{dd}, \mathrm{J}=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR and DEPT ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=23.44\left(\mathrm{CH}_{2}\right), 29.86\left(\mathrm{CH}_{2}\right), 39.33\left(\mathrm{CH}_{2}\right), 126.79(\mathrm{CH}), 127.33(\mathrm{CH}), 128.92(\mathrm{CH}), 132.78(\mathrm{C}), 133.54(\mathrm{CH}), 144.64$ (C), $198.57 \mathrm{ppm}(\mathrm{C}=\mathrm{O}) . \mathrm{MS}(\mathrm{EI}): m / z(\%)=146\left(40, \mathrm{M}^{+}\right), 118$ (87), 117 (11), 115 (22), 91 (36), 90 (100), 89 (77), 87 (11), 77 (18), 76 (9), 75 (12), 74 (18), 65 (15), 64 (11), 63 (50). 19g: Green oil; yield: $5 \%$ ( $1.5 \mathrm{mg}, 10 \mu \mathrm{~mol}$ ): MS (El): m/z (\%)=148 (61, $\mathrm{M}^{+}$), 131 (13), 118(100), 90 (72), 77 (6), 63 (15), 50 (8), 39 (7).

Octadecan-2-one (18h) and Octadecan-2-ol (19h)


18h


19h

General Procedure VII: Octadec-1-ene (17h) ( $46.2 \mathrm{mg}, 183 \boldsymbol{\mu m o l}$ ), $\mathrm{PhSiH}_{3}(5 \times 19.4 \mathrm{mg}, 5 \times 1.0 \text { equiv), (FeTPPF } 28)_{2} \mathrm{O}$ (5c) ( $10.6 \mathrm{mg}, 4.5 \mu \mathrm{~mol}, 2.5 \mathrm{~mol} \%$ ), reaction time: 120 h . Column chromatography: isohexane/ethyl acetate 9:1, the product fraction was again purified by chromatography with pentane/ethyl acetate 20:1. 18h: Colorless solid; yield: $53 \%(25.9 \mathrm{mg}, 96 \mu \mathrm{~mol}) .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~m}, J=12.1 \mathrm{~Hz}, 26 \mathrm{H})$, $1.56(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR and DEPT ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=14.27\left(\mathrm{CH}_{3}\right), 22.84$ $\left(\mathrm{CH}_{2}\right), 24.04\left(\mathrm{CH}_{2}\right), 29.34\left(\mathrm{CH}_{2}\right), 29.51\left(\mathrm{CH}_{2}\right), 29.55\left(\mathrm{CH}_{2}\right)$, $29.62\left(\mathrm{CH}_{2}\right), 29.76\left(\mathrm{CH}_{2}\right), 29.80\left(\mathrm{CH}_{2}\right), 29.82\left(\mathrm{CH}_{2}\right)$, $29.84\left(4 \mathrm{CH}_{2}\right), 29.99\left(\mathrm{CH}_{3}\right), 32.08\left(\mathrm{CH}_{2}\right), 43.99\left(\mathrm{CH}_{2}\right), 209.56 \mathrm{ppm}(\mathrm{C}) ; \mathrm{MS}(\mathrm{El}): \mathrm{m} / \mathrm{z}(\%)=268\left(2, \mathrm{M}^{+}\right), 253(1), 210$ (1), 95 (8), (84 (13), 70 (43), 68 (10), 57 (100), 54 (24), 42 (98), 40 (29). 19h: Yellow oil, $11 \%$ ( $5.6 \mathrm{mg}, 20 \mu \mathrm{~mol}$ ). MS (EI): m/z (\%)=252 (22, [M-H2O] ${ }^{+}$, 224 (2), 196 (2), 182 (2), 168 (4), 154 (4), 140 (5), 125 (18), 111 (42), 97 (82), 83 (77), 69 (62), 55 (100), 43 (48).

## References

1. E. K. Woller, V. V Smirnov, S. G. DiMagno, J. Org. Chem. 1998, 63, 5706-5707.
2. E. K. Woller, S. G. DiMagno, J. Org. Chem. 1997, 62, 1588-1593.
3. M. K. Peters, F. Röhricht, C. Näther, R. Herges, Org. Lett. 2018, 20, 7879-7883.
4. R. F. Fritsche, G. Theumer, O. Kataeva, H.-J. Knölker, Angew. Chem. Int. Ed. 2017, 56, 549-553; Angew. Chem. 2017, 129, 564-568.
5. H.-J. Knölker, M. Bauermeister, D. Bläser, R. Boese, J.-B. Pannek, Angew. Chem. Int. Ed. 1989, 28, 223225; Angew. Chem. 1989, 101, 225-227.
6. H. J. Knölker, M. Bauermeister, D. Bläser, R. Boese, J.-B. Pannek, Tetrahedron 1993, 49, 841-862.
7. G. Shi, T. Yoon, S. Cha, S. Kim, M. Yousuf, N. Ahmed, D. Kim, H.-W. Kang, K. S. Kim, ACS Sens. 2018, 3, 1102-1108.
8. N.-K. Cao, Y.-M. Chen, S.-S. Zhu, K.-W. Zeng, M.-B. Zhao, J. Li, P.-F. Tu, Y. Jiang, Phytochemistry 2020, 178, 112463.
9. K. Matsumoto, Y. Toubaru, S. Tachikawa, A. Miki, K. Sakai, S. Koroki, T. Hirokane, M. Shindo, M. Yoshida, J. Org. Chem. 2020, 85, 15154-15166.
10. S. Mallick, S. Maddala, K. Kollimalayan, P. Venkatakrishnan, J. Org. Chem. 2019, 84, 73-93.

## NMR Spectra

2a (Reaction Mixture) ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})+{ }^{19} \mathrm{~F} \mathrm{NMR}(282 \mathrm{MHz})$ (crude product after extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ )

${ }^{19}$ F NMR

$\mathrm{H}_{2}$ TPPF $_{8}(\mathbf{3 a}),{ }^{1} \mathrm{H}$ NMR, $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$


$\mathrm{H}_{2}$ TPPF $_{8}$ (3a), ${ }^{19} \mathrm{~F} \mathrm{NMR}, 282 \mathrm{MHz}, \mathrm{CDCl}_{3}$


$\mathrm{H}_{2}$ TPPF $\left.{ }_{20} \mathbf{( 3 b}\right),{ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ (traces of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5.30 \mathrm{ppm}$ )


$\mathrm{H}_{2}$ TPPF $_{20}$ (3b), ${ }^{19} \mathrm{~F}$ NMR, $282.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\mathrm{H}_{2}$ TPPF $_{28}(\mathbf{3 c}),{ }^{1} \mathrm{H}$ NMR, $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, traces of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.30 \mathrm{ppm})$, water ( 1.56 ppm ), silica gel ( 0.07 ppm )


$\mathrm{H}_{2}$ TPPF $_{28}(\mathbf{3 c}),{ }^{19} \mathrm{~F} \mathrm{NMR}, 471 \mathrm{MHz}, \mathrm{CDCl}_{3}, 240 \mathrm{~K}$


3c
$\mathrm{H}_{2}$ TPPF $_{28}(\mathbf{3 c}),{ }^{19} \mathrm{~F} \mathrm{NMR}, 471 \mathrm{MHz}, \mathrm{CDCl}_{3}, 240-300 \mathrm{~K}$

$7{ }^{1} \mathrm{H}$ NMR, $600 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$ acetone


7

$7{ }^{13} \mathrm{C}$ NMR, $151 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$ acetone

$7{ }^{13} \mathrm{C}$ NMR, 151 MHz , [D6]acetone, detail

$7{ }^{1} \mathrm{H}$ NMR, $600 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$

$7{ }^{13} \mathrm{C}$ NMR, $600 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$

$9{ }^{1} \mathrm{H}$ NMR, $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$


$9{ }^{13} \mathrm{C}$ NMR, $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$9{ }^{13} \mathrm{C}$ NMR, $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$, detail



9 COSY, $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, detail


9



9 HMBC 600/151 MHz, $\mathrm{CDCl}_{3}$, detail



9 HSQC, 600/151 MHz, $\mathrm{CDCl}_{3}$, detail



9 NOESY, $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, detail


11a ${ }^{1} \mathrm{H}$ NMR, $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$


11a


11a ${ }^{13} \mathrm{C}$ NMR, $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$


11b ${ }^{1} \mathrm{H}$ NMR, $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$


11b


11b ${ }^{13} \mathrm{C}$ NMR, $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$


11b

11c ${ }^{1} \mathrm{H}$ NMR, $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$


8c ${ }^{13} \mathrm{C}$ NMR, $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$


11d ${ }^{1} \mathrm{H}$ NMR, $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$


11d ${ }^{13} \mathrm{C}$ NMR, $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$


11d

14a ${ }^{1} \mathrm{H}$ NMR, $600 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$ acetone (traces of EtOAc )




14a ${ }^{13} \mathrm{C}$ NMR, 151 MHz , [ $\mathrm{D}_{6}$ ]acetone




[^0]14b ${ }^{1} \mathrm{H}$ NMR, $500 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$ DMSO


14b ${ }^{13} \mathrm{C}$ NMR, $125 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$


14b


14c ${ }^{1} \mathrm{H}$ NMR, 600 MHz , [D $\mathrm{D}_{6}$ ]acetone


14c



14c ${ }^{13} \mathrm{C}$ NMR, 151 MHz , [ $\mathrm{D}_{6}$ ]acetone



14c

14d ${ }^{1} \mathrm{H}$ NMR, 600 MHz , [ $\mathrm{D}_{6}$ ]acetone


14d ${ }^{13} \mathrm{C}$ NMR, 151 MHz , [ $\mathrm{D}_{6}$ ]acetone


15a ${ }^{1} \mathrm{H}$ NMR, $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$



15a ${ }^{13} \mathrm{C}$ NMR, $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$



16a ${ }^{1} \mathrm{H}$ NMR, $600 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$ (traces of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ )


16a


16a ${ }^{13} \mathrm{C}$ NMR, $151 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$


16a


15b ${ }^{1} \mathrm{H}$ NMR, $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$



15b ${ }^{13} \mathrm{C}$ NMR, $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$


15b

16b ${ }^{1} \mathrm{H}$ NMR, $600 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$



16b ${ }^{13} \mathrm{C}$ NMR, $151 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$

$16 \mathrm{c}{ }^{1} \mathrm{H}$ NMR, $600 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$


16c ${ }^{13} \mathrm{C}$ NMR, $151 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$


18a ${ }^{1} \mathrm{H}$ NMR, $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$



18a ${ }^{13} \mathrm{C}$ NMR, $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$


18a


19a ${ }^{1} \mathrm{H}$ NMR, $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$


19a


19a ${ }^{13} \mathrm{C}$ NMR, $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$


19a



18b ${ }^{1} \mathrm{H}$ NMR, $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$


18b

18b ${ }^{13} \mathrm{C}$ NMR, $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$


18c ${ }^{1} \mathrm{H}$ NMR, $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$


18c


18c ${ }^{13} \mathrm{C}$ NMR,
$125 \mathrm{MHz}, \mathrm{CDCl}_{3}$


18c

18d ${ }^{1} \mathrm{H}$ NMR, $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$



18d ${ }^{13} \mathrm{C}$ NMR, $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$


18e ${ }^{1} \mathrm{H}$ NMR, $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$


$18 \mathrm{e}^{13} \mathrm{C}$ NMR, $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$


$18{ }^{1} \mathrm{H}$ NMR, $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$


18 f


18f ${ }^{13} \mathrm{C}$ NMR, $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\mathbf{1 8 g}{ }^{1} \mathrm{H}$ NMR, $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\mathbf{1 8 g}{ }^{1} \mathrm{H}$ NMR, $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$



18h ${ }^{1} \mathrm{H}$ NMR, $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$


18h ${ }^{13} \mathrm{C}$ NMR, $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$



18h ${ }^{13} \mathrm{C}$ NMR, $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$, detail



[^0]:    

