#### SUPPORTING INFORMATION

# EDA Mediated S-N Bond Coupling of Nitroarenes and Sodium Sulfinate salts

Juan D. Lasso<sup>a</sup>,<sup>+</sup> Durbis J. Castillo-Pazos<sup>a</sup>,<sup>+</sup> Malcolm Sim<sup>a</sup>, Joaquín Barroso-Flores<sup>b</sup>, and Chao-Jun Li<sup>a,\*</sup>

Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8 (Canada) E-mail: cj.li@mcgill.ca

#### Table of Contents

| 1. G        | eneral experimental procedures:                              | 2  |
|-------------|--------------------------------------------------------------|----|
| <b>2.</b> G | eneral procedure for the synthesis of N-hydroxylsulfonamides | 2  |
| 3. Si       | ngle-crystal X-Ray Diffraction of 3f                         | 3  |
| <b>4.</b> M | lechanistic evidence                                         | 5  |
|             | GC/MS Data:                                                  | 5  |
|             | GC/TCD Data                                                  | 6  |
| 5. C        | omputational details:                                        | 7  |
| 6.          | Characterization data of reported compounds:1                | .4 |
| 7.          | References                                                   | 1  |
| 8.          | Spectra collection                                           | 2  |

## 1. General experimental procedures:

Solvents and reagents were purchased from Sigma-Aldrich and Fisher scientific chemical companies and were used without further purification unless otherwise specified. 1H and 13C NMR were recorded on Bruker 500 MHz spectrometers, which uses the deuterium lock signal to reference the spectra. The solvent residual peaks, e.g., of chloroform (CDCl3:  $\delta$  7.26 ppm and  $\delta$ 77.23 ppm), were used as references. Data are reported as follows: multiplicity (s = singlet, d =  $\frac{1}{2}$ doublet, t = triplet, q = quartet, quint = quintet, m = multiplet, dd = doublet of doublet, etc), coupling constant (J/Hz) and integration. All NMR spectra were recorded at room temperature. High-resolution mass spectrometry was conducted by using atmospheric pressure chemical ionization (APCI) or electro-spraying ionization (ESI) performed by McGill University on a Thermo-Scientific Exactive Orbitrap. Protonated/deprotonated molecular ions (M±H)+ or sodium adducts (M+Na)+ were used for empirical formula confirmation. All reactions are stirred magnetically unless otherwise specified. Short packed column chromatography was performed with E. Merck silica gel 60 (230-400 mesh) or SORBENT silica gel 30-60 µm. Flash column chromatography was performed with IsoleraTM Prime advanced automatic flash purification system. Analytical thin layer chromatography (TLC) was performed using Merck silica gel 60 F254 pre-coated plates (0.25 mm). The reactions were conducted in 10x75 fischer culture-tubes and were irradiated utilizing Kessil PR160L 390(54W), 427nm, 440nm (45W) LED lamps. The reactions were conducted in sealed tubes. All the reactions were conducted under inert atmosphere unless otherwise noted.

## 2. General procedure for the synthesis of N-hydroxylsulfonamides



The aromatic substrate (0.3 mmol), the corresponding sulfinate sodium salt (0.6 mmol), and formic acid (0.6 mmol) were added into 1.5 mL of DMA in a glass culture tube capped with a rubber septum. Three freeze-pump-thaw cycles were carefully performed before setting the reaction under light irradiation at 20°C-25°C using a 40 W LED Kessil lamp (440 nm) equipped with a fan. After the reaction was finished (16-48 h), usually evidenced by the loss of yellow coloration in the solution over time, DMA was removed by mildly heating the mixture (30°C-40°C) under a constant stream of air. The remaining mixture of solids was then dissolved in acetone and sonicated, before proceeding to filter the remaining sulfinate salts through a small celite plug. This solution was then evaporated under reduced pressure and the product purified through column chromatography or preparative TLC.

While most aromatic substrates were commercially available, the triflate derivative featured in 3q was obtained from the corresponding phenol according to Jiang et al.<sup>1</sup> Starting

materials for 3w and 3x were obtained from the corresponding carboxylic acids according to et al. Lastly, starting materials for 3y and 3z were obtained from the corresponding acyl chlorides according to Najer, et al.<sup>2</sup> and Wang, et al.<sup>3</sup>, correspondingly



*Left: close-up of the Kessil lamp setup, allowing for multiple reactions at the same time, all absorbing around 200000 mW/cm<sup>2</sup>. Right: Covered setup and the two auxiliary fans to keep the temperature below 25°C.* 

## **3. Single-crystal X-Ray Diffraction of 3f**

Product was recrystallized from methanol over the course of 3 days at 4°C to yield colorless needles. A Bruker D8 Advance powder X-ray diffractometer was used for the structure refinement and collection of the following crystal data:

| Empirical formula: C <sub>8</sub> H <sub>8</sub> N <sub>2</sub> O <sub>3</sub> S | Crystal size/mm3 0.353 × 0.272 × 0.203                               |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Formula weight: 212.22                                                           | Radiation CuK $\alpha$ ( $\lambda = 1.54178$ )                       |
| Temperature/K: 298(2)                                                            | $2\Theta$ range for data collection/° 11.764 to                      |
| Crystal system: monoclinic                                                       | 144.608                                                              |
| Space group: P2 <sub>1</sub> /n                                                  | Index ranges $-10 \le h \le 10, -4 \le k \le 6, -25 \le 1 \le 13264$ |
| a/Å: 8.2861(15)                                                                  | Reflections collected: 13264                                         |
| b/Å: 5.4731(10)                                                                  | Independent reflections: $1809 [R_{int} = 0.0341]$                   |
| c/Å: 20.821(4)                                                                   | $\mathbf{R}_{\text{sigma}} = 0.0228]$                                |
| $\alpha/^{\circ}$ : 90, $\beta/^{\circ}$ : 93.606(5), $\gamma/^{\circ}$ : 90     | Data/restraints/parameters: 1809/0/130                               |

| Volume/Å <sup>3</sup> : 942.4(3) | Goodness-of-fit on F2: 1.088                                                          |
|----------------------------------|---------------------------------------------------------------------------------------|
| Z: 4 $calcg/cm^3$ : 1.496        | Final R indexes [I>= $2\sigma$ (I)] R <sub>1</sub> = 0.0338, wR <sub>2</sub> = 0.0920 |
| μ/mm <sup>-1</sup> : 2.951       | Final R indexes [all data] $R_1 = 0.0342$ , $wR_2 = 0.0925$                           |
| F(000): 440.0                    | Largest diff. peak/hole / e Å-3 0.20/-0.26                                            |
|                                  |                                                                                       |



# 4. Mechanistic evidence





Top: Reaction chromatogram for Sodium Toluene sulfinate. Bottom: Mass Spectrum of radical addition product.



Top: Reaction chromatogram for Sodium Methane sulfinate. Middle: Mass Spectrum of radical addition product. Bottom: Radical adduct of solvent

#### GC/TCD Data

The headspace gas of a standard 0.1 mmol sulfonamidation reaction of para-chloronitrobenzene left to react for 16 hours was syringed out and directly inserted into GC/TCD. Raw data was imported and plotted in OriginPro 2022. Analysis and identification of response peaks was conducted by cross referencing standard values generously provided by the McGill Electrocatalysis Laboratory.



*Left: plot of the GC/TCD trace obtained from headspace of standard optimized conditions.* 

## 5. Computational details:

All calculations were carried out with the Gaussian 16 suite of programs, at the  $\omega$ B97XD/cc-pVTZ level of theory. Natural Population Analysis was carried out with the NBO3.1 program<sup>4</sup> as provided with the previously mentioned suite. In every calculation the Polarizable Continuum Model (PCM) solvation model was used (solvent = N,N-dimethylacetamide, DMA). Atomic populations were added within each molecular fragment in the ground and the excited state, the difference was then ascribed to the electron transfer from donor to acceptor in the complex.

#### Calculated excited states, orbital compositions, and oscillator strengths for each excited state

**Conformation a** (Excited State 8 was selected for population analysis on the basis of their oscillator strength value

#### **Excitation energies and oscillator strengths:**

| Excited State | 1:  | Singlet-A | 3.1085 eV | 398.86 nm | f=0.0043 | <s**2>=0.000</s**2> |
|---------------|-----|-----------|-----------|-----------|----------|---------------------|
| 56 -> 59      | -0. | 11230     |           |           |          |                     |
| 58 -> 59      | 0.0 | 69339     |           |           |          |                     |

This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-DFT) = -1187.56377917 Copying the excited state density for this state as the 1-particle RhoCI density.

| Excited State<br>52 -> 59<br>52 -> 64<br>53 -> 59<br>54 -> 59<br>54 -> 64                         | 2: Singlet-A<br>0.46689<br>-0.20488<br>0.19693<br>0.40414<br>-0.16261                        | 4.0827 eV 303.68 nm f=0.0016 <s**2>=0.000</s**2> |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------|
| Excited State 58 -> 60                                                                            | 3: Singlet-A<br>0.69206                                                                      | 4.3941 eV 282.16 nm f=0.0003 <s**2>=0.000</s**2> |
| Excited State<br>50 -> 59<br>55 -> 59<br>57 -> 59                                                 | 4: Singlet-A<br>-0.20303<br>0.16711<br>0.64190                                               | 4.4991 eV 275.58 nm f=0.0003 <s**2>=0.000</s**2> |
| Excited State<br>50 -> 59<br>50 -> 64<br>57 -> 59                                                 | 5: Singlet-A<br>0.60829<br>-0.24155<br>0.21998                                               | 4.5336 eV 273.48 nm f=0.0003 <s**2>=0.000</s**2> |
| Excited State<br>58 -> 61<br>58 -> 63<br>58 -> 65                                                 | 6: Singlet-A<br>0.60595<br>-0.15637<br>0.26306                                               | 4.6880 eV 264.47 nm f=0.0105 <s**2>=0.000</s**2> |
| Excited State<br>55 -> 59<br>56 -> 59<br>58 -> 59<br>58 -> 59<br>58 -> 64                         | 7: Singlet-A<br>-0.20055<br>0.63336<br>0.12014<br>0.13052                                    | 5.0906 eV 243.55 nm f=0.0075 <s**2>=0.000</s**2> |
| Excited State<br>52 -> 60<br>53 -> 59<br>53 -> 60<br>54 -> 59<br>54 -> 60<br>55 -> 59<br>56 -> 59 | 8: Singlet-A<br>0.17162<br>0.47226<br>-0.11771<br>-0.27658<br>-0.22006<br>0.20496<br>0.15029 | 5.2345 eV 236.86 nm f=0.0163 <s**2>=0.000</s**2> |
| Excited State 56 -> 59                                                                            | 9: Singlet-A<br>-0.15438                                                                     | 5.4323 eV 228.23 nm f=0.0066 <s**2>=0.000</s**2> |

| 58 -> 62      | -0.39454      |                                                  |
|---------------|---------------|--------------------------------------------------|
| 58 -> 64      | 0.52624       |                                                  |
| 58 -> 67      | -0.10463      |                                                  |
|               |               |                                                  |
| Excited State | 10: Singlet-A | 5.4967 eV 225.56 nm f=0.0233 <s**2>=0.000</s**2> |
| 55 -> 59      | -0.13197      |                                                  |
| 58 -> 62      | 0.50918       |                                                  |
| 58 -> 64      | 0.37038       |                                                  |
| 58 -> 67      | 0.16466       |                                                  |
|               |               |                                                  |

**Conformation b** (Excited State 8 was selected for population analysis on the basis of their oscillator strength value

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 2.6303 eV 471.36 nm f=0.0003 <S\*\*2>=0.000 56 -> 59 0.11266 58 -> 59 0.69248 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-DFT) = -1187.59043662 Copying the excited state density for this state as the 1-particle RhoCI density.

| Excited State | 2: Singlet-A | 3.9568 eV 313.35 nm f=0.0079 <s**2>=0.000</s**2> |
|---------------|--------------|--------------------------------------------------|
| 52 -> 59      | 0.22245      |                                                  |
| 53 -> 59      | -0.11992     |                                                  |
| 55 -> 59      | 0.18379      |                                                  |
| 57 -> 59      | 0.61522      |                                                  |
| Excited State | 3: Singlet-A | 4.1007 eV 302.35 nm f=0.0098 <s**2>=0.000</s**2> |
| 52 -> 59      | 0.53961      |                                                  |
| 52 -> 64      | -0.14248     |                                                  |
| 53 -> 59      | -0.29958     |                                                  |
| 57 -> 59      | -0.27927     |                                                  |
| Excited State | 4: Singlet-A | 4.5770 eV 270.88 nm f=0.0135 <s**2>=0.000</s**2> |
| 54 -> 59      | 0.13142      |                                                  |
| 55 -> 59      | 0.14761      |                                                  |
| 56 -> 59      | 0.64786      |                                                  |
| 58 -> 59      | -0.11047     |                                                  |
| Excited State | 5: Singlet-A | 4.6818 eV 264.82 nm f=0.0137 <s**2>=0.000</s**2> |
| 50 -> 59      | -0.27231     |                                                  |
| 51 -> 59      | -0.11995     |                                                  |
| 53 -> 61      | -0.14825     |                                                  |
| 54 -> 59      | 0.58217      |                                                  |
| 56 -> 59      | -0.13787     |                                                  |

| Excited State<br>49 -> 59<br>50 -> 59<br>50 -> 64<br>51 -> 59<br>53 -> 59<br>54 -> 59 | 6: Singlet-A<br>0.13655<br>0.50653<br>-0.11925<br>0.22032<br>-0.14978<br>0.30365   | 4.8445 eV 255.93 nm f=0.0095 <s**2>=0.000</s**2> |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------|
| 55 -> 59                                                                              | -0.11110                                                                           |                                                  |
| Excited State<br>58 -> 60<br>58 -> 65<br>58 -> 69                                     | 7: Singlet-A<br>0.60254<br>0.29493<br>-0.10844                                     | 4.8683 eV 254.68 nm f=0.0056 <s**2>=0.000</s**2> |
| Excited State<br>52 -> 59<br>53 -> 59<br>55 -> 59<br>56 -> 59<br>57 -> 59<br>58 -> 61 | 8: Singlet-A<br>-0.23208<br>-0.34996<br>0.48903<br>-0.12687<br>-0.11227<br>0.15774 | 5.0567 eV 245.19 nm f=0.0908 <s**2>=0.000</s**2> |
| Excited State<br>53 -> 59<br>58 -> 61                                                 | 9: Singlet-A<br>0.13908<br>0.66662                                                 | 5.1004 eV 243.09 nm f=0.0097 <s**2>=0.000</s**2> |
| Excited State<br>50 -> 59<br>52 -> 59<br>53 -> 59<br>55 -> 59                         | 10: Singlet-A<br>0.18929<br>0.19564<br>0.45269<br>0.41367                          | 5.1662 eV 239.99 nm f=0.0758 <s**2>=0.000</s**2> |

**Conformation c** (Excited State 10 was selected for population analysis on the basis of their oscillator strength value)

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 2.6306 eV 471.31 nm f=0.0003 <S\*\*2>=0.000 56 -> 59 0.11267 58 -> 59 0.69248 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-DFT) = -1187.59042541 Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: Singlet-A 3.9569 eV 313.34 nm f=0.0079 <S\*\*2>=0.000 52 -> 59 0.22294

| 53 -> 59      | -0.12020     |                                                  |
|---------------|--------------|--------------------------------------------------|
| 55 -> 59      | 0.18381      |                                                  |
| 57 -> 59      | 0.61496      |                                                  |
| Excited State | 3: Singlet-A | 4.1006 eV 302.35 nm f=0.0098 <s**2>=0.000</s**2> |
| 52 -> 59      | 0.53937      |                                                  |
| 52 -> 64      | -0.14242     |                                                  |
| 53 -> 59      | -0.29951     |                                                  |
| 57 -> 59      | -0.27985     |                                                  |
| Excited State | 4: Singlet-A | 4.5772 eV 270.87 nm f=0.0135 <s**2>=0.000</s**2> |
| 54 -> 59      | 0.13168      |                                                  |
| 55 -> 59      | 0.14759      |                                                  |
| 56 -> 59      | 0.64779      |                                                  |
| 58 -> 59      | -0.11046     |                                                  |
| Excited State | 5: Singlet-A | 4.6819 eV 264.82 nm f=0.0137 <s**2>=0.000</s**2> |
| 50 -> 59      | -0.27248     |                                                  |
| 51 -> 59      | -0.12009     |                                                  |
| 53 -> 61      | -0.14818     |                                                  |
| 54 -> 59      | 0.58199      |                                                  |
| 56 -> 59      | -0.13813     |                                                  |
| Excited State | 6: Singlet-A | 4.8445 eV 255.93 nm f=0.0095 <s**2>=0.000</s**2> |
| 49 -> 59      | 0.13639      |                                                  |
| 50 -> 59      | 0.50648      |                                                  |
| 50 -> 64      | -0.11924     |                                                  |
| 51 -> 59      | 0.22038      |                                                  |
| 53 -> 59      | -0.14986     |                                                  |
| 54 -> 59      | 0.30381      |                                                  |
| 55 -> 59      | -0.11079     |                                                  |
| Excited State | 7: Singlet-A | 4.8684 eV 254.67 nm f=0.0056 <s**2>=0.000</s**2> |
| 58 -> 60      | 0.60256      |                                                  |
| 58 -> 65      | 0.29490      |                                                  |
| 58 -> 69      | -0.10843     |                                                  |
| Excited State | 8: Singlet-A | 5.0568 eV 245.18 nm f=0.0908 <s**2>=0.000</s**2> |
| 52 -> 59      | -0.23216     |                                                  |
| 53 -> 59      | -0.34998     |                                                  |
| 55 -> 59      | 0.48876      |                                                  |
| 56 -> 59      | -0.12673     |                                                  |
| 57 -> 59      | -0.11221     |                                                  |
| 58 -> 61      | 0.15843      |                                                  |
| Excited State | 9: Singlet-A | 5.1004 eV 243.09 nm f=0.0097 <s**2>=0.000</s**2> |

| 53 -> 59 | 0.13938 |
|----------|---------|
| 58 -> 61 | 0.66647 |

Excited State 10: Singlet-A 5.1664 eV 239.98 nm f=0.0757 <S\*\*2>=0.000 50 -> 59 0.18921 52 -> 59 0.19554 53 -> 59 0.45253 55 -> 59 0.41397 SavETr: write IOETrn= 770 NScale= 10 NData= 16 NLR=1 NState= 10 LETran= 190.

**Trimolecular Conformation** Methylsulfinate-Nitrophenyl-DMA (Excited State 10 was selected for population analysis on the basis of their oscillator strength value)

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 3.4488 eV 359.50 nm f=0.0013 <S\*\*2>=0.000 82 -> 83 0.69961 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-DFT) = -1475.43672610 Copying the excited state density for this state as the 1-particle RhoCI density.

| Excited State<br>74 -> 83<br>74 -> 87<br>74 -> 88<br>75 -> 83             | 2: Singlet-A<br>0.65670<br>-0.10461<br>0.15239<br>-0.14598             | 4.1123 eV 301.50 nm f=0.0035 <s**2>=0.000</s**2> |
|---------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------|
| Excited State<br>78 -> 83<br>79 -> 83<br>80 -> 83                         | 3: Singlet-A<br>0.57587<br>0.18634<br>-0.32541                         | 4.3106 eV 287.62 nm f=0.0148 <s**2>=0.000</s**2> |
| Excited State<br>72 -> 83<br>76 -> 83<br>78 -> 83<br>80 -> 83<br>81 -> 83 | 4: Singlet-A<br>-0.28721<br>0.14707<br>0.31867<br>0.49076<br>-0.16853  | 4.6445 eV 266.95 nm f=0.0047 <s**2>=0.000</s**2> |
| Excited State<br>72 -> 83<br>75 -> 84<br>76 -> 83<br>78 -> 83<br>80 -> 83 | 5: Singlet-A<br>-0.25375<br>0.17177<br>0.55699<br>-0.14055<br>-0.20048 | 4.7633 eV 260.29 nm f=0.0134 <s**2>=0.000</s**2> |

| Excited State<br>72 -> 83<br>76 -> 83<br>80 -> 83<br>81 -> 83 | 6: Singlet-A<br>0.39816<br>0.23546<br>0.23939<br>0.41680    | 4.8108 eV 257.72 nm f=0.0039 <s**2>=0.000</s**2> |      |
|---------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|------|
| Excited State<br>72 -> 83<br>76 -> 83<br>81 -> 83             | 7: Singlet-A<br>-0.36359<br>-0.24481<br>0.51435             | 4.8202 eV 257.22 nm f=0.0049 <s**2>=0.000</s**2> |      |
| Excited State<br>74 -> 83<br>75 -> 83<br>76 -> 84<br>80 -> 83 | 8: Singlet-A<br>0.13477<br>0.65576<br>-0.10974<br>-0.10129  | 5.1059 eV 242.82 nm f=0.2322 <s**2>=0.000</s**2> |      |
| Excited State<br>78 -> 83<br>79 -> 83<br>80 -> 83             | 9: Singlet-A<br>-0.13040<br>0.66304<br>0.13546              | 5.3744 eV 230.70 nm f=0.0021 <s**2>=0.000</s**2> |      |
| Excited State<br>82 -> 85<br>82 -> 87<br>82 -> 89<br>82 -> 92 | 10: Singlet-A<br>0.46068<br>-0.19820<br>-0.43936<br>0.11025 | 5.4653 eV 226.86 nm f=0.0418 <s**2>=0.000</s**2> |      |
| SavETr: write                                                 | e IOETrn= 770 NS                                            | Scale= 10 NData= 16 NLR=1 NState= 10 LETran=     | 190. |



Optimized structure of EDA with an explicit solvent (DMA) molecule as part of the ensemble.

### 6. Characterization data of reported compounds:

3a

3c

3d



*N*-(4-chlorophenyl)-*N*-hydroxymethanesulfonamide (3a): Off-white solid. Yield: 71 % (Gradient 20 % to 40 % EtOAc in hexanes). Spectra in agreement with the literature.<sup>5</sup> 1H NMR (500 MHz, acetone)  $\delta$  10.25 (s, 1H), 7.53 (d, J = 8.9 Hz, 2H), 7.44 (d, J = 8.9 Hz, 2H), 2.89 (s, 3H). 13C NMR (126 MHz, Acetone)  $\delta$  141.88, 131.81, 128.55, 123.85, 30.74.



*N*-(4-bromophenyl)-*N*-hydroxymethanesulfonamide (3b): Yellow solid. Yield: 75 % (Gradient 20 % to 40 % EtOAc in hexanes). 1H NMR (500 MHz, acetone)  $\delta$  10.26 (s, 1H), 7.61 – 7.58 (d, J = 8.86 Hz, 2H), 7.50 – 7.47 (d, J = 8.85 Hz, 2H), 2.91 (s, 3H). <sup>13</sup>C NMR (126 MHz, Acetone)  $\delta$  142.36, 131.58, 124.15, 119.75, 30.81.



*N*-(4-iodophenyl)-*N*-hydroxymethanesulfonamide (3c): Yellow solid. Yield: 47 % (Gradient 20 % to 40 % EtOAc in hexanes). <sup>1</sup>H NMR (500 MHz, acetone)  $\delta$  10.26 (s, 1H), 7.81 – 7.76 (d, J = 8.83 Hz, 2H), 7.37 – 7.33 (d, J = 8.86 Hz, 2H), 2.90 (s, 3H). <sup>13</sup>C NMR (126 MHz, Acetone)  $\delta$  137.63, 124.27, 90.97, 30.81.



*N*-(3-iodophenyl)-*N*-hydroxymethanesulfonamide (3d): Yellow solid. Yield: 68 % (Gradient 20 % to 40 % EtOAc in hexanes). <sup>1</sup>H NMR (500 MHz, acetone)  $\delta$  10.29 (s, 1H), 7.91 (t, *J* = 1.9 Hz, 1H), 7.68 (m, *J* = 7.9, 1.7, 1.0 Hz, 1H), 7.57 (m, *J* = 8.2, 2.1, 1.0 Hz, 1H), 7.23 (t, *J* = 8.0 Hz, 1H), 2.93 (s, 3H). <sup>13</sup>C NMR (126 MHz, Acetone)  $\delta$  144.27, 135.72, 130.66, 130.39, 121.70, 92.98, 31.07.



*N*-hydroxy-*N*-phenylmethanesulfonamide (3e): White solid. Yield: 61% (Gradient 20 % to 40 % EtOAc in hexanes). Spectra in agreement with literature report.<sup>5</sup> <sup>1</sup>H NMR (500 MHz, acetone)  $\delta$  10.12 (s, 1H), 7.54 (d, *J* =8.4 Hz, 2H), 7.42 (t, *J* = 7.49 Hz, 2H), 7.33 – 7.28 (t, J=7.77 Hz, 1H), 2.87 (s, 3H). <sup>13</sup>C NMR (126 MHz, Acetone)  $\delta$  143.01, 128.51, 126.87, 122.43, 30.60.



3f

*N*-(4-cyanophenyl)-*N*-hydroxymethanesulfonamide (3f): Yellow solid. Yield: 64 % (Gradient 20 % to 40 % EtOAc in hexanes). Spectra in agreement with literature report.<sup>5</sup> <sup>1</sup>H NMR (500 MHz, acetone)  $\delta$  10.46 (s, 1H), 7.86 – 7.80 (d, J=8.77 Hz, H), 7.78 – 7.70 (d, J=8.85 Hz, 2H), 2.96 (s, 3H). <sup>13</sup>C NMR (126 MHz, Acetone)  $\delta$  146.84, 122.05, 118.15, 109.78, 31.55, 28.55.



**N-(4-benzoylphenyl)-N-hydroxymethanesulfonamide (3g):** Off-white solid. Yield: 89 %. 1H NMR (500 MHz, acetone)  $\delta$  10.43 (s, 1H), 7.85(d, J=8.40, 2H), 7.8 (d, J=7.87 Hz, 2H), 7.71 (d, J=8.41 2H), 7.66 (t, J=7.56 Hz 1H), 7.56 (t, J = 7.47 Hz, 2H), 2.96 (s, 3H). 13C NMR (126 MHz, acetone)  $\delta$  194.80, 146.50, 137.61, 135.47, 132.45, 130.40, 129.68, 128.45, 121.37, 31.34.



*N*-hydroxy-*N*-(4-nitrophenyl)methanesulfonamide (3h): Brown solid. Yield: 53 % (Gradient 20 % to 40 % EtOAc in hexanes). 1H NMR (500 MHz, Acetone)  $\delta$  8.50 (d, J = 8.8 Hz, 2H), 8.26 (d, J = 8.9 Hz, 2H), 3.27 (s, 3H). 13C NMR (126 MHz, Acetone)  $\delta$ 151.77, 147.50 129.05, 124.49, 43.06.



*N*-hydroxy-*N*-(3-nitrophenyl)methanesulfonamide (3i): Brown solid. Yield: 57 % (Gradient 20 % to 40 % EtOAc in hexanes). <sup>1</sup>H NMR (500 MHz, acetone)  $\delta$  10.56 (s, 1H), 8.39 (t, *J* = 2.2 Hz, 1H), 8.18 (d, *J* = 8.2 Hz, 1H), 7.96 (d, *J* = 8.2 Hz, 1H), 7.74 (t, *J* = 8.2 Hz, 1H). <sup>13</sup>C NMR (126 MHz, Acetone)  $\delta$  148.46, 144.22, 129.88, 128.09, 121.22, 116.16, 31.31.



*N*-hydroxy-*N*-(p-tolyl)methanesulfonamide (3j): Off-white solid. Yield: 50 % (Gradient 20 % to 40 % EtOAc in hexanes). <sup>1</sup>H NMR (500 MHz, acetone) δ 10.05 (s, 1H), 7.41 (d, J= 8.48 Hz, 2H), 7.22 (d, J=8.48 2H), 2.86 (s, 3H), 2.34 (s, 3H). <sup>13</sup>C NMR (126 MHz, Acetone) δ 140.54, 136.71, 129.01, 122.53, 30.42, 20.04.



3k

3m

*N*-(4-chlorophenyl)-*N*-hydroxymethanesulfonamide (3k): Off-white solid Yield: 32 % (Preparative TLC 5% MeOH in DCM). <sup>1</sup>H NMR (500 MHz, acetone)  $\delta$  8.75 (d, J=8.55 Hz, 2H), 7.66 (d, J= 8.57 Hz, 2H), 2.93 (s, 3H). <sup>13</sup>C NMR (126 MHz, Acetone)  $\delta$  166.23, 146.95, 130.11, 128.53, 121.42, 31.19.



*N*-(4-chlorophenyl)-*N*-hydroxymethanesulfonamide (31): Yellow solid. Yield: 30 % (Gradient 20 % to 40 % diethyl ether in hexanes). Compound enolizes when dissolved. <sup>1</sup>H NMR (500 MHz, acetone) δ 10.39 (s, 1H), 8.06 (d, J= 8.74 Hz, 2H), 7.69 (m, J=8.75 Hz, 2H), 4.17 (q, J = 7.1 Hz, 2H), 2.93 (s, 3H), 1.23 (t, J = 7.1 Hz, 3H). <sup>13</sup>C NMR (126 MHz, Acetone) δ 129.11, 121.42, 60.67, 45.44, 31.40, 13.54.



*N*-(4-chlorophenyl)-*N*-hydroxymethanesulfonamide (3m): Off-white solid Yield: 55 % (Gradient 20 % to 40 % EtOAc in hexanes). <sup>1</sup>H NMR (500 MHz, acetone)  $\delta$  10.22 (s, 1H), 7.59 – 7.54 (m, 2H), 7.22 – 7.17 (m, 2H), 2.90 (s, 3H). <sup>13</sup>C NMR (126 MHz, Acetone)  $\delta$  162.04 (d, J = 244.1 Hz), 139.87 (d, J = 3.0 Hz), 125.32 (d, J = 8.6 Hz), 115.90 (d, J = 23.1 Hz).



*N*-(4-chlorophenyl)-*N*-hydroxymethanesulfonamide (3n): Off-white solid. Yield: 40 % (Gradient 20 % to 40 % EtOAc in hexanes). <sup>1</sup>H NMR (500 MHz, acetone)  $\delta$  10.31 (s, 1H), 7.71 (td, *J* = 7.8, 1.7 Hz, 1H), 7.42 (m, 1H), 7.29 (t, *J* = 8.1, 1H), 7.24 (t, *J* = 8.2, 1H), 3.06 (s, 3H) 13C NMR (126 MHz, Acetone)  $\delta$  158.37 (d, *J* = 251.8 Hz), 131.49 (d, *J* = 10.8 Hz), 130.67 (d, *J* = 8.1 Hz), 126.74, 125.34 (d, *J* = 4.0 Hz), 117.28 (d, *J* = 20.4 Hz).



*N*-(4-acetylphenyl)-*N*-hydroxymethanesulfonamide (30): Off-white solid. Yield: 85 % (Gradient 20 % to 40 % EtOAc in hexanes). <sup>1</sup>H NMR (500 MHz, acetone)  $\delta$  10.34 (s, 1H), 8.03 (d, J=8.75 Hz, 2H), 7.66 (d, J= 8.76 Hz, 2H), 2.93 (s, 3H), 2.60 (s, 3H). <sup>13</sup>C NMR (126 MHz, Acetone)  $\delta$  196.28, 146.80, 135.28, 128.80, 121.46, 31.28, 25.85.



*N*-(4-formylphenyl)-*N*-hydroxymethanesulfonamide (3p): Yellow solid. Yield: 61 % (Gradient 20 % to 40 % EtOAc in hexanes). <sup>1</sup>H NMR (500 MHz, acetone) δ 10.41 (s, 1H), 10.05 (s, 1H), 7.98 (d, J=8.54 Hz, 2H), 7.76 (d, J=8.54 Hz, 2H), 2.95 (s, 3H). <sup>13</sup>C NMR (126 MHz, Acetone) δ 191.14, 134.74, 129.93, 121.81, 31.45.



**3-**(*N*-hydroxymethylsulfonamido)phenyl trifluoromethanesulfonate (**3**q): Off-white solid. Yield: 67 % (Gradient 20 % to 40 % EtOAc in hexanes). <sup>1</sup>H NMR (500 MHz, acetone)  $\delta$  10.87 (s, 1H), 7.69 – 7.61 (m, 3H), 7.40 (m, 1H), 2.95 (s, 3H). <sup>13</sup>C NMR (126 MHz, Acetone)  $\delta$  150.42, 146.03, 123.62, 120.48, 119.81 (q, J = 320.0 Hz), 115.80, 32.18.



3r

*N*-hydroxy-*N*-(4-methoxyphenyl)methanesulfonamide (3r): Off-white solid. Yield: 43 % (Gradient 20 % to 40 % EtOAc in hexanes). <sup>1</sup>H NMR (500 MHz, acetone)  $\delta$  10.03 (s, 1H), 7.47 – 7.44 (d, J=8.79 Hz, 2H), 6.96 (d, J=8.79 Hz, 2H), 3.82 (s, 3H), 2.87 (s, 3H). <sup>13</sup>C NMR (126 MHz, cdcl3)  $\delta$  159.72, 136.56, 125.31, 125.26, 125.19, 114.52, 55.77, 31.27.



*N*-hydroxy-*N*-(2-methyl-1,3-dioxoisoindolin-5-yl)methanesulfonamide (3s): Yellow solid. Yield: 34 % (Gradient 20 % to 40 % EtOAc in hexanes). <sup>1</sup>H NMR (500 MHz, acetone)  $\delta$  10.55 (s, 1H), 7.96 – 7.91 (m, 2H), 7.90 – 7.86 (d, J=8.45 Hz, 1H), 3.11 (s, 3H), 3.00 (s, 3H). <sup>13</sup>C NMR (126 MHz, Acetone)  $\delta$  167.31, 167.29, 148.15, 133.33, 129.90, 126.56, 123.31, 115.66, 31.60, 23.20.



**4-(***N***-hydroxymethylsulfonamido)benzenesulfonamide (3t):** Off-white solid. Yield: 77 % (100 % EtOAc). <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>CN) δ 9.13 (s, 1H), 7.91 (d, J=8.90 Hz, 2H), 7.67 (d, J=8.89, 2H), 5.80 (s, 2H), 2.90 (s, 3H). <sup>13</sup>C NMR (126 MHz, CD<sub>3</sub>CN) δ 127.44, 122.47, 121.92, 117.39, 31.90.



3u

3v

*N*-hydroxy-*N*-(2-((methylsulfonyl)methyl)methanesulfonamide (3u): Off-white solid. Yield: 46 % (Gradient 0% to 20 % acetone in hexanes). <sup>1</sup>H NMR (500 MHz, acetone)  $\delta$  10.20 (s, 1H), 7.81 (d, *J* = 8.2, 1H), 7.66 (d, *J* = 7.8, 1H), 7.58 – 7.49 (t, J=7.6 Hz, 1H), 7.45 (t, *J* = 7.6, 1H), 4.63 (s, 2H), 3.13 (s, 3H), 2.84 (d, 3H). <sup>13</sup>C NMR (126 MHz, Acetone)  $\delta$  141.81, 131.94, 129.58, 128.61, 127.96, 124.75, 55.72, 39.39, 32.18.



**Ethyl 4-**(*N*-hydroxymethylsulfonamido)benzoate (3v): Off-white solid. Yield: 88 % (Gradient 20 % to 40 % EtOAc in hexanes). <sup>1</sup>H NMR (500 MHz, acetone/CHCl<sub>3</sub>)  $\delta$  10.34 (s, 1H), 8.05 (d, J=8.56 Hz, 2H), 7.66 (d, J=8.50 Hz, 2H), 4.36 (q, J = 7.1 Hz, 2H), 1.38 (t, J = 7.1 Hz, 3H). <sup>13</sup>C NMR (126 MHz, Acetone)  $\delta$  165.27, 146.93, 129.79, 128.51, 121.41, 60.69, 31.19, 13.74.



**Butyl 4-**(*N*-hydroxymethylsulfonamido)benzoate (**3**w): Off-white solid. Yield: 91 % (Gradient 20 % to 40 % EtOAc in hexanes). <sup>1</sup>H NMR (500 MHz, acetone/CHCl<sub>3</sub>) δ 8.09 – 8.04 (m, 2H), 7.69 – 7.63 (m, 2H), 4.32 (t, J = 6.6 Hz, 2H), 2.92 (s, 3H), 1.76 (dq, J = 7.9, 6.6 Hz, 2H), 1.49 (h, J = 7.4 Hz, 2H), 0.98 (t, J = 7.4 Hz, 3H). <sup>13</sup>C NMR (126 MHz, Acetone) δ 165.33, 146.96, 129.80, 128.48, 121.44, 64.48, 31.22, 30.65, 19.04, 13.18.



*N*-(4-chlorophenyl)-*N*-hydroxyethanesulfonamide (4a): Off-white solid. Yield: 51 % (Gradient 20 % to 40 % EtOAc in hexanes). Spectra in agreement with literature report.<sup>5</sup> <sup>1</sup>H NMR (500 MHz, acetone)  $\delta$  10.16 (s, 1H), 7.59 – 7.52 (d, J=8.73 Hz, 2H), 7.47 – 7.40 (d, J=8.76 Hz, 2H), 3.19 (q, *J* = 7.5 Hz, 2H), 1.28 (t, *J* = 7.5 Hz, 3H). <sup>13</sup>C NMR (126 MHz, Acetone)  $\delta$  141.75, 131.55, 128.51, 123.68, 39.98, 6.72.



4b

**4**c

**4d** 

4e

*N*-(4-chlorophenyl)-*N*-hydroxy-2-methylpropane-1-sulfonamide (4b): Off-white solid. Yield: 44 % (Gradient 20 % to 40 % EtOAc in hexanes). <sup>1</sup>H NMR (500 MHz, acetone)  $\delta$  10.17 (s, 1H), 7.54 (d, J=8.71, 2H), 7.44 (d, J= 8.70 Hz, 2H), 3.00 (d, J = 6.7 Hz, 2H), 2.22 (sept, J = 13.4, 6.7 Hz, 1H), 1.06 (d, J = 6.8 Hz, 6H). <sup>13</sup>C NMR (126 MHz, Acetone)  $\delta$  141.77, 131.57, 128.52, 123.65, 51.71, 24.15, 21.76.



*N*-(4-chlorophenyl)-*N*-hydroxycyclopropanesulfonamide (4c): Off-white solid. Yield: 82 % (Gradient 20 % to 40 % EtOAc in hexanes). <sup>1</sup>H NMR (500 MHz, acetone)  $\delta$  10.08 (s, 1H), 7.61 – 7.54 (d, J=8.83 Hz, 2H), 7.46 – 7.40 (d, J=8.83 Hz, 2H), 2.66 (m, 1H), 1.06 – 0.96 (m, 2H), 0.99 – 0.85 (m, 2H). <sup>13</sup>C NMR (126 MHz, Acetone)  $\delta$  142.17, 131.66, 128.35, 124.19, 23.39, 3.96.



*N*-(4-chlorophenyl)-*N*-hydroxycyclohexanesulfonamide (4d): Off-white solid Yield: 76 % (Gradient 20 % to 40 % EtOAc in hexanes). <sup>1</sup>H NMR (500 MHz, Acetone)  $\delta$  9.99 (s, 1H), 7.56 (d, J=8.78 Hz, 2H), 7.42(m, J=8.78 Hz, 2H), 3.49 (tt, *J* = 11.9, 3.6 Hz, 1H), 2.07 – 2.01 (m, 1H), 1.86 – 1.76 (m, 2H), 1.64 (dddt, *J* = 12.9, 4.9, 3.2, 1.5 Hz, 1H), 1.52 (qd, *J* = 12.4, 3.3 Hz, 2H), 1.32 (qt, *J* = 12.8, 3.4 Hz, 2H), 1.21 (qt, *J* = 12.8, 3.4 Hz, 1H). <sup>13</sup>C NMR (126 MHz, Acetone)  $\delta$  141.91, 131.07, 128.47, 123.25, 57.47, 26.67, 24.93, 24.78.



*N*-(4-chlorophenyl)-*N*-hydroxy-4-methylbenzenesulfonamide (4e): Off-white solid. Yield: 74 % (Gradient 20 % to 40 % EtOAc in hexanes). Spectra in agreement with literature.<sup>6</sup> <sup>1</sup>H NMR (500 MHz, acetone)  $\delta$  10.23 (s, 1H), 7.43 (d, J=8.38 Hz, 2H), 7.38 – 7.29 (m, 4H), 7.19 (d,

J=8.83 Hz, 2H), 2.42 (s, 3H). <sup>13</sup>C NMR (126 MHz, Acetone) δ 145.04, 141.93, 131.84, 129.95, 129.57, 129.14, 128.19, 124.15, 20.70.



4f

4g

4h

*N*-(4-chlorophenyl)-*N*-hydroxybenzenesulfonamide (4f): Off-white solid. Yield: 49 % (Gradient 20 % to 40 % EtOAc in hexanes). Spectra in agreement with literature.<sup>6</sup> <sup>1</sup>H NMR (500 MHz, acetone)  $\delta$  10.30 (s, 1H), 7.73 (m, Hz, 1H), 7.60 – 7.52 (m, 4H), 7.36 – 7.30 (d, J=8.80 Hz, 2H), 7.22 – 7.16 (d, J=8.80 Hz, 2H). <sup>13</sup>C NMR (126 MHz, Acetone)  $\delta$  141.76, 134.04, 132.78, 131.99, 129.52, 128.62, 128.25, 124.19.



**4-chloro-***N***-(4-chlorophenyl)**-*N***-hydroxybenzenesulfonamide (4g):** Off-white solid. Yield: 54 % (Gradient 20 % to 40 % EtOAc in hexanes). Spectra in agreement with literature.5 1H NMR (500 MHz, acetone)  $\delta$  10.26 (s, 1H), 7.54 – 7.47 (m, 4H), 7.29 – 7.24 (d, 2H), 7.16 – 7.12 (d, 2H).13C NMR (126 MHz, Acetone)  $\delta$  141.73, 140.60, 132.78, 131.64, 131.56, 129.20, 129.18, 128.73, 124.53.



*N*-(4-chlorophenyl)-*N*-hydroxy-3-(trifluoromethyl)benzenesulfonamide (4h): Off-white solid. Yield: 38 % (Gradient 20 % to 40 % EtOAc in hexanes). <sup>1</sup>H NMR (500 MHz, Acetone)  $\delta$  10.57 (s, 3H), 8.12 (d, J=7.56 Hz 1H), 7.85 (m, 2H), 7.75 (bs,1H), 7.37 (d, J= 8.86 Hz, 2H), 7.22 – 7.16 (d, J=8.83 Hz, 2H). <sup>13</sup>C NMR (126 MHz, Acetone)  $\delta$  141.29, 133.70, 133.21, 132.49, 130.70, 130.67, 130.18, 128.45, 126.07, 126.04, 124.22.

# 7. References

- 1. H.-S. Zhou, L.-B. Hu, H. Zhang, W.-X. Shan, Y. Wang, X. Li, T. Liu, J. Zhao, Q.-D. You and Z.-Y. Jiang, *J. Med. Chem.*, 2020, **63**, 11149-11168.
- 2. H. J. Najer, Michel, *Chemisches Zentralblatt*, 1959, **130**, 3797-3797.
- 3. L.-C. Wang, B. Chen and X.-F. Wu, *Angew. Chem. Int. Ed.*, 2022, **61**, e202203797.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Journal*, 2016.
- 5. E. Y. Belyaev, L. M. Gornostaev and G. A. Suboch, *Khim. Tekhnol. Polim.*, 1975, **4**, 60.
- 6. H. Goljani, Z. Tavakkoli, A. Sadatnabi, M. Masoudi-khoram and D. Nematollahi, *Scientific Reports*, 2020, **10**, 17904.





- 2100



<sup>1</sup>H NMR of 3b, acetone, 500 MHz



## <sup>13</sup>C NMR of 3b, acetone, 126 MHz



<sup>1</sup>H NMR of 3c, acetone, 500 MHz







Page **27** of **87** 





<sup>13</sup>C NMR of 3d, acetone, 126 MHz

Page **29** of **87** 

<sup>1</sup>H NMR of 3e, acetone, 500 MHz





<sup>1</sup>H NMR of 3f, acetone, 500 MHz





# <sup>13</sup>C NMR of 3f, acetone, 126 MHz



Page **34** of **87** 










Page **37** of **87** 



#### <sup>13</sup>C NMR of 3i, acetone, 126 MHz



```
<sup>1</sup>H NMR of 3j, acetone, 500 MHz
```



Page **40** of **87** 





Page **41** of **87** 





Page **42** of **87** 





## <sup>1</sup>H NMR of 3l, acetone, 500 MHz



Page **44** of **87** 



Page **45** of **87** 

#### <sup>13</sup>C NMR of 31, acetone, 126 MHz

<sup>1</sup>H NMR of 3m, acetone, 500 MHz



Page **46** of **87** 







#### <sup>19</sup>F NMR of 3m, acetone, 471 MHz

Page **48** of **87** 

<sup>1</sup>H NMR of 3n, acetone, 500 MHz



Page **49** of **87** 





<sup>1</sup>H NMR of 30, acetone, 500 MHz



# <sup>13</sup>C NMR of 30, acetone, 126 MHz

|          |             |                                        |          |                      |          |                     |    |       |       |        | CD3)2CO                                 |      | - 14000 |
|----------|-------------|----------------------------------------|----------|----------------------|----------|---------------------|----|-------|-------|--------|-----------------------------------------|------|---------|
| - 206.47 | - 197.09    |                                        | - 147.61 | - 136.09<br>- 129.61 | - 122.27 |                     |    |       |       | 6U C C | - 25.09<br>- 29.84 ((<br>- <b>26.71</b> |      | - 13000 |
| ļ        | Ι           |                                        | I        |                      | I        |                     |    |       |       | I      |                                         |      | - 12000 |
|          |             |                                        |          |                      |          |                     |    |       |       |        |                                         |      | - 11000 |
| 1        |             |                                        |          |                      | I        |                     |    |       |       |        |                                         |      | - 10000 |
|          |             |                                        |          |                      |          |                     |    |       |       |        |                                         |      | - 9000  |
|          |             |                                        |          |                      |          |                     |    |       |       |        |                                         |      | - 8000  |
|          |             |                                        |          |                      |          |                     |    |       |       |        |                                         |      | - 7000  |
|          |             |                                        |          |                      |          |                     |    |       |       |        |                                         |      | - 6000  |
|          |             |                                        |          |                      |          |                     |    |       |       |        |                                         |      | - 5000  |
|          |             |                                        |          |                      |          |                     |    |       |       |        |                                         |      | - 4000  |
|          |             |                                        |          |                      |          |                     |    |       |       |        |                                         |      | - 3000  |
|          |             |                                        |          |                      |          |                     |    |       |       |        |                                         |      | - 2000  |
|          |             |                                        |          |                      |          |                     |    |       |       |        |                                         |      | - 1000  |
|          |             | ······································ |          |                      |          |                     |    |       |       |        |                                         |      | -0      |
|          |             |                                        |          |                      |          |                     |    |       |       |        |                                         |      | 1000    |
|          | 200 190 180 | 170 160                                | 150 14   | 0 130                | 120      | 110 100<br>f1 (ppm) | 90 | 80 70 | 60 50 | ) 40   | 30 20                                   | 10 0 |         |







<sup>13</sup>C NMR of 3p, acetone, 126 MHz

Page **55** of **87** 

# <sup>1</sup>H NMR of 3q, acetone, 500 MHz



<sup>13</sup>C NMR of 3q, acetone, 126 MHz







<sup>1</sup>H NMR of 3r, acetone, 500 MHz





Page **60** of **87** 

<sup>13</sup>C NMR of 3r, acetone, 126 MHz

<sup>1</sup>H NMR of 3s, acetone, 500 MHz



Page **61** of **87** 









Page **63** of **87** 

<sup>13</sup>C NMR of 3t, MeCN/acetone, 126 MHz



<sup>1</sup>H NMR of 3u, acetone, 500 MHz





Page **66** of **87** 

<sup>1</sup>H NMR of 3v, acetone, 500 MHz



Page **67** of **87** 



<sup>13</sup>C NMR of 3v, acetone, 126 MHz

Page **68** of **87** 

## <sup>1</sup>H NMR of 3w, acetone, 500 MHz





<sup>13</sup>C NMR of 3w, acetone, 126 MHz

Page **70** of **87** 

<sup>1</sup>H NMR of 4a, acetone, 500 MHz





<sup>13</sup>C NMR of 4a, acetone, 126 MHz

Page **72** of **87**
<sup>1</sup>H NMR of 4b, acetone, 500 MHz



Page **73** of **87** 



<sup>13</sup>C NMR of 4b, acetone, 126 MHz

Page **74** of **87** 

<sup>1</sup>H NMR of 4c, acetone, 500 MHz



Page **75** of **87** 



<sup>1</sup>H NMR of 4d, acetone, 500 MHz



Page **77** of **87** 



<sup>13</sup>C NMR of 4d, acetone, 126 MHz

Page **78** of **87** 

<sup>1</sup>H NMR of 4e, acetone, 500 MHz



Page **79** of **87** 

<sup>13</sup>C NMR of 4e, acetone, 126 MHz



<sup>1</sup>H NMR of 4f, acetone, 500 MHz



Page **81** of **87** 





<sup>13</sup>C NMR of 4g, acetone/CDCl<sub>3</sub>, 126 MHz



<sup>1</sup>H NMR of 4h, acetone, 500 MHz



<sup>13</sup>C NMR of 4h, acetone, 126 MHz



Page **86** of **87** 



## Page **87** of **87**