Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2023

Supplementary Information for

Atroposelective Brominations to Access Chiral Biaryl Scaffolds Using High-Valent Pd-Catalysis

Sif T. Linde, Vasco Corti, Vibeke H. Lauridsen, Johannes N. Lamhauge, Karl Anker Jørgensen, and Nomaan M. Rezayee*

Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark

* Corresponding author. E-mail: nmr@chem.au.dk

Table of Contents

1. General Methods	S3
2. Preparation of Starting Materials	S4
2.1 Synthesis of aldehydes	S4
2.2 Characterization of aldehydes	S7
3. Optimization	S14
4. General procedures for the atroposelective C–H functionalization	S17
4.A Atroposelective bromination employing 10 mol% Pd	S17
4.B Atroposelective bromination employing 1 mol% Pd	S17
4.C Telescoping halogenation	S17
4.1 Characterization of atropisomers	S18
5. Procedures for Derivations of Products	S32
6. Deuterium Experiment	S42
7. Racemization Studies	S45
8. Crystallographic Data	S48
9. Computational Studies	S51
10. NMR Spectra	S58
11. UPC ² Traces	S160

1. General Methods

NMR spectra were acquired on a Bruker AVANCE III HD spectrometer operating at 400 MHz for ¹H, 100 MHz for ¹³C, 377 MHz for ¹⁹F, and 162 MHz for ³¹P. Chemical shifts (δ) are reported in ppm relative to residual solvent signals (CHCl₃, 7.26 ppm for ¹H NMR and CDCl₃, 77.16 ppm for ¹³C NMR; CH₂Cl₂, 5.32 ppm for ¹H NMR and CD₂Cl₂, 53.84 ppm for ¹³C. Chemical shifts (δ) for ¹⁹F and ³¹P NMR were collected in broad band proton decoupled mode, unless otherwise noted, and are reported in ppm. The following abbreviations are used to indicate the multiplicity in NMR spectra: s, singlet; d, doublet; t, triplet; q, quartet; p, pentet; hept, heptet; dd, double doublet; ddd, double double doublet; dt, double triplet; td, triple doublet; m, multiplet. ¹³C NMR spectra were acquired in a broad band decoupled mode unless otherwise noted. Mass spectra were recorded on a Bruker MicroTOF-Q High-Performance LC-MS system using electrospray (ES⁺) ionization. Thin layer chromatography (TLC) was performed using pre-coated aluminium-backed plates (Merck Kieselgel 60 F₂₅₄) and visualized by UV radiation, or KMnO₄ stain. For flash chromatography (FC) Sigma-Aldrich®Silica gel highpurity grade (9385) (SiO₂60, 230-400 mesh) were used. Optical rotations were measured on a Bellingham + Stanley ADP440+ polarimeter, [α] values are given in deg·cm³·g⁻¹·dm⁻¹; concentration c in g·(100 mL)⁻¹. The enantiomeric excess (ee) of the products was determined by chiral stationary phase Waters ACQUITY UPC² (Daicel Chiralpak). Racemic samples for UPC² analysis were prepared using \pm tert-butylglycine (Fluorochem) as TDG. Absolute configuration was determined using single crystal X-ray crystallography of 3c and assigned in analogy. The analyzed single crystal was resubjected to UPC² conditions to verify correct assignment of major and minor enantiomers. Regioselectivity in the tandem reaction was determined using single crystal X-ray crystallography of **6p**.

2. Preparation of Starting Materials

2.1 Synthesis of aldehydes

Figure S1. Overview of aldehydes used in manuscript.

The aldehydes were prepared according to known literature procedures and were stored at 5 °C.

Aldehyde	Characterization	Preparation Method		
1a	Ref [1]	Procedure 1		
1b	See below	Procedure 1		
1c	See below	Procedure 1		
1d	See below	Procedure 1		
1e	Commercially	Procedure 1		
	available			
1f	Ref [1]	Procedure 2		
1g	See below	Procedure 1		
1h	See below	Procedure 4		
1 i	See below	Procedure 4		
1j	See below	Procedure 4		

^[1] Q.-J. Yao, S. Zhang, B.-B. Zhan, B.-F. Shi, Angew. Chem. Int. Ed. 2017, **56**, 6617-6621.

1k	See below	Procedure 4
11	Ref [1]	Procedure 1
1m	See below	Procedure 1
1n	See below	Procedure 1
10	See below	Procedure 1
1р	See below	Procedure 1
1q	See below	Procedure 1
1r	See below	Procedure 1
1 s	See below	Procedure 1
1t	See below	Procedure 1
1φ	See below	Procedure 1
1u	See below	Procedure 3
1v	See below	Procedure 4
1w	See below	Procedure 1
1x	See below	Procedure 2
1y	See below	Procedure 1
1z	See below	Procedure 4
1ba	See below	Procedure 1
1bb	See below	Procedure 1
1bc	See below	Procedure 1
1bd	See below	Procedure 1

Table S1. Characterization and preparation of the aldehydes.

Procedure 1

A round bottom flask was charged with arylbromide (4 mmol, 1 equiv), boronic acid (4.4 mmol, 1.1 equiv), $Pd(PPh_3)_4$ (0.12 mmol, 3 mol%), magnetic stir bar, and Na_2CO_3 (8 mmol, 2 equiv). Then H_2O (5 mL), MeOH (4 mL), and DME (10 mL) was added, and the flask was capped with a septum. The resulting solution was sparged with Ar (30-60 sec.) and a balloon of Ar was placed on top. The reaction mixture was stirred at 80 °C overnight. After cooling to rt, the mixture was quenched with H_2O (20 mL) and extracted with CH_2Cl_2 (3 x 20 mL). The combined organic layers were dried over Na_2SO_4 , filtered, concentrated, and the residue was purified by silica gel column chromatography.^[1]

Procedure 2

A round bottom flask was charged with arylbromide (1.8 mmol, 1.1 equiv), boronic acid (2.0 mmol, 1.2 equiv), $Pd(PPh_3)_4$ (0.08 mmol, 5 mol%), KF (5 mmol, 3 equiv), magnetic stir bar, and solvent (10:1, 1,4-dioxane to H_2O , 5 mL). The resulting solution was sparged with Ar (30-60 sec.) and a balloon of Ar was placed on top. The reaction mixture was stirred at 100 °C overnight. After cooling to rt, the mixture was quenched with H_2O (20 mL), diluted, and extracted with EtOAc (3 x 10 mL). The combined organic layers were dried over Na_2SO_4 , filtered, concentrated, and the residue was purified by FC.^[2]

^[2] X. Yao, Y. Shao, M. Hu, M. Zhang, S. Li, Y. Xia, T. Cheng, J. Chen, Adv. Synth. Catal. 2019, **361**, 4707-4713.

Procedure 3: ortho-Chlorination of aldehyde to form 1u

To an 8-mL vial, equipped with a stir bar, was added the aldehyde (0.10 mmol, 1 equiv), TDG (0.030 mmol, 0.3 equiv), Pd(OAc)₂ (0.010 mmol, 0.1 equiv), NCS (0.11, mmol, 1.1 equiv), Ag₂CO₃ (0.010 mmol, 0.1 equiv), DCE (1 mL) and TFA (1.0 mmol, 10 equiv). The vial was purged with Ar, capped and heated at 60 °C overnight. Upon completion of the reaction, the resulting solution was directly loaded onto a column and purified by FC using the described stationery and eluent system.

Procedure 4: Procedure to form 1h, 1i, 1j, 1k, 1w, 1z.

Scheme S1. Overview of Procedure 4

The desired compounds are formed in a two-step-sequence. First the corresponding phenol is formed employing Procedure 1. The formed phenol compound (0.55 mmol, 1 equiv) was dissolved in CH_2Cl_2 (0.8 mL), and Et_3N (1.54 mmol, 2.8 equiv) was added and stirred for 10 min. After cooling to 0 °C, either TsCl (0.55 mmol, 1 equiv), MsCl (0.55 mmol, 1 equiv), or Tf_2O (0.80 mmol, 1.45 equiv) was added dropwise over 20 min. After the addition was complete, the mixture was allowed to warm to rt and stirred overnight. The resulting solution was diluted with CH_2Cl_2 , washed with water three times. The organic phase dried over Na_2SO_4 , filtered, concentrated, and the residue was purified by FC.^[3]

^[3] H.-Y. Chen, M.-Y. Liu, A. K. Sutar, C.-C. Lin, *Inorg. Chem.* 2010, **49**, 665-674.

2.2 Characterization of aldehydes

2'-Ethyl-[1,1'-biphenyl]-2-carbaldehyde (1b).

The title compound was prepared employing Procedure 1 and isolated by FC pentane/CH₂Cl₂ 1:1 as an eluent to afford the title compound as a colorless oil (447.6 mg, 2.129 mmol, 71% yield).

¹H NMR (400 MHz, CD_2Cl_2) δ 9.73 (d, J = 0.8 Hz, 1H), 7.99 (ddd, J = 7.8, 1.5, 0.5 Hz, 1H), 7.65 (td, J = 7.5, 1.5 Hz, 1H), 7.55 – 7.49 (m, 1H), 7.41 – 7.32 (m, 3H), 7.26 (td, J = 7.1, 1.9 Hz, 1H), 7.18 – 7.15 (m, 1H), 2.51 – 2.35 (m, 2H), 1.01 (t, J = 7.5 Hz, 3H).

¹³C-{¹H} NMR (101 MHz, CD₂Cl₂) δ 192.4, 145.8, 142.8, 137.4, 134.4, 133.9, 131.5, 130.7, 128.8, 128.8, 128.2, 127.3, 125.8, 26.8, 15.3.

HRMS (ESI⁺) m/z calcd. for C₁₅H₁₅O⁺ [M+H]⁺: 211.1118; found: 211.1115.

2'-iso-Propyl-4-methoxy-[1,1'-biphenyl]-2-carbaldehyde (1c).

The title compound was prepared employing Procedure 1 and isolated by FC using pentane/ CH_2Cl_2 2:1 as an eluent to afford the title compound as a white, amorphous solid (263 mg, 1.034 mmol, 94% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 9.71 (s, 1H), 7.51 (d, *J* = 2.7 Hz, 1H), 7.41 – 7.38 (m, 2H), 7.25 – 7.16 (m, 3H), 7.13 – 7.10 (m, 1H), 3.91 (s, 3H), 2.76 (hept, *J* = 6.9 Hz, 1H), 1.11 (d, *J* = 6.9 Hz, 3H), 1.07 (s, 6H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 192.2, 159.2, 147.6, 138.7, 136.0, 135.0, 132.3, 130.9, 128.7, 125.7, 125.4, 121.4, 109.3, 55.6, 30.1, 24.5, 23.5.

HRMS (ESI⁺) m/z calcd. for $C_{17}H_{18}O_2Na^+$ [M+Na]⁺: 277.1199; found: 277.1198.

2'-Ethyl-4-fluoro-[1,1'-biphenyl]-2-carbaldehyde (1d).

The title compound was prepared employing Procedure 1 and isolated by FC using pentane/ CH_2Cl_2 2:1 as an eluent to afford the title compound as a yellow oil (712 mg, 3.12 mmol, 78% yield).

¹**H NMR** (400 MHz, CD₂Cl₂) δ 9.34 (d, J = 3.4 Hz, 1H), 7.73 (dt, J = 9.0, 1.7 Hz, 1H), 7.46 – 7.37 (m, 4H), 7.30 (td, J = 7.0, 2.3 Hz, 1H), 7.22 – 7.18 (m, 1H), 2.57 – 2.40 (m, 2H), 1.07 (t, J = 7.6 Hz, 3H).

¹³C-{¹H} NMR (100 MHz, CD₂Cl₂) δ 191.1 (d, *J* = 2.9 Hz), 162.6 (d, *J* = 248.2 Hz), 143.0, 141.9 (d, *J* = 3.3 Hz), 136.4, 136.1 (d, *J* = 6.3 Hz) 133.5 (d, *J* = 7.2 Hz), 131.0, 129.2, 129.0, 126.1, 121.0 (d, *J* = 22.1

Hz), 113.3 (d, *J* = 22.2 Hz), 26.8, 15.3.

¹⁹**F-{**¹**H} NMR** (376 MHz, CDCl₃) δ -113.13

HRMS (ESI⁺) m/z calcd. for C₁₅H₁₃FONa⁺ [M+Na]⁺; 251.0843 found: 251.0840.

2'-Chloro-[1,1'-biphenyl]-2-carbaldehyde (1g).

The title compound was prepared employing Procedure 1 and isolated by FC using CH_2Cl_2 /pentane 1:1 as an eluent to afford the title compound as an orange, amorphous solid (410.9 mg, 1.896 mmol, 95% yield).

¹**H NMR** (400 MHz, CD₂Cl₂) δ 9.78 (s, 1H), 8.00 (d, *J* = 7.7 Hz, 1H), 7.69 (tt, *J* = 7.5, 1.3 Hz, 1H), 7.57 (t, *J* = 7.6 Hz, 1H), 7.54 – 7.50 (m, 1H), 7.43 – 7.33 (m, 4H).

¹³C-{¹H} NMR (100 MHz, CD₂Cl₂) δ 191.7, 143.0, 137.3, 134.2, 134.1, 133.8, 132.1 131.4, 130.1, 129.9, 128.9, 127.7, 127.3.

HRMS (ESI⁺) m/z calcd. for C₁₃H₉ClONa⁺ [M+Na]⁺: 239.0234; found: 239.0240.

6-Formyl-3'-methyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (1h).

The title compound was prepared employing Procedure 4 and isolated by FC using a CH_2Cl_2 /pentane gradient going from 1:1 to 3:1 as an eluent to afford the title compound as a colorless oil (370 mg, 1.00 mmol, >99% yield).

¹**H NMR** (400 MHz, CD_2Cl_2) δ 9.59 (d, *J* = 0.9 Hz, 1H), 7.90 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.74 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.54 (td, *J* = 8.0, 0.9 Hz, 1H), 7.25 – 7.17 (m, 4H), 7.14 – 7.09 (m, 2H), 6.88 – 6.84 (m, 1H), 6.71 – 6.69 (m, 1H), 2.40 (s, 3H), 2.20 (s, 3H).

¹³C-{¹H} NMR (100 MHz, CD₂Cl₂) δ 191.4, 147.5, 145.7, 139.4, 138.1, 136.3, 132.6, 131.9, 131.3, 130.0, 129.3, 129.1, 128.6, 128.4, 128.3, 128.2, 126.2, 21.8, 21.5.

HRMS (ESI⁺) m/z calcd. for C₂₁H₁₉O₄S⁺ [M+H]⁺: 367.0999; found: 367.0996.

6-Formyl-3'-*iso*-propyl-[1,1'-biphenyl]-2-yl methanesulfonate (1i).

The title compound was prepared employing Procedure 4 and isolated by FC using CH_2Cl_2 as an eluent to afford the title compound as a yellow oil (161 mg, 0.56 mmol, 92% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 9.79 (s, 1H), 8.00 (dd, J = 7.8, 1.3 Hz, 1H), 7.69 (dd, J = 8.1, 1.3 Hz, 1H), 7.56 (t, J = 8.0 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 7.34 (dt, J = 7.8, 1.5 Hz, 1H), 7.28 – 7.26 (m, 1H), 7.21 (dt, J = 7.4, 1.5 Hz, 1H), 2.98 (hept, J = 6.9 Hz, 1H), 2.50 (s, 3H),

1.28 (d, J = 6.9 Hz, 6H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 191.2, 149.5, 147.1, 139.1, 136.0, 131.5, 129.4, 129.2, 128.8, 128.7, 128.6, 127.2, 126.4, 38.3, 34.2, 24.3 – 24.0 (m, 2C).

HRMS (ESI⁺) m/z calcd. for C₁₇H₁₈O₄SNa⁺ [M+Na]⁺: 341.0818; found: 341.0811.

6-Formyl-3'-*iso*-propyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (1j).

The title compound was prepared employing Procedure 4 and isolated by FC using CH_2Cl_2 as an eluent to afford the title compound as a colorless oil (213 mg, 0.54 mmol, 98% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 9.65 (s, 1H), 7.94 (dd, J = 7.8, 1.3 Hz, 1H), 7.75 (dd, J = 8.1, 1.3 Hz, 1H), 7.52 (t, J = 8.0 Hz, 1H), 7.25 – 7.18 (m, 4H), 7.06 (d, J = 8.2 Hz, 2H), 7.02 (t, J = 1.7 Hz, 1H), 6.79 (dt, J = 7.2, 1.7 Hz, 1H), 2.87 (hept, J = 6.9 Hz, 1H), 2.38 (s, 3H), 1.27 –

1.22 (m, 6H).

¹³C-{¹H} NMR (100 MHz CDCl₃) δ 191.5, 148.8, 147.1, 145.1, 139.5, 136.1, 132.6, 131.0, 129.7, 129.4, 128.9, 128.8, 128.4, 128.1, 128.1, 126.4, 126.2, 34.1, 24.2 – 23.9 (m, 2C), 21.8.

HRMS (ESI⁺) m/z calcd. for $C_{23}H_{23}O_4S^+$ [M+H]⁺: 395.1312; found: 395.1322.

3'-(*tert*-butyl)-6-formyl-[1,1'-biphenyl]-2-yl methanesulfonate (1k).

The title compound was prepared employing Procedure 4 and isolated by FC using CH_2Cl_2 as an eluent to afford the title compound as a colorless oil (173.7 mg, 0.42 mmol, 77% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 9.79 (d, J = 0.8 Hz, 1H), 8.00 (dd, J = 7.8, 1.3 Hz, 1H), 7.69 (dd, J = 8.1, 1.3 Hz, 1H), 7.56 (td, J = 7.9, 0.9 Hz, 1H), 7.51 (ddd, J = 8.0, 2.0, 1.2 Hz, 1H), 7.46 – 7.41 (m, 2H), 7.23 – 7.19 (m, 1H), 2.48 (s, 3H), 1.35 (s, 9H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 191.2, 151.8, 147.2, 139.3, 136.0, 131.2, 129.2, 128.8, 128.5, 128.4, 128.4, 126.4, 125.9, 38.2, 35.0, 31.4.

HRMS (ESI⁺) m/z calcd. for $C_{18}H_{20}O_4SNa^+$ [M+Na]⁺: 355.0975; found: 355.0982.

1-(3-Methylphenyl)-2-naphthaldehyde (1m).

The title compound was prepared employing Procedure 1 and isolated by FC using pentane/ CH_2Cl_2 2:1 as an eluent to afford the title compound as a yellow oil (289 mg, 1.17 mmol, 59% yield).

¹H NMR (400 MHz, CDCl₃) δ 9.87 (s, 1H), 8.02 (d, *J* = 8.7 Hz, 1H), 7.95 (d, *J* = 8.4 Hz, 2H), 7.67 (d, *J* = 8.6 Hz, 1H), 7.63 (ddd, *J* = 8.1, 6.8, 1.3 Hz, 1H), 7.50 – 7.41 (m, 2H), 7.36 (d, *J* = 7.6 Hz, 1H), 7.25 – 7.19 (m, 2H), 2.45 (s, 3H).

¹³C-{¹H} NMR (101 MHz, CD₂Cl₂) δ 192.9, 147.2, 138.5, 136.5, 135.5, 133.0, 132.2, 131.7, 129.4, 129.1, 128.6, 128.6, 128.5, 128.2, 127.2, 122.3, 21.6.

HRMS (ESI⁺) m/z calcd. for $C_{18}H_{14}NaO^+$ [M+Na]⁺: 269.0937; found: 269.0929.

1-(3-iso-Propylphenyl)-2-naphthaldehyde (1n).

The title compound was prepared employing Procedure 1 and isolated by FC using 2% C EtOAc in pentane as an eluent to afford the title compound as a yellow oil (488 mg, 1.78 mmol, 89% yield).

¹**H NMR** (400 MHz, CD₂Cl₂) δ 9.87 (d, J = 0.9 Hz, 1H), 8.03 (d, J = 8.7 Hz, 1H), 7.96 – 7.93 (m, 2H), 7.68 (dq, J = 8.5, 0.9 Hz, 1H), 7.63 (ddd, J = 8.2, 6.8, 1.2 Hz, 1H), 7.50 – 7.45 (m, 2H), 7.41 (dt, J = 7.8, 1.6 Hz, 1H), 7.28 (t, J = 1.8 Hz, 1H), 7.23 (dt, J = 7.3, 1.5 Hz, 1H), 3.00

(hept, J = 6.9 Hz, 1H), 1.30 (d, J = 6.9 Hz, 6H).

¹³C-{¹H} NMR (101 MHz, CDCl₃) δ 193.1, 149.1, 147.2, 136.2, 135.2, 132.6, 131.3, 129.4, 128.9, 128.7, 128.3, 128.3, 128.0, 126.9, 126.5, 122.2, 34.2, 24.2, 24.1.

HRMS (ESI⁺) m/z calcd. for C₂₀H₁₈NaO⁺ [M+Na]⁺: 297.1250; found: 297.1253.

1-(3-tert-Butylphenyl)-2-naphthaldehyde (10).

The title compound was prepared employing Procedure 1 and isolated by FC 2% EtOAc in pentane as an eluent to afford the title compound as a white, amorphous solid (412 mg, 1.43 mmol, 71% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 9.89 (s, 1H), 8.07 (d, J = 8.7 Hz, 1H), 7.93 (d, J = 8.6 Hz 2H), 7.69 (d, J = 8.6 Hz, 1H), 7.62 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.55 (dt, J = 8.0, 1.5 Hz, 1H), 7.50 – 7.44 (m, 2H), 7.42 (t, J = 1.9 Hz, 1H), 7.23 (dt, J = 7.4, 1.5 Hz, 1H), 1.37 (s, 9H).

¹³C-{¹H} NMR (101 MHz, CDCl₃) δ 193.2, 151.4, 147.4, 136.3, 134.8, 132.7, 131.4, 128.9, 128.4, 128.3, 128.0, 128.0, 127.0, 125.3, 122.3, 35.0, 31.5.

HRMS (ESI⁺) m/z calcd. for $C_{21}H_{20}NaO^+$ [M+Na]⁺: 311.1406; found: 311.1405.

1-(2,2-Difluorobenzo[d][1,3]dioxol-4-yl)-2-naphthaldehyde (1p).

The title compound was prepared employing Procedure 1 to couple 1-(pinacol boronate)-2-naphthaldehyde and 4-bromo-2,2-difluoro-1,3-benzodioxole and isolated by FC pentane/ CH_2Cl_2 1:1 as an eluent to afford the title compound as a white, amorphous solid (153 mg, 0.49 mmol, 49% yield).

¹**H NMR** (400 MHz, CD₂Cl₂) δ 9.94 (s, 1H), 8.10 – 7.98 (m, 3H), 7.69 (ddd, J = 8.2, 6.7, 1.3 Hz, 1H), 7.65 – 7.62 (m, 1H), 7.55 (ddd, J = 8.4, 6.7, 1.3 Hz, 1H), 7.34 – 7.29 (m, 2H), 7.17 (dd, J = 6.2, 2.9 Hz, 1H).

¹³C-{¹H} NMR (101 MHz, CD₂Cl₂) δ 191.6, 144.1, 142.9, 137.9, 136.6, 132.0, 131.9, 131.8 (t, *J* 255.3 Hz), 130.1, 129.6, 128.9, 128.0, 127.4, 127.0, 124.3, 122.7, 118.3, 110.4.

¹⁹F-{¹H} NMR (376 MHz, CD₂Cl₂) δ -50.19 (d, *J* = 95.8 Hz), -50.55 (d, *J* = 95.8 Hz).

HRMS (ESI⁺) m/z calcd. for $C_{18}H_{10}F_2O_3Na^+$ [M+Na]⁺: 335.0490; found: 335.0494.

3-Fluoro-2'-*iso*-propyl-[1,1'-biphenyl]-2-carbaldehyde (1q).

The title compound was prepared employing Procedure 1 and isolated by FC using CH_2Cl_2 /pentane 2:1 as an eluent to afford the title compound as a yellow oil (854 mg, 3.53 mmol, 88% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 9.87 (s, 1H), 7.57 (td, J = 8.0, 5.4 Hz, 1H), 7.43 – 7.40 (m, 2H), 7.25 – 7.16 (m, 2H), 7.09 (d, J = 7.5 Hz, 2H), 2.71 (hept, J = 6.8 Hz, 1H), 1.14 – 1.09 (m, 6H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 189.2 (d, *J* = 1.5 Hz), 162.5 (d, *J* = 263.3 Hz), 146.9, 146.9, 136.1 (d, *J* = 2.3 Hz), 134.5 (d, *J* = 10.3 Hz), 129.8, 129.0, 127.1 (d, *J* = 3.7 Hz), 125.8, 125.6, 123.1 (d, *J* = 6.6 Hz), 116.0 (d, *J* = 21.3 Hz), 30.3, 24.6, 23.4.

¹⁹**F-{**¹**H} NMR** (376 MHz, CDCl₃) δ -116.10.

HRMS (ESI⁺) m/z calcd. for C₁₆H₁₅FONa⁺ [M+Na]⁺: 265.0999; found: 265.0999.

2'-Ethyl-3,6-difluoro-[1,1'-biphenyl]-2-carbaldehyde (1r).

The title compound was prepared employing Procedure 1 and isolated by FC using pentane/CH₂Cl₂ 2:1 as an eluent to afford the title compound as a colorless, amorphous solid (136 mg, 0.552 mmol, 28% yield).

¹**H NMR** (400 MHz, CD₂Cl₂) δ 9.79 (s, 1H), 7.46 – 7.34 (m, 3H), 7.29 (t, *J* = 7.2 Hz, 1H), 7.21 (td, *J* = 9.3, 4.2 Hz, 1H), 7.12 (d, *J* = 7.6 Hz, 1H), 2.42 (q, *J* = 7.6 Hz, 2H), 1.06 (t, *J* = 7.6 Hz,

3H).

¹³C-{¹H} NMR (100 MHz, CD₂Cl₂) δ 188.3 (dd, *J* = 2.7, 1.9 Hz), 159.0 (dd, *J* = 258.6, 2.4 Hz), 156.0 (d, *J* = 241.9, 2.8 Hz), 143.2, 132.6 (dd, *J* = 20.9, 1.5 Hz), 130.5, 130.2 (d, *J* = 1.5 Hz), 129.6, 128.9, 126.2, 124.0 (dd, *J* = 8.4, 2.5 Hz), 122.2 (dd, *J* = 26.3, 10.1 Hz), 117.5 (dd, *J* = 24.0, 8.2 Hz), 26.76, 14.85.

¹⁹**F-{**¹**H**} **NMR** (376 MHz, CDCl₃) δ -118.73 (d, *J* = 18.2 Hz), -122.41 (d, *J* = 18.2 Hz).

HRMS (ESI⁺) m/z calcd. for C₁₅H₁₂F₂ONa⁺ [M+Na]⁺: 269.0748; found: 269.0748.

2'-Ethyl-3-fluoro-[1,1'-biphenyl]-2-carbaldehyde (1s).

The title compound was prepared employing Procedure 1 and isolated by FC using a pentane/CH₂Cl₂ gradient 2:1 to 1:1 as eluent to afford the title compound as a beige oil (855 mg, 3.75 mmol, 94% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 9.85 (s, 1H), 7.58 (ddd, J = 8.4, 7.6, 5.4 Hz, 1H), 7.38 (td, J = 7.4, 1.4 Hz, 1H), 7.33 (d, J = 7.8 Hz, 1H), 7.25 (td, J = 7.4, 1.6 Hz, 1H), 7.21–7.15 (m, 1H), 7.13-7.08 (m, 2H), 2.51 – 2.33 (m, 2H), 1.05 (t, J = 7.5 Hz, 3H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 189.3 (d, *J* = 1.7 Hz), 162.5 (d, *J* = 263.4 Hz), 146.7, 142.0, 136.8 (d, *J* = 2.3 Hz), 134.6 (d, *J* = 10.4 Hz), 129.9, 128.8, 128.6, 127.0 (d, *J* = 3.7 Hz), 125.8, 123.0 (d, *J* = 6.7 Hz), 116.0 (d, *J* = 21.3 Hz), 26.4, 15.1.

¹⁹**F-{**¹**H} NMR** (376 MHz, CDCl₃) δ -116.10.

HRMS (ESI⁺) m/z calcd. for $C_{15}H_{14}FO^+$ [M+H]⁺; 229.1023 found: 229.1021.

2'-Chloro-3-fluoro-[1,1'-biphenyl]-2-carbaldehyde (1t).

The title compound was prepared employing Procedure 1 and isolated by FC using pentane/ CH_2Cl_2 2:1 as an eluent to afford the title compound as a pink, amorphous solid (339 mg, 1.445 mmol, 96% yield).

¹**H NMR** (400 MHz, CD₂Cl₂) δ 10.02 (s, 1H), 7.64 (ddd, J = 8.4, 7.6, 5.5 Hz, 1H), 7.50 – 7.45 (m, 1H), 7.42 – 7.34 (m, 2H), 7.30 – 7.22 (m, 2H), 7.10 (d, J = 7.6 Hz, 1H).

¹³C-{¹H} NMR (100 MHz, CD₂Cl₂) δ 188.3 (d, J = 4.3 Hz), 163.6 (d, J = 250.1 Hz), 143.3 (d, J = 1.7 Hz), 137.6 (d, J = 2.5 Hz), 135.3 (d, J = 10.3 Hz), 133.3, 131.3, 130.0, 129.8, 127.5 (d, J = 3.6 Hz), 127.3, 123.1 (d, J = 7.2 Hz), 116.9 (d, J = 21.4 Hz).

¹⁹F-{¹H} NMR (376 MHz, CD₂Cl₂) δ -118.57.

HRMS (ESI⁺) m/z calcd. for C₁₃H₈ClFONa⁺ [M+Na]⁺: 257.0140, 259.0111; found: 257.0134, 259.0105.

3-Fluoro-[1,1':2',1"-terphenyl]-2-carbaldehyde (1φ).

The title compound was prepared employing Procedure 1 and isolated by FC using heptane/EtOAc 39:1 as an eluent to afford the title compound as a white amorphous solid (1072.0 mg, 3.881 mmol, 97% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 9 9.85 (s, 1H), 7.55 – 7.47 (m, 1H), 7.48 – 7.39 (m, 3H), 7.35 – 7.28 (m, 1H), 7.22 – 7.15 (m, 3H), 7.09 – 7.00 (m, 4H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 188.8 (d, J = 4.3 Hz), 162.7 (d, J = 262.2 Hz), 146.4, 141.6, 140.4, 136.4 (d, J = 2.5 Hz), 134.3 (d, J = 10.3 Hz), 130.8, 130.3, 129.8, 128.9, 128.2, 128.0 (d, J = 3.6 Hz), 127.5, 127.1, 122.9 (d, J = 7.1 Hz), 115.7 (d, J = 21.3 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -116.99 (dd, J = 10.9, 5.5 Hz).

HRMS (ESI+) m/z calcd. for C₁₉H₁₄FO+ [M+H]+: 277.1023; found: 277.1028.

3-Chloro-2'-ethyl-[1,1'-biphenyl]-2-carbaldehyde (1u).

The title compound was prepared employing Procedure 3 and isolated by FC using pentane/ $CH_2Cl_2 5:1$ as an eluent to afford the title compound as a yellow oil (84mg, 0.34 mmol, 69% yield).

¹**H NMR** (400 MHz, CD₂Cl₂) δ 10.04 (s, 1H), 7.52 (d, *J* = 1.6 Hz, 1H), 7.51 (s, 1H), 7.39 – 7.31 (m, 2H), 7.25 – 7.18 (m, 2H), 7.08 – 7.03 (m, 1H), 2.47 – 2.32 (m, 2H), 1.02 (t, *J* = 7.6 Hz, 3H).

¹³C-{¹H} NMR (100 MHz, CD₂Cl₂) δ 190.9, 146.4, 142.2, 138.0, 135.6, 133.3, 132.0, 130.6, 130.5, 129.9, 128.7, 128.7, 125.9, 26.6, 15.1.

HRMS (ESI+) m/z calcd. for C₁₅H₁₃ClONa⁺ [M+Na]⁺: 267.0547; found: 267.0551.

2-Formyl-2'-iso-propyl-[1,1'-biphenyl]-3-yl 4-methylbenzenesulfonate (1v).

The title compound was prepared according to Procedure 4 employing TsCl and isolated by FC using CH₂Cl₂ as an eluent to afford the title compound as a white, amorphous solid (250 mg, 0.63 mmol, 85% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 9.66 (s, 1H), 7.81 – 7.76 (m, 2H), 7.57 (dd, J = 8.2, 7.6 Hz, 1H), 7.44 – 7.29 (m, 5H), 7.22 – 7.15 (m, 2H), 7.00 – 6.94 (m, 1H), 2.52 (hept, J = 6.8 Hz, 1H), 2.44 (s, 3H), 1.06 (d, J = 6.8 Hz, 3H), 1.03 (d, J = 6.8 Hz, 3H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 188.7, 148.9, 146.6, 146.1, 145.9, 136.4, 133.4, 132.2, 130.2, 129.9, 129.5, 128.9, 128.9, 128.2, 125.6, 125.5, 123.2, 30.3, 24.5, 23.2, 21.9.

HRMS (ESI⁺) m/z calcd. for C₂₃H₂₂O₄SNa⁺ [M+Na]⁺: 417.1131; found: 417.1130.

2'-iso-Propyl-6-formyl-4-methoxy-[1,1'-biphenyl]-3-yl acetate (1w).

The title compound was prepared employing Procedure 1 and isolated by FC using CH_2Cl_2 as an eluent to afford the title compound as a white solid (200 mg, 0.64 mmol, 32% yield).

¹**H NMR** (400 MHz, CD_2CI_2) δ 9.64 (d, *J* = 0.6 Hz, 1H), 7.58 (s, 1H), 7.44 – 7.38 (m, 2H), 7.26 – 7.20 (m, 1H), 7.17 – 7.13 (m, 1H), 7.00 (d, *J* = 0.8 Hz, 1H), 3.93 (s, 3H), 2.77 (hept, *J* = 6.8 Hz, 1H), 2.30 (s, 3H), 1.12 (d, *J* = 6.8 Hz, 3H), 1.08 (d, *J* = 6.8 Hz, 3H).

 ${}^{13}\text{C-}\{{}^{1}\text{H}\} \text{ NMR} (101 \text{ MHz}, \text{CD}_2\text{Cl}_2) \ \delta \ 191.1, \ 168.6, \ 151.4, \ 147.9, \ 144.3, \ 139.5, \ 135.4, \ 133.0, \ 131.0, \ 129.2, \ 126.0, \ 125.8, \ 125.6, \ 109.9, \ 56.5, \ 30.4, \ 24.4, \ 23.5, \ 20.8.$

HRMS (ESI⁺) m/z calcd. for $C_{19}H_{20}O_4Na^+$ [M+Na]⁺: 335.1254; found: 335.1253.

6-Formyl-2'-*iso*-propyl-[1,1'-biphenyl]-3-carbonitrile (1x).

The title compound was prepared employing Procedure 2 and isolated by FC using pentane/ CH_2Cl_2 1:1 as an eluent to afford the title compound as an orange, amorphous solid (400 mg, 1.60 mmol, 80% yield).

¹**H NMR** (400 MHz, CD₂Cl₂) δ 9.78 (d, J = 0.6 Hz, 1H), 8.08 (d, J = 8.1 Hz, 1H), 7.82 (ddd, J = 8.1, 1.6, 0.9 Hz, 1H), 7.67 (d, J = 1.6 Hz, 1H), 7.50 – 7.45 (m, 2H), 7.32 – 7.25 (m, 1H), 7.14 (dt, J = 7.2, 1.1 Hz, 1H), 2.67 (hept, J = 6.8 Hz, 1H), 1.14 (d, J = 6.8 Hz, 3H), 1.10 (d, J

= 6.8 Hz, 3H).

¹³C-{¹H} NMR (100 MHz, CD₂Cl₂) δ 190.9, 147.4, 146.2, 137.1, 135.2, 134.4, 131.6, 130.5, 129.8, 128.0, 126.3, 126.0, 118.2, 117.0, 30.5, 24.4, 23.4.

HRMS (ESI⁺) m/z calcd. For C₁₇H₁₅NONa⁺ [M+Na]⁺: 272.1046; found: 272.1047.

6-Chloro-[1,1'-biphenyl]-2-carbaldehyde (1y).

The title compound was prepared employing Procedure 1 and isolated by FC using pentane/CH₂Cl₂ 2:1 as an eluent to afford the title compound as a white solid (340 mg, 1.57 mmol, 87% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 9.68 (d, *J* = 0.7 Hz, 1H), 7.93 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.72 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.53 – 7.43 (m, 4H), 7.33 – 7.29 (m, 2H).

 $^{13}\text{C-}\{^1\text{H}\}$ NMR (100 MHz, CDCl_3) δ 191.5, 144.1, 136.2, 134.8, 134.5, 130.5, 129.0, 128.7,

128.5, 125.8.

HRMS (ESI⁺) m/z calcd. For $C_{13}H_{10}ClO^+$ [M+H]⁺: 217.0415, 219.0386; found: 217.0420, 219.0381.

3'-(*tert*-Butyl)-6-formyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (1z).

The title compound was prepared according to Procedure 4 employing TsCl and isolated by FC using a CH_2Cl_2 as an eluent to afford the title compound as a yellow oil (157 mg, 0.38 mmol, 70% yield).

¹**H NMR** (400 MHz, CD_2CI_2) δ 9.63 (d, J = 0.9 Hz, 1H), 7.92 (dd, J = 7.8, 1.3 Hz, 1H), 7.70 (dd, J = 8.1, 1.3 Hz, 1H), 7.53 (td, J = 7.9, 0.9 Hz, 1H), 7.44 (ddd, J = 7.9, 2.1, 1.1 Hz, 1H), 7.27 (t, J = 1.8 Hz, 1H), 7.24 – 7.7.20 (m, 3H), 7.13 – 7.08 (m, 2H), 6.77 (ddd, J = 7.5, 1.7,

1.1 Hz, 1H), 2.38 (s, 3H), 1.31 (s, 9H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 191.6, 151.2, 147.1, 145.1, 139.7, 136.1, 132.7, 130.8, 129.7, 128.9, 128.5, 128.4, 128.3, 128.1, 127.8, 126.2, 125.4, 34.9, 31.4, 21.8.

HRMS (ESI⁺) m/z calcd. For $C_{24}H_{24}O_4Sna^+$ [M+Na]⁺: 431.1288; found: 431.1293.

6-Hydroxy-3'-methyl-[1,1'-biphenyl]-2-carbaldehyde (1ba).

The title compound was prepared employing Procedure 1 and isolated by FC using 10% EtOAc in pentane as an eluent to afford the title compound as a white, amorphous solid (621 mg, 2.93 mmol, 73% yield).

¹**H NMR** (400 MHz, CD₂Cl₂) δ 9.71 (s, 1H), 7.56 (dd, *J* = 7.8, 1.1 Hz, 1H), 7.50 – 7.37 (m, 2H), 7.33 (d, *J* = 7.7 Hz, 1H), 7.26 – 7.21 (m, 1H), 7.21 – 7.14 (m, 2H), 5.28 (s, 1H), 2.42 (s, 3H).

¹³C-{¹H} NMR (100 MHz, CD₂Cl₂) δ 192.2, 153.8, 139.9, 135.3, 131.9, 131.8, 131.7, 130.2, 129.6, 129.4, 128.2, 121.0, 119.8, 21.5.

HRMS (ESI+) m/z calcd. For $C_{14}H_{12}O_2Na^+$ [M+Na]⁺: 235.0730; found: 235.0729.

6-Hydroxy-3'-*iso*-propyl-[1,1'-biphenyl]-2-carbaldehyde (1bb).

The title compound was prepared employing Procedure 1 and isolated by FC using CH_2Cl_2 as an eluent to afford the title compound as a white, amorphous solid (107 mg, 0.46 mmol, 90% yield).

¹**H NMR** (400 MHz, CD_2Cl_2) δ 9.69 (d, *J* = 0.9 Hz, 1H), 7.57 (dd, *J* = 7.7, 1.3 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 1H), 7.43 – 7.36 (m, 2H), 7.26 – 7.22 (m, 2H), 7.20 (dt, *J* = 7.4, 1.5 Hz, 1H), 5.58 (s, 1H), 2.98 (hept, *J* = 6.9 Hz, 1H), 1.29 (d, *J* = 7.0 Hz, 6H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 192.4, 153.9, 150.7, 135.3, 132.3, 131.9, 129.6, 129.4, 129.3, 128.6, 127.5, 121.2, 119.7, 34.5, 24.1.

HRMS (ESI⁺) m/z calcd. For $C_{16}H_{16}O_2Na^+$ [M+Na]⁺: 263.1043; found: 263.1074.

3'-(*tert*-Butyl)-6-hydroxy-[1,1'-biphenyl]-2-carbaldehyde (1bc).

The title compound was prepared employing Procedure 1 and isolated by FC using a CH_2Cl_2 as an eluent to afford the title compound as a white, amorphous solid (970 mg, 3.81 mmol, 95% yield).

¹**H NMR** (400 MHz, CD_2Cl_2) δ 9.68 (d, *J* = 0.8 Hz, 1H), 7.57 (dd, *J* = 7.7, 1.3 Hz, 1H), 7.54 (ddd, *J* = 8.0, 2.0, 1.2 Hz, 1H), 7.46 (t, *J* = 7.7 Hz, 1H), 7.40 (td, *J* = 7.9, 0.8 Hz, 2H), 7.24 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.21 – 7.17 (m, 1H), 5.69 (s, 1H), 1.35 (s, 9H).

 $^{13}\text{C-}\{^1\text{H}\}$ NMR (100 MHz, CDCl₃) δ 192.5, 154.0, 152.9, 135.4, 132.6, 131.6, 129.3, 129.3, 128.4, 128.3, 126.4, 121.2, 119.7, 35.1, 31.4.

HRMS (ESI+) m/z calcd. For $C_{17}H_{18}O_2Na^+$ [M+Na]⁺: 277.1199; found: 277.1208.

3-Hydroxy-2'-*iso*-propyl-[1,1'-biphenyl]-2-carbaldehyde (1bd).

The title compound was prepared employing Procedure 1 and isolated by FC using pentane/CH₂Cl₂ 2:1 as an eluent to afford the title compound as a white, amorphous solid (921 mg, 3.83 mmol, 96% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 11.8 (s, 1H), 9.58 (s, 1H), 7.52 (dd, J = 8.4, 7.4 Hz, 1H), 7.42 – 7.40 (m, 2H), 7.23 (dt, J = 7.5, 4.3 Hz, 1H), 7.13 (dt, J = 7.5, 1.1 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 6.78 (dd, J = 7.4, 1.1 Hz, 1H), 2.76 (hept, J = 6.8 Hz, 1H), 1.14 – 1.10 (m, 6H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 197.2, 162.7, 147.3, 147.0, 136.7, 135.8, 130.3, 129.0, 125.8, 125.5, 121.8, 119.0, 117.1, 30.2, 24.7, 23.6.

HRMS (ESI⁺) m/z calcd. For C₁₆H₁₆O₂Na⁺ [M+Na]⁺: 263.1043; found: 263.1043.

3. Optimization

Optimization reactions were performed on **3I**, and **3a** (*vide infra*). All reported yields for the optimization were determined using ¹H NMR spectroscopy. The *c*TDGs evaluated are shown in Figure S2:

Figure S2. Suite of cTDGs.

3a: Optimization for the monobromination of 1a.

Figure S3. General reaction scheme of 1a used to optimize monobromination reaction parameters.

CTDG	Solvent	Pd(OAc)2	т (РС)	Additive	Acid	NRS oquiv	Yield (%)		
tiba	Solvent		1(0)		Auditive	Aciu	NDS equiv	SM	Mono
<i>c</i> TDG1	HFIP/AcOH 4:1	10%	60	-	TFA	2	54	36	10
<i>c</i> TDG1	DCE	10%	60	-	TFA	2	0	20	76
<i>c</i> TDG1	DCE	1%	60	-	TFA	2	14	48	18
cTDG2	DCE	1%	60	-	TFA	2	42	23	0
cTDG3	DCE	1%	60	-	TFA	2	18	51	18
cTDG4	DCE	1%	60	-	TFA	2	32	5	0
cTDG5	DCE	1%	60	-	TFA	2	70	8	0
<i>c</i> TDG1	DCE	1%	60	-	TFA	1.1	31	47	23
<i>c</i> TDG1	DCE	1%	60	-	TFA	1.5	7	55	28
<i>c</i> TDG1	DCE	1%	60	-	TFA	1.8	13	64	18
<i>c</i> TDG1	DCE	1%	rt	-	TFA	1.8	98	2	0
<i>c</i> TDG1	DCE	1%	40	-	TFA	1.8	58	37	5
<i>c</i> TDG1	DCE	1%	60	-	TFA	1.8	10	68	22
<i>c</i> TDG1	DCE	1%	60	AgOTf	TFA	1.8		45	17
<i>c</i> TDG1	DCE	1%	60	Ag_2CO_3	TFA	1.8		54	11
<i>c</i> TDG1	DCE	1%	60	Cu(OAc) ₂	TFA	1.8		51	10
<i>c</i> TDG1	DCE	1%	60	$ZnCl_2$	TFA	1.8		9	
<i>c</i> TDG1	DCE	1%	60	-	TFA	1.8		56	16

Table S2. Summary of optimization reactions for the monobromination of 1a.

Summary and Rationalization: Comparison of the use of 10 mol% Pd vs. 1 mol% Pd under otherwise identical conditions resulted in a ratio of Di:Mono of 3.8:1 and 1:2.67, respectively, with starting material remaining

in the latter case. These data highlight the competition among the unfunctionalized SM and the Monohalogenated products towards C–H functionalization. We speculate that this observation manifests as a downstream consequence of the relative rates of both catalytic cycles (e.g. *c*TDG and [Pd]). The rational in lowering Pd loading to favor monohalogenation was driven by the strategy to taper the rate of C–H functionalization of the [Pd] cycle and pace it with the rate of hydrolysis/condensation of the *c*TDG.

3a: Optimization for the dibromination of 1a.

Figure S4. General reaction scheme of *1a* used to optimize dibromination reaction parameters.

<i>c</i> TDG	Solvent	Additive	Yield (%)	ee (%)
<i>c</i> TDG1	HFIP	-	0	-
<i>c</i> TDG1	DCE	-	48	>99
<i>c</i> TDG2	DCE	-	22	94
<i>c</i> TDG3	DCE	-	4	nd
<i>c</i> TDG4	DCE	-	42	85
<i>c</i> TDG5	DCE	-	8	nd
<i>c</i> TDG6	DCE	-	0	-
<i>c</i> TDG1	DCE	-	0	-
<i>c</i> TDG1	DCE	AgTFA	64	>99
<i>c</i> TDG1	DCE	Ag ₂ CO ₃	84	>99

3I: Optimization for tribromination of 1I.

Figure S5. General reaction scheme of 11 used to optimize tribromination reaction parameters.

Table S4. Summary of optimization reactions for the tribromination of 11.

TDG	Solvent	T (°C)	Additive	Acid	Conversion	Yield (%)	ee (%)
cTDG1	DCE	60	-	TFA	100	62	nd

<i>c</i> TDG1	Toluene	60	-	TFA	89	19	nd
<i>c</i> TDG1	HFIP	60	-	TFA	88	20	nd
<i>c</i> TDG1	MeNO ₂	60	-	TFA	100	27	nd
cTDG1	EtOAc	60	-	TFA	71	8	nd
<i>c</i> TDG1	MeOH	60	-	TFA	78	0	nd
<i>c</i> TDG1	THF	60	-	TFA	0	0	nd
<i>c</i> TDG1	o-dichlorobenzene	60	-	TFA	100	62	nd
cTDG1	TCE	60	-	TFA	95	29	nd
<i>c</i> TDG1	CH_2CI_2	60	-	TFA	93	46	nd
<i>c</i> TDG1	DCE	40	-	TFA	-	-	nd
cTDG1	o-dichlorobenzene	40	-	TFA	-	-	nd
cTDG1	CH_2CI_2	40	-	TFA	-	-	nd
cTDG2	DCE	60	-	TFA	84	38	nd
cTDG4	DCE	60	-	TFA	100	42	97
cTDG5	DCE	60	-	TFA	95	26	>99
cTDG6	DCE	60	-	TFA	-	0	>99
cTDG1	DCE	60	-	TFA	100	74	>99
cTDG1	DCE	60	AgOTFA	TFA	100	36	nd
<i>c</i> TDG1	DCE	60	Ag ₂ CO ₃	TFA	100	92	nd
<i>c</i> TDG1	DCE	60	Cu(OAc) ₂	TFA	100	52	nd
cTDG1	DCE	60	ZnCl ₂	TFA	63	0	nd
cTDG1	DCE	60	CsF	TFA	95	17	nd
<i>c</i> TDG1	DCE	60	-	TFA	100	74	>99

4. General procedures for the atroposelective C–H functionalization

4.A Atroposelective bromination employing 10 mol% Pd

*Scheme S*2. General protocol for atroposelective C–H bromination.

To an 8-mL vial, equipped with a stir bar, was added the aldehyde (0.10 mmol, 1 equiv.), cTDG1 (3.9 mg, 0.030 mmol, 0.3 equiv), Pd(OAc)₂ (2.3 mg, 0.010 mmol, 0.1 equiv), NBS (0.11, 0.21 or 0.31 mmol, 1.1–3.1 equiv), Ag₂CO₃ (2.8 mg, 0.010 mmol, 0.1 equiv), DCE (1 mL), and TFA (77 μ L, 1.0 mmol, 10 equiv). The vial was capped and heated at 60 °C overnight. Upon completion of the reaction, the resulting solution was cooled to rt and directly loaded onto a column and purified by FC using the described stationery and eluent system.

4.B Atroposelective bromination employing 1 mol% Pd

To an 8-mL vial, equipped with a stir bar, was added the aldehyde (0.10 mmol, 1 equiv), cTDG1 (3.9 mg, 0.030 mmol, 0.3 equiv), Pd(OAc)₂ (100 µL of 0.01 M solution in DCE, 0.0010 mmol, 0.01 equiv), NBS (32 mg, 0.18 mmol, 1.8 equiv), DCE (0.9 mL) and TFA (77 µL, 1.0 mmol, 10 equiv.). The vial was capped and heated at 60 °C overnight. Upon completion of the reaction, the resulting solution was cooled to rt and directly loaded onto a column and purified by FC using the described stationery and eluent system.

4.C Telescoping halogenation

Scheme S3. General protocol for the atropselective telescoping halogenation.

To a 8-mL vial, equipped with a stir bar, was added the aldehyde (0.10 mmol, 1 equiv.), cTDG1 (3.9 mg, 0.030 mmol, 0.3 equiv.), Pd(OAc)₂ (2.3 mg, 0.010 mmol, 0.1 equiv.), NCS (40.1 mg, 0.3 mmol, 3 equiv), and Ag₂CO₃ (2.8 mg, 0.010 mmol, 0.1 equiv.), DCE (1 mL) and TFA (77 µL, 1.0 mmol, 10 equiv). The vial was capped and heated at 60 °C for 16 h. Then NBS (19.6 mg, 0.11 mmol, 1.1 equiv.) was added, and the reaction was heated at 60 °C for 48 h. Upon completion of the reaction, the resulting solution was cooled to rt and directly loaded onto a column and purified by FC using the described stationery and eluent system.

4.1 Characterization of atropisomers

(R_a)-2',3-Dibromo-6'-*iso*-propyl-[1,1'-biphenyl]-2-carbaldehyde (3a).

Following General Procedure A employing 2.1 equiv NBS, the product was isolated by FC on SiO₂ using pentane/CH₂Cl₂ 2:1 as eluent to afford the title compound as a white, amorphous solid (28.7 mg, 0.075 mmol, 75% yield, >99% *ee*).

¹**H NMR** (400 MHz, CDCl₃): δ 10.15 (s, 1H), 7.75 (dd, J = 8.1, 1.1 Hz, 1H), 7.46 (ddd, J = 7.9, 4.5, 3.2 Hz, 2H), 7.35 (dd, J = 7.9, 1.3 Hz, 1H), 7.25 (t, J = 7.9 Hz, 1H), 7.14 (dd, J = 7.6, 1.2 Hz, 1H), 2.49 (hept, J = 6.9 Hz, 1H), 1.08 (dd, J = 6.9, 3.1 Hz, 6H).

¹³C-{¹H} NMR (100 MHz, CDCl₃): δ 191.4, 149.3, 144.2, 138.1, 134.1, 133.6, 132.7, 130.7, 129.9, 129.8, 125.5, 124.7, 123.0, 31.7, 24.4, 23.4.

HRMS (ESI⁺) m/z calcd. For $C_{16}H_{14}Br_2ONa^+$ [M+Na]⁺: 404.9284, 402.9304, 406.9263; found: 404.9285, 402.9310, 406.9266.

UPC²: Chiralpak ID column [CO₂/MeOH gradient, 1% MeOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 2.241 \text{ min}$; $t_{minor} = 2.163 \text{ min}$; General Procedure A: >99% *ee*. [α]^D₂₅ = -46.0 (c 1.0, CH₂Cl₂).

(*R_a*)-2',3-Dibromo-6'-ethyl-[1,1'-biphenyl]-2-carbaldehyde (3b).

Following General Procedure A employing 2.1 equiv NBS, the product was isolated by FC on SiO₂ using CH₂Cl₂/pentane 1:3 as eluent to afford the title compound as a white, amorphous solid (20.9 mg, 0.057 mmol, 57% yield, >99% *ee*).

¹**H NMR** (400 MHz, CD₂Cl₂): 10.12 (s, 1H), 7.76 (dd, *J* = 8.1, 1.1 Hz, 1H), 7.52 – 7.46 (m, 2H), 7.29 (d, *J* = 7.8 Hz, 1H), 7.23 (t, *J* = 7.8 Hz, 1H), 7.15 (dd, *J* = 7.6, 1.1 Hz, 1H), 2.37-2.21(m, 2H), 1.01 (t, *J* = 7.6 Hz, 3H).

¹³C-{¹H} NMR (100 MHz, CDCl₃): δ 191.4, 144.3, 144.1, 138.8, 134.1, 133.7, 132.6, 130.7, 130.0, 129.6, 127.3, 125.4, 123.2, 77.5, 77.2, 76.8, 27.5, 14.8.

HRMS (ESI+) m/z calcd. For $C_{15}H_{12}Br_2ONa^+$ [M+Na]⁺: 388.9148, 390.9127, 392.9107; found: 388.9145, 290.9125, 392.9106.

UPC²: Chiralpak ID column [CO₂/MeOH gradient, 1% MeOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 3.814$ min; $t_{minor} = 3.522$ min; General Procedure A: >99% *ee*. $[\alpha]_{28}^{D} = +39.8$ (c 0.25, CH₂Cl₂).

(*R_a*)-2',3-Dibromo-6'-*iso*-propyl-4-methoxy-[1,1'-biphenyl]-2-carbaldehyde (3c).

Following General Procedure A employing 2.1 equiv NBS, the product was isolated by FC on SiO₂ using pentane/CH₂Cl₂ 3:1 as eluent to afford the title compound as a white, amorphous solid (29 mg, 0.070 mmol, 70% yield, >99% *ee*).

¹**H NMR** (400 MHz, CD_2Cl_2) δ 10.20 (s, 1H), 7.44 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.34 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.24 (t, *J* = 7.9 Hz, 1H), 7.18 (d, *J* = 8.4 Hz, 1H), 7.09 (d, *J* = 8.4 Hz, 1H), 3.99 (s, 3H), 2.54 (hept, *J* = 6.8 Hz, 1H), 1.08 – 1.05 (m, 6H).

¹³C-{¹H} NMR (100 MHz, CD₂Cl₂) δ 192.2, 156.3, 150.2, 138.7, 135.2, 134.3, 131.4, 129.8, 129.7, 124.9, 123.8, 115.6, 115.5, 57.1, 31.9, 24.3, 23.4.

HRMS (ESI⁺) m/z calcd. For $C_{17}H_{16}Br_2O_2Na^+$ [M+Na]⁺: 434.9389, 432.9410, 436.9369; found: 434.9392, 432.9408, 436.9371.

UPC²: Chiralpak ID column [CO₂/MeOH gradient, 1% MeOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 2.788$ min; $t_{minor} = 2.592$ min; General Procedure A: >99% *ee*. $[\alpha]_{25}^{P} = +23.3$ (c 1.0, CH₂Cl₂).

(R_a)-2',3-Dibromo-6'-ethyl-4-fluoro-[1,1'-biphenyl]-2-carbaldehyde (3d).

Following General Procedure A employing 2.1 equiv NBS, the product was isolated by FC on SiO₂ using pentane/CH₂Cl₂ 4:1 as eluent to afford the title compound as a white, amorphous solid (23.3 mg, 0.06 mmol, 60% yield, >99% *ee*).

¹**H NMR** (400 MHz, CD_2CI_2) δ 10.06 (s, 1H), 7.49 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.43 (t, *J* = 8.2 Hz, 1H), 7.30 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.25 (t, *J* = 7.8 Hz, 1H), 7.16 (dd, *J* = 8.4, 5.0 Hz, 1H), 2.40-2.20 (m, 2H), 1.01 (t, *J* = 7.5 Hz, 3H).

¹³C-{¹H} NMR (101 MHz, CDCl₃) δ 190.5 (d, *J* = 3.3 Hz), 159.0 (d, *J* = 249.5 Hz) 144.6, 139.7 (d, *J* = 4.1 Hz), 137.8, 134.0, 131.7 (d, *J* = 7.4 Hz), 130.1, 139.9, 127.4, 123.6, 120.3 (d, *J* = 23.0 Hz), 112.3 (d, *J* = 22.0 Hz) 27.6, 14.8.

¹⁹F-{¹H} NMR (376 MHz, CDCl₃) δ -104.96.

HRMS (ESI⁺) m/z calcd. For $C_{15}H_{11}Br_2FONa^+$ [M+Na]⁺: 408.9033, 406.9053, 410.9012; found: 408.9033, 406.9049, 410.9020.

UPC²: Chiralpak ID column [CO₂/MeOH gradient, 1% MeOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 2.122 \text{ min}$; $t_{minor} = 2.040 \text{ min}$; General Procedure A: >99% *ee*. [α]^D₂₄ = +49.5 (c 0.5, CH₂Cl₂).

(R_a)-2',3-Dibromo-6'-(trifluoromethyl)-[1,1'-biphenyl]-2-carbaldehyde (3e).

Following General Procedure A employing 2.1 equiv NBS and leaving it for three days, the product was isolated by FC on SiO₂ using pentane/CH₂Cl₂ 2:1 as eluent to afford the title compound as a yellow, amorphous solid (27 mg, 0.066 mmol, 66% yield, >99% *ee*). ¹**H NMR** (400 MHz, CDCl₃): δ 10.29 (s, 1H), 7.83 (d, *J* = 8.1 Hz, 1H), 7.78 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.48 (t, *J* = 7.9 Hz, 1H), 7.38 (td, *J* = 8.0, 1.0 Hz, 1H), 7.15 (d, *J* = 7.5 Hz, 1H).

¹³C-{¹H} NMR (100 MHz, CD₂Cl₂): δ 191.5, 140.5, 139.3 (q, *J* = 1.5 Hz), 134.7, 133.7, 132.0, 130.9, 130.1 (q, *J* = 30.2 Hz), 129.2, 127.3, 125.4, 125.3 (q, *J* = 5,2 Hz), 123.2 (q, *J* = 276.2 Hz).

¹⁹**F-{**¹**H} NMR** (376 MHz, CDCl₃) δ -59.01.

HRMS (ESI⁺) m/z calcd. For $C_{14}H_7Br_2F_2OK^+$ [M+K]⁺: 444.8448, 446.8427, 448.8407; found: 444.8644, 446.8622, 448.8610.

UPC²: Chiralpak IB column $[CO_2/CH_2Cl_2 \text{ gradient}, 1\% CH_2Cl_2 (0.5 min), \text{ then gradient from 1% to 20% (20%/h), 120 bar, 40 °C], 3.0 mL·min⁻¹; t_{major} = 2.540 min; t_{minor} = 2.626 min; General Procedure A: >99%$ *ee*. $<math>[\alpha]_{25}^{D} = +67.2 \text{ (c } 1.0, \text{ CH}_2Cl_2).^{[4]}$

^[4] The title compound did not separate well on UPC². Instead, a transformation was conducted to increase separation: The aldehyde was mixed with 10 equiv. ethyl(triphenylphosphoranylidene)acetate in CH_2Cl_2 . After stirring for 3 h, the reaction was purified with FCC to afford the alkene product which was subsequently subjected to UPC².

(*R_a*)-Methyl 3',6-dibromo-2'-formyl-[1,1'-biphenyl]-2-carboxylate (3f).

Following General Procedure A employing 2.1 equiv NBS, the product was isolated by FC on SiO₂ using CH_2CI_2 as eluent to afford the title compound as a white, amorphous solid (26.8 mg, 0.067 mmol, 67% yield, >99% *ee*).

¹H NMR (400 MHz, CDCl₃): δ 10.29 – 10.27 (m, 1H), 8.01 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.81 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.73 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.44 (t, *J* = 7.8 Hz, 1H), 7.34 (t, *J* = 7.9 Hz, 1H), 7.05 (d, *J* = 7.6, 1H), 3.63 (s, 3H).

¹³C-{¹H} NMR (100 MHz, CDCl₃): δ 191.8, 166.1, 143.8, 141.8, 136.4, 133.8, 133.7, 131.9, 131.3, 129.6, 129.6, 129.0, 126.8, 124.7, 52.3.

HRMS (ESI⁺) m/z calcd. For $C_{15}H_{10}Br_2O_3Na^+$ [M+Na]⁺: 420.8869, 418.8889, 422.8848; found: 420.8867, 418.8889, 422.8858.

UPC²: Chiralpak IC column [CO₂/MeOH gradient, 1% MeOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 3.140$ min; $t_{minor} = 3.084$ min; General Procedure A: >99% *ee*. $[\alpha]_{25}^{D} = -34.7$ (c 0.25, CH₂Cl₂).

(R_a)-2',3-Dibromo-6'-chloro-[1,1'-biphenyl]-2-carbaldehyde (3g).

Following General Procedure A employing 2.1 equiv NBS, the product was isolated by FC on SiO₂ using pentane/CH₂Cl₂ 3:1 as eluent to afford the title compound as a yellow, amorphous solid (10.3 mg, 0.03 mmol, 28% yield, >95% *ee*).

¹**H NMR** (400 MHz, CDCl₃) δ 10.27 (s, 1H), 7.77 (dd, *J* = 8.1, 1.1 Hz, 1H), 7.57 (dd, *J* = 8.1, 1.1 Hz, 1H), 7.51 (t, *J* = 7.8 Hz, 1H), 7.43 (dd, *J* = 8.1, 1.1 Hz, 1H), 7.23 – 7.16 (m, 2H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 191.4, 141.8, 139.3, 134.5, 134.2, 133.9, 131.9, 131.2, 130.6, 130.0, 128.6, 126.7, 123.8.

HRMS (ESI⁺) m/z calcd. For $C_{13}H_7Br_2CIONa^+$ [M+Na]⁺: 394.8445, 396.8424, 398.8404; found: 394.8459, 396.8424, 398.8400.

 $[\alpha]_{24}^{D} = -9.7$ (c 0.5, CH₂Cl₂).

UPC² conditions to separate the pair of enantiomers were unable to be obtained. To determine enantioselectivity, the chiral auxiliary, (*R*)-*tert*-butanesulfinamide, was employed to form diastereoisomers to determine the diastereomeric ratio by ¹H NMR spectroscopy. Below is a zoom-in of the ¹H NMR spectra (crude mixtures) of the racemate (*below*) and the enantioselective reaction (*above*). Since only a single diastereoisomer was detected for the enantioenriched entry (>20:1 d.r), this corresponds to >95% *ee*.^[5]

^[5] A 4 mL vial was charged with a solution of (*R*)-*tert*-butanesulfinamide and aldehyde in CH_2Cl_2 followed by the addition of Ti(*i*-PrO)₄. The reaction mixture was stirred at rt and then heated to reflux overnight (until completion of aldehyde as indicated by TLC). The reaction was then quenched with brine and diluted with CH_2Cl_2 . Large quantities of white precipitate formed and was filtered away. The organic phase was separated, and the aqueous phase was extracted with CH_2Cl_2 . The combined organic layers were dried over Na₂SO₄. The solvent was removed *in vacuo* and analyzed by ¹H NMR spectroscopy.

7.58 7.57 7.56 7.55 7.54 7.53 7.52 7.51 7.50 7.49 7.48 7.47 7.46 7.45 7.44 7.43 7.42 7.41 7.40 7.39 7.38 7.37 7.36 7.35 7.34 7.33 7.32 7.31

(S_a)-2',5-Dibromo-6-formyl-5'-methyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (3h).

Following General Procedure A employing 2.1 equiv NBS, the product was isolated by FC on SiO₂ using CH_2Cl_2 /pentane 1:1 as eluent to afford the title compound as a white, amorphous solid (29.8 mg, 0.03 mmol, 30% yield, 98% *ee*).

¹**H NMR** (400 MHz, CDCl₃): δ 9.92 (s, 1H), 7.74 (d, *J* = 8.9 Hz, 1H), 7.58 (d, *J* = 8.8 Hz, 1H), 7.38-7.34 (m, 3H), 7.17 (d, *J* = 8.1 Hz, 2H), 7.01 (dd, *J* = 8.3, 2.2 Hz, 1H), 6.73 (d, *J* = 2.2 Hz, 1H), 2.42 (s, 3H), 2.24 (s, 3H).

¹³C-{¹H} NMR (100 MHz, CDCl₃): δ 190.5, 146.8, 145.5, 137.6, 137.0, 135.1, 134.6, 134.6, 133.3, 132.8, 132.5, 132.4, 130.9, 129.9, 128.1, 127.7, 121.7, 120.3, 77.5, 77.2, 76.8, 21.8, 21.0

HRMS (ESI⁺) m/z calcd. for $C_{21}H_{16}Br_2O_4SK^+$ [M+K]⁺: 560.8768, 562.8748, 564.8727; found: 560.8768, 562.8754, 564.8743.

UPC²: Chiralpak IB column [CO₂/MeCN gradient, 1% MeCN (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 3.331$ min; $t_{minor} = 3.251$ min; General Procedure A: 98% *ee*. $[\alpha]_{28}^{D} = -45.2$ (c 0.5, CH₂Cl₂).

(S_a)-2',5-Dibromo-6-formyl-5'-iso-propyl-[1,1'-biphenyl]-2-yl methanesulfonate (3i).

Following General Procedure A employing 2.1 equiv NBS, the product was isolated by FC on SiO₂ using CH₂Cl₂/pentane 2:1 as eluent to afford the title compound as a colorless oil (30.9 mg, 0.065 mmol, 65% yield, 98% *ee*).

¹**H NMR** (400 MHz, CDCl₃): δ 10.05 (s, 1H), 7.78 (d, *J* = 8.8 Hz, 1H), 7.56 (d, *J* = 8.3 Hz, 1H), 7.53 (d, *J* = 8.8 Hz, 1H), 7.19 (dd, *J* = 8.3, 2.3 Hz, 1H), 7.16 (d, *J* = 2.3 Hz, 1H), 2.92 (p, *J* = 6.9 Hz, 1H), 2.62 (s, 3H), 1.24 (dd, *J* = 6.9, 5.1 Hz, 6H).

¹³C-{¹H} NMR (100 MHz, CDCl₃): 190.7, 148.9, 146.9, 137.8, 135.6, 134.6, 134.0, 132.8, 130.5, 129.0, 128.3, 122.6, 120.5, 38.8, 34.0, 24.0, 23.8.

HRMS (ESI⁺) m/z calcd. For C₁₇H₁₆Br₂O₄SK⁺ [M+K]⁺: 512.8768; found: 512.8767.

UPC²: Chiralpak IB column [CO₂/MeCN gradient, 1% MeCN (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 2.851$ min; $t_{minor} = 2.765$ min; General Procedure A: 98% *ee*. $[\alpha]_{25}^{D} = -23.8$ (c 1.0, CH₂Cl₂).

(*S_α*)-2',5-Dibromo-6-formyl-5'-*iso*-propyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (3j).

Following General Procedure A employing 2.1 equiv NBS, however the reaction time was increased to 48 h. The product was isolated by FC on SiO₂ using pentane/CH₂Cl₂ gradient from 2:1 to 1:1 as eluent to afford the title compound as a white, amorphous solid (31.4 mg, 0.057 mmol, 57% yield, 95% *ee*).

¹**H NMR** (400 MHz, CDCl₃): δ 9.95 (s, 1H), 7.74 (d, J = 8.8 Hz, 1H), 7.52 (d, J = 8.8 Hz, 1H), 7.40 (d, J = 8.3 Hz, 1H), 7.33 (d, J = 8.3 Hz, 2H), 7.16 (d, J = 8.1 Hz, 2H), 7.11 (dd, J = 8.3,

2.3 Hz, 1H), 7.04 (d, *J* = 2.2 Hz, 1H), 2.85 (hept, *J* = 6.9 Hz, 1H), 2.41 (s, 3H), 1.22 (dd, *J* = 6.9, 4.3 Hz, 6H). ¹³C-{¹H} NMR (100 MHz, CDCl₃): δ 190.4, 148.1, 146.6, 145.5, 138.1, 135.1, 134.6, 133.2, 132.8, 132.4, 130.6,

129.8, 128.2, 128.0, 127.7, 121.6, 120.4, 33.7, 23.9, 23.8, 21.8.

HRMS (ESI⁺) m/z calcd. for C₂₃H₂₀Br₂O₄SK⁺ [M+K]⁺: 588.9081; found: 588.9075.

UPC²: Chiralpak IB column [CO₂/MeCN gradient, 1% MeCN (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 3.199$ min; $t_{minor} = 3.144$ min; General Procedure A: 95% *ee*. [α]^D₂₈ = -36.4 (c 1.0, CH₂Cl₂).

(*S_a*)-2',5-Dibromo-5'-(*tert*-butyl)-6-formyl-[1,1'-biphenyl]-2-yl methanesulfonate (3k).

Following General Procedure A employing 2.1 equiv NBS, the product was isolated by FC on SiO₂ using CH_2Cl_2 /pentane 2:1 as eluent to afford the title compound as a colorless oil (24.4 mg, 0.05 mmol, 50% yield, 93% *ee*).

¹**H NMR** (400 MHz CD₂Cl₂) δ 10.02 (s, 1H), 7.81 (d, *J* = 8.8 Hz, 1H), 7.60 (d, *J* = 8.5 Hz, 1H), 7.52 (dd, *J* = 8.8, 0.7 Hz, 1H), 7.36 (dd, *J* = 8.5, 2.5 Hz, 1H), 7.30 (d, *J* = 2.5 Hz, 1H), 2.63 (d, *J* = 0.7 Hz, 3H), 1.31 (d, *J* = 0.8 Hz, 9H).

¹³C-{¹H} NMR (100 MHz, CD₂Cl₂) δ 190.7, 151.2, 146.9, 138.1, 135.6, 134.7, 133.7, 132.5, 129.8, 128.3, 127.9, 122.6, 120. 4, 38.8, 35.0, 31.2.

HRMS (ESI⁺) m/z calcd. for $C_{18}H_{18}Br_{2}o_{4}SNa^{+}$ [M+Na]⁺: 512.9165, 510.9185, 514.9144; found: 512.9167, 510.9159, 514.9142.

UPC²: Chiralpak IB column [CO₂/MeCN gradient, 1% MeCN (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 3.020$ min; $t_{minor} = 2.938$ min; General Procedure A: 93% *ee*. $[\alpha]_{28}^{D} = -19.2$ (c 0.5, CH₂Cl₂).

(*R_a*)-3-Bromo-1-(2,5-dibromo-4-methoxyphenyl)-2-naphthaldehyde (3I).

Following General Procedure A employing 3.1 equiv NBS, the product was isolated by FC on SiO₂ using EtOAc/pentane 1:20 as eluent to afford the title compound as a yellow, amorphous solid (26.8 mg, 0.054 mmol, 54% yield, >99% *ee*).

¹**H NMR** (400 MHz, CD₂Cl₂): δ 10.23 (s, 1H), 8.29 (s, 1H), 7.88 (d, *J* = 8.2 Hz, 1H), 7.66 (t, *J* = 7.7 Hz, 1H), 7.54 – 7.48 (m, 1H), 7.43 – 7.37 (m, 2H), 7.29 (s, 1H), 4.00 (s, 3H).

¹³C-{¹H} NMR (100 MHz, CDCl₃): δ 191.9, 156.5, 142.4, 135.9, 135.2, 133.7, 131.5, 130.7, 129.7, 129.7, 127.9, 127.4, 127.4, 123.3, 118.9, 116.1, 111.2, 56.8.

HRMS (ESI⁺) m/z calcd. for C₁₈H₁₁Br₃O₂K⁺ [M+K]⁺: 534.7941, 536.7921, 538.7900, 540,7880; found: 534.7954, 536.7931, 538.7938, 540.7920.

UPC²: Chiralpak IC column [CO₂/MeCN gradient, 1% MeCN (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; t_{major} = 4.234 min; t_{minor} = 4.094 min; General Procedure A: >99% *ee*. [α]^{*D*}₂₃ = +29.1 (c 0.5, CH₂Cl₂).

(*R_a*)-3-Bromo-1-(2-bromo-5-methylphenyl)-2-naphthaldehyde (3m).

Following General Procedure A employing 2.1 equiv NBS, the product was isolated by FC on SiO₂ using pentane/CH₂Cl₂ gradient from 3:1 to 2:1 as eluent to afford the title compound as a yellow, amorphous solid (28.9 mg, 0.07 mmol, 72% yield, >99% *ee*).

¹**H NMR** (400 MHz, CDCl₃) δ 10.15 (s, 1H), 8.24 (s, 1H), 7.83 (d, J = 8.2, 1H), 7.65 – 7.60 (m, 2H), 7.47 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.37 (d, J = 8.5 Hz, 1H), 7.18 (ddd, J = 8.2, 2.2, 0.6 Hz 1H), 7.07 (d, J = 2.2 Hz, 1H), 2.36 (s, 3H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 191.9, 144.8, 137.6, 136.9, 135.9, 133.5, 132.7, 132.6, 131.3, 131.0, 129.6, 129.4, 127.7, 127.5, 127.3, 120.6, 118.2, 21.1.

HRMS (ESI⁺) m/z calcd. for $C_{18}H_{12}Br_2ONa^+$ [M+Na]⁺: 424.9148, 426.9127, 428.9107; found: 424.9145, 426.9129, 428,9111.

UPC²: Chiralpak IB column [CO₂/MeCN gradient, 1% MeCN (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 3.368$ min; $t_{minor} = 3.239$ min; General Procedure A: >99% *ee*. [α]^D₂₅ = +29.1 (c 0.25, CH₂Cl₂).

(R_a)-3-Bromo-1-(2-bromo-5-*iso*-propylphenyl)-2-naphthaldehyde (3n).

Following General Procedure A employing 2.1 equiv NBS, the product was isolated by FC on SiO₂ using 1.5% EtOAc in pentane as eluent to afford the title compound as a yellow, amorphous solid (32.5 mg, 0.075 mmol, 75% yield, 97% *ee*).

¹**H NMR** (400 MHz, CDCl₃) δ 10.11 (s, 1H), 8.24 (s, 1H), 7.87 – 7.82 (m, 1H), 7.68 – 7.61 (m, 2H), 7.47 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 7.40 – 7.34 (m, 1H), 7.24 (d, J = 2.3 Hz, 1H), 7.11 (d, J = 2.3 Hz, 1H), 2.92 (hept, J = 6.9 Hz, 1H), 1.26 (d, J = 6.9 Hz, 6H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 191.8, 148.6, 145.3, 136.7, 135.8, 133.6, 132.7, 131.3, 130.2, 129.7, 129.4, 128.4, 127.7, 127.4, 127.3, 120.9, 117.9, 33.7, 24.0, 24.0.

HRMS (ESI⁺) m/z calcd. for $C_{20}H_{16}Br_2ONa^+$ [M+Na]⁺: 452.9460; found: 452.9471.

UPC²: Chiralpak IB column [CO₂/MeCN gradient, 1% MeCN (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 3.137$ min; $t_{minor} = 3.059$ min; General Procedure A: 97% *ee*. $[\alpha]_{25}^{D} = -35.1$ (c 1.0, CH₂Cl₂).

(*R_a*)-3-Bromo-1-(2-bromo-5-*tert*-butylphenyl)-2-naphthaldehyde (30).

Following General Procedure A employing 2.1 equiv NBS, the product was isolated by FC on SiO₂ using 2% EtOAc in pentane as eluent to afford the title compound as a yellow, amorphous solid (42.8 mg, 0.096 mmol, 96% yield, 95% *ee*).

¹**H NMR** (400 MHz, CDCl₃) δ 10.09 (s, 1H), 8.25 (s, 1H), 7.86 – 7.83 (m, 1H), 7.65 (d, J = 8.5 Hz, 1H), 7.64 – 7.60 (m, 1H), 7.47 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 7.40 (dd, J = 8.5, 2.4 Hz, 1H), 7.36 (d, J = 8.9 Hz, 1H), 7.26 (d, J = 1.4 Hz, 1H), 1.32 (s, 9H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 191.8, 151.0, 145.6, 136.3, 135.8, 133.6, 132.4, 131.3, 129.7, 129.5, 129.2, 127.7, 127.4, 127.4, 127.3, 120.8, 117.8, 34.8, 31.3.

HRMS (ESI⁺) m/z calcd. for $C_{21}H_{18}Br_2ONa^+$ [M+Na]⁺: 466.9617; found: 466.9677.

UPC²: Chiralpak IC column [CO₂/MeCN gradient, 1% MeCN (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 3.264$ min; $t_{minor} = 3.421$ min; General Procedure A: 95% *ee*. $[\alpha]_{25}^{D} = -29.3$ (c 1.0, CH₂Cl₂).

(*R_a*)-3-Bromo-1-(5-bromo-2,2-difluorobenzo[d][1,3]dioxol-4-yl)-2-naphthaldehyde (3p).

Following General Procedure A employing 2.1 equiv NBS, the product was isolated by FC on SiO₂ using pentane/CH₂Cl₂ 4:1 as eluent to afford the title compound as a white, amorphous solid (38 mg, 0.081 mmol, 81% yield, >99% *ee*).

¹**H NMR** (400 MHz, CDCl₃) δ 10.45 (s, 1H), 8.33 (s, 1H), 7.89 (d, J = 8.3 Hz, 1H), 7.67 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.54 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 7.48 (d, J = 8.6 Hz, 1H), 7.38 (d, J = 8.7 Hz, 1H), 7.10 (d, J = 8.6 Hz, 1H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 191.7, 142.8, 136.1, 134.4, 134.4, 131.5 (t, *J* = 258.5 Hz), 130.5, 129.9, 129.3, 128.3, 127.5, 127.4, 126.5, 121.2, 120.2, 117.5, 110.4.

¹⁹F-{¹H} NMR (376 MHz, CDCl₃) δ -49.32 (d, *J* = 92.7 Hz), -49.61 (d, *J* = 92.7 Hz)

HRMS (ESI⁺) m/z calcd. for $C_{18}H_8Br_2F_2O_3Na^+$ [M+Na]⁺: 490.8700; found: 490.8702.

UPC²: Chiralpak IC column [CO₂/MeCN gradient, 1% MeCN (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 2.644$ min; $t_{minor} = 2.748$ min; General Procedure A: >99% *ee*. $[\alpha]_{25}^{D} = +8.1$ (c 1.0, CH₂Cl₂).

(R_a)-2'-Bromo-3-fluoro-6'-*iso*-propyl-[1,1'-biphenyl]-2-carbaldehyde (4q).

Following General Procedure A employing 1.1 equiv NBS, the product was isolated by FC on SiO₂ using pentane/CH₂Cl₂ 2:1 as eluent to afford the title compound as a white, amorphous solid (26 mg, 0.08 mmol, 81% yield, >99% *ee*).

¹**H NMR** (400 MHz, CDCl₃) δ 9.97 (s, 1H), 7.61 (ddd, *J* = 8.4, 7.6, 5.5 Hz, 1H), 7.46 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.33 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.25 – 7.17 (m, 2H), 6.96 (d, *J* = 7.6 Hz, 1H), 2.50 (hept, *J* = 6.9 Hz, 1H), 1.06 (d, *J* = 6.9 Hz, 3H), 1.03 (d, *J* = 6.9 Hz, 3H).

¹³C-{¹H} NMR (100 MHz CDCl₃) δ 188.0 (d, *J* = 4.3 Hz), 163.6 (d, *J* = 262.2 Hz), 149.4, 144.5 (d, *J* = 1.5 Hz), 137.2 (d, *J* = 2.3 Hz), 135.2 (d, *J* = 10.3 Hz), 130.0, 130.0, 127.0 (d, *J* = 3.6 Hz), 124.8, 123.4, 122.9 (d, *J* = 7.0 Hz), 116.6 (d, *J* = 21.4 Hz), 31.7, 24.3, 23.5.

¹⁹**F-{**¹**H} NMR** (376 MHz, CDCl₃) δ -117.08.

HRMS (ESI⁺) m/z calcd. for C₁₆H₁₅BrFO⁺ [M+H]⁺: 321.0285, 323.0265; found: 321.0286, 323.0267.

UPC²: Chiralpak IC column [CO₂/MeCN gradient, 1% MeCN (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 2.320$ min; $t_{minor} = 2.412$ min; General Procedure A: >99% *ee*. $[\alpha]_{25}^{D} = -8.3$ (c 1.0, CH₂Cl₂).

(*S_α*)-2'-Bromo-6'-ethyl-3,6-difluoro-[1,1'-biphenyl]-2-carbaldehyde (4r).

Following General Procedure A employing 1.1 equiv NBS and left for 72 h, the product was isolated by FC on SiO₂ using pentane/CH₂Cl₂ 2:1 as eluent to afford the title compound as a white, amorphous solid (17.4 mg, 0.054 mmol, 54% yield, 92% *ee*).

¹**H NMR** (400 MHz, CD₂Cl₂): δ 9.95 (s, 1H), 7.54 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.43 (ddd, *J* 9.0, 7.9, 4.4 Hz, 1H), 7.36 – 7.25 (m, 3H), 2.35 (q, *J* 7.6 Hz, 2H), 1.04 (t, *J* 7.5 Hz, 3H).

¹³C-{¹H} NMR (100 MHz, CDCl₃): δ 187.2 (dd, *J* = 3.9 Hz, 2.8 Hz,), 159.7 (dd, *J* = 258.6 Hz, 2.4 Hz) 155.5 (dd, *J* = 243.6 Hz, 2.8 Hz), 145.0, 131.4 (d, *J* = 1.7 Hz), 130.5, 130.5 (dd, *J* = 20.5 Hz, 2.0 Hz), 130.3, 127.5, 123.9, 123.2 (dd, *J* = 8.7 Hz, 2.4 Hz), 122.4 (dd, *J* = 26.0 Hz, 10.0 Hz), 118.0 (dd, *J* = 23.9 Hz, 8.1 Hz), 27.5, 14.6.

¹⁹F-{¹H} NMR (376 MHz, CDCl₃) δ -117.55 (d, *J* 17.7 Hz), -122.24 (d, *J* 17.7 Hz).

HRMS (ESI⁺) m/z calcd. for C₁₅H₁₁BrF₂ONa⁺ [M+Na]⁺: 346.9854, 348.9834; found: 346.9852, 348.9835.

UPC²: Chiralpak IC column [CO₂/MeOH gradient, 1% MeOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 2.045$ min; $t_{minor} = 2.093$ min; General Procedure A: 92% *ee*. $[\alpha]_{25}^{D} = -2.7$ (c 0.25, CH₂Cl₂).

(R_a)-2'-Bromo-6'-ethyl-3-fluoro-[1,1'-biphenyl]-2-carbaldehyde (4s).

Following General Procedure A employing 1.1 equiv NBS, the product was isolated by FC on SiO₂ using pentane/CH₂Cl₂ 1:1 as eluent to afford the title compound as a white, amorphous solid (16.0 mg, 0.052 mmol, 52% yield, >99% *ee*).

A scale up reaction (2 mmol) provided the title compound (528.3 mg, 1.72 mmol, 86% yield, >99% *ee*) following the scaled reactions conditions.

¹H NMR (400 MHz, CD₂Cl₂): δ 9.98 (s, 1H), 7.67 (ddd, *J* = 8.3, 7.6, 5.5 Hz, 1H), 7.51 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.32 (d, *J* = 7.8 Hz, 1H), 7.29 – 7.23 (m, 2H), 7.01 (d, *J* = 7.6 Hz, 1H), 2.41-7.23 (m, 2H), 1.02 (t, *J* = 7.6 Hz, 3H).

¹³C-{¹H} NMR (100 MHz, CD₂Cl₂): δ 188.2 (d, *J* = 4.5 Hz), 164.0 (d, *J* = 261.1 Hz), 144.9, 144.4 (d, *J* = 1.5 Hz), 138.4 (d, *J* = 2.2 Hz), 135.6 (d, *J* = 10.3 Hz), 130.2, 130.0, 127.8, 127.4 (d, *J* = 3.7 Hz), 123.8, 123.0 (d, *J* = 6.9 Hz), 116.7 (d, *J* = 21.3 Hz), 27.8, 15.0.

¹⁹**F-{**¹**H} NMR** (376 MHz, CD₂Cl₂) δ -118.16.

HRMS (ESI⁺) m/z calcd. for $C_{15}H_{12}BrFONa^+$ [M+Na]⁺: 328.9948, 330.9928; found: 328.9951, 330.9933.

UPC²: Chiralpak IC column [CO₂/MeCN gradient, 1% MeCN (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 2.463$ min; $t_{minor} = 2.573$ min; General Procedure A: >99% *ee*. $[\alpha]_{26}^{D} = -23.6$ (c 0.5, CH₂Cl₂).

(*R_a*)-2'-Bromo-6'-chloro-3-fluoro-[1,1'-biphenyl]-2-carbaldehyde (4t).

Following General Procedure A employing 1.1 equiv NBS, the product was isolated by FC on SiO₂ using pentane/CH₂Cl₂ 5:1 as eluent to afford the title compound as a white, amorphous solid (25.2 mg, 0.080 mmol, 80% yield, >95% *ee*).

¹**H NMR** (400 MHz, CDCl₃) δ 10.18 (s, 1H), 7.67 (td, J = 8.1, 5.6 Hz, 1H), 7.59 (dd, J = 8.1, 1.2 Hz, 1H), 7.45 (dd, J = 8.1, 1.1 Hz, 1H), 7.28 (ddd, J = 10.5, 8.4, 1.1 Hz, 1H), 7.22 (t, J = 8.1 Hz, 1H), 7.02 (d, J = 7.6 Hz, 1H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 187.1 (d, *J* = 6.8 Hz), 164.5 (d, *J* = 260.5 Hz), 141.6 (d, *J* = 1.9 Hz), 138.6 (d, *J* = 2.5 Hz), 135.6 (d, *J* = 10.3 Hz), 134.1, 131.2, 130.2, 128.6, 127.0 (d, *J* = 3.7 Hz), 124.0, 122.4 (d, *J* = 7.4 Hz), 117.0 (d, *J* = 21.4 Hz).

¹⁹F-{¹H} NMR (376 MHz, CDCl₃) δ -118.67.

HRMS (ESI⁺) m/z calcd. for C₁₃H₇BrClFONa⁺ [M+Na]⁺: 334.9246, 336.9225, 338.9196; found: 334.9247, 336.9230, 338.9196.

 $[\alpha]_{26}^{D}$ = +0.7 (c 0.5, CH₂Cl₂).

 UPC^2 conditions to separate the pair of enantiomers were unable to be obtained. To determine enantioselectivity, the chiral auxiliary, (*R*)-*tert*-butanesulfinamide, was employed to form diastereoisomers to determine the diastereomeric ratio by ¹H NMR spectroscopy. Below is a zoom-in of the ¹H NMR spectra

(crude mixtures) of the racemate (*below*) and the enantioselective reaction (*above*). Since only a single diastereoisomer was detected for the enantioenriched entry (>20:1 d.r), this corresponds to >95% *ee*.^[6]

7.62 7.61 7.60 7.59 7.58 7.57 7.56 7.55 7.54 7.53 7.52 7.51 7.50 7.49 7.48 7.47 7.46 7.45 7.44 7.43 7.42 7.41 7.40 7.39 7.38 7.37 7.36 7.35

(*R_a*)-6'-Bromo-3-fluoro-[1,1':2',1"-terphenyl]-2-carbaldehyde (4φ).

Following General Procedure A employing 1.1 equiv NBS, the product was isolated by FC on SiO₂ using pentane/CH₂Cl₂ 2:1 as eluent to afford the title compound as a colorless oil (21.0 mg, 0.060 mmol, 58% yield, 98% *ee*).

¹**H NMR** (400 MHz, CDCl₃) δ 10.09 (s, 1H), 7.67 (dd, J = 7.6, 1.7 Hz, 1H), 7.46 – 7.39 (m, 1H), 7.34 (dt, J = 15.3, 4.6 Hz, 2H), 7.18 – 7.12 (m, 3H), 7.05 (dd, J = 10.6, 8.4 Hz, 1H), 7.00 (dd, J = 6 Hz, 1H)

J = 6.6, 3.0 Hz, 2H), 6.88 (d, *J* = 7.6 Hz, 1H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 187.9 (d, *J* = 5.7 Hz), 163.8 (d, *J* = 259.3 Hz), 143.6, 140.5, 138.0 (d, *J* = 2.7 Hz), 134.7 (d, *J* = 10.4 Hz), 131.8, 129.5, 129.3, 129.3, 128.2 (d, *J* = 3.3 Hz), 128.0, 127.3, 123.7 (d, *J* = 7.7 Hz), 116.2 (d, *J* = 22.2 Hz).

(Note: 2 carbons were not observed)

¹⁹**F NMR** (376 MHz, CDCl₃) δ - 118.65 (dd, J = 10.4, 5.5 Hz, 1F).

HRMS (ESI⁺) m/z calcd. C₁₉H₁₃BrFO⁺ [M+H]⁺: 355.0128, 357.0108; found: 355.1024, 357.0107.

UPC²: Chiralpak IC column [CO₂/MeCN gradient, 1% MeCN (0.5 min), then gradient from 1% to 40%

(10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 2.918$ min; $t_{minor} = 3.055$ min; General Procedure A: 98% *ee*. [α]^D₂₄ = +34.8 (c 1.0, CHCl₃).

^[6] A 4 mL vial was charged with a solution of (*R*)-*tert*-butanesulfinamide and aldehyde in CH₂Cl₂ followed by the addition of Ti(*i*-PrO)₄. The reaction mixture was stirred at rt and then heated to reflux overnight (until completion of aldehyde as indicated by TLC). The reaction was then quenched with brine and diluted with CH₂Cl₂. Large quantities of white precipitate formed and was filtered away. The organic phase was separated, and the aqueous phase was extracted with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄. The solvent was removed *in vacuo* and analyzed by ¹H NMR spectroscopy.

(R_a)-2'-Bromo-3-chloro-6'-ethyl-[1,1'-biphenyl]-2-carbaldehyde (4u).

Following General Procedure A employing 1.1 equiv NBS, the product was isolated by FC on SiO₂ using pentane/CH₂Cl₂ 2:1 as eluent (26.3 mg, 0.08 mmol, 81% yield, >99% *ee*).

Following the General Procedure C, the product was isolated by FC on SiO_2 using pentane:CH₂Cl₂ (2:1) as eluent to afford the title compound as a white, amorphous solid (28.4 mg, 0.088 mmol, 88% yield, 98% *ee*).

¹**H NMR** (400 MHz, CD₂Cl₂) δ 10.22 (s, 1H), 7.59 – 7.54 (m, 2H), 7.48 (d, *J* = 7.8 Hz, 1H), 7.30 (d, *J* = 7.8 Hz, 1H), 7.24 (t, *J* = 7.8 Hz, 1H), 7.11 (dd, *J* = 6.6, 2.2 Hz, 1H), 2.38 – 2.21 (m, 2H), 1.03 (t, *J* = 7.6 Hz, 3H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 190.0, 144.3, 144.0, 138.7, 136.8, 133.7, 131.4, 130.8, 130.0, 129.6, 127.3, 127.3, 123.2, 27.5, 14.8.

HRMS (ESI⁺) m/z calcd. for $C_{15}H_{12}BrClONa^+$ [M+Na]⁺: 344.9652; found: 344.9653.

UPC²: Chiralpak IC column [CO₂/MeCN gradient, 1% MeCN (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; t_{major} = 2.343 min; t_{minor} = 2.237 min; General Procedure A: >99% *ee*. General Procedure C: 98% *ee*.

 $[\alpha]_{25}^{D} = -42.7$ (c 1.0, CH₂Cl₂).

(*R_a*)-2'-Bromo-2-formyl-6'-*iso*-propyl-[1,1'-biphenyl]-3-yl 4-methylbenzenesulfonate (4v).

Following General Procedure A employing 1.1 equiv NBS, the product was isolated by FC on SiO₂ using a gradient from 50% pentane in CH_2Cl_2 to 100% CH_2Cl_2 as eluent to afford the title compound as a white, amorphous solid (28.3 mg, 0.060 mmol, 60% yield, >99% *ee*).

¹**H NMR** (400 MHz, CD₂Cl₂) δ 9.73 (s, 1H), 7.71 – 7.68 (m, 2H), 7.65 (t, J = 8.0 Hz, 1H), 7.44 – 7.41 (m, 2H), 7.34 – 7.30 (m, 3H), 7.24 (t, J = 7.9 Hz, 1H), 7.09 (dd, J = 7.6, 1.2 Hz,

1H), 2.42 (s, 3H), 2.33 (hept, J = 6.9 Hz, 1H), 1.05 (d, J = 6.9 Hz, 3H), 0.96 (d, J = 6.9 Hz, 3H).

¹³C-{¹H} NMR (100 MHz, CD₂Cl₂): δ 187.9, 150.9, 149.5, 146.8, 143.8, 138.2, 134.4, 131.8, 130.5, 130.5, 130.0, 130.0, 129.1, 128.2, 125.0, 124.0, 123.2, 32.0, 24.2, 23.5, 21.9.

HRMS (ESI⁺) m/z calcd. For C₂₃H₂₂BrO₄S⁺ [M+H]⁺: 473.0417; found: 473.0413.

UPC²: Chiralpak IC column [CO₂/MeCN gradient, 1% MeCN (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 3.645$ min; $t_{minor} = 4.256$ min; General Procedure A: 96% *ee*. [α]^D₂₅ = -10.9 (c 1.0, CH₂Cl₂).

(R_a)-2'-Bromo-6-formyl-6'-*iso*-propyl-4-methoxy-[1,1'-biphenyl]-3-yl acetate (4w).

Following General Procedure A employing 1.1 equiv NBS, the product was isolated by FC on SiO₂ using CH₂Cl₂ as eluent to afford the title compound as a white, amorphous solid (26.8 mg, 0.068 mmol, 69% yield, >99% *ee*).

¹**H NMR** (400 MHz, CD₂Cl₂): δ 9.58 (s, 1H), 7.61 (s, 1H), 7.53 (d, *J* = 7.9 Hz, 1H), 7.40 (d, *J* = 7.9 Hz, 1H), 7.30 (t, *J* = 7.9 Hz, 1H), 6.92 (s, 1H), 3.95 (s, 3H), 2.62 (hept, *J* = 6.9 Hz, 1H), 2.31 (s, 3H), 1.11 (d, *J* = 6.9 Hz, 3H), 1.04 (d, *J* = 6.9 Hz, 3H).

 $^{13}\text{C-}\{^1\text{H}\}$ NMR (100 MHz, CD_2Cl_2): δ 190.5, 168.4, 151.8, 150.8, 144.7, 137.8, 136.0,

132.8, 130.6, 130.1, 125.6, 125.2, 125.1, 110.3, 56.5, 31.8, 24.2, 23.6, 20.8.

HRMS (ESI⁺) m/z calcd. For $C_{19}H_{20}BrO_4^+$ [M+H]⁺: 391.0539; found: 391.0539.

UPC²: Chiralpak IC column [CO₂/MeCN gradient, 1% MeCN (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; t_{major} = 2.505 min; t_{minor} = 2.620 min; General Procedure A: >99% *ee*.

 $[\alpha]_{25}^{D} = -7.0 \text{ (c } 1.0, \text{CH}_2\text{Cl}_2\text{)}.$

(*R_a*)-2'-Bromo-6'-*iso*-propyl-6-formyl-[1,1'-biphenyl]-3-carbonitrile (4x).

Following General Procedure A employing 1.1 equiv NBS, the product was isolated by FC on SiO₂ using pentane/CH₂Cl₂ 1:1 as eluent to afford the title compound as a colorless oil (25 mg, 0.076 mmol, 76% yield, >99% *ee*).

¹**H NMR** (400 MHz, CDCl₃): δ 9.72 (d, *J* = 0.8 Hz, 1H), 8.14 (d, *J* = 8.1 Hz, 1H), 7.87 – 7.81 (m, 1H), 7.57 – 7.53 (m, 2H), 7.42 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.36 (d, *J* = 7.9 Hz, 1H), 2.47 (hept, *J* = 6.9 Hz, 1H), 1.14 (d, *J* = 6.9 Hz, 3H), 1.04 (d, *J* = 6.9 Hz, 3H).

¹³C-{¹H} NMR (100 MHz, CDCl₃): δ 190.0, 149.9, 144.7, 136.8, 134.7, 134.6, 132.1, 131.1, 130.4, 128.3, 125.2, 124.0, 117.8, 117.4, 31.7, 24.2, 23.6.

HRMS (ESI⁺) m/z calcd. for $C_{17}H_{14}BrNONa^+$ [M+Na]⁺: 350.0151; found: 350.0150.

UPC²: Chiralpak IC column [CO₂/MeOH gradient, 1% MeOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 2.487$ min; $t_{minor} = 2.587$ min; General Procedure A: >99% *ee*. $[\alpha]_{25}^{D} = -5.3$ (c 1.0, CH₂Cl₂).

(*S_α*)-2'-Bromo-6-chloro-[1,1'-biphenyl]-2-carbaldehyde (4y).

Following General Procedure B, the product was isolated by FC on SiO_2 using pentane/CH₂Cl₂ 2:1 as eluent to afford the title compound as a white, amorphous solid (18.0 mg, 0.061 mmol, 61% yield, 93% *ee*).

¹**H NMR** (400 MHz, CDCl₃) δ 9.62 (d, *J* = 0.8 Hz, 1H), 7.97 – 7.93 (dd, *J* = 7.8, 1.2, 1H), 7.76 – 7.72 (m, 2H), 7.51 (td, *J* = 7.8, 0.9 Hz, 1H), 7.45 (td, *J* = 7.5, 1.2 Hz, 1H), 7.35 (td, *J* = 7.7, 1.8 Hz, 1H), 7.28 (dd, *J* = 7.5, 1.8 Hz, 1H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 190.6, 142.7, 135.8, 135.6, 134.9, 134.8, 132.8, 131.6, 130.4, 129.6, 127.5, 125.9, 124.1.

HRMS (ESI⁺) m/z calcd. for C₁₃H₈BrClONa⁺ [M+Na]⁺: 316,9339; found: 316.9340.

UPC²: Chiralpak IC column [CO₂/MeCN gradient, 1% MeCN (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 2.524$ min; $t_{minor} = 2.748$ min; General Procedure A: 93% *ee*. $[\alpha]_{26}^{D} = +1.6$ (c 1, CH₂Cl₂).

(S_a)-2'-Bromo-6-formyl-5'-*iso*-propyl-[1,1'-biphenyl]-2-yl methanesulfonate (4i).

Following General Procedure B, the product was isolated by FC on SiO_2 using CH_2Cl_2 /pentane 2:1 as eluent to afford the title compound as a colorless oil (22.2 mg, 0.056 mmol, 56% yield, 97% *ee*).

¹**H NMR** (400 MHz, CDCl₃) δ 9.70 (d, J = 0.9 Hz, 1H), 8.01 (dd, J = 7.8, 1.3 Hz, 1H), 7.73 (dd, J = 8.2, 1.3 Hz, 1H), 7.64 – 7.60 (m, 2H), 7.27 (d, J = 2.3 Hz, 1H), 7.22 (dd, J = 8.3, 2.3 Hz, 1H), 2.94 (hept, J = 7.3 Hz, 1H), 2.68 (s, 3H), 1.28 – 1.24 (m, 6H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 190.4, 148.7, 147.0, 137.6, 135.7, 132.8, 132.7, 131.1, 130.0, 129.0, 128.5, 126.2, 121.4, 38.4, 33.7, 24.1, 23.8.

HRMS (ESI⁺) m/z calcd. for C₁₇H₁₇BrO₄SNa⁺ [M+Na]⁺: : 418.9924, 420.9903; found: 418.9917, 420.9901.

UPC²: Chiralpak IB column [CO₂/MeCN gradient, 1% MeCN (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 2.720$ min; $t_{minor} = 2.878$ min; General Procedure B: 97% *ee*. $[\alpha]_{24}^{D} = -11.2$ (c 0.5, CH₂Cl₂).

(*S_a*)-2'-Bromo-5'-(*tert*-butyl)-6-formyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (4z).

Following General Procedure B, the product was isolated by FC on SiO_2 using CH_2Cl_2 /pentane 2:1 as eluent to afford the title compound as a colorless oil (30.4 mg, 0.062 mmol, 62% yield, >99% *ee*).

¹**H NMR** (400 MHz, CDCl₃) δ 9.64 (d, J = 0.9 Hz, 1H), 7.98 (dd, J = 7.7, 1.3 Hz, 1H), 7.65 (dd, J = 8.2, 1.3 Hz, 1H), 7.55 (td, J = 7.9, 0.9 Hz, 1H), 7.47 (d, J = 8.4 Hz, 1H), 7.39 – 7.35 (m, 3H), 7.30 (dd, J = 8.5, 2.5 Hz, 1H), 7.16 (dd, J = 8.4, 1.6 Hz, 2H), 2.41 (s, 3H), 1.31 (s,

9H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 190.7, 150.6, 147.2, 145.3, 138.3, 135.7, 133.2, 132.2, 132.1, 130.3, 129.8, 129.7, 128.2, 128.0, 127.5, 125.8, 121.5, 34.8, 31.3, 21.8.

HRMS (ESI⁺) m/z calcd. for C₂₄H₂₃BrO₄SNa⁺ [M+Na]⁺: 509.0393; found: 509.0394.

UPC²: Chiralpak IC column [CO₂/MeCN gradient, 1% MeCN (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 3.279$ min; $t_{minor} = 3.549$ min; General Procedure B: >99% *ee*. $[\alpha]_{24}^{D} = +2.0$ (c 1, CH₂Cl₂).

(R_a)-2'-Bromo-6'-ethyl-[1,1'-biphenyl]-2-carbaldehyde (4b).

Following General Procedure B, the product was isolated by FC on SiO_2 using CH₂Cl₂/pentane 1:3 as eluent then a second FC on IATRO beads using 5% dioxane in pentane as eluent to provide the title compound to afford the title compound as a colorless oil (20.9 mg, 0.057 mmol, 63% yield, 89% *ee*).

¹**H NMR** (400 MHz, CD₂Cl₂): δ 9.68 (d, *J* = 0.8 Hz, 1H), 8.01 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.71 (td, *J* = 7.5, 1.5 Hz, 1H), 7.58 (dt, *J* = 7.7, 1.0 Hz, 1H), 7.54 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.34

(dd, *J* = 7.7, 1.4 Hz, 1H), 7.28 (d, *J* = 7.8 Hz, 1H), 7.26 – 7.22 (m, 1H), 2.39–2.28 (m, 2H), 1.00 (t, *J* = 7.6 Hz, 3H). ¹³C-{¹H} NMR (100 MHz, CD₂Cl₂): δ 191.7, 145.5, 144.1, 138.1, 134.4, 134.2, 131.3, 130.3, 130.1, 128.9, 127.9 (2C), 124.6, 27.9, 15.1.

HRMS (ESI+) m/z calcd. for C₁₅H₁₃BrONa⁺ [M+Na]⁺: 311.0042; found: 311.0056.

UPC²: Chiralpak IC column [CO2/iPrOH gradient, 1% iPrOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 2.771$ min; $t_{minor} = 2.839$ min; General Procedure B: >99% *ee*. $[\alpha]_{25}^{D} = -18.9$ (c 1.0, CH₂Cl₂).

(R_a)-2'-Bromo-6'-*iso*-propyl-[1,1'-biphenyl]-2-carbaldehyde (4a).

Following General Procedure B, the product was isolated as an inseparable mixture containing product and starting material (corrected yield is noted) by FC on SiO₂ using pentane/CH₂Cl₂ 3:1 as eluent to afford the title compound as a colorless oil (17.8 mg, 0.059 mmol, 59% yield, 97% *ee*).

¹**H NMR** (400 MHz CDCl₃) δ 9.71 (d, *J* = 0.6 Hz, 1H), 8.06 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.69 (td, *J* = 7.5, 1.5 Hz, 1H), 7.58 – 7.51 (m, 2H), 7.38 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.31 – 7.28 (m, 1H),

7.22 7.20 (dd, J = 7.7, 0.6 Hz, 1H), 2.57 (hept, J = 6.9 Hz, 1H), 1.11 (d, J = 6.9 Hz, 3H), 1.03 (d, J = 6.9 Hz, 3H). ¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 191.6, 150.0, 144.3, 137.0, 134.1, 134.1, 130.9, 130.1, 130.0, 128.6, 127. 7, 124.8, 124.4, 31.5, 24.3, 23.6.

HRMS (ESI⁺) m/z calcd. for C₁₆H₁₅BrONa⁺ [M+Na]⁺: 325.0199, 327.0179; found: 325.0203, 327.0185. **UPC²**: Chiralpak IB column [CO₂/iPrOH gradient, 1% iPrOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 2.0 mL·min⁻¹; t_{major} = 3.212 min; t_{minor} = 3.351 min; General Procedure B: 97% *ee*. $[\alpha]_{26}^{D} = +7.7$ (c 0.5, CH₂Cl₂).

(*R_a*)-2'-Bromo-3-chloro-6'-*iso*-propyl-[1,1'-biphenyl]-2-carbaldehyde (6a).

Following General Procedure C, the product was isolated by FC on SiO₂ using pentane/CH₂Cl₂ 3:1 as eluent to afford the title compound as a yellow, amorphous solid (26.6 mg, 0.079 mmol, 79% yield, 98% *ee*).

¹**H NMR** (400 MHz CDCl₃) δ 10.26 (s, 1H), 7.57 (d, J = 3.8 Hz, 1H), 7.56 (s, 1H), 7.48 (d, J = 1.3 Hz, 1H), 7.38 (dd, J = 7.9, 1.3 Hz, 1H), 7.29 (d, J = 5.6 Hz, 1H), 7.12 (dd, J = 6.1, 2.6 Hz, 1H), 2.52 (hept, J = 6.9 Hz, 1H), 1.11 (d, J = 6.9 Hz, 6H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 190.0, 149.3, 144.2, 138.0, 136.9, 133.6, 131.5, 130.8, 130.0, 129.9, 129.8, 124.7, 123.0, 31.7, 24.4, 23.4.

HRMS (ESI⁺) m/z calcd. for C₁₆H₁₄BrClONa⁺ [M+Na]⁺: 358.9809; found: 358.9806.

UPC²: Chiralpak ID column [CO₂/MeOH gradient, 1% MeOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 2.050$ min; $t_{minor} = 1.977$ min; General Procedure C: 98% *ee*. $[\alpha]_{26}^{D} = -6.2$ (c 1.0, CH₂Cl₂).

(R_a)-2'-Bromo-3-chloro-6'-(trifluoromethyl)-[1,1'-biphenyl]-2-carbaldehyde (6e).

Following General Procedure C, the product was isolated by FC on SiO_2 using pentane/CH₂Cl₂ 3:1 as eluent to afford the title compound as a white, amorphous solid (27.7 mg, 0.076 mmol, 76% yield, >99% *ee*).

¹**H NMR** (400 MHz CDCl₃) δ 10.40 (s, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.60 – 7.54 (m, 2H), 7.38 (td, J = 8.0, 1.0 Hz, 1H), 7.13 – 7.08 (m, 1H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 189.6, 140.2, 139.3 (q, *J* = 1.6 Hz), 138.4, 136.1, 133.6, 131.4, 130.9, 130.2 (q, *J* = 1.2 Hz), 130.0 (d, *J* = 30.1 Hz), 129.2, 125.3, 125,3 (q, *J* = 5.2 Hz), 123.2 (q, *J* = 274.9 Hz).

¹⁹**F-{**¹**H} NMR** (376 MHz, CDCl₃) δ -59.01.

HRMS (ESI⁺) m/z calcd. for C₁₄H₇BrClF₃ONa⁺ [M+Na]⁺: 384.9214, 386.9193, 388.9164; found: 384.9220, 386.9196, 388.9166.

UPC²: Chiralpak IB column [CO₂/CH₂Cl₂ gradient, 1% iPrOH (0.5 min), then gradient from 1% to 20% (0.6%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; t_{major} = 4.533 min; t_{minor} = 4.103 min; General Procedure A: >99% *ee*.^[7]

 $[\alpha]_{26}^{D}$ = +84.6 (c 1, CH₂Cl₂).

(R_a)-Methyl 6-bromo-3'-chloro-2'-formyl-[1,1'-biphenyl]-2-carboxylate (6f).

Following General Procedure C, the product was isolated by FC on SiO₂ using pentane/CH₂Cl₂ 3:1 as eluent to afford the title compound as a white, amorphous solid (20.2 mg, 0.057 mmol, 57% yield, >99% *ee*).

¹**H NMR** (400 MHz CDCl₃) δ 10.39 (d, *J* = 0.6 Hz, 1H), 8.01 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.82 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.54 – 7.52 (m, 2H), 7.34 (t, *J* = 7.9 Hz, 1H), 7.02 – 6.98 (m, 1H), 3.63 (s, 3H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 190.0, 166.1, 143.6, 141.8, 137.9, 136.4, 133.7, 131.2, 130.8, 130.5, 129.6, 129.0, 128.9, 124.6, 52.36.

^[7] The title compound did not separate well on UPC². Instead, a transformation was conducted to increase separation: The aldehyde was mixed with 10 equiv. ethyl(triphenylphosphoranylidene)acetate in CH_2Cl_2 . After stirring for 3 h, the reaction was purified with FCC to afford the alkene product which was subsequently subjected to UPC².

HRMS (ESI⁺) m/z calcd. for $C_{15}H_{10}BrClO_3Na^+$ [M+Na]⁺: 374.9395, 376.9374; found: 374.9395, 376.9375. **UPC²**: Chiralpak ID column [CO₂/CH₂Cl₂ gradient, 1% CH₂Cl₂ (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; t_{major} = 3.025 min; t_{minor} = 3.099 min; General Procedure A: >86% *ee* (impurity coelutes with minor peak).^[8]

 $[\alpha]_{26}^{D}$ = +31.9 (c 1, CH₂Cl₂).

(R_a)-1-(5-Bromo-2,2-difluorobenzo[d][1,3]dioxol-4-yl)-3-chloro-2-naphthaldehyde (6p).

Following General Procedure C, the product was isolated by FC on SiO₂ using pentane/CH₂Cl₂ 5:1 as eluent to afford the title compound as a white, amorphous solid (20.3 mg, 0.048 mmol, 48% yield, 97% *ee*).

¹**H NMR** (400 MHz CDCl₃) δ 10.54 (s, 1H), 8.11 (s, 1H), 7.89 (d, *J* = 8.2 Hz, 1H), 7.68 (ddd, *J* = 8.2, 6.8, 1.2 Hz, 1H), 7.52 (ddd, *J* = 8.2, 6.8, 1.3 Hz, 1H), 7.48 (d, *J* = 8.5 Hz, 1H), 7.39 (dq, *J* = 8.7, 0.9 Hz, 1H), 7.11 (d, *J* = 8.5 Hz, 1H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 190.2, 143.0, 135.9, 134.7, 132.0, 131.6 (t, *J* = 259.6 Hz), 130.8, 130.2, 130.0, 128.7, 128.3, 127.7, 127.6, 126.6, 121.3, 117.6, 110.6.

¹⁹**F-{**¹**H**} **NMR** (376 MHz, CDCl₃) δ -49.34 (d, J = 93.1 Hz), -49.63 (d, J = 93.1 Hz).

HRMS (ESI⁺) m/z calcd. for $C_{18}H_8BrClF_2O_3Na^+$ [M+Na]⁺: 446.9206 448.9186 450.9156; found: 446.9216, 448.9191, 450.9159.

UPC²: Chiralpak IC column [CO2/MeCN gradient, 1% MeCN (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 2.521$ min; $t_{minor} = 2.696$ min; General Procedure A: 97% *ee*. $[\alpha]_{26}^{D} = +13.3$ (c 1, CH₂Cl₂).

^[8] The title compound did not separate well on UPC². Instead, a transformation was conducted to increase separation: The aldehyde was mixed with 10 equiv. ethyl(triphenylphosphoranylidene)acetate in CH_2Cl_2 . After stirring for 3 h, the reaction was purified with FCC to afford the alkene product which was subsequently subjected to UPC².

5. Procedures for Derivations of Products

5.1 Acetalprotection

Scheme S4: Acetal protection of 4s.

An 8-mL vial equipped with a magnetic stir bar was charged with **4s** (1.15 mmol, 1 equiv), *p*-TsOH (0.012 mmol, 10 mol%), trimethyl orthoformate (4.6 mmol, 4 equiv) and anhydrous MeOH (1 mL). The vial was sparged with Ar and sealed with a Teflon screw cap. The resulting solution was stirred at rt for 2 h and then passed through a short silica plug and eluted with EtOAc to provide pure **4s'** as beige, amorphous solid (208.6 mg, 0.591 mmol, 96% yield, >99% *ee*).^[9]

(R_a)-2'-Bromo-2-(dimethoxymethyl)-6'-ethyl-3-fluoro-1,1'-biphenyl (4s').

¹**H NMR** (400 MHz, CD_2Cl_2) δ 7.52 (dd, J = 7.8, 1.3 Hz, 1H), 7.39 (td, J = 7.9, 5.3 Hz, 1H), 7.30 (d, J = 7.8, 1.3 Hz, 1H), 7.24 (t, J = 7.8 Hz, 1H), 7.13 (ddd, J = 11.0, 8.3, 1.2 Hz, 1H), 6.89 (dd, J = 7.6, 1.2 Hz, 1H), 4.77 (d, J = 1.3 Hz, 1H), 3.30 (s, 3H), 3.25 (s, 3H), 2.43 – 2.21 (m, 2H), 1.03 (t, J = 7.6 Hz, 3H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 161.3 (d, *J* = 252.5 Hz), 145.4, 141.4 (d, *J* = 4.7 Hz), 139.0 (d, *J* = 2.4 Hz), 130.0, 130.0 (d, *J* = 9.6 Hz), 129.6, 127.2, 125.9 (d, *J* = 3.3 Hz), 124.2,

124.1 (d, *J* = 12.5 Hz), 116.4 (d, *J* = 22.8 Hz), 103.9, 56.1, 55.8, 27.1, 14.8.

¹⁹**F-{**¹**H} NMR** (376 MHz, CDCl₃) δ –113.29.

HRMS (ESI⁺) m/z calcd. for C₁₇H₁₈BrFO₂Na⁺ [M+Na]⁺: 375.0367, 377.0346; found: 375.0365, 377.0346. **UPC²**: Chiralpak IC column [CO₂/MeCN gradient, 1% MeCN (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; t_{major} = 2.720 min; t_{minor} = 2.434 min: >99% *ee*. $[\alpha]_{25}^{D} = -216.3$ (c 0.19, CH₂Cl₂).

5.2 Carboxylation

Scheme S5: Carboxylation of 4s'.

To a flame-dried, 10 mL schlenk flask equipped with a stir bar was added **4s'** (35.3 mg, 0.1 mmol, 1 equiv), and anhydrous, degassed THF (1 mL, 0.1 M). The reaction was submerged in a cooling bath at ~ -90 °C (toluene, N₂₍₁₎) followed by *t*-BuLi (0.12 mL of 1.7 M in pentane, 0.2 mmol, 2.0 equiv). After 30 s, CO₂ was

^[9] M. Shibata, K. Nakajimaa, Y. Nishibayashi, *Chem. Commun.* 2014, **50**, 7874-7877.

bubbled through the resulting yellow solution for 5 min, and kept under a CO_2 atmosphere. The resulting solution was removed from the cooling bath and allowed to warm to rt overnight, quenched with 1 M HCl (3 mL), extracted with EtOAc (3 x 5 mL). The combined organic phases were dried over Na_2SO_4 , filtered, and concentrated. The crude mixture was purified by FC on SiO₂ (200 mL of 20% EtOAc in CH₂Cl₂, then 100 mL 100 % EtOAc, then 2% AcOH in EtOAc) to provide pure **5sa** as white, amorphous solid (20.1 mg, 0.074 mmol, 74% yield, >99% *ee*).^[10]

(*R_a*)-6-Ethyl-3'-fluoro-2'-formyl-[1,1'-biphenyl]-2-carboxylic acid (5sa).

¹**H NMR** (400 MHz, CDCl₃) δ 10.04 (s, 1H), 7.93 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.57 − 7.50 (m, 2H), 7.44 (t, *J* = 7.7 Hz, 1H), 7.22 − 7.15 (m, 1H), 6.89 (dd, *J* = 7.6, 1.0 Hz, 1H), 2.31 − 2.20 (m, 2H), 1.01 (t, *J* = 7.5 Hz, 3H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 188.4 (d, *J*= 5.2 Hz), 172.1, 163.9 (d, *J*= 258.4 Hz), 144.0, 143.1, 139.1 (d, *J*= 2.3 Hz), 134.8 (d, *J*= 10.3 Hz), 133.0, 128.8, 128.3, 126.2, 126.1 (d, *J*= 3.6 Hz), 122.9 (d, *J*= 6.5 Hz), 115.8 (d, *J*= 21.8 Hz), 26.4, 14.9.

¹⁹**F-{**¹**H} NMR** (376 MHz, CDCl₃) δ –118.89.

HRMS (ESI⁺) m/z calcd. for C₁₆H₁₃FO₃Na⁺ [M+Na]⁺: 295.0741; found: 295.0740.

UPC²: Chiralpak IC column [CO₂/MeCN gradient, 1% MeCN (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 4.011$ min; $t_{minor} = 3.581$ min: >99% *ee*.

 $[\alpha]_{25}^{D}$ = +13.6 (c 1.0, CH₂Cl₂).

5.3 Suzuki coupling

Ft

Scheme S6: Suzuki-Miyuara cross-coupling of 4s'.

In a glovebox, a 4-mL vial, equipped with a magnetic stir bar, was loaded with **4s'** (35.3 mg, 0.1 mmol, 1 equiv), boronic acid (0.15 mmol, 1.5 equiv), and XPhos-Pd-G4 (0.002 mmol, 0.02 equiv). After addition of degassed THF (0.2 mL) and degassed 0.5 M K₃PO₄ in water (0.4 mL), the vial was sealed with a Teflon screw cap. The resulting reaction was stirred at rt for 2 h. Upon completion of the reaction, the resulting solution was directly loaded onto a column and purified by FC using CH_2Cl_2 to provide **5sb** as white, amorphous solid (25.8 mg, 0.068 mmol, 68% yield, >99% *ee*).^[11]

^[10] C. K. Hazra, Q. Dherbassy, J. Wencel-Delord, F. Colobert, Angew. Chem. Int. Ed. 2014, 53, 13871-13875.

^[11] T. Kinzel, Y. Zhang, S. L. Buchwald, J. Am. Chem. Soc. 2010, **132**, 14073-14075.

(R_{α}) -2-(Dimethoxymethyl)-6'-ethyl-3-fluoro-4''-methoxy-1,1':2',1''-terphenyl (5sb).

¹**H NMR** (400 MHz, CD₂Cl₂) δ 7.41 (t, J = 7.6 Hz, 1H), 7.33 (dd, J = 7.8, 1.5 Hz, 1H), 7.27 – 7.21 (m, 2H), 7.07 – 7.02 (m, 2H), 7.01 – 6.93 (m, 2H), 6.72 – 6.67 (m, 2H), 4.82 (d, J = 1.5 Hz, 1H), 3.72 (s, 3H), 3.20 (s, 3H), 3.09 (s, 3H), 2.42 – 2.23 (m, 2H), 1.08 (t, J = 7.6 Hz, 3H).

¹³C-{¹H} NMR (100 MHz, CD₂Cl₂) δ 161.0 (d, J = 252.4 Hz), 158.3, 143.0, 141.1 (d, J = 4.7 Hz), 140.8, 136.7 (d, J = 2.2 Hz), 133.80, 130.7, 128.8 (d, J = 9.6 Hz), 128.1,

127.6, 127.4 (d, *J* = 3.2 Hz), 126.8, 124.4 (d, *J* = 12.4 Hz), 115.2 (d, *J* = 23.1 Hz), 112.8, 103.6 (d, *J* = 1.2 Hz), 55.2, 55.0, 26.5, 14.8.

¹⁹**F-{**¹**H} NMR** (376 MHz, CD₂Cl₂) δ –112.90.

HRMS (ESI⁺) m/z calcd. for C₂₄H₂₅FO₃Na⁺ [M+Na]⁺: 403.1680; found: 403.1685.

UPC²: Upon acetal deprotection with HCl. Chiralpak IB column [CO₂/MeCN gradient, 1% MeCN (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; t_{major} = 2.653 min; t_{minor} = 2.586 min; >99% *ee*.

 $[\alpha]_{27}^{D} = +3.9 (c 1, CH_2CI_2).$

5.4 Cyanation

Scheme S7: Cyanation of 4s'.

In a 4-mL vial equipped with a magnetic stir bar was added **4s'** (35.3 mg, 0.1 mmol, 1 equiv), $Na_4[Fe(CN)_6] \cdot 10 H_2O$ (0.05 mmol, 0.5 equiv), $Pd_2(dba)_3$ (0.0025 mmol, 2.5 mol%), and XPhos (0.02 mmol, 0.2 equiv). After addition of degassed dioxane (0.25 mL) and degassed KOAc_(aq) (0.25 mL, 0.05 M), the atmosphere was exchanged with Ar and the vial was sealed with a Teflon screw cap. The resulting solution was stirred at 100 °C overnight. Upon completion of the reaction, the resulting solution was directly loaded onto a column and purified by FC using EtOAc/pentane 1:10 to provide pure **5sc** as white, amorphous solid (22.9 mg, 0.077 mmol, 77% yield, >99% *ee*).^[12]

(R_a)-2'-(Dimethoxymethyl)-6-ethyl-3'-fluoro-[1,1'-biphenyl]-2-carbonitrile (5sc).

¹**H NMR** (400 MHz, CDCl₃): δ 7.57 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.53 (d, *J* = 7.5 Hz, 1H), 7.45 – 7.38 (m, 2H), 7.19 (ddd, *J* = 10.7, 8.3, 1.2 Hz, 1H), 6.95 (d, *J* = 7.7 Hz, 1H), 4.98 (s, 1H), 3.32 (s, 3H), 3.26 (s, 3H), 2.48-2.30 (m, 2H), 1.06 (t, *J* = 7.6 Hz, 3H).

¹³C-{¹H} NMR (100 MHz, CDCl₃): δ 161.3 (d, *J* 251.6 Hz), 144.4, 142.6 (d, *J* 2.4 Hz), 138.8 (s, *J* 4.2 Hz), 132.2, 130.3 (d, *J* 9.6 Hz), 129.8, 128.5, 126.1 (d, *J* 3.35 Hz), 124.3 (s, *J* 12.5 Hz), 118.3, 116.8 (d, *J* 24.3 Hz), 113.8, 102.4 (d, *J* 1,9 Hz), 55.9, 54.8, 26.3, 14.6.

¹⁹F-{¹H} NMR (376 MHz, CDCl₃) δ -114.61.

^[12] T. D. Senecal, W. Shu, S. L. Buchwald, Angew. Chem. Int. Ed. 2013, **52**, 10035-10039.

HRMS (ESI⁺) m/z calcd. for C₁₈H₁₈FNO₂Na⁺ [M+Na]⁺ : 322.1214; found: 322.1219. **UPC²**: Chiralpak IC column [CO₂/MeOH gradient, 1% MeOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; t_{major} = 2.697 min; t_{minor} = 2.448 min; >99% *ee*. $[\alpha]_{25}^{D}$ = +46.1 (c 0.06, CH₂Cl₂).

5.5 Miyuara coupling

Scheme S8: Miyuara coupling of 4s'.

In a flame-dried 4-mL vial, equipped with a magnetic stir bar, was added the **4s'** (35.3 mg, 0.1 mmol, 1 equiv), Pd(dppf)Cl₂ (7.3 mg, 0.01 mmol, 10 mol%), B₂Pin₂ (102 mg, 0.4 mmol, 4 equiv) and KOAc (49.1 mg, 0.5 mmol, 5 equiv). After addition of degassed dioxane (0.5 mL), the atmosphere was exchanged with Ar and the vial was sealed with a Teflon screw cap. The resulting reaction was stirred at 90 °C overnight. Upon completion of the reaction, the resulting solution was dried under a flow of N₂, dissolved in pentane, and then directly loaded onto a column and purified by FC using EtOAc/pentane 1:20 to provide pure **5sd** as white, amorphous solid (25.8 mg, 0.068 mmol, 68% yield, >99% ee).^[13]

(S_a)-2-(2'-(Dimethoxymethyl)-6-ethyl-3'-fluoro-[1,1'-biphenyl]-2-yl)-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane (5sd).

¹H NMR (400 MHz, CD₂Cl₂) δ 7.56 (dd, J = 7.2, 1.7 Hz, 1H), 7.41 – 7.32 (m, 2H), 7.30 – 7.23 (m, 1H), 7.04 (ddd, J = 11.2, 8.3, 1.2 Hz, 1H), 6.89 (dd, J = 7.6, 1.2 Hz, 1H), 4.71 (d, J = 1.4 Hz, 1H), 3.22 (d, J = 9.5 Hz, 6H), 2.44 – 2.28 (m, 2H), 1.07 – 1.00 (m, 15H). ¹³C-{¹H} NMR (100 MHz, CD₂Cl₂): δ 161.3 (d, J = 250.4 Hz) 144.0 (d, J = 2.3 Hz), 143.8 (d, J = 4.8 Hz), 142.4, 132.2, 130.5, 129.0 (d, J = 9.4 Hz), 127.7, 126.7 (d, J = 3.3 Hz), 124.9 (d, J = 12.3 Hz), 115.2 (d, J = 22.8 Hz), 104.4, 83.7, 55.8, 55.7, 26.4, 24.8, 24.7,

15.1.

¹⁹**F-{**¹**H} NMR** (376 MHz, CDCl₃) δ –115.70.

HRMS (ESI⁺) m/z calcd. for $C_{23}H_{30}BFO_4Na^+$ [M+Na]⁺: 423.2113; found: 423.2120.

UPC²: Chiralpak IB column [CO₂/MeCN gradient, 1% MeCN (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 2.089$ min; $t_{minor} = 1.976$ min; >99% *ee*.

 $[\alpha]_{25}^{D}$ = +3.2 (c 0.25, CH₂Cl₂)

^[13] M.-M. Xu, X.-Y. You, Y.-Z. Zhang, Y. Lu, K. Tan, L. Yang, Q. Cai, J. Am. Chem. Soc. 2021, **143**, 8993-9001.

5.6 Buchwald–Hartwig amination

Scheme S9: Buchwald-Hartwig amination of 4s'.

To a flame-dried 4-mL vial, equipped with a magnetic stir bar, was added the **4s'** (35.3 mg, 0.1 mmol, 1 equiv), $Pd(OAc)_2$ (2.25 mg, 0.01 mmol, 0.1 equiv), $BocNH_2$ (23.4 mg, 0.2 mmol, 2 equiv), Cs_2CO_3 (45.6 mg, 0.14 mmol, 1.4 equiv) and XPhos (14.3 mg, 0.03 mmol, 0.3 equiv). After addition of degassed dioxane (1 mL), the atmosphere was exchanged with Ar, and the vial was sealed with a Teflon screw cap. The resulting reaction was stirred at 100 °C overnight. Upon completion of the reaction, the mixture was quenched with saturated $NH_4Cl_{(aq)}$ and extracted with EtOAc. The combined organic layers were combined, dried over Na_2SO_4 , and concentrated *in vacuo*. The resulting residue was dissolved in CH_2Cl_2 , and then loaded onto a SiO₂ column and purified by FC using EtOAc/pentane 1:20 to provide **5se** as colorless oil (31.4 mg, 0.08 mmol, 81% yield, >99% *ee*).^[13]

(*R_a*)-*tert*-Butyl (2'-(dimethoxymethyl)-6-ethyl-3'-fluoro-[1,1'-biphenyl]-2-yl)carbamate (5se).

¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (d, J = 8.2 Hz, 1H), 7.42 (ddd, J = 8.2, 7.5, 5.3 Hz, 1H), 7.34 (t, J = 8.0 Hz, 1H), 7.19 (ddd, J = 10.8, 8.3, 1.2 Hz, 1H), 7.04 (d, J = 7.7 Hz, 1H), 6.92 (dd, J = 7.6, 1.2 Hz, 1H), 6.05 (s, 1H), 4.83 (d, J = 1.3 Hz, 1H), 3.30 (d, J = 9.7 Hz, 6H), 2.34 – 2.14 (m, 2H), 1.40 (s, 9H), 1.04 (t, J = 7.5 Hz, 3H).

¹³C-{¹H} NMR (100 MHz, CDCl₃): δ 162.5 (d, *J* = 253.4 Hz), 153.0, 142.9, 137.9 (d, *J* = 4.3 Hz), 136.0, 130.8 (d, *J* = 9.6 Hz), 128.9, 126.4 (d, *J* = 3.3 Hz), 125.2 (d, *J* = 12.1 Hz), 123.0, 117.9, 116.9 (d, *J* = 22.7 Hz), 103.8, 80.4, 56.3, 55.7, 28.4, 26.5, 14.9.

¹⁹**F-{**¹**H} NMR** (376 MHz, CDCl₃) δ –112.81.

HRMS (ESI⁺) m/z calcd. For C₂₂H₂₈FNO₄Na⁺ [M+Na]⁺: 412.1895; found: 412.1896.

UPC²: Chiralpak IC column [CO₂/CH₂Cl₂ gradient, 1% CH₂Cl₂ (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 2.951$ min; $t_{minor} = 2.993$ min: >99% *ee*. [α]^{D_{25}} = -37.0 (c 1, CH₂Cl₂).

5.7 C–P Cross-coupling reaction

Scheme S10: C-P Cross-coupling reaction at 4s'.

To a flame-dried, 4-mL vial equipped with a stir bar was added **4s'** (35.3 mg, 0.1 mmol, 1 equiv), Pd(OAc)₂ (4.49 mg, 0.02 mmol, 0.2 equiv), dppp (8.5 mg, 0.02 mmol, 0.2 equiv), DIPEA (84 mL, 0.48 mmol, 4.8 equiv),
DMSO (0.6 mL), and diphenylphosphine oxide (40.4 mg, 2 equiv). The vial was sparged with Ar, capped, and heated to 120 °C overnight, then cooled to rt and diluted with EtOAc (10 mL) and 4 M HCl in dioxane (200 ml). The resulting solution was washed with H₂O (3 x 10 mL) and brine (1 x10 mL). The organic phase was dried over Na₂SO₄, filtered, and concentrated. The crude mixture was purified via FC on SiO₂ (20% EtOAc in CH₂Cl₂) to provide pure **5sf** as white, amorphous solid (36.7 mg, 0.077 mmol, 77% yield, >99% *ee*).^[14]

(R_a) -2'-(Diphenylphosphoryl)-6'-ethyl-3-fluoro-[1,1'-biphenyl]-2-carbaldehyde (5sf).

¹**H NMR** (400 MHz, CD₂Cl₂) δ 9.75 (s, 1H), 7.57 – 7.45 (m, 7H), 7.41 – 7.33 (m, 5H), 7.16 – 7.10 (m, 2H), 7.01 – 6.96 (m, 1H), 6.57 (d, *J* = 7.7 Hz, 1H), 2.29 – 2.17 (m, 2H), 0.98 (t, *J* = 7.5 Hz, 3H).

¹³C-{¹H} NMR (100 MHz, CD_2Cl_2): δ 188.3 (d, J = 5.0 Hz), 163.1 (d, J = 260.3 Hz), 144.6 (d, J = 8.8 Hz), 142.1 (dd, J = 7.7, 2.2 Hz), 141.2 (dd, J = 4.5, 1.6 Hz), 134.0, 133.5, 133.3 (d, J = 4.5, 1.6 Hz), 134.0, 133.5, 133.3 (d, J = 4.5, 1.6 Hz), 134.0, 133.5, 133.3 (d, J = 4.5, 1.6 Hz), 134.0, 133.5, 133.3 (d, J = 4.5, 1.6 Hz), 134.0, 133.5, 133.3 (d, J = 4.5, 1.6 Hz), 134.0, 133.5, 133.3 (d, J = 4.5, 1.6 Hz), 134.0, 133.5, 133.3 (d, J = 4.5, 1.6 Hz), 134.0, 133.5, 133.3 (d, J = 4.5, 1.6 Hz), 134.0, 133.5, 133.3 (d, J = 4.5, 1.6 Hz), 134.0, 133.5, 133.3 (d, J = 4.5, 1.6 Hz), 134.0, 133.5, 133.3 (d, J = 4.5, 1.6 Hz), 134.0, 133.5, 133.3 (d, J = 4.5, 1.6 Hz), 134.0, 133.5, 133.3 (d, J = 4.5, 1.6 Hz), 134.0, 133.5, 133.3 (d, J = 4.5, 1.6 Hz), 134.0, 133.5, 133.3 (d, J = 4.5, 1.6 Hz), 134.0, 133.5, 133.3 (d, J = 4.5, 1.6 Hz), 134.0, 133.5, 133.3 (d, J = 4.5, 1.6 Hz), 134.0, 134.0, 133.5, 133.3 (d, J = 4.5, 1.6 Hz), 134.0, 134

= 9.5 Hz), 132.4 (dd, , J = 2.6 Hz), 132.4, 132.1 (d, J = 9.5 Hz), 132.0 (d, J = 26.3, 9.5 Hz), 132.0 (d, J = 2.9 Hz), 131.8 (d, J = 2.9 Hz), 131.4, 131.2, 128.9 (d, J = 4.0 Hz), 128.7 (dd, J = 11.9, 2.7 Hz), 128.0 (d, J = 13.6 Hz), 124.2 (d, J = 7.7 Hz), 116.3 (d, J = 21.5 Hz), 26.5 (d, J = 1.4 Hz), 14.8.

¹⁹**F-{**¹**H} NMR** (376 MHz, CD₂Cl₂) δ -119.95.

³¹P-{¹H} NMR (162 MHz, CD₂Cl₂) δ 26.68.

HRMS (ESI⁺) m/z calcd. For $C_{27}H_{23}FO_2P^+$ [M+H]⁺: 429.1414; found: 429.1417.

UPC²: Chiralpak IB column [CO₂/MeOH gradient, 1% MeOH (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; $t_{major} = 3.254$ min; $t_{minor} = 3.330$ min; >99% *ee*.

$[\alpha]_{25}^{D}$ = +3.6 (c 1.0, CH₂Cl₂)

5.8 Reductive amination

Scheme S11: Reductive amination of 4s to furnish 5sg.

To a 4-mL vial, equipped with a stir bar, was added **4s** (30.7 mg, 0.1 mmol, 1 equiv), (*R*)-2-methyl-2propanesulfinamide (14.5 mg, 0.012 mmol, 1.2 equiv), Ti(*i*-PrO)₄ (118 mL, 0.40 mmol, 4 equiv), and CH₂Cl₂ (0.2 mL) and heated to 40 °C. After 5 h, the solvent was removed *in vacuo* and NaBH₄ (15.0 mg, 0.4 mmol, 4 equiv) was added followed by MeOH (50 mL) and stirred overnight at rt. The resulting solution was concentrated and purified by FC on SiO₂ (CH₂Cl₂:EtOAc 15:1) to provide **5sg** as a colorless oil (32.9 mg, 0.080 mmol, 80% yield, >20:1 dr).^[15]

^[14] Q.-Y. Zhao, M. Shi, *Tetrahedron* 2011, **67**, 3724-3732.

¹⁵ Q. J. Yao, S. Zhang, B. B. Zhan, B. F. Shi, *Angew. Chem. Int. Ed.* 2017, **56**, 6617-6621.

(R_a,R)-N-((2'-Bromo-6'-ethyl-3-fluoro-[1,1'-biphenyl]-2-yl)methyl)-2-methylpropane-2-sulfinamide (5sg).

¹H NMR (400 MHz, CD₂Cl₂) δ 7.44 (dd, J = 7.9, 1.3 Hz, 1H), 7.34 – 7.27 (m, 1H), 7.24 (d, J = 7.6 Hz, 1H), 7.16 (t, J = 7.8 Hz, 1H), 7.10 – 7.03 (m, 1H), 6.84 (dd, J = 7.7, 1.2 Hz, 1H), 4.03 (ddd, J = 13.6, 6.6, 1.4 Hz, 1H), 3.79 (ddd, J = 13.3, 7.7, 1.6 Hz, 1H), 3.25 (t, J = 7.0 Hz, 1H), 2.34 – 2.13 (m, 2H), 0.99 (s, 9H), 0.96 (t, J = 7.6 Hz, 3H). ¹³C-{¹H} NMR (100 MHz, CD₂Cl₂) δ 162.3 (d, J = 247.1 Hz), 145.1, 142.5 (d, J = 4.4

Hz), 139.1 (d, *J* = 2.7 Hz), 130.5, 130.1, 129.7 (d, *J* = 9.0 Hz), 127.9, 126.3 (d, *J* = 2.64 Hz), 124.7 (d, *J* = 15.4 Hz), 124.6, 115.4 (d, *J* = 22.4 Hz), 56.0, 41.6 (d, *J* = 3.0 Hz), 27.7, 22.6, 15.2.

¹⁹**F-{**¹**H} NMR** (376 MHz, CDCl₃) δ –116.67.

HRMS (ESI⁺) m/z calcd. for C₂₇H₂₃BrFNOSNa⁺ [M+Na]⁺: 434.0560, 436.0540; found: 434.0567, 436.0547. [*α*]^{*D*}₂₅ = - 23.9 (c 1.0, CH₂Cl₂)

5.9 DAST reaction

Scheme S12: Deoxyfluorination of 4s to furnish 5sh.

To a flame-dried 4-mL vial, equipped with a stir bar, was added **4s** (30.7 mg, 0.1 mmol, 1 equiv), dry CH_2Cl_2 (0.1 mL), and (*N*,*N*-diethylamino)sulfur trifluoride (DAST) (0.35 mmol, 3.5 equiv). The mixture was stirred overnight at rt. The resulting mixture was treated with 2 drops off water and loaded onto celite. After evaporation, the powder was transferred on to a SiO₂ column and purified by FC using a gradient from pure pentane to pentane/CH₂Cl₂ 5:1 to provide pure **5sh** as colorless oil (23.9 mg, 0.074 mmol, 78% yield, >99% *ee*).^[16]

(R_a)-2'-Bromo-2-(difluoromethyl)-6'-ethyl-3-fluoro-1,1'-biphenyl (5sh).

¹**H NMR** (400 MHz, CD₂Cl₂) δ 7.60 – 7.51 (m, 2H), 7.35 – 7.22 (m, 3H), 6.97 (d, J = 7.7 Hz, 1H), 6.28 (t, J = 53.2 Hz, 1H), 2.42 – 2.21 (m, 2H), 1.03 (t, J = 7.6 Hz, 3H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 161.6 (dt, J = 255.9, 2.1 Hz), 145.1, 141.5 (td, J = 5.8, 3.3 Hz), 137.3 (d, J = 2.3 Hz), 132.5 (d, J = 9.4 Hz), 130.2, 130.1, 127.5, 126.1 (d, J = 3.6 Hz), 124.2, 120.2 (td, J = 22.4, 12.0 Hz), 116.4 (d, J = 21.0 Hz), 112.5.

¹⁹**F-{**¹**H**} **NMR** (376 MHz, CDCl₃) δ -110.96 (dd, J = 317.3, 10.9 Hz), -112.59 (dd, J = 317.3, 15.6 Hz), -114.89 (dd, J = 15.6, 10.9 Hz).

HRMS (ESI⁺) m/z calcd. for $C_{15}H_{12}BrF_{3}Na^{+}$ [M+Na]⁺: 350.9967; found: 350.9966.

UPC²: Chiralpak IB column $[CO_2/CH_2Cl_2 \text{ gradient}, 1\% CH_2Cl_2 (0.5 min), then gradient from 1% to 40% (10%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; t_{major} = 2.028 min; t_{minor} = 1.927 min; >99%$ *ee* $. <math>[\alpha]_{25}^{D} = -5.5$ (c 1.0, CH₂Cl₂).

^[16] X. Zhang, L. Ling, X. Luo, X. Zeng, Angew. Chem. Int. Ed. 2019, **58**, 16785-16789.

5.10 Baeyer-Villiger oxidation

Scheme S13: Baeyer-Villiger oxidation of 4s to prepare 5si.

To a solution of **4s** (30.7 mg, 0.1 mmol, 1 equiv) in CH_2Cl_2 (0.2 mL) was added *m*-chloroperoxybenzoic acid (57 mg, 0.33 mmol, 3.3 equiv.) portion-wise at 0 °C with magnetic stirring. The reaction was stirred overnight at rt. The resulting solution was directly loaded onto a column and purified by FC using pentane/CH₂Cl₂ 2:1 to provide pure **5si** as white, amorphous solid (12.0 mg, 0.037 mmol, 37% yield, >99% *ee*).^[17]

(R_a)-2'-Bromo-6'-ethyl-3-fluoro-[1,1'-biphenyl]-2-yl formate (5si).

¹**H NMR** (400 MHz, CD₂Cl₂) δ 8.03 (d, J = 2.3 Hz, 1H), 7.51 (dd, J = 7.8, 1.4 Hz, 1H), 7.37 (td, J = 8.0, 5.3 Hz, 1H), 7.32 – 7.26 (m, 2H), 7.23 (t, J = 7.8 Hz, 1H), 7.03 (dt, J = 7.6, 1.5 Hz, 1H), 2.35 (ddt, J = 17.1, 14.7, 7.3 Hz, 2H), 1.05 (t, J = 7.5 Hz, 3H).

¹³C-{¹H} NMR (100 MHz, CD₂Cl₂) δ 157.6 (d, J = 0.7 Hz), 154.7 (d, J = 249.6 Hz), 145.7, 136.0, 135.8 (d, J = 2.0 Hz), 135.5 (d, J = 13.5 Hz), 130.3, 130.3, 127.8, 127.6 (d, J = 8.0 Hz), 127.0 (d, J = 3.3 Hz), 124.4, 116.6 (d, J = 18.9 Hz), 27.4, 15.1.

¹⁹**F-{**¹**H} NMR** (376 MHz, CD₂Cl₂) δ –127.52.

HRMS (ESI⁺) m/z calcd. for C₁₅H₁₂BrFO₂Na⁺ [M+Na]⁺: 344.9897, 346.9877; found: 344.9898, 346.9880. UPC²: Chiralpak IB column [CO₂/iPrOH gradient, 1% iPrOH (0.5 min), then gradient from 1% to 25% (1.7%/min), 120 bar, 40 °C], 3.0 mL·min⁻¹; t_{major} = 2.946 min; t_{minor} = 2.821 min; General Procedure A: >99% *ee*. [α]^D₂₇ = -4.7 (c 0.5, CH₂Cl₂).

5.11 Oxazole formation

Scheme S14: Oxazole formation from 4q.

To an 8-mL flame-dried vial, equipped with a stir bar, was added L-valinol (64.3 mg, 0.623 mmol, 1 equiv), **4s** (200.0 mg, 0.623 mmol, 1 equiv), anhydrous CH_2Cl_2 (3 mL), and 4 Å MS (900 mg) under an Ar atmosphere. The mixture was stirred for 14 h, followed by the addition of NBS (111.0 mg, 0.623 mmol, 1 equiv) and stirred for an additional hour. The mixture was diluted with CH_2Cl_2 , filtered, and washed with sat. NaHCO₃ and H₂O. The organic phase was dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude mixture was purified by FC on SiO₂ using CH_2Cl_2 /pentane 1:1 as eluent followed by a second FC on SiO₂ employing 5% EtOAc in pentane as eluent to provide the **5qj** as white, amorphous solid (104 mg, 0.257 mmol, 41% yield, >20:1 dr).^[18]

^[17] N. Fujikawa, T. Ohta, T. Yamaguchi, T. Fukuda, F. Ishibashi, M. Iwao, *Tetrahedron* 2006, **62**, 594-604.

^[18] K. Schwekendiek, F. Glorius, *Synthesis* 2006, **18**, 2996-3002.

(R_a,S) -2-(2'-Bromo-6'-ethyl-3-fluoro-[1,1'-biphenyl]-2-yl)-4-*iso*-propyl-4,5-dihydrooxazole (5qj).

¹**H NMR** (400 MHz, CDCl₃) δ 7.49 – 7.42 (m, 1H), 7.42 – 7.36 (m, 1H), 7.29 (dd, J = 7.9, 1.2 Hz, 1H), 7.16 (t, J = 7.9 Hz, 2H), 6.96 (dd, J = 7.7, 1.1 Hz, 1H), 4.14 (dd, J = 9.4, 7.8 Hz, 1H), 3.91 – 3.82 (m, 1H), 3.79 (t, J = 8.0 Hz, 1H), 2.67 (hept, J = 6.8 Hz, 1H), 1.45 (hept, J = 6.7 Hz, 1H), 1.22 (d, J = 6.8 Hz, 3H), 1.04 (d, J = 6.9 Hz, 3H), 0.68 (dd, J = 6.8, 4.9 Hz, 6H).

¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 161.1 (d, *J* = 251.5 Hz), 158.8, 150.2, 142.8, 142.7, 138.7 (d, *J* = 2.2 Hz), 131.1 (d, *J* = 9.3 Hz), 129.4, 126.0 (d, *J* = 3.3 Hz), 124.2, 123.7, 118.2 (d, *J* = 14.8 Hz), 115.4 (d, *J* = 22.2 Hz), 73.2, 70.3, 32.7, 31.7, 25.1, 22.8, 18.7, 18.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –111.74 (dd, *J* = 9.6, 5.5 Hz, 1F).

HRMS (ESI⁺) m/z calcd. for $C_{21}H_{23}BrFNO_2Na^+$ [M+Na]⁺: 426.0839; found: 426.0855.

 $[\alpha]_{25}^{D} = -39.2$ (c 0.8, CH₂Cl₂).

5.12 Regioselective Suzuki-Miyuara coupling of 3a.

Scheme S15: Regioselective Suzuki-Miyuara coupling at site H_A of 3a.

A flame-dried 4-mL glass vial was charged with **3a'** (21.4 mg, 0.05 mmol, 1 equiv), boronic acid (7.6 mg, 0.05 mmol, 1 equiv), $Pd_2(dba)_3$ (0.23 mg, 0.5 mol%), PPh₃ (0.262 mg, 0.001 mmol. 20 mol%), K_3PO_4 (31.8 mg, 0.15 mmol, 3 equiv) and anhydrous toluene (0.2 mL). Upon purging with Ar, a Teflon screwcap was used to seal the vessel and subsequently heated to 100 °C overnight. Upon completion of the reaction, the resulting solution was directly loaded onto a column and purified by FC using pentane/CH₂Cl₂ 4:1 to afford **5ab** as white, amorphous solid (8.9 mg, 0.02 mmol, 40% yield).^[19]

(R_a)-2-Bromo-6-iso-propyl-4"-methoxy-[1,1':3',1"-terphenyl]-2'-carbaldehyde (5ab).

¹**H** NMR (400 MHz, CDCl₃) δ 9.84 (s, 1H), 7.63 (t, J = 7.6 Hz, 1H), 7.47 (ddd, J = 9.1, 7.7, 1.2 Hz, 2H), 7.37 – 7.31 (m, 3H), 7.23 (t, J = 7.9 Hz, 1H), 7.14 (dd, J = 7.6, 1.2 Hz, 1H), 7.02 – 6.97 (m, 2H), 3.87 (s, 3H), 1.13 – 1.10 (m, 6H). ¹³C-{¹H} NMR (100 MHz, CDCl₃) δ 192.4, 159.8, 149.2, 145.3, 141.6, 139.9, 133.1, 132.2, 131.4, 131.1, 130.7, 129.8, 129.6, 129.3, 124.5, 123.2, 114.0, 55.5, 31.8, 24.4, 23.5.

HRMS (ESI⁺) m/z calcd. for $C_{23}H_{22}BrO_2^+$ [M+H]⁺: 409.0798 , 411.0778; found: 409.0799, 411.0782.

^[19] J. Yin, M. P. Rainka, X.-X. Zhang, S. L. Buchwald, S. J. Am. Chem. Soc. 2002, **124**, 1162-1163.

The crude mixture upon reaction with 1 equiv of boronic acid yielded a mixture of starting material (5.00 ppm), monosubstituted product (4.74 ppm) and disubstituted product (4.67 ppm). Below is a zoom-in of the acetal-proton region and their relative integrations:

6. Deuterium Experiment

To gain insight into the C–H-activation step, deuterium incorporation experiments were conducted. TFA-*d* was used as source of deuterium, and control experiments were conducted with TFA-*H*.^[20]

To an 8-mL vial, equipped with a stir bar, was added the aldehyde (0.10 mmol, 1 equiv), cTDG1 (0.030 mmol, 0.3 equiv), Pd(OAc)₂ (0.010 mmol or 0.0010 mmol, 0.1 or 0.01 equiv), NCS (0.3, or 0 mmol), and Ag₂CO₃ (0.010 mmol, 0.1 equiv). DCE (1 mL) and TFA-*d* (1.0 mmol, 10 equiv) were subsequently added and the vial was capped and heated to 60 °C overnight. Upon completion of the reaction, the resulting solution was directly loaded onto a column and purified by FC using the described stationary phase and eluent system.

6.1 Deuteration only (Scheme 3b)

With TFA-*d*, and <u>*no*</u> NCS added, deuteration was observed at a single site (H_B): Starting material before deuterium incorporation (1a):

^[20] H. Park, P. Verma, K. Hong, J.-Q. Yu, *Nature Chem.* 2018, **10**, 755-762.

Starting material after deuterium incorporation **(1a-d)***:*

6.2 Deuteration and chlorination (Scheme 3a).

With NCS and TFA-*d* added, both deuteration and chlorination was observed.

3-Chloro-2'-*iso*-propyl-[1,1'-biphenyl]-2-carbaldehyde (7a).

The product was isolated by FC on SiO₂ using pentane:CH₂Cl₂ (2:1) as eluent to afford **7a** as a yellow oil.

¹**H NMR** (400 MHz, CD₂Cl₂) δ 10.06 (s, 1H), 7.52 – 7.49 (m, 2H), 7.42 – 7.38 (m, 2H), 7.23 – 7.17 (m, 2H), 7.02 (d, *J* = 7.6 Hz, 1H), 2.66 (hept, *J* = 6.9 Hz, 1H), 1.11 – 1.07 (m 6.5 Hz, 6H).

¹³C-{¹H} NMR (100 MHz, CD₂Cl₂) δ 190.9, 147.1, 146.5, 137.4, 135.6, 133.2, 132.1, 130.5,

130.5, 129.8, 128.9, 125.9, 125.7, 30.6, 24.5, 23.3.

HRMS (ESI⁺) m/z calcd. for C₁₆H₁₅ClONa⁺ [M+Na]⁺: 281.0704, 283.0675; found: 281.0704, 283.0675.

Chlorination with TFA-H (7a):

Chlorination with TFA-d (7a-d):

7. Racemization Studies

General procedure for racemization studies:

The barrier of rotation for the atropoisomers was determined by racemization of an enantiomerically pure sample. The racemization follows first order kinetics; hence the slope will give the racemization constant ($k_{rac} = 2 \cdot k_{enantiomerization}$). Then the Eyring equation shows the relationship between the rate constant and the Gibbs Free Energy:

$$\Delta G^{\ddagger}_{enantiomerization} = RT \cdot \ln\left(\frac{k_B \cdot T}{h \cdot k_{enantiomerization}}\right)$$

 $R = Gas constant = 8.31451 J \cdot K^{-1} \cdot mol^{-1}, h = Planck constant = 6.62608 \cdot 10^{-34} J \cdot s and k_B = Boltzmann constant = 1.38066 \cdot 10^{-23} J \cdot K^{-1}.$

Experiments were conducted at 140 or 180 °C, 1 mg/mL dichlorobenzene in an Ar-filled NMR-tube.^[21]

Racemization of 3b at 180 °C:

Figure S6. Plot of racemization of 3b at 180 °C.

$$\begin{split} k_{rac}(180\ ^{\circ}\text{C}) &= 3.3377\cdot 10^{-6}\ s^{-1} \\ k_{enantiomerization}(180\ ^{\circ}\text{C}) &= 1.6689\cdot 10^{-6}\ s^{-1} \\ \Delta G^{\ddagger}_{enantiomerization} &= 162688.588\ J\cdot mol^{-1} = 38.88\ kcal\cdot mol^{-1} \end{split}$$

^[21] L. Jin, Q.-J. Yao, P.-P. Xie, Y. Li, B.-B. Zhan, Y.-Q. Han, X. Hong, B.-F. Shi, *Chem*, 2020, **6**, 497-511.

Racemization of 3c at 180 °C:

Table S6. Experimental racemizationstudies of **3c**.

Time	ee	In(ee ₀ /ee _t)
(sec)		
0	99.76	0
3780	98.24	0.0153538
6960	97.30	0.0249683
15720	92.68	0.0736146
23820	90.32	0.0994084
30000	89.06	0.113457
34980	84.92	0.1610577
38820	84.80	0.1624718
44400	83.40	0.179119

$$\begin{aligned} k_{rac}(180 \ ^{\circ}\text{C}) &= 4.1703 \cdot 10^{-6} \ s^{-1} \\ k_{enantiomerization}(180 \ ^{\circ}\text{C}) &= 2.08515 \cdot 10^{-6} \ s^{-1} \\ \Delta G^{\ddagger}_{enantiomerization} &= 161849,4944 \ J \cdot mol^{-1} = 38,68 \ kcal \cdot mol^{-1} \end{aligned}$$

Racemization of 3l at 140 °C:

Table S7. Experimental racemization

 $ln(ee_0/ee_t)$

0

0.0125002

0.0261864

0.0647656

0.0997882

0.1208181

0.1395316

studies of **3I**.

ee

99,82

98,58

97,24

93,56

90,34

88,46

86,82

Time

(sec)

0

2400

7620

16080

23220

28380

32340

Figure S8. Plot of racemization of 31 at 140 °C.

$$\begin{aligned} k_{rac}(140 \ ^{\circ}\text{C}) &= 4.3149 \cdot 10^{-6} \ s^{-1} \\ k_{enantiomerization}(140 \ ^{\circ}\text{C}) &= 2.15745 \cdot 10^{-6} \ s^{-1} \\ \Delta G^{\ddagger}_{enantiomerization} &= 147128.3313 \ J \cdot mol^{-1} = 35.16 \ kcal \cdot mol^{-1} \end{aligned}$$

8. Crystallographic Data

2',5-Dibromo-6-formyl-5'-methyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (3c) – enantioselective reaction

Figure S9: Crystal structure of 3c

Table S8. Crystallographic data of 3c.

Item	Value
Molecular formula	$C_{17}H_{16}Br_2O_2$
Formula weight	412.1210
Crystal system	orthorhombic
Space Group	P212121
a (Å)	10.6752
b (Å)	11.9710
c (Å)	12.2865
α (°)	90.00
β (°)	90.00
γ (°)	90.00
Volume (ų)	1570.13
Z	7
Т (К)	100
ρ (g cm ⁻¹)	1.743
λ (Å)	0.71073
μ (mm ⁻¹)	5.164
# measured refl	26846
# unique refl	11138
R _{int}	0.0744
# parameters	543
R(F ²), all refl	0.0337
R _w (F ²), all refl	0.0715
Goodness of fit	1.032
Flack parameter	-0.015

Crystal data for [**3c**]: $C_{21}H_{18}BrN_5O_3$, M = 412.1210, orthorhombic, space group $P2_12_12_1$, a = 10.6752(2) Å, b = 11.9710(4) Å, c = 12.2865(4) Å, $\alpha = 90.00^\circ$, $\beta = 90.00^\circ$, $\gamma = 90.00^\circ$, Flack parameter = -0.015(11), V = 1570.13(8) Å³, T = 100 K, Z = 7, $d_c = 1.743$ g cm⁻³, μ (Mo K α , $\lambda = 0.71073$ Å) = 5.164 mm⁻¹, 26846 reflections collected, 11138 unique [$R_{int} = 0.0744$], which were used in all calculations. Refinement on F², final R(F) = 0.0337, R_w(F2) = 0.0715. CCDC number 2169123.

1-(5-Bromo-2,2-difluorobenzo[d][1,3]dioxol-4-yl)-3-chloro-2-naphthaldehyde (6p) - racemate

Figure S10: Crystal structure of 6p (racemate)

Table S9. Crystallogra	phic data of 6p .

Item	Value
Molecular formula	$C_{18}H_8O_3ClBrF_2$
Formula weight	425.615
Crystal system	triclinic
Space Group	P-1
a (Å)	8.3118
b (Å)	8.4520
c (Å)	12.0667
α (°)	80.772
β (°)	79.030
γ (°)	72.149
Volume (Å ³)	787.41
Z	2
Т (К)	100
ρ (g cm ⁻¹)	1.795
λ (Å)	0.71073
μ (mm ⁻¹)	2.817
# measured refl	8373
# unique refl	4231
R _{int}	0.0341
# parameters	226

R(F ²), all refl	0.0421
R _w (F ²), all refl	0.1114
Goodness of fit	1.0351

Crystal data for [**6p**]: C₂₀H₈O₂ClBrF₂, M = 425.615, triclinic, space group P-1, a = 8.3118(7) Å, b = 8.4520(5) Å, c = 12.0667(8) Å, α = 80.772(5)°, β = 79.030(6)°, γ = 72.149(6)°, V = 787.41(10) Å³, T = 100 K, Z = 2, d_c = 1.795 g cm⁻³, μ (Mo K α , λ = 0.71073 Å) = 2.817 mm⁻¹, 8373 reflections collected, 4231 unique [R_{int} = 0.0341], which were used in all calculations. Refinement on F², final R(F) = 0.0421, R_w(F2) = 0.1114. CCDC number 2168153.

9. Computational Studies

Conformational analysis

Conformations of all ground and transition state structures were generated using force-field method OPLS_2005, Systematic Torsional Sampling, 1000 steps pr. bond, a maximum energy threshold of 5.02 kcal mol^{-1.[22]} All conformations were then optimized using DFT and the lowest energy conformation from the optimization was used for single point calculations.

DFT-calculations

All DFT calculations were carried out using Gaussian 16 software package revision B.01.^[23] Geometry optimizations were performed at ω B97XD/6-31g(d)^[24] level of theory in conjunction with SMD model^[25] considering the solvent effect of experimentally used dichloroethane at 298.15K. Frequency calculation were conducted at the same level of theory as the geometry optimization for all stationary points to determine whether the optimized structure is a transition state structure (1 imaginary frequency) or a local minimum structure (no imaginary frequencies). Quick Reaction Coordinate (QRC) were performed to confirm the transition states.^[26] The QRC endpoints were reoptimized at ω B97XD/6-31g(d) level of theory to verify the stationary structures. Single-point energy calculations were done on the optimized structures using various methods with SMD solvation model. The free energy was obtained by adding the Grimme's quasi rigid rotor-harmonic oscillator (qRRHO)^[27] free energy correction from the geometry optimization to the electronic energy from the single-point energy calculations. See scheme below. Cartesian coordinates for all minima and saddle points are at the end of this section.

	3	С	3	SI	3	b	
Method	Barrier	ΔΔG	Barrier	ΔΔG	Barrier	ΔΔG	RMS (of deviations)
method	(kcal)	(kcal)	(kcal)	(kcal)	(kcal)	(kcal)	
	$\left({mol}\right)$	$\left(\frac{1}{\text{mol}}\right)$	$\left(\frac{1}{\text{mol}}\right)$	$\left(\frac{1}{\text{mol}}\right)$	$\left(\frac{1}{\text{mol}}\right)$	$\left(\frac{1}{\text{mol}}\right)$	
Experiment	38.68	0.00	35.16	0.00	38.88	0.00	0.00

Rotational barriers of 3b, 3c, and 3I:

^[22] a) Schrödinger Release 2019-1: MacroModel, Schrödinger, LLC, New York, NY, 2019; b) Schrödinger Release 2019-1: Maestro, Schrödinger, LLC, New York, NY, 2019.

^[23] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

^[24] J.-D. Chai, M. Head-Gordon, *Phys. Chem. Chem. Phys.* 2008, **10**, 6615-6620.

^[25] A. V. Marenich, C, J. Cramer, D. G. Truhlar, *J. Phys. Chem. B* 2009, **113**, 6378-6396.

^[26] J. M. Goodman, M. A. Silva, *Tetrahedron Lett.* 2003, **44**, 8233-8236.

^[27] S. Grimme, *Chem. Eur. J.* 2012, **18**, 9955-9964.

ωb97xd/6-	39.86	1.17	35.90	0.74	40.16	1.28	1.09
31g(d)							
ωb97xd/6-	39.46	0 78	36 33	1 17	40.26	1 38	1 14
31++g(2df,2pd)	55.40	0.70	50.55	1.17	40.20	1.50	1.14
ωB97X-	20.42	0.74	26.25	1 00	40.10	1 20	1.07
D/Def2-TZVPP	55.42	0.74	50.25	1.05	40.15	1.50	1.07
M062X/Def2-	27 57	1 1 2	25.05	0.12	28.04	0.94	0.91
TZVPP	57.57	-1.12	55.05	-0.12	56.04	-0.64	0.81
B3LYP/6-	37.83	-0.85	35 77	0.61	38.08	-0.80	0.76
31+G(d,p)	57.05	-0.85	55.77	0.01	56.08	-0.80	0.70
B3LYP/Def2-	27.22	1 27	22.00	1 20	27 70	1 10	1 20
TZVPP	57.52	-1.57	55.00	-1.29	57.70	-1.10	1.20
B97-D/Def2-	25.67	2 0 2	22 15	2 71	26.76	2 1 2	2 6 4
TZVPP	55.07	-5.02	52.45	-2.71	50.70	-2.12	2.04
PBE0/Def2-	20.22	0.54	26.20	1.04	20.54	0.65	0.77
TZVPP	35.22	0.54	30.20	1.04	35.54	0.05	0.77

Table S 10: Overview of calculated energies

8.4 Cartesian Coordinates

3b: starting material

С	-0.02582 0.79881 1.89146
С	0.12244 0.4676 0.54586
С	-1.0196 0.19352 -0.23338
С	-2.27539 0.28143 0.37879
С	-2.42371 0.63355 1.71291
С	-1.28674 0.88711 2.47001
Н	0.8608 0.98114 2.49023
Br	-3.87167 -0.03834 -0.61303
Н	-3.41095 0.70699 2.15508
Н	-1.38817 1.1514 3.51771
С	1.5124 0.3578 0.0057
С	2.17015 -0.87399 -0.00969
С	2.2047 1.49456 -0.4435
С	3.48415 -1.00992 -0.43722
Br	1.23912 -2.43908 0.5451
С	3.52741 1.35825 -0.86832
С	4.16616 0.12376 -0.8637
Н	3.96391 -1.98242 -0.43848
Н	4.05963 2.23926 -1.21797
Н	5.19431 0.03725 -1.20149
С	-0.89063 -0.23568 -1.65378
Н	-1.71688 -0.86055 -2.03544

0	0.04137	0.05165	-2.37281
С	1.55202	2.85807	-0.47468
Н	1.91166	3.39489	-1.35956
Н	0.46865	2.75344	-0.58957
С	1.85841	3.69147	0.77397
Н	1.39996	4.68313	0.69558
Н	1.47096	3.20906	1.67747
Н	2.9387	3.82491	0.89977

3b: transition state

С	-0.00415 2.19394 -0.73629
С	0.11728 0.84995 -0.33297
С	-1.11633 0.16548 -0.14164
С	-2.29558 0.91395 -0.04935
С	-2.35771 2.28026 -0.27266
С	-1.19561 2.90237 -0.69626
Н	0.86138 2.7104 -1.12297
Br	-3.95472 0.0309 0.31462
Н	-3.29511 2.81859 -0.19091
Н	-1.21113 3.9451 -0.99571
С	1.52928 0.32449 -0.23245
С	1.9524 -1.02788 -0.25017
С	2.61372 1.25931 -0.17766
С	3.23052 -1.41736 -0.62951
Br	0.96265 -2.45307 0.5476
С	3.89176 0.86331 -0.58146
С	4.1893 -0.4519 -0.8963
Н	3.47683 -2.47222 -0.67674
Н	4.67985 1.60935 -0.61772
Н	5.17892 -0.73786 -1.23745
С	-1.39156 -1.29948 -0.4035
Н	-1.81977 -1.89373 0.41863
0	-1.29413 -1.73183 -1.52953
С	2.5347 2.64101 0.47572
Н	2.69853 3.43617 -0.26203
Н	1.54715 2.8067 0.90647
С	3.55712 2.78726 1.61038
Н	4.59134 2.75898 1.25526
Н	3.40615 3.74874 2.11333
Н	3.43056 1.99199 2.353

3c: starting material

С	0.14954	0.76198	1.72612

С	-0.27261	0.297	0.48466
С	0.70183	-0.0367	-0.47389
С	2.05197	0.11627	-0.16132
С	2.47271	0.60463	1.08426
С	1.49613	0.92286	2.02889
Н	-0.59318	1.00671	2.47924
Br	3.39122	-0.28592	-1.44458
Н	1.77869	1.29562	3.00639
С	-1.73615	0.11565	0.24575
С	-2.31713	-1.15386	0.33794
С	-2.5702	1.21399	-0.02887
С	-3.67838	-1.36609	0.17659
Br	-1.21547	-2.67144	0.67298
С	-3.94179	0.99813	-0.18875
С	-4.49459	-0.27154	-0.08516
Н	-4.093 -	2.36499	0.25481
Н	-4.58968	1.84147	-0.41036
Н	-5.5629	-0.41617	-0.21408
С	0.30268	-0.62094	-1.78878
Н	0.97913	-1.39801	-2.18597
0	-0.69336	-0.30149	-2.39987
С	-2.00488	2.61329	-0.22223
Н	-0.9454	2.59289	0.0466
С	-2.09077	3.01567	-1.70037
Н	-3.13397	3.08664	-2.03113
Н	-1.61834	3.9919	-1.85929
Н	-1.58334	2.2769	-2.3292
С	-2.68481	3.64631	0.68244
Н	-3.74615	3.76594	0.43614
Н	-2.61248	3.35928	1.73747
Н	-2.20526	4.62432	0.56215
0	3.79567	0.73165	1.2792
С	4.24871	1.21138	2.53722
Н	3.94141	0.54485	3.35085
Н	5.33694	1.22413	2.47068
Н	3.88426	2.22672	2.72991

3c: transition state

С	-0.14112	1.77593	-0.64037
С	0.21573	0.46314	-0.29237
С	-0.89313	-0.41461	-0.12455
С	-2.17954	0.11008	0.00649
С	-2.47183	1.47218	-0.14634

С	-1.42659 2.28762 -0.56567
Н	0.61606 2.44185 -1.02384
Br	-3.66095 -1.05013 0.31601
Н	-1.59862 3.32234 -0.8372
С	1.69404 0.17678 -0.22133
С	2.32658 -1.08992 -0.26967
С	2.62072 1.27026 -0.14328
С	3.64895 -1.26737 -0.65777
Br	1.5755 -2.67131 0.4974
С	3.94553 1.08483 -0.54649
С	4.44599 -0.15904 -0.89512
Н	4.61738 1.93779 -0.54043
Н	5.46982 -0.27817 -1.23441
С	-0.92302 -1.89222 -0.45714
Н	-1.24954 -2.5873 0.33112
0	-0.74724 -2.24792 -1.6003
С	2.34533 2.59711 0.58716
Н	1.30778 2.61963 0.92023
С	3.19357 2.63243 1.87016
Н	4.26611 2.67418 1.65078
Н	2.93583 3.52158 2.45742
Н	3.00653 1.74893 2.4899
С	2.61205 3.85062 -0.25505
Н	2.33714 4.74602 0.31316
Н	3.67298 3.93815 -0.51434
Н	2.04433 3.85813 -1.19189
0	-3.7378 1.86897 0.04078
С	-4.04325 3.24303 -0.15987
Н	-5.10091 3.34677 0.08324
Н	-3.45025 3.88117 0.5046
н	-3.87903 3.53591 -1.20266
н	4.05534 -2.26997 -0.73166

3I: starting material

С	1.77163	-0.47345	-0.5795
С	0.85735	0.40352	-0.01559
С	1.29082	1.65778	0.51489
С	2.66684	2.00854	0.42752
С	3.58108	1.10692	-0.17056
С	3.13938	-0.09426	-0.64153
Н	-0.65162	2.31347	1.23375
С	0.39865	2.56885	1.14493
С	3.10878	3.25265	0.94763

Н	4.62746 1.38382 -0.24724
С	2.22111 4.11182 1.54103
С	0.85387 3.76283 1.64263
Н	4.1623 3.50584 0.86909
Н	2.5651 5.06127 1.93986
Н	0.16026 4.44744 2.12099
С	-0.58531 0.04147 0.09708
С	-1.07194 -0.8229 1.07171
С	-1.515 0.60255 -0.78285
С	-2.42017 -1.14489 1.17733
Br	0.13076 -1.62629 2.29958
С	-2.86028 0.29993 -0.69121
Н	-1.16867 1.28439 -1.55239
С	-3.33854 -0.5862 0.28762
Н	-2.74649 -1.82925 1.95004
Br	-4.07945 1.0832 -1.90503
С	1.3524 -1.83051 -1.04248
Н	2.09928 -2.62906 -0.88544
0	0.2807 -2.08367 -1.54623
0	-4.65655 -0.83675 0.30394
С	-5.15988 -1.74829 1.27094
Н	-4.71289 -2.74122 1.14883
Н	-4.9853 -1.38222 2.28891
Н	-6.23271 -1.80881 1.08675
Br	4.40999 -1.25521 -1.45776

3I: transition state

С	-2.02484	-0.28419	0.16023
С	-0.80931	0.40419	0.28817
С	-0.92144	1.84851	0.42111
С	-2.07807	2.51608	-0.07119
С	-3.17367	1.75852	-0.54511
С	-3.16282	0.41372	-0.32852
Н	0.8293	2.16111	1.67539
С	0.01347	2.64303	1.14908
С	-2.17041	3.93221	-0.00568
Н	-4.03819	2.25835	-0.96849
С	-1.20884	4.66705	0.63395
С	-0.13091	4.00277	1.25985
Н	-3.04645	4.41114	-0.43367
Н	-1.29718	5.74673	0.70442
Н	0.58421	4.56955	1.84802
С	0.56406	-0.20152	0.18274

С	0.99797 -1.54549 0.19475
С	1.61326 0.69795 -0.13338
С	2.34502 -1.90816 0.15041
Br	-0.11692 - 3.08131 0.07265
С	2.94312 0.35635 -0.21181
Н	1.37156 1.72276 -0.36777
С	3.35434 -0.96458 -0.00559
Н	2.59675 -2.95947 0.2027
Br	4.22406 1.68669 -0.61201
С	-2.35119 -1.58885 0.8391
Н	-2.88817 -2.35075 0.25475
0	-2.17829 -1.70384 2.0322
0	4.6621 -1.23607 -0.03289
С	5.0793 -2.58529 0.14603
Н	4.71368 -3.22204 -0.66669
Н	6.16885 -2.55919 0.12532
Н	4.74091 -2.97807 1.11091
Br	-4.76085 -0.5555 -0.72419

10. NMR Spectra

2'-Ethyl-[1,1'-biphenyl]-2-carbaldehyde (1b).

2'-*iso*-Propyl-4-methoxy-[1,1'-biphenyl]-2-carbaldehyde (1c).

2'-Ethyl-4-fluoro-[1,1'-biphenyl]-2-carbaldehyde (1d).

¹H-NMR

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl(ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

2'-Chloro-[1,1'-biphenyl]-2-carbaldehyde (1g).

6-Formyl-3'-methyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (1h). ¹H-NMR

6-Formyl-3'-*iso*-propyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (1j).

3'-(tert-Butyl)-6-formyl-[1,1'-biphenyl]-2-yl methanesulfonate (1k).

1-(3-Methylphenyl)-2-naphthaldehyde (1m).

¹H-NMR

$^{13}C-{^{1}H}-NMR$

1-(3-iso-Propylphenyl)-2-naphthaldehyde (1n).

1-(3-tert-Butylphenyl)-2-naphthaldehyde (10).

1-(2,2-Difluorobenzo[d][1,3]dioxol-4-yl)-2-naphthaldehyde (1p).

¹H-NMR

$^{13}C-\{^{1}H\}-NMR$

$^{19}\mathsf{F}\text{-}\{^{1}\mathsf{H}\}\text{-}\mathsf{NMR}$

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

3-Fluoro-2'-*iso*-propyl-[1,1'-biphenyl]-2-carbaldehyde (1q).

¹H-NMR

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)
¹⁹F-{¹H}-NMR

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

2'-Ethyl-3,6-difluoro-[1,1'-biphenyl]-2-carbaldehyde (1r).

¹H-NMR

¹³C-{¹H}-NMR

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

2'-Ethyl-3-fluoro-[1,1'-biphenyl]-2-carbaldehyde (1s). ¹H-NMR

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) $^{19}\mathsf{F}\text{-}\{^{1}\mathsf{H}\}\text{-}\mathsf{NMR}$

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

2'-Chloro-3-fluoro-[1,1'-biphenyl]-2-carbaldehyde (1t).

 ${}^{13}C-{}^{1}H$ -NMR

¹⁹F-{¹H}-NMR

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

3-Fluoro-[1,1':2',1"-terphenyl]-2-carbaldehyde (1φ)

¹⁹F-NMR

-116.96 -116.98 -116.99 -117.01

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

3-Chloro-2'-ethyl-[1,1'-biphenyl]-2-carbaldehyde (1u).

¹H-NMR

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

2-Formyl-2'-*iso*-propyl-[**1**,**1'**-biphenyl]-**3**-yl **4**-methylbenzenesulfonate (**1**v). ¹H-NMR

2'-*iso*-Propyl-6-formyl-4-methoxy-[1,1'-biphenyl]-3-yl acetate (1w).

6-Formyl-2'-*iso*-propyl-[1,1'-biphenyl]-3-carbonitrile (1x).

6-Chloro-[1,1'-biphenyl]-2-carbaldehyde (1y). ¹H-NMR

3'-(*tert*-Butyl)-6-formyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (1z).

6-Hydroxy-3'-methyl-[1,1'-biphenyl]-2-carbaldehyde (1ba).

3'-(*tert*-Butyl)-6-hydroxy-[1,1'-biphenyl]-2-carbaldehyde (1bc).

3-Hydroxy-2'-*iso*-propyl-[1,1'-biphenyl]-2-carbaldehyde (1bd).

(*R_a*)-2',3-Dibromo-6'-*iso*-propyl-[1,1'-biphenyl]-2-carbaldehyde (3a).

(*R_a*)-2',3-Dibromo-6'-ethyl-[1,1'-biphenyl]-2-carbaldehyde (3b). ¹H-NMR

¹³C-{¹H}-NMR

(*R_a*)-2',3-Dibromo-6'-ethyl-4-fluoro-[1,1'-biphenyl]-2-carbaldehyde (3d).

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

(*R_a*)-2',3-Dibromo-6'-(trifluoromethyl)-[1,1'-biphenyl]-2-carbaldehyde (3e). ¹H-NMR

¹⁹F-{¹H}-NMR

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

(*R_a*)-Methyl 3',6-dibromo-2'-formyl-[1,1'-biphenyl]-2-carboxylate (3f).

(*R_a*)-2',3-Dibromo-6'-chloro-[1,1'-biphenyl]-2-carbaldehyde (3g). ¹H-NMR

(*S_a*)-2',5-Dibromo-6-formyl-5'-methyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (3h). ¹H-NMR

(*S_a*)-2',5-Dibromo-6-formyl-5'-*iso*-propyl-[1,1'-biphenyl]-2-yl methanesulfonate (3i). ¹H-NMR

(*S_a*)-2',5-Dibromo-5'-(tert-butyl)-6-formyl-[1,1'-biphenyl]-2-yl methanesulfonate (3k). ¹H-NMR

(*R_a*)-3-Bromo-1-(2-bromo-5-methylphenyl)-2-naphthaldehyde (3m). ¹H-NMR

(*R_a*)-3-Bromo-1-(2-bromo-5-*iso*-propylphenyl)-2-naphthaldehyde (3n). ¹H-NMR

(*R_a*)-3-Bromo-1-(2-bromo-5-tertbutylphenyl)-2-naphthaldehyde (3o). ¹H-NMR

2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 f1 (ppm)

$^{13}C-\{^{1}H\}-NMR$

(*R_a*)-3-Bromo-1-(5-bromo-2,2-difluorobenzo[d][1,3]dioxol-4-yl)-2-naphthaldehyde (3p) ¹H-NMR

 $^{19}\mathsf{F}\text{-}\{^{1}\mathsf{H}\}\text{-}\mathsf{NMR}$

(*R_a*)-2'-Bromo-3-fluoro-6'-*iso*-propyl-[1,1'-biphenyl]-2-carbaldehyde (4q). ¹H-NMR

 $^{19}\mathsf{F}\text{-}\{^{1}\mathsf{H}\}\text{-}\mathsf{NMR}$

(*S_a*)-2'-Bromo-6'-ethyl-3,6-difluoro-[1,1'-biphenyl]-2-carbaldehyde (4r). ¹H-NMR

 $< \frac{-117.53}{-117.57}$ $< \frac{-122.22}{-122.26}$

(*R_a*)-2'-Bromo-6'-ethyl-3-fluoro-[1,1'-biphenyl]-2-carbaldehyde (4s). ¹H-NMR

(*R_a*)-2'-Bromo-6'-chloro-3-fluoro-[1,1'-biphenyl]-2-carbaldehyde (4t). ¹H-NMR

$^{13}C-\{^{1}H\}-NMR$

(*R_a*)-6'-Bromo-3-fluoro-[1,1':2',1"-terphenyl]-2-carbaldehyde (4φ). ¹H-NMR

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) ¹⁹F-NMR

(*R_a*)-2'-Bromo-3-chloro-6'-ethyl-[1,1'-biphenyl]-2-carbaldehyde (4u). ¹H-NMR

(*R_a*)-2'-Bromo-2-formyl-6'-*iso*-propyl-[1,1'-biphenyl]-3-yl 4-methylbenzenesulfonate (4v). ¹H-NMR

(*R_a*)-2'-Bromo-6'-*iso*-propyl-6-formyl-[1,1'-biphenyl]-3-carbonitrile (4x). ¹H-NMR

(*S_a*)-2'-Bromo-6-chloro-[1,1'-biphenyl]-2-carbaldehyde (4y). ¹H-NMR

(*S_a*)-2'-Bromo-5'-(tert-butyl)-6-formyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (4z). ¹H-NMR

(*R_a*)-2'-Bromo-6'-*iso*-propyl-[1,1'-biphenyl]-2-carbaldehyde (4a). ¹H-NMR

(*R_a*)-2'-Bromo-6'-ethyl-[1,1'-biphenyl]-2-carbaldehyde (4b).

(*R_a*)-2'-Bromo-3-chloro-6'-(trifluoromethyl)-[1,1'-biphenyl]-2-carbaldehyde (6e). ¹H-NMR

(*R_a*)-Methyl 6-bromo-3'-chloro-2'-formyl-[1,1'-biphenyl]-2-carboxylate (6f). ¹H-NMR

(*R_a*)-1-(5-Bromo-2,2-difluorobenzo[d][1,3]dioxol-4-yl)-3-chloro-2-naphthaldehyde (6p). ¹H-NMR

$^{19}\text{F-}\{^{1}\text{H}\}\text{-NMR}$

(*R_a*)-2'-Bromo-2-(dimethoxymethyl)-6'-ethyl-3-fluoro-1,1'-biphenyl (4s'). ¹H-NMR

 $^{19}\mathsf{F}\text{-}\{^{1}\mathsf{H}\}\text{-}\mathsf{NMR}$

(*R_a*)-6-Ethyl-3'-fluoro-2'-formyl-[1,1'-biphenyl]-2-carboxylic acid (5sa). ¹H-NMR

 $^{19}\text{F-}\{^{1}\text{H}\}\text{-NMR}$

109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121 -122 -123 -124 -125 -126 -127 -128 -129 -130 -131 -132 -133 -134 -135 -136 -137 fl (ppm)

(*R_a*)-2-(Dimethoxymethyl)-6'-ethyl-3-fluoro-4''-methoxy-1,1':2',1''-terphenyl (5sb). ¹H-NMR

(*R_a*)-2'-(Dimethoxymethyl)-6-ethyl-3'-fluoro-[1,1'-biphenyl]-2-carbonitrile (5sc). ¹H-NMR

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

$^{19}\text{F-}\{^{1}\text{H}\}\text{-NMR}$

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹⁹F-{¹H}-NMR

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

(*R_a*)-2'-(Diphenylphosphoryl)-6'-ethyl-3-fluoro-[1,1'-biphenyl]-2-carbaldehyde (5sf). ¹H-NMR

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

(*R_a*,*R*)-*N*-((2'-Bromo-6'-ethyl-3-fluoro-[1,1'-biphenyl]-2-yl)methyl)-2-methylpropane-2-sulfinamide (5sg). ¹H-NMR

 $^{19}\text{F-}\{^{1}\text{H}\}\text{-NMR}$

.03 -104 -105 -106 -107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121 -122 -123 -124 -125 -126 -127 -128 -129 -130 -131 -132 -133 -134 -135 -136 -137 fl (ppm)

(*R_a*)-2'-Bromo-2-(difluoromethyl)-6'-ethyl-3-fluoro-1,1'-biphenyl (5sh). ¹H-NMR

-110.55 -110.55 -111.36 -111.36 -111.36 -112.19 -112.19 -112.99 -114.92 -114.92 -114.92

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

(*R_a*)-2'-Bromo-6'-ethyl-3-fluoro-[1,1'-biphenyl]-2-yl formate (5si). ¹H-NMR

$^{13}C-\{^{1}H\}-NMR$

 $^{19}\mathsf{F}\text{-}\{^{1}\mathsf{H}\}\text{-}\mathsf{NMR}$

_____k,____k

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

 (R_a,S) -2-(2'-Bromo-6'-ethyl-3-fluoro-[1,1'-biphenyl]-2-yl)-4-*iso*-propyl-4,5-dihydrooxazole (5qj). ¹H-NMR

¹⁹F-NMR

(*R_a*)-2-Bromo-6-*iso*-propyl-4"-methoxy-[1,1':3',1"-terphenyl]-2'-carbaldehyde (5ab). ¹H-NMR

3-Chloro-2'-*iso*-propyl-[1,1'-biphenyl]-2-carbaldehyde (7f).

¹H-NMR

11. UPC² Traces

(*R_a*)-2',3-Dibromo-6'-*iso*-propyl-[1,1'-biphenyl]-2-carbaldehyde (3a). *Racemate*

Enantioselective

Racemate

2.116

47.23

2

(*S_a*)-2',5-Dibromo-6-formyl-5'-methyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (3h). *Racemate*

(*S_a*)-2',5-Dibromo-6-formyl-5'-*iso*-propyl-[1,1'-biphenyl]-2-yl methanesulfonate (3i). *Racemate*

(*S_a*)-2',5-Dibromo-6-formyl-5'-*iso*-propyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (3j). *Racemate*

(*S_a*)-2',5-Dibromo-5'-(tert-butyl)-6-formyl-[1,1'-biphenyl]-2-yl methanesulfonate (3k). *Racemate*

2.938	3.27
3.020	96.73

1 2

(*R_a*)-3-Bromo-1-(2-bromo-5-methylphenyl)-2-naphthaldehyde (3m). *Racemate*

Enantioselective

(R_a)-3-Bromo-1-(2-bromo-5-tertbutylphenyl)-2-naphthaldehyde (30).

Racemate

(*R*_a)-3-Bromo-1-(5-bromo-2,2-difluorobenzo[d][1,3]dioxol-4-yl)-2-naphthaldehyde (3p). *Racemate*

(*R_a*)-2'-Bromo-3-fluoro-6'-*iso*-propyl-[1,1'-biphenyl]-2-carbaldehyde (4q). *Racemate*

2.089

49.52

2

(*S_a*)-2'-Bromo-6'-ethyl-3,6-difluoro-[1,1'-biphenyl]-2-carbaldehyde (4r). *Racemate*

(*R_a*)-2'-Bromo-6'-ethyl-3-fluoro-[1,1'-biphenyl]-2-carbaldehyde (4s). *Racemate*

(*R*_a)-6'-Bromo-3-fluoro-[1,1':2',1''-terphenyl]-2-carbaldehyde (4φ). *Racemate*

(*R_a*)-2'-Bromo-3-chloro-6'-ethyl-[1,1'-biphenyl]-2-carbaldehyde (4u). *Racemate*

(*R_a*)-2'-Bromo-2-formyl-6'-*iso*-propyl-[1,1'-biphenyl]-3-yl 4-methylbenzenesulfonate (4v). *Racemate*

Enantioselective

Enantioselective

(*S_a*)-2'-Bromo-6-chloro-[1,1'-biphenyl]-2-carbaldehyde (4y). *Racemate*

Enantioselective

2.786

52.06

2

(*S_a*)-2'-Bromo-5'-(tert-butyl)-6-formyl-[1,1'-biphenyl]-2-yl 4-methylbenzenesulfonate (4z). *Racemate*

(*R_a*)-2'-Bromo-6'-*iso*-propyl-[1,1'-biphenyl]-2-carbaldehyde (4a). *Racemate*

Enantioselective

(*R*_a)-2'-Bromo-6'-ethyl-[1,1'-biphenyl]-2-carbaldehyde (4b). Racemate

(*R_a*)-2'-Bromo-3-chloro-6'-*iso*-propyl-[1,1'-biphenyl]-2-carbaldehyde (6a). *Racemate*

(*R_a*)-2'-Bromo-3-chloro-6'-(trifluoromethyl)-[1,1'-biphenyl]-2-carbaldehyde (6e). *Racemate*

(*R*_a)-Methyl 6-bromo-3'-chloro-2'-formyl-[1,1'-biphenyl]-2-carboxylate (6f). *Racemate*

(*R_a*)-2'-Bromo-2-(dimethoxymethyl)-6'-ethyl-3-fluoro-1,1'-biphenyl (4s'). *Racemate*

Enantioselective

(*R*_a)-6-Ethyl-3'-fluoro-2'-formyl-[1,1'-biphenyl]-2-carboxylic acid (5sa). *Racemate*

-0.10

0.50

1.00

1.50

2.00

1

2.50

Retention Time

(min)

4.011

3.00

Minutes

% Area

100.00

3.50

4.00

4.50

5.50

6.00

5.00

(*R_a*)-2-(Dimethoxymethyl)-6'-ethyl-3-fluoro-4''-methoxy-1,1':2',1''-terphenyl (5sb). *Racemate*

Enantioselective

(*R*_a)-2'-(Dimethoxymethyl)-6-ethyl-3'-fluoro-[1,1'-biphenyl]-2-carbonitrile (5sc). *Racemate*

(S_a) -2-(2'-(Dimethoxymethyl)-6-ethyl-3'-fluoro-[1,1'-biphenyl]-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (5sd).

Racemate

(*R_a*)-*tert*-Butyl (2'-(dimethoxymethyl)-6-ethyl-3'-fluoro-[1,1'-biphenyl]-2-yl)carbamate (5se). *Racemate*

(*R*_a)-2'-(Diphenylphosphoryl)-6'-ethyl-3-fluoro-[1,1'-biphenyl]-2-carbaldehyde (5sf). *Racemate*

(*R_a*)-2'-Bromo-2-(difluoromethyl)-6'-ethyl-3-fluoro-1,1'-biphenyl (5sh). *Racemate*

(*R_a*)-2'-Bromo-6'-ethyl-3-fluoro-[1,1'-biphenyl]-2-yl formate (5si). *Racemate*

