Supplementary Information for

Atroposelective Brominations to Access Chiral Biaryl Scaffolds Using High-Valent Pd-Catalysis

Sif T. Linde, Vasco Corti, Vibeke H. Lauridsen, Johannes N. Lamhauge, Karl Anker Jørgensen, and Nomaan M. Rezayee*

Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark

* Corresponding author. E-mail: nmr@chem.au.dk

Table of Contents

1. General Methods S3
2. Preparation of Starting Materials S4
2.1 Synthesis of aldehydes S4
2.2 Characterization of aldehydes S7
3. Optimization S14
4. General procedures for the atroposelective C-H functionalization S17
4.A Atroposelective bromination employing $10 \mathrm{~mol} \% \mathrm{Pd}$ S17
4.B Atroposelective bromination employing $1 \mathrm{~mol} \% \mathrm{Pd}$ S17
4.C Telescoping halogenation S17
4.1 Characterization of atropisomers S18
5. Procedures for Derivations of Products S32
6. Deuterium Experiment S42
7. Racemization Studies S45
8. Crystallographic Data S48
9. Computational Studies S51
10. NMR Spectra S58
11. UPC ${ }^{2}$ Traces S160

1. General Methods

NMR spectra were acquired on a Bruker AVANCE III HD spectrometer operating at 400 MHz for ${ }^{1} \mathrm{H}, 100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}, 377 \mathrm{MHz}$ for ${ }^{19} \mathrm{~F}$, and 162 MHz for ${ }^{31} \mathrm{P}$. Chemical shifts (δ) are reported in ppm relative to residual solvent signals $\left(\mathrm{CHCl}_{3}, 7.26 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H} \mathrm{NMR}$ and $\mathrm{CDCl}_{3}, 77.16 \mathrm{ppm}$ for ${ }^{13} \mathrm{C} \mathrm{NMR;} \mathrm{CH}_{2} \mathrm{Cl}_{2}, 5.32 \mathrm{ppm}$ for ${ }^{1} \mathrm{H} \mathrm{NMR}$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 53.84 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$. Chemical shifts (δ) for ${ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR were collected in broad band proton decoupled mode, unless otherwise noted, and are reported in ppm. The following abbreviations are used to indicate the multiplicity in NMR spectra: s, singlet; d, doublet; t, triplet; q, quartet; p, pentet; hept, heptet; $d d$, double doublet; ddd, double double doublet; dt , double triplet; td , triple doublet; m , multiplet. ${ }^{13} \mathrm{C}$ NMR spectra were acquired in a broad band decoupled mode unless otherwise noted. Mass spectra were recorded on a Bruker MicroTOF-Q High-Performance LC-MS system using electrospray (ES ${ }^{+}$) ionization. Thin layer chromatography (TLC) was performed using pre-coated aluminium-backed plates (Merck Kieselgel $60 \mathrm{~F}_{254}$) and visualized by UV radiation, or KMnO_{4} stain. For flash chromatography (FC) Sigma-Aldrich ${ }^{\circledR}$ Silica gel highpurity grade (9385) ($\mathrm{SiO}_{2} 60,230-400$ mesh) were used. Optical rotations were measured on a Bellingham + Stanley ADP440+ polarimeter, $[\alpha]$ values are given in deg. $\mathrm{cm}^{3} \cdot \mathrm{~g}^{-1} \cdot \mathrm{dm}^{-1}$; concentration c in $\mathrm{g} \cdot(100 \mathrm{~mL})^{-1}$. The enantiomeric excess (ee) of the products was determined by chiral stationary phase Waters ACQUITY UPC ${ }^{2}$ (Daicel Chiralpak). Racemic samples for UPC ${ }^{2}$ analysis were prepared using \pm tert-butylglycine (Fluorochem) as TDG. Absolute configuration was determined using single crystal X-ray crystallography of $3 \mathbf{c}$ and assigned in analogy. The analyzed single crystal was resubjected to UPC² conditions to verify correct assignment of major and minor enantiomers. Regioselectivity in the tandem reaction was determined using single crystal X-ray crystallography of $\mathbf{6 p}$.

2. Preparation of Starting Materials

2.1 Synthesis of aldehydes

Figure S1. Overview of aldehydes used in manuscript.
The aldehydes were prepared according to known literature procedures and were stored at $5^{\circ} \mathrm{C}$.

Aldehyde	Characterization	Preparation Method
$\mathbf{1 a}$	Ref [1]	Procedure 1
$\mathbf{1 b}$	See below	Procedure 1
$\mathbf{1 \mathbf { c }}$	See below	Procedure 1
$\mathbf{1 d}$	See below	Procedure 1
$\mathbf{1 e}$	Commercially	Procedure 1
	available	
$\mathbf{1 f}$	Ref [1]	Procedure 2
$\mathbf{1 g}$	See below	Procedure 1
$\mathbf{1 h}$	See below	Procedure 4
$\mathbf{1 i}$	See below	Procedure 4
$\mathbf{1 j}$	See below	Procedure 4

[^0]| $\mathbf{1 k}$ | See below | Procedure 4 |
| :---: | :---: | :---: |
| $\mathbf{1 l}$ | Ref [1] | Procedure 1 |
| $\mathbf{1 m}$ | See below | Procedure 1 |
| $\mathbf{1 n}$ | See below | Procedure 1 |
| $\mathbf{1 0}$ | See below | Procedure 1 |
| $\mathbf{1 p}$ | See below | Procedure 1 |
| $\mathbf{1 q}$ | See below | Procedure 1 |
| $\mathbf{1 q}$ | See below | Procedure 1 |
| $\mathbf{1 \mathbf { n }}$ | See below | Procedure 1 |
| $\mathbf{1 t}$ | See below | Procedure 1 |
| $\mathbf{1 \mathbf { q }}$ | See below | Procedure 1 |
| $\mathbf{1 u}$ | See below | Procedure 3 |
| $\mathbf{1 \mathbf { v }}$ | See below | Procedure 4 |
| $\mathbf{1 w}$ | See below | Procedure 1 |
| $\mathbf{1 \mathbf { n }}$ | See below | Procedure 2 |
| $\mathbf{1 \mathbf { y }}$ | See below | Procedure 1 |
| $\mathbf{1 z}$ | See below | Procedure 4 |
| $\mathbf{1 b a}$ | See below | Procedure 1 |
| $\mathbf{1 b b}$ | See below | Procedure 1 |
| $\mathbf{1 b c}$ | See below | Procedure 1 |
| $\mathbf{1 b d}$ | See below | Procedure 1 |

Table S1. Characterization and preparation of the aldehydes.

Procedure 1

A round bottom flask was charged with arylbromide ($4 \mathrm{mmol}, 1$ equiv), boronic acid ($4.4 \mathrm{mmol}, 1.1$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($0.12 \mathrm{mmol}, 3 \mathrm{~mol} \%$), magnetic stir bar, and $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(8 \mathrm{mmol}, 2\right.$ equiv). Then $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL}), \mathrm{MeOH}(4$ mL), and DME (10 mL) was added, and the flask was capped with a septum. The resulting solution was sparged with $\operatorname{Ar}\left(30-60 \mathrm{sec}\right.$.) and a balloon of Ar was placed on top. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ overnight. After cooling to rt, the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20$ mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and the residue was purified by silica gel column chromatography. ${ }^{[1]}$

Procedure 2

A round bottom flask was charged with arylbromide ($1.8 \mathrm{mmol}, 1.1$ equiv), boronic acid ($2.0 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.08 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, KF ($5 \mathrm{mmol}, 3$ equiv), magnetic stir bar, and solvent ($10: 1,1,4$-dioxane to $\mathrm{H}_{2} \mathrm{O}, 5 \mathrm{~mL}$). The resulting solution was sparged with $\operatorname{Ar}(30-60 \mathrm{sec}$.) and a balloon of Ar was placed on top. The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ overnight. After cooling to rt , the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$, diluted, and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and the residue was purified by FC. ${ }^{[2]}$

[^1]
Procedure 3: ortho-Chlorination of aldehyde to form 1u

To an $8-\mathrm{mL}$ vial, equipped with a stir bar, was added the aldehyde ($0.10 \mathrm{mmol}, 1$ equiv), TDG (0.030 mmol , 0.3 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}\left(0.010 \mathrm{mmol}, 0.1\right.$ equiv), $\mathrm{NCS}\left(0.11, \mathrm{mmol}, 1.1\right.$ equiv), $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ ($0.010 \mathrm{mmol}, 0.1$ equiv), DCE (1 mL) and TFA ($1.0 \mathrm{mmol}, 10$ equiv). The vial was purged with Ar , capped and heated at $60^{\circ} \mathrm{C}$ overnight. Upon completion of the reaction, the resulting solution was directly loaded onto a column and purified by FC using the described stationery and eluent system.

Procedure 4: Procedure to form 1h, 1i, 1j, 1k, 1w, $1 z$.

Scheme S1. Overview of Procedure 4

The desired compounds are formed in a two-step-sequence. First the corresponding phenol is formed employing Procedure 1. The formed phenol compound ($0.55 \mathrm{mmol}, 1$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.8 mL), and $\mathrm{Et}_{3} \mathrm{~N}$ ($1.54 \mathrm{mmol}, 2.8$ equiv) was added and stirred for 10 min . After cooling to $0^{\circ} \mathrm{C}$, either $\mathrm{TsCl}(0.55$ $\mathrm{mmol}, 1$ equiv), MsCl ($0.55 \mathrm{mmol}, 1$ equiv), or $\mathrm{Tf}_{2} \mathrm{O}$ ($0.80 \mathrm{mmol}, 1.45$ equiv) was added dropwise over 20 min . After the addition was complete, the mixture was allowed to warm to rt and stirred overnight. The resulting solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water three times. The organic phase dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and the residue was purified by FC. ${ }^{[3]}$

[^2]
2.2 Characterization of aldehydes

2'-Ethyl-[1,1'-biphenyl]-2-carbaldehyde (1b).

The title compound was prepared employing Procedure 1 and isolated by FC pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$ as an eluent to afford the title compound as a colorless oil (447.6 mg , 2.129 mmol, 71\% yield).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 9.73(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.99$ (ddd, $\left.J=7.8,1.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 7.65 (td, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{td}, \mathrm{J}=7.1,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 192.4,145.8,142.8,137.4,134.4,133.9,131.5,130.7,128.8,128.8,128.2$, 127.3, 125.8, 26.8, 15.3.

HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 211.1118; found: 211.1115.

2'-iso-Propyl-4-methoxy-[1,1'-biphenyl]-2-carbaldehyde (1c).

The title compound was prepared employing Procedure 1 and isolated by FC using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 2:1 as an eluent to afford the title compound as a white, amorphous solid ($263 \mathrm{mg}, 1.034 \mathrm{mmol}, 94 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.71(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.25$ $-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.10(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{hept}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.07$ (s, 6H).
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.2,159.2,147.6,138.7,136.0,135.0,132.3,130.9$, 128.7, 125.7, 125.4, 121.4, 109.3, 55.6, 30.1, 24.5, 23.5.

HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 277.1199; found: 277.1198.

2'-Ethyl-4-fluoro-[1,1'-biphenyl]-2-carbaldehyde (1d).

The title compound was prepared employing Procedure 1 and isolated by FC using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 1$ as an eluent to afford the title compound as a yellow oil ($712 \mathrm{mg}, 3.12$ mmol, 78\% yield).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 9.34(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{dt}, J=9.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-$ $7.37(\mathrm{~m}, 4 \mathrm{H}), 7.30(\mathrm{td}, \mathrm{J}=7.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 191.1(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}), 162.6(\mathrm{~d}, \mathrm{~J}=248.2 \mathrm{~Hz}), 143.0,141.9$ $(\mathrm{d}, J=3.3 \mathrm{~Hz}), 136.4,136.1(\mathrm{~d}, J=6.3 \mathrm{~Hz}) 133.5(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 131.0,129.2,129.0,126.1,121.0(\mathrm{~d}, J=22.1$ $\mathrm{Hz}), 113.3$ (d, J = 22.2 Hz), 26.8, 15.3.
${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-113.13$
HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FONa}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}{ }^{+}\right.$; 251.0843 found: 251.0840.
2'-Chloro-[1,1'-biphenyl]-2-carbaldehyde (1g).

The title compound was prepared employing Procedure 1 and isolated by FC using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /pentane 1:1 as an eluent to afford the title compound as an orange, amorphous solid ($410.9 \mathrm{mg}, 1.896 \mathrm{mmol}, 95 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{tt}, J=7.5,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.33(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 191.7,143.0,137.3,134.2,134.1,133.8,132.1$ 131.4, 130.1, 129.9, 128.9, 127.7, 127.3.

HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 239.0234 ;$ found: 239.0240.

6-Formyl-3'-methyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (1h).

The title compound was prepared employing Procedure 4 and isolated by FC using a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /pentane gradient going from 1:1 to 3:1 as an eluent to afford the title compound as a colorless oil ($370 \mathrm{mg}, 1.00 \mathrm{mmol},>99 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 9.59(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.74$ (dd, J = 8.1, $1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.54 (td, J = 8.0, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.25-7.17$ (m, 4H), $7.14-7.09$ (m, $2 \mathrm{H}), 6.88-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.71-6.69(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 191.4,147.5,145.7,139.4,138.1,136.3,132.6,131.9,131.3,130.0,129.3$, 129.1, 128.6, 128.4, 128.3, 128.2, 126.2, 21.8, 21.5.

HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 367.0999$; found: 367.0996 .

6-Formyl-3'-iso-propyl-[1,1'-biphenyl]-2-yl methanesulfonate (1i).

The title compound was prepared employing Procedure 4 and isolated by FC using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an eluent to afford the title compound as a yellow oil ($161 \mathrm{mg}, 0.56 \mathrm{mmol}$, 92\% yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.79(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=8.1$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dt}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{dt}, J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{hept}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H})$, 1.28 (d, J = $6.9 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.2,149.5,147.1,139.1,136.0,131.5,129.4,129.2,128.8,128.7,128.6$, 127.2, 126.4, 38.3, 34.2, 24.3 - 24.0 (m, 2C).

HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 341.0818; found: 341.0811.
6-Formyl-3'-iso-propyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (1j).

The title compound was prepared employing Procedure 4 and isolated by FC using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an eluent to afford the title compound as a colorless oil ($213 \mathrm{mg}, 0.54 \mathrm{mmol}$, 98\% yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.65(\mathrm{~s}, 1 \mathrm{H}), 7.94$ (dd, $J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.75 (dd, J = 8.1, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{t}, \mathrm{J}$ $=1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $6.79(\mathrm{dt}, J=7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.87$ (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.27-$
1.22 ($\mathrm{m}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz CDCl 3) $\delta 191.5,148.8,147.1,145.1,139.5,136.1,132.6,131.0,129.7,129.4,128.9$, 128.8, 128.4, 128.1, 128.1, 126.4, 126.2, 34.1, 24.2 - 23.9 (m, 2C), 21.8

HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 395.1312$; found: 395.1322 .

3'-(tert-butyl)-6-formyl-[1,1'-biphenyl]-2-yl methanesulfonate (1k).

The title compound was prepared employing Procedure 4 and isolated by FC using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an eluent to afford the title compound as a colorless oil ($173.7 \mathrm{mg}, 0.42 \mathrm{mmol}$, 77\% yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.79(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ (dd, J=8.1, 1.3 Hz, 1H), 7.56 (td, $J=7.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ (ddd, $J=8.0,2.0,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.46 - 7.41 (m, 2H), 7.23 - 7.19 (m, 1H), 2.48 (s, 3H), 1.35 (s, 9H).
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.2,151.8,147.2,139.3,136.0,131.2,129.2,128.8,128.5,128.4,128.4$, 126.4, 125.9, 38.2, 35.0, 31.4.

HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 355.0975 ; found: 355.0982.

1-(3-Methylphenyl)-2-naphthaldehyde (1m).

The title compound was prepared employing Procedure 1 and isolated by FC using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 1$ as an eluent to afford the title compound as a yellow oil (289 mg , 1.17 mmol , 59% yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.87(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.67 (d, J = 8.6 Hz, 1H), 7.63 (ddd, J = 8.1, 6.8, 1.3 Hz, 1H), $7.50-7.41$ (m, 2H), 7.36 (d, J $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 192.9,147.2,138.5,136.5,135.5,133.0,132.2,131.7,129.4,129.1,128.6$, 128.6, 128.5, 128.2, 127.2, 122.3, 21.6.

HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 269.0937; found: 269.0929.

1-(3-iso-Propylphenyl)-2-naphthaldehyde (1n).

The title compound was prepared employing Procedure 1 and isolated by FC using 2\% EtOAc in pentane as an eluent to afford the title compound as a yellow oil ($488 \mathrm{mg}, 1.78$ mmol, 89\% yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 9.87(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.93$ $(\mathrm{m}, 2 \mathrm{H}), 7.68(\mathrm{dq}, J=8.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{ddd}, J=8.2,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}$, $2 \mathrm{H}), 7.41(\mathrm{dt}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dt}, J=7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.00$ (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.30 ($\mathrm{d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CDCl_{3}) $\delta 193.1,149.1,147.2,136.2,135.2,132.6,131.3,129.4,128.9,128.7,128.3$, 128.3, 128.0, 126.9, 126.5, 122.2, 34.2, 24.2, 24.1.

HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NaO}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: 297.1250; found: 297.1253.

1-(3-tert-Butylphenyl)-2-naphthaldehyde (10).

The title compound was prepared employing Procedure 1 and isolated by FC 2\% EtOAc in pentane as an eluent to afford the title compound as a white, amorphous solid (412 mg, 1.43 mmol, 71\% yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.89(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.6 \mathrm{~Hz} 2 \mathrm{H})$, $7.69(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62$ (ddd, $J=8.1,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dt}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dt}, J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.2,151.4,147.4,136.3,134.8,132.7,131.4,128.9,128.4,128.3,128.0$, 128.0, 127.0, 125.3, 122.3, 35.0, 31.5

HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NaO}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: 311.1406; found: 311.1405.

1-(2,2-Difluorobenzo[d][1,3]dioxol-4-yl)-2-naphthaldehyde (1p).

The title compound was prepared employing Procedure 1 to couple 1-(pinacol boronate)-2-naphthaldehyde and 4-bromo-2,2-difluoro-1,3-benzodioxole and isolated by FC pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$ as an eluent to afford the title compound as a white, amorphous solid ($153 \mathrm{mg}, 0.49 \mathrm{mmol}, 49 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 9.94(\mathrm{~s}, 1 \mathrm{H}), 8.10-7.98(\mathrm{~m}, 3 \mathrm{H}), 7.69(\mathrm{ddd}, J=8.2,6.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.62$ $(\mathrm{m}, 1 \mathrm{H}), 7.55(\mathrm{ddd}, J=8.4,6.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{dd}, J=6.2,2.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 191.6,144.1,142.9,137.9,136.6,132.0,131.9,131.8(\mathrm{t}, \mathrm{J} 255.3 \mathrm{~Hz}), 130.1$, 129.6, 128.9, 128.0, 127.4, 127.0, 124.3, 122.7, 118.3, 110.4.
${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta-50.19(\mathrm{~d}, J=95.8 \mathrm{~Hz}),-50.55(\mathrm{~d}, J=95.8 \mathrm{~Hz})$.
HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 335.0490$; found: 335.0494.
3-Fluoro-2'-iso-propyl-[1,1'-biphenyl]-2-carbaldehyde (1q).

The title compound was prepared employing Procedure 1 and isolated by FC using $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane 2:1 as an eluent to afford the title compound as a yellow oil ($854 \mathrm{mg}, 3.53$ mmol, 88% yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.87(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{td}, J=8.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 2 \mathrm{H})$, $7.25-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.71$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.14-1.09(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 189.2(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 162.5(\mathrm{~d}, \mathrm{~J}=263.3 \mathrm{~Hz}), 146.9,146.9,136.1(\mathrm{~d}, \mathrm{~J}=2.3$ $\mathrm{Hz}), 134.5(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}), 129.8,129.0,127.1(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 125.8,125.6,123.1(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 116.0(\mathrm{~d}, J=$ $21.3 \mathrm{~Hz}), 30.3,24.6,23.4$.
${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-116.10.
HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 265.0999; found: 265.0999.

2'-Ethyl-3,6-difluoro-[1,1'-biphenyl]-2-carbaldehyde (1r).

The title compound was prepared employing Procedure 1 and isolated by FC using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 2:1 as an eluent to afford the title compound as a colorless, amorphous solid ($136 \mathrm{mg}, 0.552 \mathrm{mmol}, 28 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 9.79(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (td, J = 9.3, 4.2 Hz, 1H), $7.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 188.3$ ($\mathrm{dd}, \mathrm{J}=2.7,1.9 \mathrm{~Hz}$), 159.0 ($\mathrm{dd}, \mathrm{J}=258.6,2.4 \mathrm{~Hz}$), 156.0 ($\mathrm{d}, \mathrm{J}=241.9$, $2.8 \mathrm{~Hz}), 143.2,132.6(\mathrm{dd}, J=20.9,1.5 \mathrm{~Hz}), 130.5,130.2(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}), 129.6,128.9,126.2,124.0(\mathrm{dd}, J=8.4$, $2.5 \mathrm{~Hz}), 122.2(\mathrm{dd}, J=26.3,10.1 \mathrm{~Hz}), 117.5(\mathrm{dd}, J=24.0,8.2 \mathrm{~Hz}), 26.76,14.85$.
${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-118.73$ (d, $J=18.2 \mathrm{~Hz}$), -122.41 (d, $J=18.2 \mathrm{~Hz}$).
HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{ONa}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: 269.0748; found: 269.0748.
2'-Ethyl-3-fluoro-[1,1'-biphenyl]-2-carbaldehyde (1s).

The title compound was prepared employing Procedure 1 and isolated by FC using a pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient 2:1 to 1:1 as eluent to afford the title compound as a beige oil ($855 \mathrm{mg}, 3.75 \mathrm{mmol}, 94 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.85(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{ddd}, \mathrm{J}=8.4,7.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{td}, \mathrm{J}=$ $7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{td}, J=7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 1 \mathrm{H})$, 7.13-7.08 (m, 2H), 2.51-2.33 (m, 2H), $1.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 189.3(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 162.5(\mathrm{~d}, \mathrm{~J}=263.4 \mathrm{~Hz}), 146.7,142.0,136.8(\mathrm{~d}, \mathrm{~J}=2.3$ $\mathrm{Hz}), 134.6(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}), 129.9,128.8,128.6,127.0(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 125.8,123.0(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}), 116.0(\mathrm{~d}, J=$ 21.3 Hz), 26.4, 15.1.
${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-116.10.
HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{FO}^{+}[\mathrm{M}+\mathrm{H}]^{+} ; 229.1023$ found: 229.1021.

2'-Chloro-3-fluoro-[1,1'-biphenyl]-2-carbaldehyde (1t).

The title compound was prepared employing Procedure 1 and isolated by FC using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 1$ as an eluent to afford the title compound as a pink, amorphous solid ($339 \mathrm{mg}, 1.445 \mathrm{mmol}, 96 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 10.02(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{ddd}, \mathrm{J}=8.4,7.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.45$ (m, 1H), $7.42-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 188.3(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 163.6(\mathrm{~d}, J=250.1 \mathrm{~Hz}), 143.3(\mathrm{~d}, \mathrm{~J}$ $=1.7 \mathrm{~Hz}), 137.6(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 135.3(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 133.3,131.3,130.0,129.8,127.5(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 127.3$, 123.1 (d, J = 7.2 Hz), 116.9 ($\mathrm{d}, \mathrm{J}=21.4 \mathrm{~Hz}$).
${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ-118.57.
HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClFONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 257.0140, 259.0111; found: 257.0134, 259.0105.

3-Fluoro-[1,1':2', $1^{\prime \prime}$-terphenyl]-2-carbaldehyde (1 $\boldsymbol{1}$).

The title compound was prepared employing Procedure 1 and isolated by FC using heptane/EtOAc 39:1 as an eluent to afford the title compound as a white amorphous solid ($1072.0 \mathrm{mg}, 3.881 \mathrm{mmol}, 97 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 99.85(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.35$ $-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.00(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 188.8(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 162.7(\mathrm{~d}, J=262.2 \mathrm{~Hz}), 146.4$, $141.6,140.4,136.4$ (d, J = 2.5 Hz), 134.3 (d, $J=10.3 \mathrm{~Hz}$), 130.8, 130.3, 129.8, 128.9, $128.2,128.0(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 127.5,127.1,122.9(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 115.7(\mathrm{~d}, J=21.3 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-116.99$ (dd, $J=10.9,5.5 \mathrm{~Hz}$).
HRMS (ESI+) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{FO}+[\mathrm{M}+\mathrm{H}]+: 277.1023$; found: 277.1028.
3-Chloro-2'-ethyl-[1,1'-biphenyl]-2-carbaldehyde (1u).

The title compound was prepared employing Procedure 3 and isolated by FC using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 5: 1$ as an eluent to afford the title compound as a yellow oil ($84 \mathrm{mg}, 0.34$ mmol, 69\% yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 10.04(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.31$ $(\mathrm{m}, 2 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.32(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}$, 3H).
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 190.9,146.4,142.2,138.0,135.6,133.3,132.0,130.6,130.5,129.9,128.7$, 128.7, 125.9, 26.6, 15.1.

HRMS (ESI+) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 267.0547; found: 267.0551 .

2-Formyl-2'-iso-propyl-[1,1'-biphenyl]-3-yl 4-methylbenzenesulfonate (1v).

The title compound was prepared according to Procedure 4 employing TsCl and isolated by FC using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an eluent to afford the title compound as a white, amorphous solid ($250 \mathrm{mg}, 0.63 \mathrm{mmol}, 85 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.66(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{dd}, J=8.2,7.6 \mathrm{~Hz}$, 1 H), $7.44-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.94(\mathrm{~m}, 1 \mathrm{H}), 2.52$ (hept, $J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 188.7,148.9,146.6,146.1,145.9,136.4,133.4,132.2,130.2,129.9,129.5$, 128.9, 128.9, 128.2, 125.6, 125.5, 123.2, 30.3, 24.5, 23.2, 21.9.

HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 417.1131; found: 417.1130.

2'-iso-Propyl-6-formyl-4-methoxy-[1,1'-biphenyl]-3-yl acetate (1w).

The title compound was prepared employing Procedure 1 and isolated by FC using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an eluent to afford the title compound as a white solid ($200 \mathrm{mg}, 0.64 \mathrm{mmol}$, 32\% yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 9.64(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 2 \mathrm{H})$, $7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.77$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 191.1,168.6,151.4,147.9,144.3,139.5,135.4,133.0$, 131.0, 129.2, 126.0, 125.8, 125.6, 109.9, 56.5, 30.4, 24.4, 23.5, 20.8.

HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 335.1254; found: 335.1253.

6-Formyl-2'-iso-propyl-[1,1'-biphenyl]-3-carbonitrile (1x).

The title compound was prepared employing Procedure 2 and isolated by FC using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$ as an eluent to afford the title compound as an orange, amorphous solid ($400 \mathrm{mg}, 1.60 \mathrm{mmol}, 80 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 9.78(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.82$ (ddd, J $=8.1,1.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 1 \mathrm{H})$, $7.14(\mathrm{dt}, J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{hept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 190.9,147.4,146.2,137.1,135.2,134.4,131.6,130.5,129.8,128.0,126.3$, 126.0, 118.2, 117.0, 30.5, 24.4, 23.4.

HRMS (ESI ${ }^{+}$) m/z calcd. For $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NONa}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: 272.1046; found: 272.1047.
6-Chloro-[1,1'-biphenyl]-2-carbaldehyde (1y).

The title compound was prepared employing Procedure 1 and isolated by FC using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 1$ as an eluent to afford the title compound as a white solid (340 mg , $1.57 \mathrm{mmol}, 87 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.68(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ (dd, J = 7.9, 1.3 Hz, 1H), $7.53-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ - $\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, CDCl_{3}) $\delta 191.5,144.1,136.2,134.8,134.5,130.5,129.0,128.7$,
128.5, 125.8.

HRMS (ESI ${ }^{+}$m/z calcd. For $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{ClO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 217.0415, 219.0386; found: 217.0420, 219.0381.

3'-(tert-Butyl)-6-formyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (1z).

The title compound was prepared according to Procedure 4 employing TsCl and isolated by FC using a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an eluent to afford the title compound as a yellow oil (157 mg , 0.38 mmol, 70% yield).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 9.63(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ (dd, J = 8.1, $1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.53 (td, $J=7.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.44 (ddd, J = 7.9, 2.1, $1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.27(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.7 .20(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.77$ (ddd, J = 7.5, 1.7, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, CDCl_{3}) $\delta 191.6,151.2,147.1,145.1,139.7,136.1,132.7,130.8,129.7,128.9,128.5$, 128.4, 128.3, 128.1, 127.8, 126.2, 125.4, 34.9, 31.4, 21.8.

HRMS (ESI ${ }^{+}$) m/z calcd. For $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Sna}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 431.1288; found: 431.1293.

6-Hydroxy-3'-methyl-[1,1'-biphenyl]-2-carbaldehyde (1ba).

The title compound was prepared employing Procedure 1 and isolated by FC using 10\% EtOAc in pentane as an eluent to afford the title compound as a white, amorphous solid ($621 \mathrm{mg}, 2.93 \mathrm{mmol}, 73 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 9.71(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.37(\mathrm{~m}$, $2 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 2 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 2.42(\mathrm{~s}$, 3H).
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 192.2,153.8,139.9,135.3,131.9,131.8,131.7,130.2,129.6,129.4,128.2$, 121.0, 119.8, 21.5.

HRMS (ESI+) m/z calcd. For $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 235.0730; found: 235.0729.

6-Hydroxy-3'-iso-propyl-[1,1'-biphenyl]-2-carbaldehyde (1bb).

The title compound was prepared employing Procedure 1 and isolated by FC using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an eluent to afford the title compound as a white, amorphous solid (107 mg, $0.46 \mathrm{mmol}, 90 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 9.69(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ ($\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.43-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{dt}, J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.58(\mathrm{~s}, 1 \mathrm{H}), 2.98$ (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 192.4, 153.9, 150.7, 135.3, 132.3, 131.9, 129.6, 129.4, 129.3, 128.6, 127.5, 121.2, 119.7, 34.5, 24.1.

HRMS (ESI ${ }^{+}$) m/z calcd. For $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 263.1043; found: 263.1074.

3'-(tert-Butyl)-6-hydroxy-[1,1'-biphenyl]-2-carbaldehyde (1bc).

The title compound was prepared employing Procedure 1 and isolated by FC using a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an eluent to afford the title compound as a white, amorphous solid (970 mg , 3.81 mmol, 95% yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 9.68(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ (ddd, J = 8.0, 2.0, 1.2 Hz, 1H), 7.46 (t, J = 7.7 Hz, 1H), 7.40 (td, J = 7.9, 0.8 Hz, 2H), 7.24 (dd, J = 8.0, 1.2 Hz, 1H), $7.21-7.17$ (m, 1H), 5.69 (s, 1H), $1.35(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, CDCl_{3}) $\delta 192.5,154.0,152.9,135.4,132.6,131.6,129.3,129.3,128.4,128.3,126.4$, 121.2, 119.7, 35.1, 31.4

HRMS (ESI+) m/z calcd. For $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 277.1199; found: 277.1208.

3-Hydroxy-2'-iso-propyl-[1,1'-biphenyl]-2-carbaldehyde (1bd).

The title compound was prepared employing Procedure 1 and isolated by FC using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 2:1 as an eluent to afford the title compound as a white, amorphous solid ($921 \mathrm{mg}, 3.83 \mathrm{mmol}, 96 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.8(\mathrm{~s}, 1 \mathrm{H}), 9.58(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{dd}, \mathrm{J}=8.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42$ $-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{dt}, J=7.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dt}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.78$ (dd, $J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.76$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $1.14-1.10(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.2,162.7,147.3,147.0,136.7,135.8,130.3,129.0,125.8,125.5,121.8$, 119.0, 117.1, 30.2, 24.7, 23.6.

HRMS (ESI ${ }^{+}$) m/z calcd. For $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 263.1043; found: 263.1043.

3. Optimization

Optimization reactions were performed on $\mathbf{3 I}$, and 3 a (vide infra). All reported yields for the optimization were determined using ${ }^{1} \mathrm{H}$ NMR spectroscopy. The c TDGs evaluated are shown in Figure S2:

cTDG1

cTDG2

cTDG3

cTDG4

cTDG5

cTDG6

Figure S2. Suite of cTDGs.
3a: Optimization for the monobromination of 1a.

Figure S3. General reaction scheme of 1a used to optimize monobromination reaction parameters.
Table S2. Summary of optimization reactions for the monobromination of $\mathbf{1 a}$.

cTDG	Solvent	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	Additive	Acid	NBS equiv	Yield (\%)		
							SM	Mono	Di
cTDG1	HFIP/AcOH 4:1	10\%	60	-	TFA	2	54	36	10
cTDG1	DCE	10\%	60	-	TFA	2	0	20	76
cTDG1	DCE	1\%	60	-	TFA	2	14	48	18
cTDG2	DCE	1\%	60	-	TFA	2	42	23	0
cTDG3	DCE	1\%	60	-	TFA	2	18	51	18
cTDG4	DCE	1\%	60	-	TFA	2	32	5	0
cTDG5	DCE	1\%	60	-	TFA	2	70	8	0
cTDG1	DCE	1\%	60	-	TFA	1.1	31	47	23
cTDG1	DCE	1\%	60	-	TFA	1.5	7	55	28
cTDG1	DCE	1\%	60	-	TFA	1.8	13	64	18
cTDG1	DCE	1\%	rt	-	TFA	1.8	98	2	0
cTDG1	DCE	1\%	40	-	TFA	1.8	58	37	5
cTDG1	DCE	1\%	60	-	TFA	1.8	10	68	22
cTDG1	DCE	1\%	60	AgOTf	TFA	1.8		45	17
cTDG1	DCE	1\%	60	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	TFA	1.8		54	11
cTDG1	DCE	1\%	60	$\mathrm{Cu}(\mathrm{OAc})_{2}$	TFA	1.8		51	10
cTDG1	DCE	1\%	60	ZnCl_{2}	TFA	1.8		9	
cTDG1	DCE	1\%	60	-	TFA	1.8		56	16

Summary and Rationalization: Comparison of the use of $10 \mathrm{~mol} \% \mathrm{Pd}$ vs. $1 \mathrm{~mol} \%$ Pd under otherwise identical conditions resulted in a ratio of Di:Mono of 3.8:1 and 1:2.67, respectively, with starting material remaining
in the latter case. These data highlight the competition among the unfunctionalized SM and the Monohalogenated products towards C-H functionalization. We speculate that this observation manifests as a downstream consequence of the relative rates of both catalytic cycles (e.g. cTDG and [Pd]). The rational in lowering Pd loading to favor monohalogenation was driven by the strategy to taper the rate of $\mathrm{C}-\mathrm{H}$ functionalization of the [Pd] cycle and pace it with the rate of hydrolysis/condensation of the cTDG.

3a: Optimization for the dibromination of 1a.

Figure S4. General reaction scheme of 1a used to optimize dibromination reaction parameters.
Table S3. Summary of optimization reactions for the dibromination of 1 a.

cTDG	Solvent	Additive	Yield (\%)	$\boldsymbol{e e}$ (\%)
cTDG1	HFIP	-	0	-
cTDG1	DCE	-	48	>99
cTDG2	DCE	-	22	94
cTDG3	DCE	-	4	nd
cTDG4	DCE	-	42	85
cTDG5	DCE	-	8	nd
cTDG6	DCE	-	0	-
cTDG1	DCE	-	0	-
cTDG1	DCE	AgTFA^{2}	64	>99
cTDG1	DCE	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	84	>99

31: Optimization for tribromination of 11.

Figure S5. General reaction scheme of 1I used to optimize tribromination reaction parameters.
Table S4. Summary of optimization reactions for the tribromination of 1 I.

TDG	Solvent	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	Additive	Acid	Conversion	Yield (\%)	$\boldsymbol{e e}$ (\%)
cTDG1	DCE	60	-	TFA	100	62	nd

cTDG1	Toluene	60	-	TFA	89	19	nd
cTDG1	HFIP	60	-	TFA	88	20	nd
cTDG1	MeNO_{2}	60	-	TFA	100	27	nd
cTDG1	EtOAc	60	-	TFA	71	8	nd
cTDG1	MeOH	60	-	TFA	78	0	nd
cTDG1	THF	60	-	TFA	0	0	nd
cTDG1	o-dichlorobenzene	60	-	TFA	100	62	nd
cTDG1	TCE	60	-	TFA	95	29	nd
cTDG1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	60	-	TFA	93	46	nd
cTDG1	DCE	40	-	TFA	-	-	nd
cTDG1	o-dichlorobenzene	40	-	TFA	-	-	nd
cTDG1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40	-	TFA	-	-	nd
cTDG2	DCE	60	-	TFA	84	38	nd
cTDG4	DCE	60	-	TFA	100	42	97
cTDG5	DCE	60	-	TFA	95	26	>99
cTDG6	DCE	60	-	TFA	-	0	>99
cTDG1	DCE	60	-	TFA	100	74	>99
cTDG1	DCE	60	AgOTFA	TFA	100	36	nd
cTDG1	DCE	60	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	TFA	100	92	nd
cTDG1	DCE	60	$\mathrm{Cu}(\mathrm{OAc})_{2}$	TFA	100	52	nd
cTDG1	DCE	60	ZnCl_{2}	TFA	63	0	nd
cTDG1	DCE	60	CsF	TFA	95	17	nd
cTDG1	DCE	60	-	TFA	100	74	>99

4. General procedures for the atroposelective $\mathbf{C}-\mathrm{H}$ functionalization

4.A Atroposelective bromination employing $10 \mathrm{~mol} \% \mathrm{Pd}$

Scheme S2. General protocol for atroposelective C-H bromination.
To an $8-\mathrm{mL}$ vial, equipped with a stir bar, was added the aldehyde ($0.10 \mathrm{mmol}, 1$ equiv.), cTDG1 (3.9 mg , $0.030 \mathrm{mmol}, 0.3$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(2.3 \mathrm{mg}, 0.010 \mathrm{mmol}, 0.1$ equiv), NBS ($0.11,0.21$ or $0.31 \mathrm{mmol}, 1.1-3.1$ equiv), $\mathrm{Ag}_{2} \mathrm{CO}_{3}(2.8 \mathrm{mg}, 0.010 \mathrm{mmol}, 0.1$ equiv), $\operatorname{DCE}(1 \mathrm{~mL})$, and $\mathrm{TFA}(77 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 10$ equiv). The vial was capped and heated at $60^{\circ} \mathrm{C}$ overnight. Upon completion of the reaction, the resulting solution was cooled to rt and directly loaded onto a column and purified by FC using the described stationery and eluent system.

4.B Atroposelective bromination employing $1 \mathbf{m o l} \% \mathrm{Pd}$

To an 8-mL vial, equipped with a stir bar, was added the aldehyde ($0.10 \mathrm{mmol}, 1$ equiv), cTDG1 ($3.9 \mathrm{mg}, 0.030$ $\mathrm{mmol}, 0.3$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(100 \mu \mathrm{~L}$ of 0.01 M solution in DCE, $0.0010 \mathrm{mmol}, 0.01$ equiv), NBS ($32 \mathrm{mg}, 0.18$ $\mathrm{mmol}, 1.8$ equiv), DCE (0.9 mL) and TFA ($77 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 10$ equiv.). The vial was capped and heated at $60^{\circ} \mathrm{C}$ overnight. Upon completion of the reaction, the resulting solution was cooled to rt and directly loaded onto a column and purified by FC using the described stationery and eluent system.

4.C Telescoping halogenation

Scheme S3. General protocol for the atropselective telescoping halogenation.

To a 8-mL vial, equipped with a stir bar, was added the aldehyde ($0.10 \mathrm{mmol}, 1$ equiv.), cTDG1 ($3.9 \mathrm{mg}, 0.030$ $\mathrm{mmol}, 0.3$ equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}\left(2.3 \mathrm{mg}, 0.010 \mathrm{mmol}, 0.1\right.$ equiv.), $\mathrm{NCS}\left(40.1 \mathrm{mg}, 0.3 \mathrm{mmol}, 3\right.$ equiv), and $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ $(2.8 \mathrm{mg}, 0.010 \mathrm{mmol}, 0.1$ equiv.), DCE (1 mL) and TFA ($77 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 10$ equiv). The vial was capped and heated at $60^{\circ} \mathrm{C}$ for 16 h . Then NBS ($19.6 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv.) was added, and the reaction was heated at $60^{\circ} \mathrm{C}$ for 48 h . Upon completion of the reaction, the resulting solution was cooled to rt and directly loaded onto a column and purified by FC using the described stationery and eluent system.

4.1 Characterization of atropisomers

(\boldsymbol{R}_{a})-2',3-Dibromo-6'-iso-propyl-[1,1'-biphenyl]-2-carbaldehyde (3a).

Following General Procedure A employing 2.1 equiv NBS, the product was isolated by FC on SiO_{2} using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 1$ as eluent to afford the title compound as a white, amorphous solid ($28.7 \mathrm{mg}, 0.075 \mathrm{mmol}, 75 \%$ yield, $>99 \%$ ee).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.15(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{dd}, \mathrm{J}=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{ddd}, \mathrm{J}=$ $7.9,4.5,3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.35 (dd, $J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.25(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (dd, $J=$ $7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.49 (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.08$ (dd, $J=6.9,3.1 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, CDCl_{3}): $\delta 191.4,149.3,144.2,138.1,134.1,133.6,132.7,130.7,129.9,129.8,125.5$, 124.7, 123.0, 31.7, 24.4, 23.4.

HRMS (ESI ${ }^{+}$) m/z calcd. For $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{ONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 404.9284, 402.9304, 406.9263; found: 404.9285, 402.9310, 406.9266.

UPC ${ }^{2}$: Chiralpak ID column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ gradient, $1 \% \mathrm{MeOH}$ (0.5 min), then gradient from 1% to 40% $\left.(10 \% / \mathrm{min}), 120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; $\mathrm{t}_{\text {major }}=2.241 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=2.163 \mathrm{~min} ;$ General Procedure $\mathrm{A}:>99 \%$ ee . $[\alpha]_{25}^{D}=-46.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(\boldsymbol{R}_{a})-2',3-Dibromo-6'-ethyl-[1,1'-biphenyl]-2-carbaldehyde (3b).

Following General Procedure A employing 2.1 equiv NBS, the product was isolated by FC on SiO_{2} using $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane 1:3 as eluent to afford the title compound as a white, amorphous solid ($20.9 \mathrm{mg}, 0.057 \mathrm{mmol}, 57 \%$ yield, $>99 \%$ ee).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $10.12(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 2 \mathrm{H})$, $7.29(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.21(\mathrm{~m}$, $2 \mathrm{H}), 1.01$ (t, J = $7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 191.4,144.3,144.1,138.8,134.1,133.7,132.6,130.7,130.0,129.6,127.3$, 125.4, 123.2, 77.5, 77.2, 76.8, 27.5, 14.8.

HRMS (ESI+) m/z calcd. For $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{ONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 388.9148, 390.9127, 392.9107; found: 388.9145, 290.9125, 392.9106.

UPC ${ }^{2}$: Chiralpak ID column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ gradient, $1 \% \mathrm{MeOH}(0.5 \mathrm{~min}$), then gradient from 1% to 40% ($10 \% / \mathrm{min}$), $\left.120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; $\mathrm{t}_{\text {major }}=3.814 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=3.522 \mathrm{~min} ;$ General Procedure $\mathrm{A}:>99 \%$ ee. $[\boldsymbol{\alpha}]_{28}^{D}=+39.8\left(\mathrm{c} 0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(\boldsymbol{R}_{a})-2',3-Dibromo-6'-iso-propyl-4-methoxy-[1,1'-biphenyl]-2-carbaldehyde (3c).

Following General Procedure A employing 2.1 equiv NBS, the product was isolated by FC on SiO_{2} using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 3: 1$ as eluent to afford the title compound as a white, amorphous solid ($29 \mathrm{mg}, 0.070 \mathrm{mmol}, 70 \%$ yield, $>99 \%$ ee).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 10.20(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ (dd, J=7.9, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ ($\mathrm{s}, 3 \mathrm{H}$) , 2.54 (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $1.08-1.05(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$ 192.2, 156.3, 150.2, 138.7, 135.2, 134.3, 131.4, 129.8, 129.7, 124.9, 123.8, 115.6, 115.5, 57.1, 31.9, 24.3, 23.4.

HRMS (ESI ${ }^{+}$) m/z calcd. For $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 434.9389, 432.9410, 436.9369; found: 434.9392, 432.9408, 436.9371.

UPC ${ }^{2}$: Chiralpak ID column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ gradient, $1 \% \mathrm{MeOH}$ (0.5 min), then gradient from 1% to 40% $\left.(10 \% / \mathrm{min}), 120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; $\mathrm{t}_{\text {major }}=2.788 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=2.592 \mathrm{~min} ;$ General Procedure $\mathrm{A}:>99 \%$ ee. $[\alpha]_{25}^{D}=+23.3\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(R_{a})-2',3-Dibromo-6'-ethyl-4-fluoro-[1,1'-biphenyl]-2-carbaldehyde (3d).

Following General Procedure A employing 2.1 equiv NBS, the product was isolated by FC on SiO_{2} using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 4: 1$ as eluent to afford the title compound as a white, amorphous solid ($23.3 \mathrm{mg}, 0.06 \mathrm{mmol}, 60 \%$ yield, $>99 \%$ ee).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 10.06(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=8.2 \mathrm{~Hz}$, 1 H), 7.30 (dd, $J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ (dd, $J=8.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-$ $2.20(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.5(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}), 159.0(\mathrm{~d}, \mathrm{~J}=249.5 \mathrm{~Hz}) 144.6,139.7$
(d, J = 4.1 Hz), 137.8, 134.0, 131.7 (d, J = 7.4 Hz), 130.1, 139.9, 127.4, 123.6, 120.3 (d, J = 23.0 Hz), $112.3(\mathrm{~d}, J$ $=22.0 \mathrm{~Hz}$) 27.6, 14.8.
${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-104.96.
HRMS (ESI ${ }^{+}$) m/z calcd. For $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{FONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 408.9033, 406.9053, 410.9012; found: 408.9033, 406.9049, 410.9020.

UPC ${ }^{2}$: Chiralpak ID column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ gradient, $1 \% \mathrm{MeOH}(0.5 \mathrm{~min}$), then gradient from 1% to 40% ($10 \% / \mathrm{min}$), $\left.120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; $\mathrm{t}_{\text {major }}=2.122 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=2.040 \mathrm{~min} ;$ General Procedure $\mathrm{A}:>99 \%$ ee. $[\alpha]_{24}^{D}=+49.5\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(\boldsymbol{R}_{a})-2',3-Dibromo-6'-(trifluoromethyl)-[1,1'-biphenyl]-2-carbaldehyde (3e).

Following General Procedure A employing 2.1 equiv NBS and leaving it for three days, the product was isolated by FC on SiO_{2} using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 1$ as eluent to afford the title compound as a yellow, amorphous solid ($27 \mathrm{mg}, 0.066 \mathrm{mmol}, 66 \%$ yield, $>99 \%$ ee). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.29(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, \mathrm{J}=8.1,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{td}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ (d, J = 7.5 Hz, 1H).
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 191.5,140.5,139.3(\mathrm{q}, \mathrm{J}=1.5 \mathrm{~Hz}), 134.7,133.7,132.0,130.9,130.1(\mathrm{q}, \mathrm{J}=$ $30.2 \mathrm{~Hz}), 129.2,127.3,125.4,125.3$ (q, J = 5, 2 Hz), 123.2 ($q, J=276.2 \mathrm{~Hz})$.
${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$-59.01.
HRMS (ESI ${ }^{+}$) m/z calcd. For $\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{Br}_{2} \mathrm{~F}_{2} \mathrm{OK}^{+}[\mathrm{M}+\mathrm{K}]^{+}$: 444.8448, 446.8427, 448.8407; found: 444.8644, 446.8622, 448.8610.

UPC²: Chiralpak IB column $\left[\mathrm{CO}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ gradient, $1 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.5 min), then gradient from 1% to 20% (20\%/h), $\left.120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=2.540 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=2.626 \mathrm{~min} ;$ General Procedure $\mathrm{A}:>99 \%$ ee.
$[\boldsymbol{\alpha}]_{25}^{\boldsymbol{D}}=+67.2$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{[4]}$

[^3]$\left(R_{a}\right)$-Methyl 3',6-dibromo-2'-formyl-[1,1'-biphenyl]-2-carboxylate (3f).

Following General Procedure A employing 2.1 equiv NBS, the product was isolated by FC on SiO_{2} using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to afford the title compound as a white, amorphous solid ($26.8 \mathrm{mg}, 0.067 \mathrm{mmol}, 67 \%$ yield, $>99 \%$ ee).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.29-10.27(\mathrm{~m}, 1 \mathrm{H}), 8.01(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.81$ (dd, J=8.0, 1.3 Hz, 1H), 7.73 (dd, J = 8.1, 1.2 Hz, 1H), $7.44(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.05(\mathrm{~d}, J=7.6,1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): ~ \delta 191.8,166.1,143.8,141.8,136.4,133.8,133.7,131.9,131.3,129.6,129.6$, 129.0, 126.8, 124.7, 52.3.

HRMS (ESI ${ }^{+}$) m/z calcd. For $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 420.8869, 418.8889, 422.8848; found: 420.8867, 418.8889, 422.8858.

UPC ${ }^{2}$: Chiralpak IC column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ gradient, $1 \% \mathrm{MeOH}(0.5 \mathrm{~min}$), then gradient from 1% to 40% $\left.(10 \% / \mathrm{min}), 120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; $\mathrm{t}_{\text {major }}=3.140 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=3.084 \mathrm{~min} ;$ General Procedure $\mathrm{A}:>99 \%$ ee. $[\boldsymbol{\alpha}]_{25}^{\boldsymbol{D}}=-34.7\left(\mathrm{c} 0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(\boldsymbol{R}_{a})-2',3-Dibromo-6'-chloro-[1,1'-biphenyl]-2-carbaldehyde (3g).

Following General Procedure A employing 2.1 equiv NBS, the product was isolated by FC on SiO_{2} using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 3:1 as eluent to afford the title compound as a yellow, amorphous solid ($10.3 \mathrm{mg}, 0.03 \mathrm{mmol}, 28 \%$ yield, $>95 \%$ ee).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.27(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{dd}, \mathrm{J}=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, \mathrm{J}=8.1$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.4,141.8,139.3,134.5,134.2,133.9,131.9,131.2$, 130.6, 130.0, 128.6, 126.7, 123.8.

HRMS (ESI ${ }^{+}$) m/z calcd. For $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Br}_{2} \mathrm{ClONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 394.8445, 396.8424, 398.8404; found: 394.8459, 396.8424, 398.8400.
$[\boldsymbol{\alpha}]_{24}^{\boldsymbol{D}}=-9.7\left(\mathrm{c} 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
UPC ${ }^{2}$ conditions to separate the pair of enantiomers were unable to be obtained. To determine enantioselectivity, the chiral auxiliary, (R)-tert-butanesulfinamide, was employed to form diastereoisomers to determine the diastereomeric ratio by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Below is a zoom-in of the ${ }^{1} \mathrm{H}$ NMR spectra (crude mixtures) of the racemate (below) and the enantioselective reaction (above). Since only a single diastereoisomer was detected for the enantioenriched entry (>20:1 d.r), this corresponds to >95\% ee. ${ }^{[5]}$

[^4]

(S_{a})-2',5-Dibromo-6-formyl-5'-methyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (3h).

Following General Procedure A employing 2.1 equiv NBS, the product was isolated by FC on SiO_{2} using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /pentane 1:1 as eluent to afford the title compound as a white, amorphous solid ($29.8 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \%$ yield, 98% ee).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.92(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.38-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{dd}, \mathrm{J}=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, \mathrm{~J}=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): ~ \delta 190.5,146.8,145.5,137.6,137.0,135.1,134.6,134.6,133.3,132.8,132.5$, 132.4, 130.9, 129.9, 128.1, 127.7, 121.7, 120.3, 77.5, 77.2, 76.8, 21.8, 21.0

HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{O}_{4} \mathrm{SK}^{+}[\mathrm{M}+\mathrm{K}]^{+}: 560.8768,562.8748,564.8727$; found: 560.8768, 562.8754, 564.8743.

UPC ${ }^{2}$: Chiralpak IB column $\left[\mathrm{CO}_{2} / \mathrm{MeCN}\right.$ gradient, $1 \% \mathrm{MeCN}$ (0.5 min), then gradient from 1% to 40% $\left.(10 \% / \mathrm{min}), 120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=3.331 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=3.251 \mathrm{~min}$; General Procedure $\mathrm{A}: 98 \%$ ee. $[\alpha]_{28}^{D}=-45.2\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(S_{a})-2',5-Dibromo-6-formyl-5'-iso-propyl-[1,1'-biphenyl]-2-yl methanesulfonate (3i).

Following General Procedure A employing 2.1 equiv NBS, the product was isolated by FC on SiO_{2} using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /pentane 2:1 as eluent to afford the title compound as a colorless oil ($30.9 \mathrm{mg}, 0.065 \mathrm{mmol}, 65 \%$ yield, $98 \% \mathrm{ee}$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.05(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.53$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (dd, $J=8.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.92$ ($p, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.62(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{dd}, J=6.9,5.1 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 190.7, 148.9, 146.9, 137.8, 135.6, 134.6, 134.0, 132.8, 130.5, 129.0, 128.3, 122.6, 120.5, 38.8, 34.0, 24.0, 23.8.

HRMS (ESI ${ }^{+}$) m/z calcd. For $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{O}_{4} \mathrm{SK}^{+}[\mathrm{M}+\mathrm{K}]^{+}$: 512.8768; found: 512.8767.
UPC ${ }^{2}$: Chiralpak IB column [$\mathrm{CO}_{2} / \mathrm{MeCN}$ gradient, $1 \% \mathrm{MeCN}$ (0.5 min), then gradient from 1% to 40% ($10 \% / \mathrm{min}$), $120 \mathrm{bar}, 40^{\circ} \mathrm{C}$], $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=2.851 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=2.765 \mathrm{~min} ;$ General Procedure $\mathrm{A}: 98 \%$ ee. $[\alpha]_{25}^{D}=-23.8\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(S_{a})-2',5-Dibromo-6-formyl-5'-iso-propyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (3j).

Following General Procedure A employing 2.1 equiv NBS, however the reaction time was increased to 48 h . The product was isolated by FC on SiO_{2} using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient from 2:1 to 1:1 as eluent to afford the title compound as a white, amorphous solid ($31.4 \mathrm{mg}, 0.057 \mathrm{mmol}, 57 \%$ yield, 95% ee).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.95(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{dd}, J=8.3$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.04(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.85$ (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.22$ (dd, $J=6.9,4.3 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 190.4,148.1,146.6,145.5,138.1,135.1,134.6,133.2,132.8,132.4,130.6$, 129.8, 128.2, 128.0, 127.7, 121.6, 120.4, 33.7, 23.9, 23.8, 21.8.

HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}_{4} \mathrm{SK}^{+}[\mathrm{M}+\mathrm{K}]^{+}$: 588.9081; found: 588.9075.
UPC ${ }^{2}$: Chiralpak IB column $\left[\mathrm{CO}_{2} / \mathrm{MeCN}\right.$ gradient, $1 \% \mathrm{MeCN}$ (0.5 min), then gradient from 1% to 40% ($10 \% / \mathrm{min}$), $120 \mathrm{bar}, 40^{\circ} \mathrm{C}$, $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=3.199 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=3.144 \mathrm{~min} ;$ General Procedure $\mathrm{A}: 95 \%$ ee. $[\boldsymbol{\alpha}]_{28}^{\boldsymbol{D}}=-36.4\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(S_{a})-2',5-Dibromo-5'-(tert-butyl)-6-formyl-[1,1'-biphenyl]-2-yl methanesulfonate (3k).

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 190.7,151.2,146.9,138.1,135.6,134.7,133.7,132.5,129.8,128.3,127.9$, 122.6, 120. 4, 38.8, 35.0, 31.2.

HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{O}_{4} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 512.9165, 510.9185, 514.9144; found: 512.9167, 510.9159, 514.9142.

UPC²: Chiralpak IB column [$\mathrm{CO}_{2} / \mathrm{MeCN}$ gradient, $1 \% \mathrm{MeCN}$ (0.5 min), then gradient from 1% to 40% ($10 \% / \mathrm{min}$), 120 bar, $40^{\circ} \mathrm{C}$], $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=3.020 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=2.938 \mathrm{~min}$; General Procedure $\mathrm{A}: 93 \%$ ee. $[\alpha]_{28}^{\boldsymbol{D}}=-19.2\left(\mathrm{c} \mathrm{0.5}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(R_{a})-3-Bromo-1-(2,5-dibromo-4-methoxyphenyl)-2-naphthaldehyde (3I).

Following General Procedure A employing 3.1 equiv NBS, the product was isolated by FC on SiO_{2} using EtOAc/pentane 1:20 as eluent to afford the title compound as a yellow, amorphous solid ($26.8 \mathrm{mg}, 0.054 \mathrm{mmol}, 54 \%$ yield, $>99 \%$ ee).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 10.23(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.9,156.5,142.4,135.9,135.2,133.7,131.5,130.7$, 129.7, 129.7, 127.9, 127.4, 127.4, 123.3, 118.9, 116.1, 111.2, 56.8.

HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{Br}_{3} \mathrm{O}_{2} \mathrm{~K}^{+}[\mathrm{M}+\mathrm{K}]^{+}$: 534.7941, 536.7921, 538.7900, 540,7880; found: 534.7954, 536.7931, 538.7938, 540.7920.

UPC²: Chiralpak IC column $\left[\mathrm{CO}_{2} / \mathrm{MeCN}\right.$ gradient, $1 \% \mathrm{MeCN}$ (0.5 min), then gradient from 1% to 40% ($10 \% / \mathrm{min}$), $\left.120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; $\mathrm{t}_{\text {major }}=4.234 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=4.094 \mathrm{~min}$; General Procedure $\mathrm{A}:>99 \%$ ee. $[\alpha]_{23}^{D}=+29.1\left(\mathrm{c} \mathrm{0.5}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(\boldsymbol{R}_{a})-3-Bromo-1-(2-bromo-5-methylphenyl)-2-naphthaldehyde (3m).

Following General Procedure A employing 2.1 equiv NBS, the product was isolated by FC on SiO_{2} using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient from 3:1 to 2:1 as eluent to afford the title compound as a yellow, amorphous solid ($28.9 \mathrm{mg}, 0.07 \mathrm{mmol}, 72 \%$ yield, $>99 \%$ ee).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.15(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=8.2,1 \mathrm{H}), 7.65-7.60$ (m, 2H), 7.47 (ddd, $J=8.2,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (ddd, $J=8.2$, $2.2,0.6 \mathrm{~Hz} 1 \mathrm{H}$), $7.07(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 191.9, 144.8, 137.6, 136.9, 135.9, 133.5, 132.7, 132.6, 131.3, 131.0, 129.6, 129.4, 127.7, 127.5, 127.3, 120.6, 118.2, 21.1.

HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{ONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 424.9148, 426.9127, 428.9107; found: 424.9145, 426.9129, 428,9111.

UPC ${ }^{2}$: Chiralpak IB column $\left[\mathrm{CO}_{2} / \mathrm{MeCN}\right.$ gradient, $1 \% \mathrm{MeCN}$ (0.5 min), then gradient from 1% to 40% $\left.(10 \% / \mathrm{min}), 120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; $\mathrm{t}_{\text {major }}=3.368 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=3.239 \mathrm{~min} ;$ General Procedure $\mathrm{A}:>99 \%$ ee. $[\boldsymbol{\alpha}]_{25}^{\boldsymbol{D}}=+29.1\left(\mathrm{c} 0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(\boldsymbol{R}_{a})-3-Bromo-1-(2-bromo-5-iso-propylphenyl)-2-naphthaldehyde (3n).

Following General Procedure A employing 2.1 equiv NBS, the product was isolated by FC on SiO_{2} using 1.5% EtOAc in pentane as eluent to afford the title compound as a yellow, amorphous solid ($32.5 \mathrm{mg}, 0.075 \mathrm{mmol}, 75 \%$ yield, 97% ee).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.11(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.87-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.61$ ($\mathrm{m}, 2 \mathrm{H}$), 7.47 (ddd, $J=8.3,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.11 (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.92 (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.8,148.6,145.3,136.7,135.8,133.6,132.7,131.3,130.2,129.7,129.4$, 128.4, 127.7, 127.4, 127.3, 120.9, 117.9, 33.7, 24.0, 24.0.

HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{ONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 452.9460; found: 452.9471.
UPC²: Chiralpak IB column [$\mathrm{CO}_{2} / \mathrm{MeCN}$ gradient, $1 \% \mathrm{MeCN}$ (0.5 min), then gradient from 1% to 40% $\left.(10 \% / \mathrm{min}), 120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=3.137 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=3.059 \mathrm{~min} ;$ General Procedure $\mathrm{A}: 97 \%$ ee. $[\boldsymbol{\alpha}]_{25}^{D}=-35.1\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(\boldsymbol{R}_{a})-3-Bromo-1-(2-bromo-5-tert-butylphenyl)-2-naphthaldehyde (3o).

Following General Procedure A employing 2.1 equiv NBS, the product was isolated by FC on SiO_{2} using 2% EtOAc in pentane as eluent to afford the title compound as a yellow, amorphous solid ($42.8 \mathrm{mg}, 0.096 \mathrm{mmol}, 96 \%$ yield, 95% ee).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.09(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.86-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.47$ (ddd, $J=8.3,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.5,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.8,151.0,145.6,136.3,135.8,133.6,132.4,131.3,129.7,129.5,129.2$, 127.7, 127.4, 127.4, 127.3, 120.8, 117.8, 34.8, 31.3.

HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{ONa}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: 466.9617 ; found: 466.9677 .
UPC ${ }^{2}$: Chiralpak IC column $\left[\mathrm{CO}_{2} / \mathrm{MeCN}\right.$ gradient, $1 \% \mathrm{MeCN}$ (0.5 min), then gradient from 1% to 40% ($10 \% / \mathrm{min}$), $120 \mathrm{bar}, 40^{\circ} \mathrm{C}$, $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=3.264 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=3.421 \mathrm{~min}$; General Procedure $\mathrm{A}: 95 \%$ ee. $[\alpha]_{25}^{D}=-29.3\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(\boldsymbol{R}_{a})-3-Bromo-1-(5-bromo-2,2-difluorobenzo[d][1,3]dioxol-4-yl)-2-naphthaldehyde (3p).

Following General Procedure A employing 2.1 equiv NBS, the product was isolated by FC on SiO_{2} using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 4: 1$ as eluent to afford the title compound as a white, amorphous solid ($38 \mathrm{mg}, 0.081 \mathrm{mmol}, 81 \%$ yield, $>99 \%$ ee).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.45(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.67$ (ddd, $J=8.2,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.54 (ddd, $J=8.3,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.48 (d, $J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.7,142.8,136.1,134.4,134.4,131.5(\mathrm{t}, \mathrm{J}=258.5 \mathrm{~Hz}), 130.5,129.9,129.3$, 128.3, 127.5, 127.4, 126.5, 121.2, 120.2, 117.5, 110.4.
${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-49.32(\mathrm{~d}, J=92.7 \mathrm{~Hz}),-49.61(\mathrm{~d}, J=92.7 \mathrm{~Hz})$
HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{~F}_{2} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 490.8700; found: 490.8702.
UPC ${ }^{2}$: Chiralpak IC column $\left[\mathrm{CO}_{2} / \mathrm{MeCN}\right.$ gradient, $1 \% \mathrm{MeCN}$ (0.5 min), then gradient from 1% to 40% $\left.(10 \% / \mathrm{min}), 120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; $\mathrm{t}_{\text {major }}=2.644 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=2.748 \mathrm{~min} ;$ General Procedure $\mathrm{A}:>99 \%$ ee. $[\boldsymbol{\alpha}]_{25}^{\boldsymbol{D}}=+8.1$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).
(R_{a})-2'-Bromo-3-fluoro-6'-iso-propyl-[1,1'-biphenyl]-2-carbaldehyde (4q).

Following General Procedure A employing 1.1 equiv NBS, the product was isolated by FC on SiO_{2} using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 1$ as eluent to afford the title compound as a white, amorphous solid ($26 \mathrm{mg}, 0.08 \mathrm{mmol}, 81 \%$ yield, $>99 \% ~ e e$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.97$ (s, 1H), 7.61 (ddd, $J=8.4,7.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 (dd, J = $7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.50 (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.06 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.03$ (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(100 \mathrm{MHz} \mathrm{CDCl} 3) \delta 188.0(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 163.6(\mathrm{~d}, \mathrm{~J}=262.2 \mathrm{~Hz}), 149.4,144.5(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}), 137.2$ $(\mathrm{d}, J=2.3 \mathrm{~Hz}), 135.2(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 130.0,130.0,127.0(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 124.8,123.4,122.9(\mathrm{~d}, J=7.0 \mathrm{~Hz})$, 116.6 ($d, J=21.4 \mathrm{~Hz}$), 31.7, 24.3, 23.5.
${ }^{19} \mathrm{~F}$ - $\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-117.08.
HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrFO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 321.0285, 323.0265; found: 321.0286, 323.0267.
UPC ${ }^{2}$: Chiralpak IC column $\left[\mathrm{CO}_{2} / \mathrm{MeCN}\right.$ gradient, $1 \% \mathrm{MeCN}$ (0.5 min), then gradient from 1% to 40% $\left.(10 \% / \mathrm{min}), 120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=2.320 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=2.412 \mathrm{~min} ;$ General Procedure $\mathrm{A}:>99 \%$ ee. $[\boldsymbol{\alpha}]_{25}^{\boldsymbol{D}}=-8.3\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(S_{a})-2'-Bromo-6'-ethyl-3,6-difluoro-[1,1'-biphenyl]-2-carbaldehyde (4r).

Following General Procedure A employing 1.1 equiv NBS and left for 72 h , the product was isolated by FC on SiO_{2} using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 1$ as eluent to afford the title compound as a white, amorphous solid ($17.4 \mathrm{mg}, 0.054 \mathrm{mmol}, 54 \%$ yield, $92 \% \mathrm{ee}$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 9.95$ ($\mathrm{s}, 1 \mathrm{H}$), 7.54 (dd, J=7.7, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.43 (ddd, J 9.0, $7.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.25(\mathrm{~m}, 3 \mathrm{H}), 2.35(\mathrm{q}, J 7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.04(\mathrm{t}, J 7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, CDCl 3): $\delta 187.2$ (dd, $J=3.9 \mathrm{~Hz}, 2.8 \mathrm{~Hz}$,), 159.7 (dd, $J=258.6 \mathrm{~Hz}$, $2.4 \mathrm{~Hz}) 155.5$ (dd, $J=243.6 \mathrm{~Hz}, 2.8 \mathrm{~Hz}$), 145.0, 131.4 (d, $J=1.7 \mathrm{~Hz}$), 130.5, 130.5 (dd, J=20.5 Hz, 2.0 Hz), 130.3, $127.5,123.9,123.2(\mathrm{dd}, J=8.7 \mathrm{~Hz}, 2.4 \mathrm{~Hz}), 122.4(\mathrm{dd}, J=26.0 \mathrm{~Hz}, 10.0 \mathrm{~Hz}), 118.0(\mathrm{dd}, J=23.9 \mathrm{~Hz}, 8.1 \mathrm{~Hz}$), 27.5, 14.6.
${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-117.55 (d, J 17.7 Hz), -122.24 (d, J 17.7 Hz).
HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrF}_{2} \mathrm{ONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 346.9854, 348.9834; found: 346.9852, 348.9835.

UPC ${ }^{2}$: Chiralpak IC column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ gradient, $1 \% \mathrm{MeOH}(0.5 \mathrm{~min}$), then gradient from 1% to 40% $\left.(10 \% / \mathrm{min}), 120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=2.045 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=2.093 \mathrm{~min} ;$ General Procedure $\mathrm{A}: 92 \%$ ee. $[\alpha]_{25}^{D}=-2.7\left(\mathrm{c} 0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(R_{a})-2'-Bromo-6'-ethyl-3-fluoro-[1,1'-biphenyl]-2-carbaldehyde (4s).

Following General Procedure A employing 1.1 equiv NBS, the product was isolated by FC on SiO_{2} using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$ as eluent to afford the title compound as a white, amorphous solid ($16.0 \mathrm{mg}, 0.052 \mathrm{mmol}, 52 \%$ yield, $>99 \%$ ee).
A scale up reaction (2 mmol) provided the title compound ($528.3 \mathrm{mg}, 1.72 \mathrm{mmol}, 86 \%$ yield, $>99 \%$ ee) following the scaled reactions conditions.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 9.98(\mathrm{~s}, 1 \mathrm{H}), 7.67$ (ddd, $\left.J=8.3,7.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.51(\mathrm{dd}, J=$ $7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-7.23(\mathrm{~m}, 2 \mathrm{H}), 1.02$ ($\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 188.2(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 164.0(\mathrm{~d}, J=261.1 \mathrm{~Hz}), 144.9,144.4(\mathrm{~d}, J=1.5 \mathrm{~Hz})$, $138.4(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 135.6(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 130.2,130.0,127.8,127.4(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 123.8,123.0(\mathrm{~d}, J=6.9$ $\mathrm{Hz}), 116.7$ ($\mathrm{d}, \mathrm{J}=21.3 \mathrm{~Hz}$), 27.8, 15.0.
${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ-118.16.
HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrFONa}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: 328.9948, 330.9928; found: 328.9951, 330.9933.
UPC 2 : Chiralpak IC column $\left[\mathrm{CO}_{2} / \mathrm{MeCN}\right.$ gradient, $1 \% \mathrm{MeCN}$ (0.5 min), then gradient from 1% to 40% (10\%/min), $\left.120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; $\mathrm{t}_{\text {major }}=2.463 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=2.573 \mathrm{~min}$; General Procedure $\mathrm{A}:>99 \%$ ee. $[\alpha]_{26}^{\boldsymbol{D}}=-23.6\left(\mathrm{c} \mathrm{0.5}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(\boldsymbol{R}_{a})-2'-Bromo-6'-chloro-3-fluoro-[1,1'-biphenyl]-2-carbaldehyde (4t).

Following General Procedure A employing 1.1 equiv NBS, the product was isolated by FC on SiO_{2} using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 5: 1$ as eluent to afford the title compound as a white, amorphous solid ($25.2 \mathrm{mg}, 0.080 \mathrm{mmol}, 80 \%$ yield, $>95 \% \mathrm{ee}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.18(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{td}, J=8.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ (dd, $J=8.1$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.45 (dd, $J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.28 (ddd, $J=10.5,8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, \mathrm{J}=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.02$ (d, J=7.6 Hz, 1H).
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 187.1(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}), 164.5(\mathrm{~d}, \mathrm{~J}=260.5 \mathrm{~Hz}), 141.6(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 138.6(\mathrm{~d}, \mathrm{~J}$ $=2.5 \mathrm{~Hz}), 135.6(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}), 134.1,131.2,130.2,128.6,127.0(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}), 124.0,122.4(\mathrm{~d}, J=7.4 \mathrm{~Hz})$, 117.0 (d, $J=21.4 \mathrm{~Hz}$).
${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-118.67.
HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{BrClFONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 334.9246, 336.9225, 338.9196; found: 334.9247, 336.9230, 338.9196.
$[\boldsymbol{\alpha}]_{26}^{D}=+0.7\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
UPC ${ }^{2}$ conditions to separate the pair of enantiomers were unable to be obtained. To determine enantioselectivity, the chiral auxiliary, (R)-tert-butanesulfinamide, was employed to form diastereoisomers to determine the diastereomeric ratio by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Below is a zoom-in of the ${ }^{1} \mathrm{H}$ NMR spectra
(crude mixtures) of the racemate (below) and the enantioselective reaction (above). Since only a single diastereoisomer was detected for the enantioenriched entry (>20:1 d.r), this corresponds to >95\% ee. ${ }^{[6]}$

(\boldsymbol{R}_{a})-6'-Bromo-3-fluoro-[1,1':2',1'-terphenyl]-2-carbaldehyde (4 $\mathbf{1}$).

Following General Procedure A employing 1.1 equiv NBS, the product was isolated by FC on SiO_{2} using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 1$ as eluent to afford the title compound as a colorless oil $(21.0 \mathrm{mg}, 0.060 \mathrm{mmol}, 58 \%$ yield, $98 \% \mathrm{ee}$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.09(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 1 \mathrm{H})$, 7.34 (dt, $J=15.3,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.05$ (dd, $J=10.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00$ (dd, $J=6.6,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 187.9(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 163.8(\mathrm{~d}, \mathrm{~J}=259.3 \mathrm{~Hz}), 143.6,140.5,138.0(\mathrm{~d}, \mathrm{~J}=2.7$ $\mathrm{Hz}), 134.7$ ($\mathrm{d}, \mathrm{J}=10.4 \mathrm{~Hz}$), 131.8, 129.5, 129.3, 129.3, 128.2 ($\mathrm{d}, \mathrm{J}=3.3 \mathrm{~Hz}$), 128.0, 127.3, 123.7 ($\mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}$), 116.2 ($\mathrm{d}, \mathrm{J}=22.2 \mathrm{~Hz}$).
(Note: 2 carbons were not observed)
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-118.65$ (dd, $J=10.4,5.5 \mathrm{~Hz}, 1 \mathrm{~F}$).
HRMS (ESI ${ }^{+}$) m/z calcd. $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{BrFO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 355.0128, 357.0108; found: 355.1024, 357.0107.
UPC ${ }^{2}$: Chiralpak IC column $\left[\mathrm{CO}_{2} / \mathrm{MeCN}\right.$ gradient, $1 \% \mathrm{MeCN}$ (0.5 min), then gradient from 1% to 40%
($10 \% / \mathrm{min}$), $120 \mathrm{bar}, 40^{\circ} \mathrm{C}$], $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=2.918 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=3.055 \mathrm{~min}$; General Procedure $\mathrm{A}: 98 \%$ ee. $[\alpha]_{24}^{D}=+34.8\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$.

[^5](R_{a})-2'-Bromo-3-chloro-6'-ethyl-[1,1'-biphenyl]-2-carbaldehyde (4u).

Following General Procedure A employing 1.1 equiv NBS, the product was isolated by FC on SiO_{2} using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 1$ as eluent ($26.3 \mathrm{mg}, 0.08 \mathrm{mmol}, 81 \%$ yield, $>99 \% \mathrm{ee}$).
Following the General Procedure C , the product was isolated by FC on SiO_{2} using pentane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2:1) as eluent to afford the title compound as a white, amorphous solid $(28.4 \mathrm{mg}, 0.088 \mathrm{mmol}, 88 \%$ yield, $98 \% \mathrm{ee}$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 10.22(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=6.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.21(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, CDCl_{3}) $\delta 190.0,144.3,144.0,138.7,136.8,133.7,131.4,130.8,130.0,129.6,127.3$, 127.3, 123.2, 27.5, 14.8.

HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrClONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 344.9652$; found: 344.9653.
UPC ${ }^{2}$: Chiralpak IC column $\left[\mathrm{CO}_{2} / \mathrm{MeCN}\right.$ gradient, $1 \% \mathrm{MeCN}$ (0.5 min), then gradient from 1% to 40% ($10 \% / \mathrm{min}$), $\left.120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; $\mathrm{t}_{\text {major }}=2.343 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=2.237 \mathrm{~min}$; General Procedure $\mathrm{A}:>99 \%$ ee. General Procedure C: 98\% ee.
$[\alpha]_{25}^{D}=-42.7\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(R_{a})-2'-Bromo-2-formyl-6'-iso-propyl-[1,1'-biphenyl]-3-yl 4-methylbenzenesulfonate (4v).

Following General Procedure A employing 1.1 equiv NBS, the product was isolated by FC on SiO_{2} using a gradient from 50% pentane in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to afford the title compound as a white, amorphous solid ($28.3 \mathrm{mg}, 0.060 \mathrm{mmol}, 60 \%$ yield, >99\% ee).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 9.73(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.44-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.33$ (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 187.9,150.9,149.5,146.8,143.8,138.2,134.4,131.8,130.5,130.5,130.0$, 130.0, 129.1, 128.2, 125.0, 124.0, 123.2, 32.0, 24.2, 23.5, 21.9 .

HRMS (ESI ${ }^{+}$) m/z calcd. For $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BrO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 473.0417; found: 473.0413 .
UPC ${ }^{2}$: Chiralpak IC column $\left[\mathrm{CO}_{2} / \mathrm{MeCN}\right.$ gradient, $1 \% \mathrm{MeCN}$ (0.5 min), then gradient from 1% to 40% ($10 \% / \mathrm{min}$), $120 \mathrm{bar}, 40^{\circ} \mathrm{C}$, $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=3.645 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=4.256 \mathrm{~min}$; General Procedure $\mathrm{A}: 96 \%$ ee. $[\boldsymbol{\alpha}]_{25}^{\boldsymbol{D}}=-10.9\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

$\left(R_{a}\right)$-2'-Bromo-6-formyl-6'-iso-propyl-4-methoxy-[1,1'-biphenyl]-3-yl acetate (4w).

Following General Procedure A employing 1.1 equiv NBS, the product was isolated by FC on SiO_{2} using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to afford the title compound as a white, amorphous solid ($26.8 \mathrm{mg}, 0.068 \mathrm{mmol}, 69 \%$ yield, $>99 \% \mathrm{ee}$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 9.58(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{hept}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta 190.5,168.4,151.8,150.8,144.7,137.8,136.0$, 132.8, 130.6, 130.1, 125.6, 125.2, 125.1, 110.3, 56.5, 31.8, 24.2, 23.6, 20.8.

HRMS (ESI ${ }^{+}$) m/z calcd. For $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrO}_{4}{ }^{+}$[M+H] ${ }^{+}$: 391.0539; found: 391.0539.
UPC ${ }^{2}$: Chiralpak IC column $\left[\mathrm{CO}_{2} / \mathrm{MeCN}\right.$ gradient, $1 \% \mathrm{MeCN}$ (0.5 min), then gradient from 1% to 40% ($10 \% / \mathrm{min}$), $\left.120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; $\mathrm{t}_{\text {major }}=2.505 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=2.620 \mathrm{~min} ;$ General Procedure $\mathrm{A}:>99 \%$ ee.
$[\boldsymbol{\alpha}]_{25}^{\boldsymbol{D}}=-7.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(\boldsymbol{R}_{a})-2'-Bromo-6'-iso-propyl-6-formyl-[1,1'-biphenyl]-3-carbonitrile (4x).

Following General Procedure A employing 1.1 equiv NBS, the product was isolated by FC on SiO_{2} using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$ as eluent to afford the title compound as a colorless oil ($25 \mathrm{mg}, 0.076 \mathrm{mmol}, 76 \%$ yield, $>99 \%$ ee).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.72(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.81$ (m, 1H), $7.57-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.42$ (dd, J = 8.0, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.47$ (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $1.14(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 190.0,149.9,144.7,136.8,134.7,134.6,132.1,131.1,130.4,128.3,125.2$, 124.0, 117.8, 117.4, 31.7, 24.2, 23.6.

HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrNONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 350.0151; found: 350.0150.
UPC ${ }^{2}$: Chiralpak IC column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ gradient, $1 \% \mathrm{MeOH}$ (0.5 min), then gradient from 1% to 40% ($10 \% / \mathrm{min}$), $\left.120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; $\mathrm{t}_{\text {major }}=2.487 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=2.587 \mathrm{~min}$; General Procedure $\mathrm{A}:>99 \%$ ee. $[\boldsymbol{\alpha}]_{25}^{D}=-5.3\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(S_{a})-2'-Bromo-6-chloro-[1,1'-biphenyl]-2-carbaldehyde (4y).

Following General Procedure B , the product was isolated by FC on SiO_{2} using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 1$ as eluent to afford the title compound as a white, amorphous solid ($18.0 \mathrm{mg}, 0.061 \mathrm{mmol}, 61 \%$ yield, 93% ee).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.62(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-7.93(\mathrm{dd}, \mathrm{J}=7.8,1.2,1 \mathrm{H}), 7.76$ $-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{td}, J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{td}, \mathrm{J}=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{td}, \mathrm{J}=7.7$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.6,142.7,135.8,135.6,134.9,134.8,132.8,131.6,130.4,129.6,127.5$, 125.9, 124.1.

HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BrClONa}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: 316,9339; found: 316.9340.
UPC 2 : Chiralpak IC column $\left[\mathrm{CO}_{2} / \mathrm{MeCN}\right.$ gradient, $1 \% \mathrm{MeCN}$ (0.5 min), then gradient from 1% to 40% ($10 \% / \mathrm{min}$), 120 bar, $\left.40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=2.524 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=2.748 \mathrm{~min}$; General Procedure $\mathrm{A}: 93 \%$ ee. $[\boldsymbol{\alpha}]_{26}^{\boldsymbol{D}}=+1.6\left(\mathrm{c} 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(S_{a})-2'-Bromo-6-formyl-5'-iso-propyl-[1,1'-biphenyl]-2-yl methanesulfonate (4i).

Following General Procedure B , the product was isolated by FC on SiO_{2} using $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane 2:1 as eluent to afford the title compound as a colorless oil (22.2 mg , $0.056 \mathrm{mmol}, 56 \%$ yield, 97% ee).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.70(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ (dd, J=8.2, 1.3 Hz, 1H), 7.64-7.60 (m, 2H), 7.27 (d, J = 2.3 Hz, 1H), 7.22 (dd, J = 8.3, $2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.94 (hept, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.68(\mathrm{~s}, 3 \mathrm{H}), 1.28-1.24(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.4,148.7,147.0,137.6,135.7,132.8,132.7,131.1,130.0,129.0,128.5$, 126.2, 121.4, 38.4, 33.7, 24.1, 23.8.

HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{4} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: ~: ~ 418.9924,420.9903$; found: 418.9917, 420.9901 .
UPC ${ }^{2}$: Chiralpak IB column $\left[\mathrm{CO}_{2} / \mathrm{MeCN}\right.$ gradient, $1 \% \mathrm{MeCN}$ (0.5 min), then gradient from 1% to 40% $\left.(10 \% / \mathrm{min}), 120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=2.720 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=2.878 \mathrm{~min}$; General Procedure $\mathrm{B}: 97 \%$ ee. $[\alpha]_{24}^{\boldsymbol{D}}=-11.2\left(\mathrm{c} \mathrm{0.5}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(S_{a})-2'-Bromo-5'-(tert-butyl)-6-formyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (4z).

Following General Procedure B , the product was isolated by FC on SiO_{2} using $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane 2:1 as eluent to afford the title compound as a colorless oil $(30.4 \mathrm{mg}$, 0.062 mmol, 62\% yield, >99\% ee).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.64(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{dd}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.65$ (dd, J = 8.2, 1.3 Hz, 1H), 7.55 (td, J = 7.9, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.35$ $(\mathrm{m}, 3 \mathrm{H}), 7.30(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}$, 9H).
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.7,150.6,147.2,145.3,138.3,135.7,133.2,132.2,132.1,130.3,129.8$, 129.7, 128.2, 128.0, 127.5, 125.8, 121.5, 34.8, 31.3, 21.8.

HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{BrO}_{4} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 509.0393; found: 509.0394.
UPC ${ }^{2}$: Chiralpak IC column $\left[\mathrm{CO}_{2} / \mathrm{MeCN}\right.$ gradient, $1 \% \mathrm{MeCN}$ (0.5 min), then gradient from 1% to 40% $\left.(10 \% / \mathrm{min}), 120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; $\mathrm{t}_{\text {major }}=3.279 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=3.549 \mathrm{~min} ;$ General Procedure $\mathrm{B}: ~>99 \%$ ee. $[\boldsymbol{\alpha}]_{24}^{\boldsymbol{D}}=+2.0\left(\mathrm{c} 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(R_{a})-2'-Bromo-6'-ethyl-[1,1'-biphenyl]-2-carbaldehyde (4b).

Following General Procedure B , the product was isolated by FC on SiO_{2} using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /pentane 1:3 as eluent then a second FC on IATRO beads using 5% dioxane in pentane as eluent to provide the title compound to afford the title compound as a colorless oil ($20.9 \mathrm{mg}, 0.057 \mathrm{mmol}, 63 \%$ yield, 89% ee).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 9.68(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ (td, J=7.5, 1.5 Hz, 1H), 7.58 (dt, J = 7.7, 1.0 Hz, 1H), 7.54 (dd, J = 8.0, 1.3 Hz, 1H), 7.34 (dd, J = 7.7, 1.4 Hz, 1H), $7.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 191.7,145.5,144.1,138.1,134.4,134.2,131.3,130.3,130.1,128.9,127.9$ (2C), 124.6, 27.9, 15.1.
HRMS (ESI+) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 311.0042; found: 311.0056.
UPC 2 : Chiralpak IC column [CO2/iPrOH gradient, $1 \% \mathrm{iPrOH}(0.5 \mathrm{~min}$), then gradient from 1% to 40% ($10 \% / \mathrm{min}$), $\left.120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; $\mathrm{t}_{\text {major }}=2.771 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=2.839 \mathrm{~min} ;$ General Procedure $\mathrm{B}:>99 \%$ ee. $[\boldsymbol{\alpha}]_{25}^{\boldsymbol{D}}=-18.9$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).
(\boldsymbol{R}_{a})-2'-Bromo-6'-iso-propyl-[1,1'-biphenyl]-2-carbaldehyde (4a).

Following General Procedure B, the product was isolated as an inseparable mixture containing product and starting material (corrected yield is noted) by FC on SiO_{2} using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 3:1 as eluent to afford the title compound as a colorless oil (17.8 mg , 0.059 mmol, 59\% yield, 97% ee).
${ }^{1} \mathrm{H}$ NMR (400 MHz CDCl 3) $\delta 9.71(\mathrm{~d}, \mathrm{~J}=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ (td, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H})$,
$7.227 .20(\mathrm{dd}, J=7.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.57$ (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.6,150.0,144.3,137.0,134.1,134.1,130.9,130.1,130.0,128.6,127.7$, 124.8, 124.4, 31.5, 24.3, 23.6.

HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrONa}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: 325.0199, 327.0179; found: 325.0203, 327.0185.
UPC ${ }^{2}$: Chiralpak IB column [CO2/iPrOH gradient, $1 \% \mathrm{iPrOH}(0.5 \mathrm{~min})$, then gradient from 1% to 40% ($10 \% / \mathrm{min}$), $120 \mathrm{bar}, 40^{\circ} \mathrm{C}$], $2.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=3.212 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=3.351 \mathrm{~min}$; General Procedure $\mathrm{B}: 97 \%$ ee.
$[\boldsymbol{\alpha}]_{26}^{\boldsymbol{D}}=+7.7\left(\mathrm{c} 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
$\left(R_{a}\right)$-2'-Bromo-3-chloro-6'-iso-propyl-[1,1'-biphenyl]-2-carbaldehyde (6a).

Following General Procedure C , the product was isolated by FC on SiO_{2} using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 3:1 as eluent to afford the title compound as a yellow, amorphous solid ($26.6 \mathrm{mg}, 0.079 \mathrm{mmol}, 79 \%$ yield, $98 \% \mathrm{ee}$).
${ }^{1} \mathrm{H}$ NMR (400 MHz CDCl 3) $\delta 10.26(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}$ $=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ (dd, $J=6.1,2.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.52 (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.0,149.3,144.2,138.0,136.9,133.6,131.5,130.8,130.0,129.9,129.8$, 124.7, 123.0, 31.7, 24.4, 23.4.

HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{BrClONa}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 358.9809; found: 358.9806.
UPC ${ }^{2}$: Chiralpak ID column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ gradient, $1 \% \mathrm{MeOH}(0.5 \mathrm{~min}$), then gradient from 1% to 40% ($10 \% / \mathrm{min}$), $120 \mathrm{bar}, 40^{\circ} \mathrm{C}$], $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=2.050 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=1.977 \mathrm{~min}$; General Procedure $\mathrm{C}: 98 \% \mathrm{ee}$. $[\boldsymbol{\alpha}]_{26}^{\boldsymbol{D}}=-6.2\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(\boldsymbol{R}_{a})-2'-Bromo-3-chloro-6'-(trifluoromethyl)-[1,1'-biphenyl]-2-carbaldehyde (6e).

Following General Procedure C , the product was isolated by FC on SiO_{2} using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 3:1 as eluent to afford the title compound as a white, amorphous solid $(27.7 \mathrm{mg}, 0.076 \mathrm{mmol}, 76 \%$ yield, $>99 \%$ ee).
${ }^{1} \mathrm{H}$ NMR (400 MHz CDCl 3) $\delta 10.40(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.60-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{td}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 189.6,140.2,139.3(\mathrm{q}, \mathrm{J}=1.6 \mathrm{~Hz}), 138.4,136.1,133.6$, $131.4,130.9,130.2(q, J=1.2 \mathrm{~Hz}), 130.0(\mathrm{~d}, J=30.1 \mathrm{~Hz}), 129.2,125.3,125,3(q, J=5.2 \mathrm{~Hz}), 123.2(q, J=274.9$ Hz).
${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-59.01$.
HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{BrClF}_{3} \mathrm{ONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 384.9214, 386.9193, 388.9164; found: 384.9220, 386.9196, 388.9166.

UPC ${ }^{2}$: Chiralpak IB column $\left[\mathrm{CO}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ gradient, $1 \% \mathrm{iPrOH}(0.5 \mathrm{~min}$), then gradient from 1% to 20% $\left.(0.6 \% / \mathrm{min}), 120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=4.533 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=4.103 \mathrm{~min} ;$ General Procedure $\mathrm{A}:>99 \%$ $e e{ }^{[7]}$
$[\boldsymbol{\alpha}]_{26}^{\boldsymbol{D}}=+84.6\left(\mathrm{c} 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(R_{a})-Methyl 6-bromo-3'-chloro-2'-formyl-[1,1'-biphenyl]-2-carboxylate (6f).

Following General Procedure C , the product was isolated by FC on SiO_{2} using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 3:1 as eluent to afford the title compound as a white, amorphous solid ($20.2 \mathrm{mg}, 0.057 \mathrm{mmol}, 57 \%$ yield, $>99 \%$ ee).
${ }^{1} \mathrm{H}$ NMR (400 MHz CDCl 3) $\delta 10.39(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.82 (dd, $J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.98$ (m, 1H), $3.63(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.0,166.1,143.6,141.8,137.9,136.4,133.7,131.2,130.8,130.5,129.6$, 129.0, 128.9, 124.6, 52.36.

[^6]HRMS (ESI ${ }^{+}$) m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrClO}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 374.9395, 376.9374; found: 374.9395, 376.9375. UPC ${ }^{2}$: Chiralpak ID column $\left[\mathrm{CO}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ gradient, $1 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.5 min), then gradient from 1% to 40% (10\%/min), $\left.120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; $\mathrm{t}_{\text {major }}=3.025 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=3.099 \mathrm{~min}$; General Procedure $\mathrm{A}:>86 \%$ ee (impurity coelutes with minor peak). ${ }^{[8]}$
$[\boldsymbol{\alpha}]_{26}^{\boldsymbol{D}}=+31.9\left(\mathrm{c} 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(R_{a})-1-(5-Bromo-2,2-difluorobenzo[d][1,3]dioxol-4-yl)-3-chloro-2-naphthaldehyde (6p).

Following General Procedure C , the product was isolated by FC on SiO_{2} using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 5: 1$ as eluent to afford the title compound as a white, amorphous solid ($20.3 \mathrm{mg}, 0.048 \mathrm{mmol}, 48 \%$ yield, 97% ee).
${ }^{1} \mathrm{H}$ NMR (400 MHz CDCl 3) $\delta 10.54(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68$ (ddd, $J=8.2,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ (ddd, $J=8.2,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.39(\mathrm{dq}, J=8.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.2,143.0,135.9,134.7,132.0,131.6(\mathrm{t}, \mathrm{J}=259.6 \mathrm{~Hz}), 130.8,130.2,130.0$, $128.7,128.3,127.7,127.6,126.6,121.3,117.6,110.6$.
${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-49.34(\mathrm{~d}, \mathrm{~J}=93.1 \mathrm{~Hz}),-49.63(\mathrm{~d}, \mathrm{~J}=93.1 \mathrm{~Hz})$.
HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{8} \mathrm{BrClF}_{2} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 446.9206448 .9186450 .9156 ; found: 446.9216, 448.9191, 450.9159.

UPC²: Chiralpak IC column [CO2/MeCN gradient, $1 \% \mathrm{MeCN}$ (0.5 min), then gradient from 1% to 40% ($10 \% / \mathrm{min}$), $120 \mathrm{bar}, 40^{\circ} \mathrm{C}$], $3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=2.521 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=2.696 \mathrm{~min} ;$ General Procedure $\mathrm{A}: 97 \%$ ee. $[\boldsymbol{\alpha}]_{26}^{\boldsymbol{D}}=+13.3$ (c 1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

[^7]
5. Procedures for Derivations of Products

5.1 Acetalprotection

Scheme S4: Acetal protection of 4 s .
An $8-\mathrm{mL}$ vial equipped with a magnetic stir bar was charged with $4 \mathrm{~s}(1.15 \mathrm{mmol}, 1$ equiv), p-TsOH (0.012 $\mathrm{mmol}, 10 \mathrm{~mol} \%$), trimethyl orthoformate ($4.6 \mathrm{mmol}, 4$ equiv) and anhydrous $\mathrm{MeOH}(1 \mathrm{~mL})$. The vial was sparged with Ar and sealed with a Teflon screw cap. The resulting solution was stirred at rt for 2 h and then passed through a short silica plug and eluted with EtOAc to provide pure 4s' as beige, amorphous solid (208.6 $\mathrm{mg}, 0.591 \mathrm{mmol}, 96 \%$ yield, >99\% ee). ${ }^{[9]}$

(\boldsymbol{R}_{a})-2'-Bromo-2-(dimethoxymethyl)-6'-ethyl-3-fluoro-1,1'-biphenyl (4s').

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.52(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{td}, \mathrm{J}=7.9,5.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30(\mathrm{~d}, \mathrm{~J}=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{ddd}, J=11.0,8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.89 (dd, J = 7.6, 1.2 Hz, 1H), 4.77 (d, J = $1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.30(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 2.43-2.21$ $(\mathrm{m}, 2 \mathrm{H}), 1.03(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.3(\mathrm{~d}, \mathrm{~J}=252.5 \mathrm{~Hz}), 145.4,141.4(\mathrm{~d}, J=4.7 \mathrm{~Hz})$, 139.0 (d, J = 2.4 Hz), 130.0, 130.0 (d, J = 9.6 Hz), 129.6, 127.2, 125.9 (d, J = 3.3 Hz), 124.2, 124.1 (d, $J=12.5 \mathrm{~Hz}$), 116.4 ($\mathrm{d}, \mathrm{J}=22.8 \mathrm{~Hz}$), 103.9, 56.1, 55.8, 27.1, 14.8.
${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-113.29.
HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BrFO}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 375.0367, 377.0346; found: 375.0365, 377.0346 .
UPC²: Chiralpak IC column [$\mathrm{CO}_{2} / \mathrm{MeCN}$ gradient, $1 \% \mathrm{MeCN}$ (0.5 min), then gradient from 1% to 40% $\left.(10 \% / \mathrm{min}), 120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; $\mathrm{t}_{\text {major }}=2.720 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=2.434 \mathrm{~min}:>99 \% \mathrm{ee}$.
$[\alpha]_{25}^{D}=-216.3\left(c 0.19, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

5.2 Carboxylation

Scheme S5: Carboxylation of $4 s^{\prime}$.
To a flame-dried, 10 mL schlenk flask equipped with a stir bar was added $4 \mathrm{~s}^{\prime}$ ($35.3 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv), and anhydrous, degassed THF ($1 \mathrm{~mL}, 0.1 \mathrm{M}$). The reaction was submerged in a cooling bath at $\sim-90^{\circ} \mathrm{C}$ (toluene, $\mathrm{N}_{2(1)}$) followed by t-BuLi (0.12 mL of 1.7 M in pentane, $0.2 \mathrm{mmol}, 2.0$ equiv). After $30 \mathrm{~s}, \mathrm{CO}_{2}$ was

[^8]bubbled through the resulting yellow solution for 5 min , and kept under a CO_{2} atmosphere. The resulting solution was removed from the cooling bath and allowed to warm to rt overnight, quenched with 1 M HCl (3 mL), extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude mixture was purified by FC on $\mathrm{SiO}_{2}\left(200 \mathrm{~mL}\right.$ of $20 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then 100 mL 100 \% EtOAc, then $2 \% \mathrm{AcOH}$ in EtOAc) to provide pure 5 sa as white, amorphous solid ($20.1 \mathrm{mg}, 0.074 \mathrm{mmol}$, 74% yield, >99\% ee). ${ }^{[10]}$

(R_{a})-6-Ethyl-3'-fluoro-2'-formyl-[1,1'-biphenyl]-2-carboxylic acid (5sa).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.04(\mathrm{~s}, 1 \mathrm{H}), 7.93$ (dd, J=7.9, 1.5 Hz, 1H), $7.57-7.50(\mathrm{~m}, 2 \mathrm{H})$, $7.44(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{dd}, \mathrm{J}=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.20(\mathrm{~m}$, $2 \mathrm{H}), 1.01$ (t, J = $7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.4$ ($\mathrm{d}, \mathrm{J}=5.2 \mathrm{~Hz}$), $172.1,163.9(\mathrm{~d}, J=258.4 \mathrm{~Hz}), 144.0$, $143.1,139.1$ ($\mathrm{d}, \mathrm{J}=2.3 \mathrm{~Hz}$), 134.8 ($\mathrm{d}, \mathrm{J}=10.3 \mathrm{~Hz}$), 133.0, 128.8, 128.3, 126.2, 126.1 (d, $J=3.6$ $\mathrm{Hz}), 122.9$ (d, J= 6.5 Hz), 115.8 (d, $J=21.8 \mathrm{~Hz}$), 26.4, 14.9.
${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-118.89.
HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{FO}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 295.0741; found: 295.0740.
UPC²: Chiralpak IC column [$\mathrm{CO}_{2} / \mathrm{MeCN}$ gradient, $1 \% \mathrm{MeCN}$ (0.5 min), then gradient from 1% to 40% $\left.(10 \% / \mathrm{min}), 120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; $\mathrm{t}_{\text {major }}=4.011 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=3.581 \mathrm{~min}:>99 \% \mathrm{ee}$.
$[\alpha]_{25}^{D}=+13.6\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

5.3 Suzuki coupling

Scheme S6: Suzuki-Miyuara cross-coupling of 4s'.

In a glovebox, a 4-mL vial, equipped with a magnetic stir bar, was loaded with $4 \mathrm{~s}^{\prime}$ ($35.3 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv), boronic acid ($0.15 \mathrm{mmol}, 1.5$ equiv), and XPhos-Pd-G4 ($0.002 \mathrm{mmol}, 0.02$ equiv). After addition of degassed THF (0.2 mL) and degassed $0.5 \mathrm{M} \mathrm{K}_{3} \mathrm{PO}_{4}$ in water (0.4 mL), the vial was sealed with a Teflon screw cap. The resulting reaction was stirred at rt for 2 h . Upon completion of the reaction, the resulting solution was directly loaded onto a column and purified by FC using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to provide $\mathbf{5 s b}$ as white, amorphous solid ($25.8 \mathrm{mg}, 0.068 \mathrm{mmol}, 68 \%$ yield, $>99 \%$ ee). ${ }^{[11]}$

[^9]$\left(R_{a}\right)$-2-(Dimethoxymethyl)-6'-ethyl-3-fluoro-4'-methoxy-1,1':2',1'-terphenyl (5sb).

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.27-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.67(\mathrm{~m}, 2 \mathrm{H})$, $4.82(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.23(\mathrm{~m}, 2 \mathrm{H})$, $1.08(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 161.0(\mathrm{~d}, \mathrm{~J}=252.4 \mathrm{~Hz}), 158.3,143.0,141.1(\mathrm{~d}, \mathrm{~J}$ $=4.7 \mathrm{~Hz}), 140.8,136.7(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 133.80,130.7,128.8(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 128.1$, $127.6,127.4(d, J=3.2 \mathrm{~Hz}), 126.8,124.4(\mathrm{~d}, J=12.4 \mathrm{~Hz}), 115.2(\mathrm{~d}, J=23.1 \mathrm{~Hz}), 112.8,103.6(\mathrm{~d}, J=1.2 \mathrm{~Hz})$, 55.2, 55.0, 26.5, 14.8.
${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ-112.90.
HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{FO}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 403.1680; found: 403.1685.
UPC ${ }^{2}$: Upon acetal deprotection with HCl . Chiralpak IB column [$\mathrm{CO}_{2} / \mathrm{MeCN}$ gradient, $1 \% \mathrm{MeCN}(0.5 \mathrm{~min})$, then gradient from 1% to $\left.40 \%(10 \% / \mathrm{min}), 120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=2.653 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=2.586 \mathrm{~min} ;>99 \%$ ee.
$[\boldsymbol{\alpha}]_{27}^{D}=+3.9\left(\mathrm{c} 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

5.4 Cyanation

Scheme S7: Cyanation of 4s'.
In a $4-\mathrm{mL}$ vial equipped with a magnetic stir bar was added $4 \mathrm{~s}^{\prime}$ ($35.3 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv), $\mathrm{Na}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \cdot 10 \mathrm{H}_{2} \mathrm{O}\left(0.05 \mathrm{mmol}, 0.5\right.$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.0025 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, and XPhos ($0.02 \mathrm{mmol}, 0.2$ equiv). After addition of degassed dioxane (0.25 mL) and degassed $\mathrm{KOAc}_{(a q)}(0.25 \mathrm{~mL}, 0.05 \mathrm{M}$), the atmosphere was exchanged with Ar and the vial was sealed with a Teflon screw cap. The resulting solution was stirred at $100^{\circ} \mathrm{C}$ overnight. Upon completion of the reaction, the resulting solution was directly loaded onto a column and purified by FC using EtOAc/pentane 1:10 to provide pure 5sc as white, amorphous solid $\left(22.9 \mathrm{mg}, 0.077 \mathrm{mmol}, 77 \%\right.$ yield, $>99 \%$ ee). ${ }^{[12]}$
(R_{a})-2'-(Dimethoxymethyl)-6-ethyl-3'-fluoro-[1,1'-biphenyl]-2-carbonitrile (5sc).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57$ (dd, $\left.J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.53(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-$ 7.38 (m, 2H), 7.19 (ddd, $J=10.7,8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H})$, $3.32(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 2.48-2.30(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.3(\mathrm{~d}, \mathrm{~J} 251.6 \mathrm{~Hz}), 144.4,142.6(\mathrm{~d}, \mathrm{~J} 2.4 \mathrm{~Hz}), 138.8$ (s, J 4.2 Hz), 132.2, 130.3 (d, J 9.6 Hz), 129.8, 128.5, 126.1 (d, J 3.35 Hz), 124.3 (s, J 12.5 Hz), 118.3, 116.8 (d, J 24.3 Hz), 113.8, 102.4 ($d, J 1,9 \mathrm{~Hz}$), 55.9, 54.8, 26.3, 14.6.
${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-114.61.

[^10]HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{FNO}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 322.1214; found: 322.1219.
UPC ${ }^{2}$: Chiralpak IC column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ gradient, $1 \% \mathrm{MeOH}$ (0.5 min), then gradient from 1% to 40% $\left.(10 \% / \mathrm{min}), 120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; \mathrm{t}_{\text {major }}=2.697 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=2.448 \mathrm{~min} ;>99 \% \mathrm{ee}$.
$[\boldsymbol{\alpha}]_{25}^{\boldsymbol{D}}=+46.1\left(\mathrm{c} 0.06, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

5.5 Miyuara coupling

Scheme S8: Miyuara coupling of $4 s^{\prime}$.
In a flame-dried 4-mL vial, equipped with a magnetic stir bar, was added the $4 \mathrm{~s}^{\prime}$ ($35.3 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv), $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(7.3 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{B}_{2} \mathrm{Pin}_{2}(102 \mathrm{mg}, 0.4 \mathrm{mmol}, 4$ equiv) and KOAc ($49.1 \mathrm{mg}, 0.5 \mathrm{mmol}$, 5 equiv). After addition of degassed dioxane (0.5 mL), the atmosphere was exchanged with Ar and the vial was sealed with a Teflon screw cap. The resulting reaction was stirred at $90^{\circ} \mathrm{C}$ overnight. Upon completion of the reaction, the resulting solution was dried under a flow of N_{2}, dissolved in pentane, and then directly loaded onto a column and purified by FC using EtOAc/pentane 1:20 to provide pure 5 sd as white, amorphous solid ($25.8 \mathrm{mg}, 0.068 \mathrm{mmol}, 68 \%$ yield, $>99 \%$ ee). ${ }^{[13]}$
(S_{a})-2-(2'-(Dimethoxymethyl)-6-ethyl-3'-fluoro-[1,1'-biphenyl]-2-yl)-4,4,5,5-tetramethyl-1,3,2-
 dioxaborolane (5sd).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.56(\mathrm{dd}, J=7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.30$ $-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.04$ (ddd, $J=11.2,8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.71$ (d, J = $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.22(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 6 \mathrm{H}), 2.44-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.07-1.00(\mathrm{~m}, 15 \mathrm{H})$. ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 161.3(\mathrm{~d}, J=250.4 \mathrm{~Hz}) 144.0(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 143.8$ (d, $J=4.8 \mathrm{~Hz}), 142.4,132.2,130.5,129.0(d, J=9.4 \mathrm{~Hz}), 127.7,126.7(\mathrm{~d}, J=3.3 \mathrm{~Hz})$, 124.9 ($\mathrm{d}, \mathrm{J}=12.3 \mathrm{~Hz}$), 115.2 ($\mathrm{d}, \mathrm{J}=22.8 \mathrm{~Hz}$), 104.4, 83.7, 55.8, 55.7, 26.4, 24.8, 24.7,
15.1.
${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathbf{- 1 1 5 . 7 0 .}$
HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{BFO}_{4} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 423.2113; found: 423.2120.
UPC ${ }^{2}$: Chiralpak IB column [$\mathrm{CO}_{2} / \mathrm{MeCN}$ gradient, $1 \% \mathrm{MeCN}$ (0.5 min), then gradient from 1% to 40% $\left.(10 \% / \mathrm{min}), 120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; $\mathrm{t}_{\text {major }}=2.089 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=1.976 \mathrm{~min} ;>99 \% \mathrm{ee}$.
$[\alpha]_{25}^{D}=+3.2\left(\mathrm{c} 0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

[^11]
5.6 Buchwald-Hartwig amination

Scheme S9: Buchwald-Hartwig amination of 4s'.
To a flame-dried 4-mL vial, equipped with a magnetic stir bar, was added the $4 \mathrm{~s}^{\prime}$ ($35.3 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}\left(2.25 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1\right.$ equiv), $\mathrm{BocNH}_{2}\left(23.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 2\right.$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(45.6 \mathrm{mg}, 0.14 \mathrm{mmol}$, 1.4 equiv) and XPhos ($14.3 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.3$ equiv). After addition of degassed dioxane (1 mL), the atmosphere was exchanged with Ar, and the vial was sealed with a Teflon screw cap. The resulting reaction was stirred at $100^{\circ} \mathrm{C}$ overnight. Upon completion of the reaction, the mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\text {aq })}$ and extracted with EtOAc. The combined organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The resulting residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and then loaded onto a SiO_{2} column and purified by FC using EtOAc/pentane 1:20 to provide 5se as colorless oil ($31.4 \mathrm{mg}, 0.08 \mathrm{mmol}, 81 \%$ yield, $>99 \% e e) .{ }^{[13]}$

(\boldsymbol{R}_{a})-tert-Butyl (2'-(dimethoxymethyl)-6-ethyl-3'-fluoro-[1,1'-biphenyl]-2-yl)carbamate (5se).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42$ (ddd, $\left.J=8.2,7.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.34(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (ddd, $J=10.8,8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ (dd, J = 7.6, 1.2 Hz, 1H), 6.05 (s, 1H), 4.83 (d, J = $1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.30(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 6 \mathrm{H}$), 2.34 $-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.04(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.5(\mathrm{~d}, \mathrm{~J}=253.4 \mathrm{~Hz}), 153.0,142.9,137.9(\mathrm{~d}, \mathrm{~J}=4.3$ $\mathrm{Hz}), 136.0,130.8(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 128.9,126.4(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 125.2(\mathrm{~d}, J=12.1 \mathrm{~Hz}), 123.0$, $117.9,116.9$ ($d, J=22.7 \mathrm{~Hz}$), 103.8, 80.4, 56.3, 55.7, 28.4, 26.5, 14.9.
${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-112.81.
HRMS (ESI ${ }^{+}$) m/z calcd. For $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{FNO}_{4} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 412.1895$; found: 412.1896.
UPC ${ }^{2}$: Chiralpak IC column $\left[\mathrm{CO}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ gradient, $1 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.5 min), then gradient from 1% to 40% $\left.(10 \% / \mathrm{min}), 120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; $\mathrm{t}_{\text {major }}=2.951 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=2.993 \mathrm{~min}:>99 \%$ ee.
$[\boldsymbol{\alpha}]_{25}^{\boldsymbol{D}}=-37.0\left(\mathrm{c} 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$).

5.7 C-P Cross-coupling reaction

Scheme S10: C-P Cross-coupling reaction at 4s'.
To a flame-dried, 4-mL vial equipped with a stir bar was added $4 \mathrm{~s}^{\prime}$ ($35.3 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($4.49 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.2$ equiv), dppp ($8.5 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.2$ equiv), DIPEA ($84 \mathrm{~mL}, 0.48 \mathrm{mmol}, 4.8$ equiv),

DMSO (0.6 mL), and diphenylphosphine oxide (40.4 mg , 2 equiv). The vial was sparged with Ar, capped, and heated to $120^{\circ} \mathrm{C}$ overnight, then cooled to rt and diluted with EtOAc (10 mL) and 4 M HCl in dioxane (200 $\mathrm{ml})$. The resulting solution was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$ and brine ($1 \times 10 \mathrm{~mL}$). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude mixture was purified via FC on $\mathrm{SiO}_{2}(20 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide pure 5 sf as white, amorphous solid ($36.7 \mathrm{mg}, 0.077 \mathrm{mmol}, 77 \%$ yield, $>99 \%$ ee). ${ }^{[14]}$
(R_{a})-2'-(Diphenylphosphoryl)-6'-ethyl-3-fluoro-[1,1'-biphenyl]-2-carbaldehyde (5sf).
 $=9.5 \mathrm{~Hz}), 132.4(\mathrm{dd}, \mathrm{J}=2.6 \mathrm{~Hz}), 132.4,132.1(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 132.0(\mathrm{~d}, J=26.3,9.5 \mathrm{~Hz}), 132.0(\mathrm{~d}, J=2.9 \mathrm{~Hz})$, 131.8 (d, $J=2.9 \mathrm{~Hz}$), 131.4, 131.2, 128.9 (d, $J=4.0 \mathrm{~Hz}$), 128.7 (dd, $J=11.9,2.7 \mathrm{~Hz}$), 128.0 ($d, J=13.6 \mathrm{~Hz}$), 124.2 (d, $J=7.7 \mathrm{~Hz}$), $116.3(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 26.5(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 14.8$.
${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ-119.95.
${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 26.68$.
HRMS (ESI ${ }^{+}$) m/z calcd. For $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{FO}_{2} \mathrm{P}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 429.1414; found: 429.1417.
UPC 2 : Chiralpak IB column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ gradient, $1 \% \mathrm{MeOH}$ (0.5 min), then gradient from 1% to 40% $\left.(10 \% / \mathrm{min}), 120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; $\mathrm{t}_{\text {major }}=3.254 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=3.330 \mathrm{~min} ;>99 \% \mathrm{ee}$.
$[\boldsymbol{\alpha}]_{25}^{\boldsymbol{D}}=+3.6\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

5.8 Reductive amination

Scheme S11: Reductive amination of 4 s to furnish 5 sg .
To a 4-mL vial, equipped with a stir bar, was added $4 \mathrm{~s}(30.7 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv), (R)-2-methyl-2propanesulfinamide ($14.5 \mathrm{mg}, 0.012 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Ti}(i-\mathrm{PrO})_{4}\left(118 \mathrm{~mL}, 0.40 \mathrm{mmol}, 4\right.$ equiv), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.2 \mathrm{~mL})$ and heated to $40^{\circ} \mathrm{C}$. After 5 h , the solvent was removed in vacuo and $\mathrm{NaBH}_{4}(15.0 \mathrm{mg}, 0.4 \mathrm{mmol}, 4$ equiv) was added followed by $\mathrm{MeOH}(50 \mathrm{~mL})$ and stirred overnight at rt. The resulting solution was concentrated and purified by FC on $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: $\mathrm{EtOAc} 15: 1$) to provide $\mathbf{5 s g}$ as a colorless oil ($32.9 \mathrm{mg}, 0.080$ mmol, 80% yield, $>20: 1 \mathrm{dr}) .{ }^{[15]}$

[^12]
($\left.\boldsymbol{R}_{a}, R\right)$-N-((2'-Bromo-6'-ethyl-3-fluoro-[1,1'-biphenyl]-2-yl)methyl)-2-methylpropane-2-sulfinamide (5sg).

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.44(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.24$ (d, J = 7.6 Hz, 1H), 7.16 (t, J = 7.8 Hz, 1H), $7.10-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=7.7,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.03$ (ddd, $J=13.6,6.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{ddd}, J=13.3,7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.25(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.13(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 162.3(\mathrm{~d}, \mathrm{~J}=247.1 \mathrm{~Hz}), 145.1,142.5(\mathrm{~d}, \mathrm{~J}=4.4$ $\mathrm{Hz}), 139.1(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 130.5,130.1,129.7(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 127.9,126.3(\mathrm{~d}, J=2.64 \mathrm{~Hz}), 124.7(\mathrm{~d}, J=15.4 \mathrm{~Hz})$, $124.6,115.4(\mathrm{~d}, \mathrm{~J}=22.4 \mathrm{~Hz}), 56.0,41.6(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}), 27.7,22.6,15.2$.
${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathbf{- 1 1 6 . 6 7 .}$
HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{BrFNOSNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 434.0560, 436.0540; found: 434.0567, 436.0547 .
$[\boldsymbol{\alpha}]_{25}^{\boldsymbol{D}}=-23.9\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

5.9 DAST reaction

Scheme S12: Deoxyfluorination of 4s to furnish 5sh.

To a flame-dried 4-mL vial, equipped with a stir bar, was added 4 s (30.7 mg , 0.1 mmol , 1 equiv), dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.1 mL), and (N, N-diethylamino)sulfur trifluoride (DAST) ($0.35 \mathrm{mmol}, 3.5$ equiv). The mixture was stirred overnight at rt. The resulting mixture was treated with 2 drops off water and loaded onto celite. After evaporation, the powder was transferred on to a SiO_{2} column and purified by FC using a gradient from pure pentane to pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 5: 1$ to provide pure 5 sh as colorless oil ($23.9 \mathrm{mg}, 0.074 \mathrm{mmol}, 78 \%$ yield, $>99 \%$ ee). ${ }^{[16]}$

(\boldsymbol{R}_{a})-2'-Bromo-2-(difluoromethyl)-6'-ethyl-3-fluoro-1,1'-biphenyl (5sh).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.60-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.28(\mathrm{t}, \mathrm{J}=53.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.21(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.6(\mathrm{dt}, \mathrm{J}=255.9,2.1 \mathrm{~Hz}), 145.1,141.5(\mathrm{td}, \mathrm{J}=5.8,3.3$ Hz), 137.3 (d, J=2.3 Hz), 132.5 (d, J=9.4 Hz), 130.2, 130.1, 127.5, 126.1 (d, J = 3.6 Hz), $124.2,120.2$ (td, $J=22.4,12.0 \mathrm{~Hz}$), 116.4 ($\mathrm{d}, \mathrm{J}=21.0 \mathrm{~Hz}$), 112.5 .
${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-110.96(\mathrm{dd}, J=317.3,10.9 \mathrm{~Hz}),-112.59(\mathrm{dd}, \mathrm{J}=317.3,15.6 \mathrm{~Hz}),-114.89$ (dd, $J=15.6,10.9 \mathrm{~Hz}$).
HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrF}_{3} \mathrm{Na}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: 350.9967; found: 350.9966.
UPC ${ }^{2}$: Chiralpak IB column $\left[\mathrm{CO}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ gradient, $1 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.5 min), then gradient from 1% to 40% ($10 \% / \mathrm{min}$), $\left.120 \mathrm{bar}, 40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; $\mathrm{t}_{\text {major }}=2.028 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=1.927 \mathrm{~min} ;>99 \% \mathrm{ee}$.
$[\boldsymbol{\alpha}]_{25}^{\boldsymbol{D}}=-5.5\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

[^13]
5.10 Baeyer-Villiger oxidation

Scheme S13: Baeyer-Villiger oxidation of 4s to prepare 5si.
To a solution of $4 \mathrm{~s}\left(30.7 \mathrm{mg}, 0.1 \mathrm{mmol}\right.$, 1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ was added m-chloroperoxybenzoic acid ($57 \mathrm{mg}, 0.33 \mathrm{mmol}, 3.3$ equiv.) portion-wise at $0{ }^{\circ} \mathrm{C}$ with magnetic stirring. The reaction was stirred overnight at r. The resulting solution was directly loaded onto a column and purified by FC using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 2:1 to provide pure 5 si as white, amorphous solid ($12.0 \mathrm{mg}, 0.037 \mathrm{mmol}, 37 \%$ yield, $>99 \%$ ee). ${ }^{[17]}$

$\left(R_{a}\right)$-2'-Bromo-6'-ethyl-3-fluoro-[1,1'-biphenyl]-2-yl formate (5si).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 8.03(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (td, J = 8.0, 5.3 Hz, 1H), 7.32-7.26 (m, 2H), 7.23 (t, J = 7.8 Hz, 1H), 7.03 (dt, J=7.6, 1.5 $\mathrm{Hz}, 1 \mathrm{H}), 2.35$ (ddt, $J=17.1,14.7,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 157.6(\mathrm{~d}, J=0.7 \mathrm{~Hz}), 154.7(\mathrm{~d}, \mathrm{~J}=249.6 \mathrm{~Hz}), 145.7$, $136.0,135.8(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}), 135.5(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}), 130.3,130.3,127.8,127.6(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}), 127.0(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}), 124.4,116.6$ (d, $J=18.9 \mathrm{~Hz}), 27.4,15.1$.
${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ-127.52.
HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrFO}_{2} \mathrm{Na}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: $344.9897,346.9877$; found: 344.9898, 346.9880. UPC ${ }^{2}$: Chiralpak IB column [CO2/iPrOH gradient, $1 \% \mathrm{iPrOH}(0.5 \mathrm{~min})$, then gradient from 1% to $25 \%(1.7 \% / \mathrm{min}), 120$ bar, $\left.40^{\circ} \mathrm{C}\right], 3.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; $\mathrm{t}_{\text {major }}=2.946 \mathrm{~min} ; \mathrm{t}_{\text {minor }}=2.821 \mathrm{~min}$; General Procedure $\mathrm{A}: ~>99 \% ~ e e$.
$[\boldsymbol{\alpha}]_{27}^{\boldsymbol{D}}=-4.7\left(\mathrm{c} 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

5.11 Oxazole formation

Scheme S14: Oxazole formation from $\mathbf{4 q}$.
To an $8-\mathrm{mL}$ flame-dried vial, equipped with a stir bar, was added L-valinol ($64.3 \mathrm{mg}, 0.623 \mathrm{mmol}, 1$ equiv), 4s ($200.0 \mathrm{mg}, 0.623 \mathrm{mmol}$, 1 equiv), anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, and $4 \AA \mathrm{MS}(900 \mathrm{mg})$ under an Ar atmosphere. The mixture was stirred for 14 h , followed by the addition of NBS ($111.0 \mathrm{mg}, 0.623 \mathrm{mmol}, 1$ equiv) and stirred for an additional hour. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered, and washed with sat. NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$. The organic phase was dried over MgSO_{4}, filtered, and concentrated in vacuo. The crude mixture was purified by FC on SiO_{2} using $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane 1:1 as eluent followed by a second FC on SiO_{2} employing $5 \% \mathrm{EtOAc}$ in pentane as eluent to provide the $\mathbf{5 q j}$ as white, amorphous solid ($104 \mathrm{mg}, 0.257 \mathrm{mmol}, 41 \%$ yield, $>20: 1 \mathrm{dr}$). ${ }^{[18\}}$

[^14]($\left.R_{a}, S\right)$-2-(2'-Bromo-6'-ethyl-3-fluoro-[1,1'-biphenyl]-2-yl)-4-iso-propyl-4,5-dihydrooxazole (5qj).

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{dd}, \mathrm{J}=$ $7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{dd}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=$ $9.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.91-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{hept}, J=6.8 \mathrm{~Hz}$, 1 H), 1.45 (hept, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.22(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.68$ (dd, J = 6.8, $4.9 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.1(\mathrm{~d}, \mathrm{~J}=251.5 \mathrm{~Hz}), 158.8,150.2,142.8,142.7,138.7(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}), 131.1$ (d, J = 9.3 Hz), 129.4, $126.0(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}), 124.2,123.7,118.2(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}), 115.4(\mathrm{~d}, \mathrm{~J}=22.2 \mathrm{~Hz}), 73.2,70.3$, 32.7, 31.7, 25.1, 22.8, 18.7, 18.4.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-111.74$ (dd, $J=9.6,5.5 \mathrm{~Hz}, 1 \mathrm{~F}$).
HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{BrFNO}_{2} \mathrm{Na}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: 426.0839; found: 426.0855.
$[\boldsymbol{\alpha}]_{25}^{D}=-39.2\left(\mathrm{c} 0.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

5.12 Regioselective Suzuki-Miyuara coupling of 3a.

Scheme S15: Regioselective Suzuki-Miyuara coupling at site H_{A} of 3 a.
A flame-dried 4-mL glass vial was charged with 3a' ($21.4 \mathrm{mg}, 0.05 \mathrm{mmol}$, 1 equiv), boronic acid ($7.6 \mathrm{mg}, 0.05$ mmol, 1 equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.23 \mathrm{mg}, 0.5 \mathrm{~mol} \%), \mathrm{PPh}_{3}\left(0.262 \mathrm{mg}, 0.001 \mathrm{mmol} .20 \mathrm{~mol} \%\right.$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($31.8 \mathrm{mg}, 0.15$ mmol, 3 equiv) and anhydrous toluene (0.2 mL). Upon purging with Ar, a Teflon screwcap was used to seal the vessel and subsequently heated to $100{ }^{\circ} \mathrm{C}$ overnight. Upon completion of the reaction, the resulting solution was directly loaded onto a column and purified by FC using pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 4: 1$ to afford $\mathbf{5 a b}$ as white, amorphous solid ($8.9 \mathrm{mg}, 0.02 \mathrm{mmol}, 40 \%$ yield). ${ }^{[19]}$
(R_{a})-2-Bromo-6-iso-propyl-4''-methoxy-[1,1':3',1'-terphenyl]-2'-carbaldehyde (5ab).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.84(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (ddd, J $=9.1,7.7,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (dd, J $=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.97(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 1.13-1.10(\mathrm{~m}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.4,159.8,149.2,145.3,141.6,139.9$, 133.1, 132.2, 131.4, 131.1, 130.7, 129.8, 129.6, 129.3, 124.5, 123.2, 114.0, 55.5, 31.8, 24.4, 23.5.

HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BrO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 409.0798, 411.0778; found: 409.0799, 411.0782.

[^15]The crude mixture upon reaction with 1 equiv of boronic acid yielded a mixture of starting material (5.00 ppm), monosubstituted product (4.74 ppm) and disubstituted product (4.67 ppm). Below is a zoom-in of the acetal-proton region and their relative integrations:

6. Deuterium Experiment

To gain insight into the $\mathrm{C}-\mathrm{H}$-activation step, deuterium incorporation experiments were conducted. TFA-d was used as source of deuterium, and control experiments were conducted with TFA-H. ${ }^{[20]}$

To an 8-mL vial, equipped with a stir bar, was added the aldehyde ($0.10 \mathrm{mmol}, 1$ equiv), cTDG1 (0.030 mmol , 0.3 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}$ (0.010 mmol or $0.0010 \mathrm{mmol}, 0.1$ or 0.01 equiv), $\mathrm{NCS}\left(0.3\right.$, or 0 mmol), and $\mathrm{Ag}_{2} \mathrm{CO}_{3}(0.010$ mmol, 0.1 equiv). DCE (1 mL) and TFA- d ($1.0 \mathrm{mmol}, 10$ equiv) were subsequently added and the vial was capped and heated to $60^{\circ} \mathrm{C}$ overnight. Upon completion of the reaction, the resulting solution was directly loaded onto a column and purified by FC using the described stationary phase and eluent system.

6.1 Deuteration only (Scheme 3b)

With TFA-d, and $\underline{n o}$ NCS added, deuteration was observed at a single site $\left(\mathrm{H}_{B}\right)$:
Starting material before deuterium incorporation (1a):

[^16]Starting material after deuterium incorporation (1a-d):

6.2 Deuteration and chlorination (Scheme 3a).

With NCS and TFA-d added, both deuteration and chlorination was observed.

3-Chloro-2'-iso-propyl-[1,1'-biphenyl]-2-carbaldehyde (7a).

The product was isolated by FC on SiO_{2} using pentane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 1)$ as eluent to afford 7a as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 10.06(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.23$ $-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{hept}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.11-1.07(\mathrm{~m} 6.5 \mathrm{~Hz}$, 6 H).
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 190.9,147.1,146.5,137.4,135.6,133.2,132.1,130.5$, 130.5, 129.8, 128.9, 125.9, 125.7, 30.6, 24.5, 23.3.

HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 281.0704, 283.0675; found: 281.0704, 283.0675.

Chlorination with TFA-H (7a):

Chlorination with TFA-d (7a-d):

7. Racemization Studies

General procedure for racemization studies:

The barrier of rotation for the atropoisomers was determined by racemization of an enantiomerically pure sample. The racemization follows first order kinetics; hence the slope will give the racemization constant ($k_{\text {rac }}=2 \cdot k_{\text {enantiomerization }}$). Then the Eyring equation shows the relationship between the rate constant and the Gibbs Free Energy:

$$
\Delta G_{\text {enantiomerization }}^{\ddagger}=R T \cdot \ln \left(\frac{k_{B} \cdot T}{h \cdot k_{\text {enantiomerization }}}\right)
$$

$\mathrm{R}=$ Gas constant $=8.31451 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}, \mathrm{~h}=$ Planck constant $=6.62608 \cdot 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$ and $\mathrm{k}_{\mathrm{B}}=$ Boltzmann constant $=1.38066 \cdot 10^{-23} \mathrm{~J} \cdot \mathrm{~K}^{-1}$.
Experiments were conducted at 140 or $180^{\circ} \mathrm{C}, 1 \mathrm{mg} / \mathrm{mL}$ dichlorobenzene in an Ar-filled NMR-tube. ${ }^{[21]}$

Racemization of $\mathbf{3 b}$ at $180^{\circ} \mathrm{C}$:

Table S5. Experimental racemization

Time (sec)	$e e$	$\ln \left(e e_{0} / e e_{t}\right)$
0	98.28	0
11340	94.84	0.0356293
19260	92.54	0.0601796
25860	89.40	0.0946999
32820	88.62	0.103463
36600	86.72	0.125136
40740	85.94	0.1341712
43260	85.06	0.1444637

Figure S6. Plot of racemization of 3 b at $180^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& k_{\text {rac }}\left(180^{\circ} \mathrm{C}\right)=3.3377 \cdot 10^{-6} \mathrm{~s}^{-1} \\
& k_{\text {enantiomerization }}\left(180^{\circ} \mathrm{C}\right)=1.6689 \cdot 10^{-6} \mathrm{~s}^{-1} \\
& \Delta G_{\text {enantiomerization }}^{\ddagger}=162688.588 \mathrm{~J} \cdot \mathrm{~mol}^{-1}=38.88 \mathrm{kcal} \cdot \mathrm{~mol}^{-1}
\end{aligned}
$$

[^17]
Racemization of 3 c at $180^{\circ} \mathrm{C}$:

Table S6. Experimental racemization

studies of 3c.		
Time	$e e$	$\ln \left(e e_{0} / e e_{\mathrm{t}}\right)$
(sec)		
0	99.76	0
3780	98.24	0.0153538
6960	97.30	0.0249683
15720	92.68	0.0736146
23820	90.32	0.0994084
30000	89.06	0.113457
34980	84.92	0.1610577
38820	84.80	0.1624718
44400	83.40	0.179119

Figure S7. Plot of racemization of 3 c at $180^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& k_{\text {rac }}\left(180^{\circ} \mathrm{C}\right)=4.1703 \cdot 10^{-6} \mathrm{~s}^{-1} \\
& k_{\text {enantiomerization }}\left(180^{\circ} \mathrm{C}\right)=2.08515 \cdot 10^{-6} \mathrm{~s}^{-1} \\
& \Delta G_{\text {enantiomerization }}^{\ddagger}=161849,4944 \mathrm{~J} \cdot \mathrm{~mol}^{-1}=38,68{\mathrm{kcal} \cdot \mathrm{~mol}^{-1}}^{\text {ent }}=3 .
\end{aligned}
$$

Racemization of 31 at $140{ }^{\circ} \mathrm{C}$:

Table S7. Experimental racemization		
studies of 31.		
Time	$e e$	$\ln \left(e e_{0} / e e_{\mathrm{t}}\right)$
(sec)		
0	99,82	0
2400	98,58	0.0125002
7620	97,24	0.0261864
16080	93,56	0.0647656
23220	90,34	0.0997882
28380	88,46	0.1208181
32340	86,82	0.1395316

Figure S8. Plot of racemization of 31 at $140^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& k_{\text {rac }}\left(140^{\circ} \mathrm{C}\right)=4.3149 \cdot 10^{-6} \mathrm{~s}^{-1} \\
& k_{\text {enantiomerization }}\left(140^{\circ} \mathrm{C}\right)=2.15745 \cdot 10^{-6} \mathrm{~s}^{-1} \\
& \Delta G_{\text {enantiomerization }}^{\ddagger}=147128.3313 \mathrm{~J} \cdot \mathrm{~mol}^{-1}=35.16 \mathrm{kcal} \cdot \mathrm{~mol}^{-1}
\end{aligned}
$$

8. Crystallographic Data

2',5-Dibromo-6-formyl-5'-methyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (3c) - enantioselective reaction

Figure S9: Crystal structure of 3c
Table S8. Crystallographic data of 3c.

Item	Value
Molecular formula	$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{O}_{2}$
Formula weight	412.1210
Crystal system	orthorhombic
Space Group	$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$
a (Å)	10.6752
b (A)	11.9710
c (${ }^{\text {a }}$)	12.2865
$\alpha\left({ }^{\circ}\right)$	90.00
$\beta\left({ }^{\circ}\right)$	90.00
$Y\left({ }^{\circ}\right)$	90.00
Volume (\AA^{3})	1570.13
Z	7
T (K)	100
$\rho\left(\mathrm{g} \mathrm{cm}^{-1}\right)$	1.743
$\lambda(\AA)$	0.71073
$\mu\left(\mathrm{mm}^{-1}\right)$	5.164
\# measured refl	26846
\# unique refl	11138
$\mathrm{R}_{\text {int }}$	0.0744
\# parameters	543
$\mathrm{R}\left(\mathrm{F}^{2}\right)$, all refl	0.0337
$\mathrm{R}_{\mathrm{w}}\left(\mathrm{F}^{2}\right)$, all refl	0.0715
Goodness of fit	1.032
Flack parameter	-0.015

Crystal data for [3c]: $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{BrN}_{5} \mathrm{O}_{3}, M=412.1210$, orthorhombic, space group $\mathrm{P} 2_{1} 2_{1} 2_{1}, a=10.6752(2) \AA, b=$ 11.9710(4) $\AA, c=12.2865(4) \AA, \alpha=90.00^{\circ}, b=90.00^{\circ}, \gamma=90.00^{\circ}$, Flack parameter $=-0.015(11), V=1570.13(8)$ $\AA^{3}, T=100 \mathrm{~K}, Z=7, \mathrm{~d}_{\mathrm{c}}=1.743 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Mo} \mathrm{K} \alpha, \lambda=0.71073 \AA)=5.164 \mathrm{~mm}^{-1}, 26846$ reflections collected, 11138 unique [$R_{\text {int }}=0.0744$], which were used in all calculations. Refinement on F^{2}, final $R(F)=0.0337, R_{w}(F 2)$ $=0.0715$. CCDC number 2169123 .

1-(5-Bromo-2,2-difluorobenzo[d][1,3]dioxol-4-yl)-3-chloro-2-naphthaldehyde (6p) - racemate

Figure S10: Crystal structure of $6 p$ (racemate)

Table S9. Crystallographic data of $6 p$.

Item	Value
Molecular formula	$\mathrm{C}_{18} \mathrm{H}_{8} \mathrm{O}_{3} \mathrm{ClBrF}_{2}$
Formula weight	425.615
Crystal system	triclinic
Space Group	P-1
a (A)	8.3118
b (Å)	8.4520
c (A$)$	12.0667
$\alpha\left({ }^{\circ}\right)$	80.772
$\beta\left({ }^{\circ}\right)$	79.030
$Y\left({ }^{\circ}\right)$	72.149
Volume (\AA^{3})	787.41
Z	2
T (K)	100
$\rho\left(\mathrm{g} \mathrm{cm}^{-1}\right)$	1.795
$\lambda(\AA)$	0.71073
$\mu\left(\mathrm{mm}^{-1}\right)$	2.817
\# measured refl	8373
\# unique refl	4231
$\mathrm{R}_{\text {int }}$	0.0341
\# parameters	226

$R\left(F^{2}\right)$, all refl	0.0421
$R_{w}\left(F^{2}\right)$, all refl	0.1114
Goodness of fit	1.0351

Crystal data for [6p]: $\mathrm{C}_{20} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{ClBrF}_{2}, M=425.615$, triclinic, space group $\mathrm{P}-1, a=8.3118(7) \AA, b=8.4520(5) \AA$, $c=12.0667(8) \AA, \alpha=80.772(5)^{\circ}, B=79.030(6)^{\circ}, \gamma=72.149(6)^{\circ}, V=787.41(10) \AA^{3}, T=100 K, Z=2, d_{c}=1.795$ $\mathrm{g} \mathrm{cm}^{-3}, \mu(\mathrm{Mo} K \alpha, \lambda=0.71073 \AA \AA)=2.817 \mathrm{~mm}^{-1}, 8373$ reflections collected, 4231 unique $\left[R_{\text {int }}=0.0341\right.$], which were used in all calculations. Refinement on F^{2}, final $R(F)=0.0421, R_{w}(F 2)=0.1114$. CCDC number 2168153.

9. Computational Studies

Conformational analysis

Conformations of all ground and transition state structures were generated using force-field method OPLS_2005, Systematic Torsional Sampling, 1000 steps pr. bond, a maximum energy threshold of 5.02 kcal mol^{-1}. ${ }^{[22]}$ All conformations were then optimized using DFT and the lowest energy conformation from the optimization was used for single point calculations.

DFT-calculations

All DFT calculations were carried out using Gaussian 16 software package revision B.01. ${ }^{[23]}$ Geometry optimizations were performed at ω B97XD $/ 6-31 \mathrm{~g}(\mathrm{~d})^{[24]}$ level of theory in conjunction with SMD model ${ }^{[25]}$ considering the solvent effect of experimentally used dichloroethane at 298.15 K . Frequency calculation were conducted at the same level of theory as the geometry optimization for all stationary points to determine whether the optimized structure is a transition state structure (1 imaginary frequency) or a local minimum structure (no imaginary frequencies). Quick Reaction Coordinate (QRC) were performed to confirm the transition states. ${ }^{[26]}$ The QRC endpoints were reoptimized at $\omega B 97 X D / 6-31 \mathrm{~g}(\mathrm{~d})$ level of theory to verify the stationary structures. Single-point energy calculations were done on the optimized structures using various methods with SMD solvation model. The free energy was obtained by adding the Grimme's quasi rigid rotorharmonic oscillator (qRRHO) ${ }^{[27]}$ free energy correction from the geometry optimization to the electronic energy from the single-point energy calculations. See scheme below. Cartesian coordinates for all minima and saddle points are at the end of this section.

Rotational barriers of $\mathbf{3 b}, \mathbf{3 c}$, and $\mathbf{3 1}$

Method	3c		3I		3b		
	Barrier $\left(\frac{\mathrm{kcal}}{\mathrm{mol}}\right)$	$\Delta \Delta \mathrm{G}$ $\left(\frac{\mathrm{kcal}}{\mathrm{mol}}\right)$	Barrier $\left(\frac{\mathrm{kcal}}{\mathrm{mol}}\right)$	$\Delta \Delta \mathrm{G}$ $\left(\frac{\mathrm{kcal}}{\mathrm{mol}}\right)$	Barrier $\left(\frac{\mathrm{kcal}}{\mathrm{mol}}\right)$	$\Delta \Delta \mathrm{G}$ $\left(\frac{\mathrm{kcal}}{\mathrm{mol}}\right)$	
	38.68	0.00	35.16	0.00	38.88	0.00	0.00

[^18]| wb97xd/6-
 31g(d) | 39.86 | 1.17 | 35.90 | 0.74 | 40.16 | 1.28 | 1.09 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| wb97xd/6-
 31++g(2df,2pd) | 39.46 | 0.78 | 36.33 | 1.17 | 40.26 | 1.38 | 1.14 |
| wB97X-
 D/Def2-TZVPP | 39.42 | 0.74 | 36.25 | 1.09 | 40.19 | 1.30 | 1.07 |
| M062X/Def2-
 TZVPP | 37.57 | -1.12 | 35.05 | -0.12 | 38.04 | -0.84 | 0.81 |
| B3LYP/6-
 31+G(d,p) | 37.83 | -0.85 | 35.77 | 0.61 | 38.08 | -0.80 | 0.76 |
| B3LYP/Def2-
 TZVPP | 37.32 | -1.37 | 33.88 | -1.29 | 37.70 | -1.18 | 1.28 |
| B97-D/Def2-
 TZVPP | 35.67 | -3.02 | 32.45 | -2.71 | 36.76 | -2.12 | 2.64 |
| PBE0/Def2-
 TZVPP | 39.22 | 0.54 | 36.20 | 1.04 | 39.54 | 0.65 | 0.77 |

Table S 10: Overview of calculated energies

8.4 Cartesian Coordinates

3b: starting material

C	-0.02582	0.79881	1.89146
C	0.12244	0.4676	0.54586
C	-1.0196	0.19352	-0.23338
C	-2.27539	0.28143	0.37879
C	-2.42371	0.63355	1.71291
C	-1.28674	0.88711	2.47001
H	0.8608	0.98114	2.49023
Br	-3.87167	-0.03834	-0.61303
H	-3.41095	0.70699	2.15508
H	-1.38817	1.1514	3.51771
C	1.5124	0.3578	0.0057
C	2.17015	-0.87399	-0.00969
C	2.2047	1.49456	-0.4435
C	3.48415	-1.00992	-0.43722
Br	1.23912	-2.43908	0.5451
C	3.52741	1.35825	-0.86832
C	4.16616	0.12376	-0.8637
H	3.96391	-1.98242	-0.43848
H	4.05963	2.23926	-1.21797
H	5.19431	0.03725	-1.20149
C	-0.89063	-0.23568	-1.65378
H	-1.71688	-0.86055	-2.03544

O	0.04137	0.05165	-2.37281
C	1.55202	2.85807	-0.47468
H	1.91166	3.39489	-1.35956
H	0.46865	2.75344	-0.58957
C	1.85841	3.69147	0.77397
H	1.39996	4.68313	0.69558
H	1.47096	3.20906	1.67747
H	2.9387	3.82491	0.89977

3b: transition state

C	-0.00415	2.19394	-0.73629
C	0.11728	0.84995	-0.33297
C	-1.11633	0.16548	-0.14164
C	-2.29558	0.91395	-0.04935
C	-2.35771	2.28026	-0.27266
C	-1.19561	2.90237	-0.69626
H	0.86138	2.7104	-1.12297
Br	-3.95472	0.0309	0.31462
H	-3.29511	2.81859	-0.19091
H	-1.21113	3.9451	-0.99571
C	1.52928	0.32449	-0.23245
C	1.9524	-1.02788	-0.25017
C	2.61372	1.25931	-0.17766
C	3.23052	-1.41736	-0.62951
Br	0.96265	-2.45307	0.5476
C	3.89176	0.86331	-0.58146
C	4.1893	-0.4519	-0.8963
H	3.47683	-2.47222	-0.67674
H	4.67985	1.60935	-0.61772
H	5.17892	-0.73786	-1.23745
C	-1.39156	-1.29948	-0.4035
H	-1.81977	-1.89373	0.41863
O	-1.29413	-1.73183	-1.52953
C	2.5347	2.64101	0.47572
H	2.69853	3.43617	-0.26203
H	1.54715	2.8067	0.90647
C	3.55712	2.78726	1.61038
H	4.59134	2.75898	1.25526
H	3.40615	3.74874	2.11333
H	3.43056	1.99199	2.353

3c: starting material

$\begin{array}{llll}C & 0.14954 & 0.76198 & 1.72612\end{array}$

C	-0.27261	0.297	0.48466
C	0.70183	-0.0367	-0.47389
C	2.05197	0.11627	-0.16132
C	2.47271	0.60463	1.08426
C	1.49613	0.92286	2.02889
H	-0.59318	1.00671	2.47924
Br	3.39122	-0.28592	-1.44458
H	1.77869	1.29562	3.00639
C	-1.73615	0.11565	0.24575
C	-2.31713	-1.15386	0.33794
C	-2.5702	1.21399	-0.02887
C	-3.67838	-1.36609	0.17659
Br	-1.21547	-2.67144	0.67298
C	-3.94179	0.99813	-0.18875
C	-4.49459	-0.27154	-0.08516
H	-4.093	-2.36499	0.25481
H	-4.58968	1.84147	-0.41036
H	-5.5629	-0.41617	-0.21408
C	0.30268	-0.62094	-1.78878
H	0.97913	-1.39801	-2.18597
0	-0.69336	-0.30149	-2.39987
C	-2.00488	2.61329	-0.22223
H	-0.9454	2.59289	0.0466
C	-2.09077	3.01567	-1.70037
H	-3.13397	3.08664	-2.03113
H	-1.61834	3.9919	-1.85929
H	-1.58334	2.2769	-2.3292
C	-2.68481	3.64631	0.68244
H	-3.74615	3.76594	0.43614
H	-2.61248	3.35928	1.73747
H	-2.20526	4.62432	0.56215
0	3.79567	0.73165	1.2792
C	4.24871	1.21138	2.53722
H	3.94141	0.54485	3.35085
H	5.33694	1.22413	2.47068
H	3.88426	2.22672	2.72991

3c: transition state

C $\quad-0.14112 \quad 1.77593-0.64037$
$\begin{array}{lllll}C & 0.21573 & 0.46314 & -0.29237\end{array}$
C $\quad-0.89313-0.41461-0.12455$
$\begin{array}{lllll}C & -2.17954 & 0.11008 & 0.00649\end{array}$
$\begin{array}{lllll}\text { C } & -2.47183 & 1.47218 & -0.14634\end{array}$

C	-1.42659	2.28762	-0.56567
H	0.61606	2.44185	-1.02384
Br	-3.66095	-1.05013	0.31601
H	-1.59862	3.32234	-0.8372
C	1.69404	0.17678	-0.22133
C	2.32658	-1.08992	-0.26967
C	2.62072	1.27026	-0.14328
C	3.64895	-1.26737	-0.65777
Br	1.5755	-2.67131	0.4974
C	3.94553	1.08483	-0.54649
C	4.44599	-0.15904	-0.89512
H	4.61738	1.93779	-0.54043
H	5.46982	-0.27817	-1.23441
C	-0.92302	-1.89222	-0.45714
H	-1.24954	-2.5873	0.33112
0	-0.74724	-2.24792	-1.6003
C	2.34533	2.59711	0.58716
H	1.30778	2.61963	0.92023
C	3.19357	2.63243	1.87016
H	4.26611	2.67418	1.65078
H	2.93583	3.52158	2.45742
H	3.00653	1.74893	2.4899
C	2.61205	3.85062	-0.25505
H	2.33714	4.74602	0.31316
H	3.67298	3.93815	-0.51434
H	2.04433	3.85813	-1.19189
0	-3.7378	1.86897	0.04078
C	-4.04325	3.24303	-0.15987
H	-5.10091	3.34677	0.08324
H	-3.45025	3.88117	0.5046
H	-3.87903	3.53591	-1.20266
H	4.05534	-2.26997	-0.73166

31: starting material

$\begin{array}{lllll}C & 1.77163 & -0.47345 & -0.5795\end{array}$
$\begin{array}{lllll}C & 0.85735 & 0.40352 & -0.01559\end{array}$
$\begin{array}{lllll}C & 1.29082 & 1.65778 & 0.51489\end{array}$
$\begin{array}{lllll}C & 2.66684 & 2.00854 & 0.42752\end{array}$
C $\quad 3.58108 \quad 1.10692 \quad-0.17056$
C $\quad 3.13938-0.09426-0.64153$
$\begin{array}{lllll}\mathrm{H} & -0.65162 & 2.31347 & 1.23375\end{array}$
$\begin{array}{lllll}C & 0.39865 & 2.56885 & 1.14493\end{array}$
$\begin{array}{lllll}C & 3.10878 & 3.25265 & 0.94763\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.62746 & 1.38382 & -0.24724\end{array}$
$\begin{array}{lllll}\text { C } & 2.22111 & 4.11182 & 1.54103\end{array}$
$\begin{array}{llll}C & 0.85387 & 3.76283 & 1.64263\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.1623 & 3.50584 & 0.86909\end{array}$
$\begin{array}{llll}H & 2.5651 & 5.06127 & 1.93986\end{array}$
$\begin{array}{llll}H & 0.16026 & 4.44744 & 2.12099\end{array}$
$\begin{array}{llll}C & -0.58531 & 0.04147 & 0.09708\end{array}$
$\begin{array}{lllll}C & -1.07194 & -0.8229 & 1.07171\end{array}$
$\begin{array}{lllll}C & -1.515 & 0.60255 & -0.78285\end{array}$
C $\quad-2.42017-1.144891 .17733$
$\mathrm{Br} \quad 0.13076-1.62629 \quad 2.29958$
$\begin{array}{lllll}C & -2.86028 & 0.29993 & -0.69121\end{array}$
H $\quad-1.16867 \quad 1.28439-1.55239$
$\begin{array}{lllll}\text { C } & -3.33854 & -0.5862 & 0.28762\end{array}$
H $\quad-2.74649-1.829251 .95004$
$\mathrm{Br} \quad-4.07945 \quad 1.0832 \quad-1.90503$
C $\quad 1.3524 \quad-1.83051-1.04248$
H $\quad 2.09928$-2.62906 -0.88544
$0 \quad 0.2807-2.08367-1.54623$
$0 \quad-4.65655-0.83675 \quad 0.30394$
$\begin{array}{lllll}\text { C } & -5.15988 & -1.74829 & 1.27094\end{array}$
H $\quad-4.71289-2.74122 \quad 1.14883$
$\begin{array}{llll}H & -4.9853 & -1.38222 & 2.28891\end{array}$
H $\quad-6.23271-1.808811 .08675$
$\mathrm{Br} \quad 4.40999$-1.25521-1.45776

31: transition state

C	-2.02484	-0.28419	0.16023
C	-0.80931	0.40419	0.28817
C	-0.92144	1.84851	0.42111
C	-2.07807	2.51608	-0.07119
C	-3.17367	1.75852	-0.54511
C	-3.16282	0.41372	-0.32852
H	0.8293	2.16111	1.67539
C	0.01347	2.64303	1.14908
C	-2.17041	3.93221	-0.00568
H	-4.03819	2.25835	-0.96849
C	-1.20884	4.66705	0.63395
C	-0.13091	4.00277	1.25985
H	-3.04645	4.41114	-0.43367
H	-1.29718	5.74673	0.70442
H	0.58421	4.56955	1.84802
C	0.56406	-0.20152	0.18274

C	0.99797	-1.54549	0.19475
C	1.61326	0.69795	-0.13338
C	2.34502	-1.90816	0.15041
Br	-0.11692	-3.08131	0.07265
C	2.94312	0.35635	-0.21181
H	1.37156	1.72276	-0.36777
C	3.35434	-0.96458	-0.00559
H	2.59675	-2.95947	0.2027
Br	4.22406	1.68669	-0.61201
C	-2.35119	-1.58885	0.8391
H	-2.88817	-2.35075	0.25475
O	-2.17829	-1.70384	2.0322
O	4.6621	-1.23607	-0.03289
C	5.0793	-2.58529	0.14603
H	4.71368	-3.22204	-0.66669
H	6.16885	-2.55919	0.12532
H	4.74091	-2.97807	1.11091
Br	-4.76085	-0.5555	-0.72419

10. NMR Spectra

2'-Ethyl-[1,1'-biphenyl]-2-carbaldehyde (1b).
${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

2'-iso-Propyl-4-methoxy-[1,1'-biphenyl]-2-carbaldehyde (1c).
${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

[^19]
2'-Ethyl-4-fluoro-[1,1'-biphenyl]-2-carbaldehyde (1d).

${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

2'-Chloro-[1,1'-biphenyl]-2-carbaldehyde (1g).
${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

6-Formyl-3'-methyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (1h).
${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

6-Formyl-3'-iso-propyl-[1,1'-biphenyl]-2-yl methanesulfonate (1i).
${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

[^20]6-Formyl-3'-iso-propyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (1j).
${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

3'-(tert-Butyl)-6-formyl-[1,1'-biphenyl]-2-yl methanesulfonate (1k). ${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

1-(3-Methylphenyl)-2-naphthaldehyde (1m).

${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

1-(3-iso-Propylphenyl)-2-naphthaldehyde (1n).

${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

1-(3-tert-Butylphenyl)-2-naphthaldehyde (10).

${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

1-(2,2-Difluorobenzo[d][1,3]dioxol-4-yl)-2-naphthaldehyde (1p).

${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

```
#
```


${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

$\underbrace{\text { 足号品 }}$

3-Fluoro-2'-iso-propyl-[1,1'-biphenyl]-2-carbaldehyde (1q).
${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

[^21]${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

[^22]2'-Ethyl-3,6-difluoro-[1,1'-biphenyl]-2-carbaldehyde (1r).
${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

2'-Ethyl-3-fluoro-[1,1'-biphenyl]-2-carbaldehyde (1s).
${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

[^23]${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

2'-Chloro-3-fluoro-[1,1'-biphenyl]-2-carbaldehyde (1t).

${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-N M R$

${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

3-Fluoro-[1,1':2',1'-terphenyl]-2-carbaldehyde (1ф)
${ }^{1} \mathrm{H}$-NMR

${ }^{19} \mathrm{~F}-\mathrm{NMR}$

3-Chloro-2'-ethyl-[1,1'-biphenyl]-2-carbaldehyde (1u).

${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

2-Formyl-2'-iso-propyl-[1,1'-biphenyl]-3-yl 4-methylbenzenesulfonate (1v).
${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

[^24]2'-iso-Propyl-6-formyl-4-methoxy-[1,1'-biphenyl]-3-yl acetate (1w).
${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

6-Formyl-2'-iso-propyl-[1,1'-biphenyl]-3-carbonitrile (1x).
${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

6-Chloro-[1,1'-biphenyl]-2-carbaldehyde (1y).
${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

[^25]3'-(tert-Butyl)-6-formyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (1z). ${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

6-Hydroxy-3'-methyl-[1,1'-biphenyl]-2-carbaldehyde (1ba).
${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

[^26]
6-Hydroxy-3'-iso-propyl-[1,1'-biphenyl]-2-carbaldehyde (1bb).

${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

3'-(tert-Butyl)-6-hydroxy-[1,1'-biphenyl]-2-carbaldehyde (1bc).

${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

[^27]3-Hydroxy-2'-iso-propyl-[1,1'-biphenyl]-2-carbaldehyde (1bd).
${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

[^28](R_{a})-2',3-Dibromo-6'-iso-propyl-[1,1'-biphenyl]-2-carbaldehyde (3a).
${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

[^29]$\left(R_{a}\right)$-2',3-Dibromo-6'-ethyl-[1,1'-biphenyl]-2-carbaldehyde (3b).
${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

す	

[^30]$\left(R_{a}\right)$-2',3-Dibromo-6'-iso-propyl-4-methoxy-[1,1'-biphenyl]-2-carbaldehyde (3c). ${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

[^31](R_{a})-2',3-Dibromo-6'-ethyl-4-fluoro-[1,1'-biphenyl]-2-carbaldehyde (3d).
${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

$\stackrel{\text { ì }}{i}$

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											f1 (ppm)											

${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

$\left(R_{a}\right)$-2',3-Dibromo-6'-(trifluoromethyl)-[1,1'-biphenyl]-2-carbaldehyde (3e).
${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

(R_{a})-Methyl 3',6-dibromo-2'-formyl-[1,1'-biphenyl]-2-carboxylate (3f).
${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

$\left(R_{a}\right)$-2',3-Dibromo-6'-chloro-[1,1'-biphenyl]-2-carbaldehyde (3g).
${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

$\left(S_{a}\right)$-2',5-Dibromo-6-formyl-5'-methyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (3h). ${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

$\left(S_{a}\right)$-2',5-Dibromo-6-formyl-5'-iso-propyl-[1,1'-biphenyl]-2-yl methanesulfonate (3i). ${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$-NMR

(S_{a})-2',5-Dibromo-6-formyl-5'-iso-propyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (3j). ${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

(S_{a})-2',5-Dibromo-5'-(tert-butyl)-6-formyl-[1,1'-biphenyl]-2-yl methanesulfonate (3k).
${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

[^32]$\left(\boldsymbol{R}_{a}\right)$-3-Bromo-1-(2,5-dibromo-4-methoxyphenyl)-2-naphthaldehyde (3I). ${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$
空

(R_{a})-3-Bromo-1-(2-bromo-5-methylphenyl)-2-naphthaldehyde (3m).
${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

$\left(R_{a}\right)$-3-Bromo-1-(2-bromo-5-iso-propylphenyl)-2-naphthaldehyde (3n).
${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

(R_{a})-3-Bromo-1-(2-bromo-5-tertbutylphenyl)-2-naphthaldehyde (3o).
${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

(\boldsymbol{R}_{a})-3-Bromo-1-(5-bromo-2,2-difluorobenzo[d][1,3]dioxol-4-yl)-2-naphthaldehyde (3p) ${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

$\left(R_{a}\right)$-2'-Bromo-3-fluoro-6'-iso-propyl-[1,1'-biphenyl]-2-carbaldehyde (4q). ${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

$\left(S_{a}\right)$-2'-Bromo-6'-ethyl-3,6-difluoro-[1,1'-biphenyl]-2-carbaldehyde (4r). ${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$
ตร주ํ
ตสูี

[^33]$\left(R_{a}\right)$-2'-Bromo-6'-ethyl-3-fluoro-[1,1'-biphenyl]-2-carbaldehyde (4s).
${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

(\boldsymbol{R}_{a})-2'-Bromo-6'-chloro-3-fluoro-[1,1'-biphenyl]-2-carbaldehyde (4t).
${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

$\left(R_{a}\right)$-6'-Bromo-3-fluoro-[1,1':2',1''-terphenyl]-2-carbaldehyde (4ф). ${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

${ }^{19} \mathrm{~F}-\mathrm{NMR}$

$\left(R_{a}\right)$-2'-Bromo-3-chloro-6'-ethyl-[1,1'-biphenyl]-2-carbaldehyde (4u). ${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

(R_{a})-2'-Bromo-2-formyl-6'-iso-propyl-[1,1'-biphenyl]-3-yl 4-methylbenzenesulfonate (4v). ${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

$\left(R_{a}\right)$-2'-Bromo-6'-iso-propyl-6-formyl-4-methoxy-[1,1'-biphenyl]-3-yl acetate (4w). ${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

(\boldsymbol{R}_{a})-2'-Bromo-6'-iso-propyl-6-formyl-[1,1'-biphenyl]-3-carbonitrile (4x). ${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

(S_{a})-2'-Bromo-6-chloro-[1,1'-biphenyl]-2-carbaldehyde (4y).
${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

(S_{a})-2'-Bromo-6-formyl-5'-iso-propyl-[1,1'-biphenyl]-2-yl methanesulfonate (4i). ${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

[^34](S_{a})-2'-Bromo-5'-(tert-butyl)-6-formyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (4z). ${ }^{1} \mathrm{H}$-NMR

$\underset{i}{\underset{i}{i}}$ 1
$||11||$

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-N M R$

[^35](\boldsymbol{R}_{a})-2'-Bromo-6'-iso-propyl-[1,1'-biphenyl]-2-carbaldehyde (4a).
${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

(R_{a})-2'-Bromo-6'-ethyl-[1,1'-biphenyl]-2-carbaldehyde (4b).
${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

[^36]$\left(R_{a}\right)$-2'-Bromo-3-chloro-6'-iso-propyl-[1,1'-biphenyl]-2-carbaldehyde (6a). ${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

(R_{a})-2'-Bromo-3-chloro-6'-(trifluoromethyl)-[1,1'-biphenyl]-2-carbaldehyde (6e). ${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

$\left(R_{a}\right)$-Methyl 6-bromo-3'-chloro-2'-formyl-[1,1'-biphenyl]-2-carboxylate (6f).
${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

[^37]$\left(\boldsymbol{R}_{a}\right)$-1-(5-Bromo-2,2-difluorobenzo[d][1,3]dioxol-4-yl)-3-chloro-2-naphthaldehyde (6p). ${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

[^38]${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

$\left(R_{a}\right)$-2'-Bromo-2-(dimethoxymethyl)-6'-ethyl-3-fluoro-1,1'-biphenyl (4s').
${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

(R_{a})-6-Ethyl-3'-fluoro-2'-formyl-[1,1'-biphenyl]-2-carboxylic acid (5sa).
${ }^{1} \mathrm{H}-\mathrm{NMR}$

\qquad

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$
(R_{a})-2-(Dimethoxymethyl)-6'-ethyl-3-fluoro-4'-methoxy-1,1':2',1'-terphenyl (5sb). ${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

[^39]${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

(R_{a})-2'-(Dimethoxymethyl)-6-ethyl-3'-fluoro-[1,1'-biphenyl]-2-carbonitrile (5sc). ${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

(S_{a})-2-(2'-(Dimethoxymethyl)-6-ethyl-3'-fluoro-[1,1'-biphenyl]-2-yl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane (5sd).
${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

(R_{a})-tert-Butyl (2'-(dimethoxymethyl)-6-ethyl-3'-fluoro-[1,1'-biphenyl]-2-yl)carbamate (5se). ${ }^{1} \mathrm{H}$-NMR

馬淪

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

[^40](R_{a})-2'-(Diphenylphosphoryl)-6'-ethyl-3-fluoro-[1,1'-biphenyl]-2-carbaldehyde (5sf).
${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$
\qquad

${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR

($\left.R_{a}, R\right)$-N-((2'-Bromo-6'-ethyl-3-fluoro-[1,1'-biphenyl]-2-yl)methyl)-2-methylpropane-2-sulfinamide (5sg). ${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

 f1 (ppm)
(\boldsymbol{R}_{a})-2'-Bromo-2-(difluoromethyl)-6'-ethyl-3-fluoro-1,1'-biphenyl (5sh). ${ }^{1} \mathrm{H}$-NMR

(1/V) lil

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$
~以

$\left(R_{a}\right)$-2'-Bromo-6'-ethyl-3-fluoro-[1,1'-biphenyl]-2-yl formate (5si).
${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

($\left.R_{a}, S\right)$-2-(2'-Bromo-6'-ethyl-3-fluoro-[1,1'-biphenyl]-2-yl)-4-iso-propyl-4,5-dihydrooxazole (5qj). ${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

[^41]${ }^{19} \mathrm{~F}-\mathrm{NMR}$

|

$\left(R_{a}\right)$-2-Bromo-6-iso-propyl-4''-methoxy-[1,1':3',1'-terphenyl]-2'-carbaldehyde (5ab). ${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

[^42]
3-Chloro-2'-iso-propyl-[1,1'-biphenyl]-2-carbaldehyde (7f).

${ }^{1} \mathrm{H}-\mathrm{NMR}$
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

11. UPC ${ }^{2}$ Traces

(\boldsymbol{R}_{a})-2',3-Dibromo-6'-iso-propyl-[1,1'-biphenyl]-2-carbaldehyde (3a).
Racemate

	Retention Time (min)	\% Area
1	2.163	56.48
2	2.242	43.52

Enantioselective

	Retention Time (min)	\% Area
1	2.163	0.07
2	2.241	99.93

(\boldsymbol{R}_{a})-2',3-Dibromo-6'-ethyl-[1,1'-biphenyl]-2-carbaldehyde (3b).

Racemate

Enantioselective

	Retention Time (min)	\% Area
1	3.522	0.23
2	3.814	99.77

(R_{a})-2',3-Dibromo-6'-iso-propyl-4-methoxy-[1,1'-biphenyl]-2-carbaldehyde (3c).
Racemate

	Retention Time (min)	\% Area
1	2.598	55.40
2	2.744	44.60

Enantioselective

	Retention Time (min)	\% Area
1	2.592	0.00
2	2.788	100.00

(R_{a})-2',3-Dibromo-6'-ethyl-4-fluoro-[1,1'-biphenyl]-2-carbaldehyde (3d).
Racemate

	Retention Time (min)	\% Area
1	2.044	52.77
2	2.116	47.23

Enantioselective

	Retention Time (min)	\% Area
1	2.040	0.08
2	2.122	99.92

(R_{a})-2',3-Dibromo-6'-(trifluoromethyl)-[1,1'-biphenyl]-2-carbaldehyde (3e).

Racemate

	Retention Time (min)	\% Area
1	2.546	48.14
2	2.615	51.86

Enantioselective

	Retention Time (min)	\% Area
1	2.540	99.74
2	2.626	0.26

$\left(R_{a}\right)$-Methyl 3',6-dibromo-2'-formyl-[1,1'-biphenyl]-2-carboxylate (3f).

Racemate

	Retention Time (min)	\% Area
1	3.081	49.91
2	3.146	50.09

Enantioselective

$\left(S_{a}\right)$-2',5-Dibromo-6-formyl-5'-methyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (3h).
Racemate

	Retention Time (min)	\% Area
1	3.241	48.65
2	3.325	51.35

Enantioselective

	Retention Time (min)	\% Area
1	3.251	0.77
2	3.331	99.23

$\left(S_{a}\right)$-2',5-Dibromo-6-formyl-5'-iso-propyl-[1,1'-biphenyl]-2-yl methanesulfonate (3i).
Racemate

Enantioselective

	Retention Time (min)	\% Area
1	2.765	1.06
2	2.851	98.94

(S_{a})-2',5-Dibromo-6-formyl-5'-iso-propyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (3j).
Racemate

Enantioselective

	Retention Time (min)	\% Area
1	3.144	2.34
2	3.199	97.66

(S_{a})-2',5-Dibromo-5'-(tert-butyl)-6-formyl-[1,1'-biphenyl]-2-yl methanesulfonate (3k).

Racemate

	Retention Time (min)	\% Area
1	2.937	48.64
2	3.019	51.36

Enantioselective

	Retention Time (min)	\% Area
1	2.938	3.27
2	3.020	96.73

(R_{a})-3-Bromo-1-(2,5-dibromo-4-methoxyphenyl)-2-naphthaldehyde (3I).
Racemate

	Retention Time (min)	\% Area
1	4.113	48.41
2	4.284	51.59

Enantioselective

	Retention Time (min)	\% Area
1	4.094	0.03
2	4.234	99.97

(\boldsymbol{R}_{a})-3-Bromo-1-(2-bromo-5-methylphenyl)-2-naphthaldehyde (3m).
Racemate

	Retention Time (min)	\% Area
1	3.238	48.67
2	3.371	51.33

Enantioselective

	Retention Time (min)	\% Area
1	3.239	0.34
2	3.368	99.66

(\boldsymbol{R}_{a})-3-Bromo-1-(2-bromo-5-iso-propylphenyl)-2-naphthaldehyde (3n).
Racemate

	Retention Time (min)	\% Area
1	3.060	49.00
2	3.134	51.00

Enantioselective

	Retention Time (min)	\% Area
1	3.059	0.12
2	3.137	99.88

(\boldsymbol{R}_{a})-3-Bromo-1-(2-bromo-5-tertbutylphenyl)-2-naphthaldehyde (3o).
Racemate

	Retention Time (min)	\% Area
1	3.248	47.96
2	3.371	52.04

Enantioselective

(\boldsymbol{R}_{a})-3-Bromo-1-(5-bromo-2,2-difluorobenzo[d][1,3]dioxol-4-yl)-2-naphthaldehyde (3p).
Racemate

Enantioselective

	Retention Time (min)	\% Area
1	2.644	99.99
2	2.748	0.01

(\boldsymbol{R}_{a})-2'-Bromo-3-fluoro-6'-iso-propyl-[1,1'-biphenyl]-2-carbaldehyde (4q).
Racemate

	Retention Time (min)	\% Area
1	2.317	48.32
2	2.411	51.68

Enantioselective

	Retention Time (min)	\% Area
1	2.320	99.99
2	2.412	0.01

$\left(S_{a}\right)$-2'-Bromo-6'-ethyl-3,6-difluoro-[1,1'-biphenyl]-2-carbaldehyde (4r).
Racemate

	Retention Time (min)	\% Area
1	2.043	50.48
2	2.089	49.52

Enantioselective

	Retention Time (min)	\% Area
1	2.045	98.76
2	2.093	1.24

$\left(\boldsymbol{R}_{a}\right)$-2'-Bromo-6'-ethyl-3-fluoro-[1,1'-biphenyl]-2-carbaldehyde (4s).

Racemate

Enantioselective

(R_{a})-6'-Bromo-3-fluoro-[1,1':2',1'-terphenyl]-2-carbaldehyde (4ф).
Racemate

Enantioselective

	Retention Time (min)	$\%$ Area
1	3.055	0.97
2	2.918	99.03

$\left(R_{a}\right)$-2'-Bromo-3-chloro-6'-ethyl-[1,1'-biphenyl]-2-carbaldehyde (4u).

Racemate

	Retention Time (min)	\% Area
1	2.231	51.78
2	2.333	48.22

Enantioselective

	Retention Time (min)	\% Area
1	2.237	0.72
2	2.343	99.28

$\left(R_{a}\right)$-2'-Bromo-2-formyl-6'-iso-propyl-[1,1'-biphenyl]-3-yl 4-methylbenzenesulfonate (4v). Racemate

	Retention Time (min)	\% Area
1	3.624	50.51
2	4.229	49.49

Enantioselective

	Retention Time (min)	\% Area
1	3.645	98.21
2	4.256	1.79

$\left(R_{a}\right)$-2'-Bromo-6'-iso-propyl-6-formyl-4-methoxy-[1,1'-biphenyl]-3-yl acetate (4w).
Racemate

	Retention Time (min)	\% Area
1	2.623	49.88
2	2.490	50.12

Enantioselective

	Retention Time (min)	\% Area
1	2.505	99.96
2	2.620	0.04

(\boldsymbol{R}_{a})-2'-Bromo-6'-iso-propyl-6-formyl-[1,1'-biphenyl]-3-carbonitrile (4x).
Racemate

	Retention Time (min)	\% Area
1	2.492	50.16
2	2.588	49.84

Enantioselective

	Retention Time (min)	\% Area
1	2.487	99.97
2	2.587	0.03

(S_{a})-2'-Bromo-6-chloro-[1,1'-biphenyl]-2-carbaldehyde (4y).
Racemate

	Retention Time (min)	\% Area
1	2.523	51.75
2	2.740	48.25

Enantioselective

	Retention Time (min)	\% Area
1	2.524	96.56
2	2.748	3.44

(S_{a})-2'-Bromo-6-formyl-5'-iso-propyl-[1,1'-biphenyl]-2-yl methanesulfonate (4i).
Racemate

	Retention Time (min)	\% Area
1	2.725	47.94
2	2.786	52.06

Enantioselective

$\left(S_{a}\right)$-2'-Bromo-5'-(tert-butyl)-6-formyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (4z). Racemate

	Retention Time (min)	\% Area
1	3.298	47.29
2	3.555	52.71

Enantioselective

	Retention Time (min)	\% Area
1	3.279	99.78
2	3.549	0.22

(\boldsymbol{R}_{a})-2'-Bromo-6'-iso-propyl-[1,1'-biphenyl]-2-carbaldehyde (4a).
Racemate

	Retention Time (min)	\% Area
1	3.209	47.93
2	3.344	52.07

Enantioselective

	Retention Time (min)	\% Area
1	3.212	98.50
2	3.351	1.50

(\boldsymbol{R}_{a})-2'-Bromo-6'-ethyl-[1,1'-biphenyl]-2-carbaldehyde (4b).
Racemate

	Retention Time (min)	\% Area
1	2.774	56.23
2	2.885	43.77

Enantioselective

	Retention Time (min)	\% Area
1	2.771	99.76
2	2.839	0.24

(\boldsymbol{R}_{a})-2'-Bromo-3-chloro-6'-iso-propyl-[1,1'-biphenyl]-2-carbaldehyde (6a).
Racemate

	Retention Time (min)	\% Area
1	1.999	56.74
2	2.070	43.26

Enantioselective

	Retention Time (min)	\% Area
1	1.977	1.10
2	2.050	98.90

(\boldsymbol{R}_{a})-2'-Bromo-3-chloro-6'-(trifluoromethyl)-[1,1'-biphenyl]-2-carbaldehyde (6e).
Racemate

	Retention Time (min)	\% Area
1	4.072	50.25
2	4.388	49.75

Enantioselective

	Retention Time (min)	\% Area
1	4.103	0.52
2	4.533	99.48

(R_{a})-Methyl 6-bromo-3'-chloro-2'-formyl-[1,1'-biphenyl]-2-carboxylate (6f).
Racemate

Enantioselective

	Retention Time (min)	\% Area
1	3.025	93.23
2	3.099	6.77

$\left(R_{a}\right)$-1-(5-Bromo-2,2-difluorobenzo[d][1,3]dioxol-4-yl)-3-chloro-2-naphthaldehyde (6p). Racemate

Enantioselective

	Retention Time (min)	\% Area
1	2.521	98.71
2	2.696	1.29

(\boldsymbol{R}_{a})-2'-Bromo-2-(dimethoxymethyl)-6'-ethyl-3-fluoro-1,1'-biphenyl (4s').
Racemate

	Retention Time (min)	\% Area
1	2.434	48.99
2	2.720	51.01

Enantioselective

	Retention Time (min)	\% Area
1	2.456	0.25
2	2.715	99.75

(R_{a})-6-Ethyl-3'-fluoro-2'-formyl-[1,1'-biphenyl]-2-carboxylic acid (5sa).
Racemate

	Retention Time (min)	\% Area
1	3.581	50.19
2	3.844	49.81

Enantioselective

	Retention Time (min)	\% Area
1	4.011	100.00

(R_{a})-2-(Dimethoxymethyl)-6'-ethyl-3-fluoro-4'-methoxy-1,1':2',1'-terphenyl (5sb). Racemate

Enantioselective

	Retention Time (\min)	\% Area
1	2.586	0.04
2	2.653	99.96

(R_{a})-2'-(Dimethoxymethyl)-6-ethyl-3'-fluoro-[1,1'-biphenyl]-2-carbonitrile (5sc).
Racemate

	Retention Time (min)	\% Area
1	2.448	48.52
2	2.697	51.48

Enantioselective

	Retention Time (min)	\% Area
1	2.749	100.00

(S_{a})-2-(2'-(Dimethoxymethyl)-6-ethyl-3'-fluoro-[1,1'-biphenyl]-2-yl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane (5sd).
Racemate

	Retention Time (min)	$\%$ Area
1	1.976	50.36
2	2.089	49.64

Enantioselective

	Retention Time (min)	\% Area
1	2.030	100.00

(R_{a})-tert-Butyl (2'-(dimethoxymethyl)-6-ethyl-3'-fluoro-[1,1'-biphenyl]-2-yl)carbamate (5se).
Racemate

Enantioselective

	Retention Time (min)	\% Area
1	2.951	99.97
2	2.993	0.03

(R_{a})-2'-(Diphenylphosphoryl)-6'-ethyl-3-fluoro-[1,1'-biphenyl]-2-carbaldehyde (5sf).
Racemate

	Retention Time (min)	\% Area
1	3.250	49.64
2	3.330	50.36

Enantioselective

	Retention Time (min)	\% Area
1	3.254	100.00

$\left(R_{a}\right)$-2'-Bromo-2-(difluoromethyl)-6'-ethyl-3-fluoro-1,1'-biphenyl (5sh).

Racemate

	Retention Time (min)	\% Area
1	1.829	51.75
2	1.887	48.25

Enantioselective

	Retention Time (min)	\% Area
1	2.028	99.67
2	1.927	0.33

$\left(R_{a}\right)$-2'-Bromo-6'-ethyl-3-fluoro-[1,1'-biphenyl]-2-yl formate (5si).
Racemate

Enantioselective

	Retention Time (min)	\% Area
1	2.821	99.92
2	2.946	0.08

[^0]: ${ }^{[1]}$ Q.-J. Yao, S. Zhang, B.-B. Zhan, B.-F. Shi, Angew. Chem. Int. Ed. 2017, 56, 6617-6621.

[^1]: ${ }^{[2]}$ X. Yao, Y. Shao, M. Hu, M. Zhang, S. Li, Y. Xia, T. Cheng, J. Chen, Adv. Synth. Catal. 2019, 361, 4707-4713.

[^2]: ${ }^{[3]}$ H.-Y. Chen, M.-Y. Liu, A. K. Sutar, C.-C. Lin, Inorg. Chem. 2010, 49, 665-674.

[^3]: ${ }^{[4]}$ The title compound did not separate well on UPC ${ }^{2}$. Instead, a transformation was conducted to increase separation: The aldehyde was mixed with 10 equiv. ethyl(triphenylphosphoranylidene)acetate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After stirring for 3 h , the reaction was purified with FCC to afford the alkene product which was subsequently subjected to UPC ${ }^{2}$.

[^4]: ${ }^{[5]} \mathrm{A} 4 \mathrm{~mL}$ vial was charged with a solution of (R)-tert-butanesulfinamide and aldehyde in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by the addition of $\mathrm{Ti}(i-\mathrm{PrO})_{4}$. The reaction mixture was stirred at $r t$ and then heated to reflux overnight (until completion of aldehyde as indicated by TLC). The reaction was then quenched with brine and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Large quantities of white precipitate formed and was filtered away. The organic phase was separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

[^5]: ${ }^{[6]} \mathrm{A} 4 \mathrm{~mL}$ vial was charged with a solution of (R)-tert-butanesulfinamide and aldehyde in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by the addition of $\mathrm{Ti}(i-\mathrm{PrO})_{4}$. The reaction mixture was stirred at $r t$ and then heated to reflux overnight (until completion of aldehyde as indicated by TLC). The reaction was then quenched with brine and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Large quantities of white precipitate formed and was filtered away. The organic phase was separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

[^6]: ${ }^{[7]}$ The title compound did not separate well on UPC ${ }^{2}$. Instead, a transformation was conducted to increase separation: The aldehyde was mixed with 10 equiv. ethyl(triphenylphosphoranylidene)acetate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After stirring for 3 h , the reaction was purified with FCC to afford the alkene product which was subsequently subjected to UPC ${ }^{2}$.

[^7]: ${ }^{[8]}$ The title compound did not separate well on UPC ${ }^{2}$. Instead, a transformation was conducted to increase separation: The aldehyde was mixed with 10 equiv. ethyl(triphenylphosphoranylidene)acetate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After stirring for 3 h , the reaction was purified with FCC to afford the alkene product which was subsequently subjected to UPC².

[^8]: ${ }^{[9]}$ M. Shibata, K. Nakajimaa, Y. Nishibayashi, Chem. Commun. 2014, 50, 7874-7877.

[^9]: ${ }^{[10]}$ C. K. Hazra, Q. Dherbassy, J. Wencel-Delord, F. Colobert, Angew. Chem. Int. Ed. 2014, 53, 13871-13875.
 ${ }^{[11]}$ T. Kinzel, Y. Zhang, S. L. Buchwald, J. Am. Chem. Soc. 2010, 132, 14073-14075.

[^10]: ${ }^{[12]}$ T. D. Senecal, W. Shu, S. L. Buchwald, Angew. Chem. Int. Ed. 2013, 52, 10035-10039.

[^11]: ${ }^{[13]}$ M.-M. Xu, X.-Y. You, Y.-Z. Zhang, Y. Lu, K. Tan, L. Yang, Q. Cai, J. Am. Chem. Soc. 2021, 143, 8993-9001.

[^12]: ${ }^{[14]}$ Q.-Y. Zhao, M. Shi, Tetrahedron 2011, 67, 3724-3732.
 ${ }^{15}$ Q. J. Yao, S. Zhang, B. B. Zhan, B. F. Shi, Angew. Chem. Int. Ed. 2017, 56, 6617-6621.

[^13]: ${ }^{[16]}$ X. Zhang, L. Ling, X. Luo, X. Zeng, Angew. Chem. Int. Ed. 2019, 58, 16785-16789.

[^14]: ${ }^{[17]}$ N. Fujikawa, T. Ohta, T. Yamaguchi, T. Fukuda, F. Ishibashi, M. Iwao, Tetrahedron 2006, 62, 594-604
 ${ }^{[18]}$ K. Schwekendiek, F. Glorius, Synthesis 2006, 18, 2996-3002.

[^15]: ${ }^{[19]}$ J. Yin, M. P. Rainka, X.-X. Zhang, S. L. Buchwald, S. J. Am. Chem. Soc. 2002, 124, 1162-1163.

[^16]: ${ }^{[20]}$ H. Park, P. Verma, K. Hong, J.-Q. Yu, Nature Chem. 2018, 10, 755-762.

[^17]: ${ }^{[21]}$ L. Jin, Q.-J. Yao, P.-P. Xie, Y. Li, B.-B. Zhan, Y.-Q. Han, X. Hong, B.-F. Shi, Chem, 2020, 6, 497-511.

[^18]: ${ }^{[22]}$ a) Schrödinger Release 2019-1: MacroModel, Schrödinger, LLC, New York, NY, 2019; b) Schrödinger Release 2019-1: Maestro, Schrödinger, LLC, New York, NY, 2019.
 ${ }^{[23]}$ Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
 ${ }^{[24]}$ J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615-6620.
 ${ }^{[25]}$ A. V. Marenich, C, J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396
 ${ }^{[26]}$ J. M. Goodman, M. A. Silva, Tetrahedron Lett. 2003, 44, 8233-8236.
 ${ }^{[27]}$ S. Grimme, Chem. Eur. J. 2012, 18, 9955-9964

[^19]:

[^20]:

[^21]:

[^22]:

[^23]:

[^24]:

[^25]:

[^26]:

[^27]:

[^28]:

[^29]:

[^30]:

[^31]:

[^32]:

[^33]:

[^34]:

[^35]:

[^36]:

[^37]:

[^38]:

[^39]:

[^40]:

[^41]:

[^42]:

