## **Supporting Information**

# Streptocyanine as an activation mode of amine catalysis for the conversion of pyridine rings to benzene rings

Tatsuya Morofuji,\* Shota Nagai, Airi Watanabe, Kota Inagawa, Naokazu Kano\*

Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan

\*tatsuya.morofuji@gakushuin.ac.jp \*naokazu.kano@gakushuin.ac.jp

| 1. | General                                                                              | <b>S2</b>    |
|----|--------------------------------------------------------------------------------------|--------------|
| 2. | Synthesis of pyridines                                                               | <b>S3-S6</b> |
| 3. | Synthesis of pyridiniums                                                             | S6-S14       |
| 4. | Procedure of benzene ring formation via amine-catalyzed activation of pyridine rings | S14-S20      |
| 5. | Unsuccessful substrates                                                              | S20          |
| 6. | NMR and HRMS spectra                                                                 | S21-S133     |

#### 1. General

3-Pyridylaldehyde, 4'-cyanoacetophenone, 4'-bromoacetophenone, piperonyl acetone, piperidine, acetic acid, dihydro-β-ionone, 4'-fluoroacetophenone, 3-(2-nitroethenyl)pyridine, NaOH, MeOH, toluene, and Et<sub>2</sub>O were commercially available and were used without further purification. 4-Bromophenyl 2-(3-pyridyl)vinyl ketone,<sup>1</sup> phenyl 2-(3-pyridyl)vinyl ketone,<sup>2</sup> 4-methylphenyl 2-(3-pyridyl)vinyl ketone,<sup>1</sup> 3-methylphenyl 2-(3-pyridyl)vinyl ketone, <sup>3</sup> 2-methylphenyl 2-(3-pyridyl)vinyl ketone, <sup>3</sup> 4-methoxyphenyl 2-(3-pyridyl)vinyl ketone, <sup>4</sup> 3styrylpyridine, <sup>5</sup> 3-[2-(4-methylphenyl)ethenyl]pyridine, <sup>6</sup> 3-[2-(4-bromophenyl)ethenyl]pyridine, <sup>7</sup> 3-[2-(4methoxyphenyl)ethenyl]pyridine, 3-[2-(ethoxycarbonyl)ethenyl]pyridine, 3-[2-(toluenesulfonyl)ethenyl]pyridine, <sup>10</sup> 3-(2-cyanoethenyl)pyridine, <sup>11</sup> 3-(3-pyridinyl)-2-cyclohexen-1-one, <sup>12</sup> 5phenylnicotinaldehyde, <sup>13</sup> 4-phenylnicotinaldehyde, <sup>14</sup> and O-methylated pregnenolone <sup>15</sup> were synthesized according to the reported literatures. Super dehydrated THF was used for solvent. Flash chromatography was carried out on a silica gel (Kanto Chem. Co., Silica Gel N, spherical, neutral, 40-100 µm). Preparative gel permeation chromatography (GPC) was carried out on Japan Analytical Industry LC-918 equipped with JAIGEL-1H and 2H using CHCl<sub>3</sub> as an eluent. All NMR spectra were measured on Resonance ECZ 400S (JEOL, 400 MHz for <sup>1</sup>H, 100 MHz for <sup>13</sup>C) or AVANCE III HD Nano Bay (Bruker Co., 400 MHz for <sup>1</sup>H, 100 MHz for <sup>13</sup>C) at 22 °C using CDCl<sub>3</sub> as a solvent unless otherwise noted. Tetramethylsilane (TMS) ( $\delta = 0$ ), CHCl<sub>3</sub> ( $\delta = 7.26$ ), or DMSO ( $\delta = 2.50$ ) served as an internal standard for <sup>1</sup>H NMR spectra, and CDCl<sub>3</sub> ( $\delta$  = 77.16) or DMSO-*d*<sub>6</sub> ( $\delta$  = 39.52) was used as an internal standard for <sup>13</sup>C NMR spectra. MicrOTOF (Bruker Co., TOF type analyzer) was used for ESI-HRMS measurements.

<sup>&</sup>lt;sup>1</sup> V. A. Mamedov, L. V. Mustakimova, O. A. Gerasimov and A. T. Gubaidullin, Russ. Chem. Bull., 2020, 69, 517-524.

<sup>&</sup>lt;sup>2</sup> L. E. Downs, D. M. Wolfe and P. R. Schreiner, Adv. Synth. Catal., 2005, 347, 235-238.

<sup>&</sup>lt;sup>3</sup> N. Kahriman, K. Peker, V. Serdaroğlu, A. Aydın, A. Usta, S. Fandaklı and N. Yaylı, Bioorg. Chem., 2020, 99, 103805.

<sup>&</sup>lt;sup>4</sup> H. B. Lad, R. R. Giri and D. I. Brahmbhatt, Chin. Chem. Lett., 2013, 24, 227-229.

<sup>&</sup>lt;sup>5</sup> X. Cui, J. Li, L. Liu and Q. X. Guo, *Chin. Chem. Lett.*, 2007, **18**, 625-628.

<sup>&</sup>lt;sup>6</sup> M. L. Kantam, P. V. Redddy, P. Srinivas, A. Venugopal, S. Bhargava and Y. Nishina, *Catal. Sci Technol.*, 2013, **3**, 2550-2554.

<sup>&</sup>lt;sup>7</sup> J.-S. Yang, S.-Y. Chiou and K.-L. Liau, J. Am. Chem. Soc., 2002, **124**, 2518-2527.

<sup>&</sup>lt;sup>8</sup> R. Martí-Centelles, J. Murga, E. Falomir, M. Carda and J. Alberto Marco, Med. Chem. Commun., 2015, 6, 1809-1815.

<sup>&</sup>lt;sup>9</sup> S. Frattini, M. Quai and E. Cereda, *Tetrahedron Lett.*, 2001, **42**, 6827-6829.

<sup>&</sup>lt;sup>10</sup> T. Nishimura, Y. Takiguchi and T. Hayashi, J. Am. Chem. Soc., 2012, 134, 9086-9089.

<sup>&</sup>lt;sup>11</sup> K. Mei, J. Wang and X. Hu, Synth. Commun., 2006, **36**, 2525-2532.

<sup>&</sup>lt;sup>12</sup> K. Okada, T. Sato, Y. Kohno, and M. Nomura, WO2010-JP54479.

<sup>&</sup>lt;sup>13</sup> N. Ullah, Z. Naturforsch. B, 2012, **67**, 75-84.

<sup>&</sup>lt;sup>14</sup> J. Zhu, Y. Ye, M. Ning, A. Mándi, Y. Feng, Q. Zou, T. Kurtán, Y. Leng and J. Shen, *ChemMedChem*, 2013, 8, 1210-1223.

<sup>&</sup>lt;sup>15</sup> Y. Hirayama, K. Okuzumi, H. Masubuti, H. Uekusa, J.-P. Girault and Y. Fujimoto, J. Org. Chem., 2014, 79, 5471-5477.

#### 2. Synthesis of pyridines

A 100 mL round-bottom flask equipped with a magnetic stirring bar and a septum was purged with argon gas. NaOH (0.42 g, 11 mmol), MeOH (2 mL), H<sub>2</sub>O (10 mL) were added to the flask. 3-Pyridylaldehyde (1.9 mL, 20 mmol) and 4'-cyanoacetophenone (1.5 g, 10 mmol) were added to the mixture at 0 °C. The reaction mixture was stirred at room temperature for 17 hours. The resulting solid was collected by filtration and washed with cold water. The solid was dried over  $P_2O_5$  under vacuum overnight to give 4-cyanophenyl 2-(3-pyridyl)vinyl ketone (**S1g**) as white solid (1.7 g, 74%).

| O<br>N<br>CN | 4-cyanophenyl 2-(3-pyridyl)vinyl ketone (S1g)                                                                                        |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------|
|              | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ): $\delta$ 8.86 (s, 1H), 8.66 (d, $J$ = 4.8 Hz,1H), 8.09 (d, $J$ = 8.0 Hz,           |
|              | 2H), 7.96 (d, <i>J</i> = 7.6 Hz, 1H), 7.85-7.78 (m, 3H), 7.54 (d, <i>J</i> = 15.6 Hz, 1H), 7.41-7.35 (m,                             |
|              | 1H); <sup>13</sup> C NMR (100 MHz, CDCl <sub>3</sub> ): δ 188.6, 151.8, 150.3, 142.8, 141.0, 134.9, 132.7,                           |
| S1g          | 130.3, 129.0, 124.0, 123.0, 118.0, 116.4; HRMS (ESI, positive) <i>m/z</i> calcd for C <sub>15</sub> H <sub>11</sub> N <sub>2</sub> O |
|              | [M+H]+: 235.0866, found: 235.0874; m.p. 155-158 °C.                                                                                  |

A 50 mL round-bottom flask equipped with a magnetic stirring bar and a septum was purged with argon gas. NaOH (1.1 g, 26 mmol), and MeOH (20 mL) were added to the flask. 3-Pyridylaldehyde (1.1 g, 10 mmol) and 1-acetyladamantane (1.8 g, 10 mmol) were added to the mixture at 0 °C. The reaction mixture was stirred at room temperature for 16 hours. The resulting solid was collected by filtration and washed with cold water. The solid was dried over  $P_2O_5$  under vacuum overnight to give 1-adamantyl 2-(3-pyridyl)vinyl ketone (**S1p**) as yellow solid (1.4 g, 53%).



A 50 mL round-bottom flask equipped with a magnetic stirring bar and a septum was purged with argon gas. NaOH (98 mg, 2.5 mmol), MeOH (10 mL), 5-phenylnicotinaldehyde (0.19 g, 1.1 mmol), and 4'-bromoacetophenone (0.20 g, 1.0 mmol) were added to the flask. The reaction mixture was stirred at room temperature for 16 hours. The reaction mixture was neutralized by HCl *aq*. (0.5 M). H<sub>2</sub>O (20 mL) was added to the flask. The resulting solid was collected by filtration and washed with cold water. The solid was dried over  $P_2O_5$  under vacuum overnight to give compound **S1r** as white solid (0.32 g, 88%).



#### **Compound S1r**

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.87 (s, 1H), 8.83 (s, 1H), 8.10 (s, 1H), 7.92 (d, J = 8.4 Hz, 2H), 7.87 (d, J = 16.0 Hz, 1H), 7.67 (d, J = 8.4 Hz, 2H), 7.65-7.58 (m, 3H), 7.52 (t, J = 7.2 Hz, 2H), 7.46 (t, J = 7.2 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ 

| 188.8, 150.0, 148.7, 141.6, 137.2, 136.6, 133.1, 132.2, 130.5, 130.2, 129.4, 128.7,                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------|
| 128.5, 127.4, 123.6 (One peak is missing due to overlapping); HRMS (ESI, positive)                                                  |
| <i>m</i> / <i>z</i> calcd for C <sub>20</sub> H <sub>15</sub> BrNO [M+H] <sup>+</sup> : 364.0332, found: 364.0334; m.p. 209-211 °C. |

A 50 mL round-bottom flask equipped with a magnetic stirring bar and a septum was purged with argon gas. NaOH (0.18 g, 4.6 mmol), MeOH (10 mL), 4-phenylnicotinaldehyde (0.19 g, 1.1 mmol), and 4'-bromoacetophenone (0.22 g, 1.1 mmol) were added to the flask. The reaction mixture was stirred at room temperature for 16 hours. The reaction mixture was neutralized by HCl *aq*. (0.5 M). H<sub>2</sub>O (20 mL) was added to the flask. The resulting solid was collected by filtration and washed with cold water. Synthesized pyridines were dried over  $P_2O_5$  under vacuum overnight to give compound **S1s** as white solid (0.26 g, 66%).



#### **Compound S1s**

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.98 (s, 1H), 8.63 (d, J = 4.8 Hz, 1H), 7.86-7.76 (m, 3H), 7.60 (d, J = 8.4 Hz, 2H), 7.50-7.41 (m, 4H), 7.37-7.29 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  188.5, 150.5, 150.0, 148.8, 141.2, 137.3, 136.4, 132.0, 130.1, 129.3, 129.04, 129.01, 128.9, 128.3, 124.6, 124.0; HRMS (ESI, positive) m/z calcd for C<sub>20</sub>H<sub>15</sub>BrNO [M+H]<sup>+</sup>: 364.0332, found: 364.0324; m.p. 150-153 °C.

A 100 mL round-bottom flask equipped with a magnetic stirring bar and Dean-Stark apparatus was purged with argon gas. 3-Pyridylaldehyde (0.54 g, 5.0 mmol), piperonyl acetone (0.96 g, 5.0 mmol), piperidine (0.43 g, 5.0 mmol), acetic acid (0.30 g, 5.0 mmol), and benzene (30 mL) were added to the flask. The reaction mixture was refluxed for 16 hours and was cooled to room temperature. NaHCO<sub>3</sub> *sat. aq.* (10 mL) was added to the mixture, and organic compounds were extracted with EtOAc (20 mL  $\times$  3). The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. Evaporation of the solvents gave a crude material, which was purified by flash chromatography (Hex/EtOAc = 3/1) to give compound **S1t** as orange oil (0.68 g, 48%).



A 100 mL round-bottom flask equipped with a magnetic stirring bar and Dean-Stark apparatus was purged with argon gas. 3-Pyridylaldehyde (0.53 g, 5.0 mmol), dihydro- $\beta$ -ionone (0.73 g, 5.0 mmol), piperidine (0.43 g, 5.0 mmol), acetic acid (0.20 g, 3.3 mmol), and benzene (30 mL) were added to the flask. The reaction mixture was refluxed for 16 hours and was cooled to room temperature. NaHCO<sub>3</sub> *sat. aq.* (10 mL) was added to the mixture, and organic compounds were extracted with EtOAc (20 mL × 3). The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. Evaporation of the

solvents gave a crude material, which was purified by flash chromatography (Hex/EtOAc = 3/1) to give compound **S1u** as orange oil (0.62 g, 44%).

|     | Compound S1u                                                                                                                         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------|
|     | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ): $\delta$ 8.76 (d, $J$ = 2.4 Hz, 1H), 8.60 (dd, $J$ = 4.8, 1.6 Hz, 1H),             |
| 0   | 7.86 (dt, <i>J</i> = 7.9, 1.8 Hz, 1H), 7.53 (d, <i>J</i> = 16.4 Hz, 1H), 7.33 (dd, <i>J</i> = 8.0, 4.8 Hz, 1H),                      |
|     | 6.78 (d, J = 16.4 Hz, 1H), 2.78-2.71 (m, 2H), 2.40-2.31 (m, 2H), 1.92 (t, J = 6.2 Hz, 2H),                                           |
|     | 1.63-1.52 (m, 5H), 1.48-1.41 (m 2H), 1.01 (s, 6H); <sup>13</sup> C NMR (100 MHz, CDCl <sub>3</sub> ): δ 199.8,                       |
| S1u | 151.0, 149.9, 138.4, 136.1, 134.5, 130.5, 128.1, 128.0, 123.9, 42.0, 39.8, 35.1, 32.8, 28.6,                                         |
|     | 22.6, 19.9, 19.5; HRMS (ESI, positive) <i>m/z</i> calcd for C <sub>19</sub> H <sub>26</sub> NO [M+H] <sup>+</sup> : 284.2009, found: |
|     | 284.2003.                                                                                                                            |

A 100 mL round-bottom flask equipped with a magnetic stirring bar and a septum was purged with argon gas. *O*-methylated pregnenolone (0.38 g, 1.1 mmol), MeOH (10 mL), KOH (0.13 g, 2.3 mmol), and 3-pyridylaldehyde (0.15, 1.4 mmol) were added to the flask. The reaction mixture was stirred at room temperature for 16 hours. After the reaction, the flask was cooled to 0 °The resulting solid was collected by filtration and wash with cold water. The solid was dried over  $P_2O_5$  under vacuum overnight to give compound **S1v** as white solid (0.30 g, 63%).

|     | Compound S1v                                                                                                                                |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|
| Q   | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ): $\delta$ 8.77 (s, 1H), 8.60 (d, $J$ = 3.6 Hz, 1H), 7.85 (d, $J$ = 8.0 Hz,                 |
|     | 1H), 7.53 (d, <i>J</i> = 16.0 Hz, 1H), 7.36-7.30 (m, 1H), 6.83 (d, <i>J</i> = 16.0 Hz, 1H), 5.39-5.31 (m,                                   |
| N H | 1H), 3.36 (s, 3H), 3.13-3.01 (m, 1H), 2.88-2.75 (m, 1H), 2.44-2.30 (m, 2H), 2.20-2.12 (m,                                                   |
| "'H | 1H), 2.08-1.82 (m, 4H), 1.79-1.65 (m, 2H), 1.59-1.22 (m, 9H), 1.11-0.97 (m, 4H), 0.64 (s,                                                   |
|     | 3H); <sup>13</sup> C NMR (100 MHz, CDCl <sub>3</sub> ): δ 200.0, 151.1, 150.0, 141.0, 137.8, 134.6, 130.8, 128.6,                           |
| OMe | 123.9, 121.4, 80.4, 62.5, 57.3, 55.8, 50.2, 45.3, 39.3, 38.8, 37.3, 37.1, 32.1, 32.0, 28.1, 24.8,                                           |
| S1v | 22.8, 21.2, 19.5, 13.6; HRMS (ESI, positive) $m/z$ calcd for C <sub>28</sub> H <sub>38</sub> NO <sub>2</sub> [M+H] <sup>+</sup> : 420.2897, |
|     | found: 420.2883; m.p. 103-106 °C.                                                                                                           |

A 100 mL round-bottom flask equipped with a magnetic stirring bar and a septum was purged with argon gas. NaOH (0.42 g, 11 mmol), MeOH (2 mL), H<sub>2</sub>O (10 mL) were added to the flask. 3-Pyridylaldehyde (1.9 mL, 20 mmol) and 4'-fluoroacetophenone (1.4 g, 9.8 mmol) were added to the mixture at 0 °C. The reaction mixture was stirred at room temperature for 17 hours. The resulting solid was collected by filtration and wash with cold water. The solid was dried over  $P_2O_5$  under vacuum overnight to give 4-cyanophenyl 2-(3-pyridyl)vinyl ketone (5) as white solid (2.2 g, 97%).



### 4-fluorophenyl 2-(3-pyridyl)vinyl ketone (5)<sup>16</sup>

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.85 (s, 1H), 8.62 (d, *J* = 4.4, 1H), 8.05 (t, *J* = 6.6 Hz, 2H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.78 (d, *J* = 16.0 Hz, 1H), 7.56 (d, *J* = 16.0 Hz, 1H), 7.35 (t, *J* = 6.2 Hz, 1H), 7.18 (t, *J* = 8.2 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  188.2, 165.9 (d, *J* =

<sup>&</sup>lt;sup>16</sup> M. Shekarchi, M. Pirali-Hamedani, L. Navidpour, N. Adib and A. Shafiee, J. Iran. Chem. Soc., 2008, 5, 150-158.

| 253.6 Hz), 151.3, 150.1, 141.3, 134.7, 134.2 (d, <i>J</i> = 2.9 Hz), 131.3 (d, <i>J</i> = 9.3 Hz), 130.7,               |
|-------------------------------------------------------------------------------------------------------------------------|
| 123.9, 123.5, 116.0 (d, $J = 21.7$ Hz); <sup>19</sup> F NMR (376 MHz, CDCl <sub>3</sub> ): $\delta$ –104. 75 – -104. 85 |
| (m).                                                                                                                    |

#### 3. Synthesis of pyridiniums

A 100 mL round-bottom flask equipped with a magnetic stirring bar and a septum was dried under vacuum with heating. After cooling the flask to room temperature, it was purged with argon gas. Alkenylpyridine, toluene, and 2,4-dinitrophenyltosylate were added to the flask. The mixture was refluxed for 20 hours. The resulting mixture was opened to air and solvents were evaporated under vacuum to give a crude material. The resulting solid was collected by filtration, washed with  $Et_2O$ , and dried over  $P_2O_5$  under vacuum overnight to give the title compounds.



#### **Compound 1c**

Reaction of 4-methylphenyl 2-(3-pyridyl)vinyl ketone (1.2 g, 5.0 mmol) with 2,4dinitrophenyltosylate (2.5 g, 7.5 mmol) in toluene (15 mL) gave compound **1c** (2.8 g, 97%, pale yellow solid).

<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  9.92 (s, 1H), 9.41 (t, *J* = 6.6 Hz, 2H), 9.14 (d, *J* = 2.4 Hz, 1H), 9.02 (dd, *J* = 8.6, 2.6 Hz, 1H), 8.53 (dd, *J* = 8.0, 6.4 Hz, 1H), 8.48 (d, *J* = 8.8 Hz, 1H), 8.35 (d, *J* = 15.6 Hz, 1H), 8.10 (d, *J* = 8.0 Hz, 2H), 7.86 (d, *J* = 15.6 Hz, 1H), 7.43 (t, *J* = 7.4 Hz, 4H), 7.09 (d, *J* = 8.0 Hz, 2H), 2.42 (s, 3H), 2.28 (s, 3H); <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  187.8, 149.2, 146.9, 145.9, 145.8, 145.7, 144.7, 142.8, 138.5, 137.6, 135.3, 135.0, 134.2, 132.0, 130.3, 129.6, 129.0, 128.9, 128.0, 127.8, 125.4, 121.5, 21.3, 20.8; HRMS (ESI, positive) *m/z* calcd for C<sub>21</sub>H<sub>16</sub>N<sub>3</sub>O<sub>5</sub> [M-C<sub>7</sub>H<sub>7</sub>O<sub>3</sub>S]<sup>+</sup>: 390.1084, found: 390.1070; m.p.: 259-262 °C.

#### **Compound 1d**

Reaction of 3-methylphenyl 2-(3-pyridyl)vinyl ketone (1.1 g, 5.0 mmol) with 2,4dinitrophenyltosylate (2.5 g, 7.5 mmol) in toluene (15 mL) gave compound **1d** (2.4 g, 84%, pale yellow solid).



NO<sub>2</sub>

1c

Ň٥

OTs

<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  9.92 (s, 1H), 9.46-9.37 (m, 2H), 9.14 (d, *J* = 2.4 Hz, 1H), 9.01 (dd, *J* = 8.4, 2.4 Hz, 1H), 8.53 (t, *J* = 7.0 Hz, 1H), 8.48 (d, *J* = 8.8 Hz, 1H), 8.34 (d, *J* = 16.0 Hz, 1H), 7.99 (brs, 2H), 7.87 (d, *J* = 16.0 Hz, 1H), 7.58-7.46 (m, 2H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 2.42 (s, 3H), 2.28 (s, 3H); <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  188.5, 149.2, 146.9, 146.1, 145.7, 142.8, 138.6, 137.6, 136.7, 135.6, 134.9, 134.6, 132.0, 130.4, 130.2, 129.1, 128.9, 128.0, 127.8, 126.1, 125.5, 121.7, 121.5, 20.9, 20.8 (One peak is missing due to overlapping.); HRMS (ESI, positive) *m/z* calcd for C<sub>21</sub>H<sub>16</sub>N<sub>3</sub>O<sub>5</sub> [M–C<sub>7</sub>H<sub>7</sub>O<sub>3</sub>S]<sup>+</sup>: 390.1084, found: 390.1079; m.p.: 198-201 °C.

#### **Compound 1e**

Reaction of 2-methylphenyl 2-(3-pyridyl)vinyl ketone (1.2 g, 5.2 mmol) with 2,4dinitrophenyltosylate (2.5 g, 7.5 mmol) in toluene (15 mL) gave compound **1e** (2.7 g, 90%, brown solid).



<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  9.86 (s, 1H), 9.40 (d, *J* = 6.0 Hz, 1H), 9.33 (d, *J* = 8.4 Hz, 1H), 9.12 (d, *J* = 2.4 Hz, 1H), 8.99 (dd, *J* = 8.6, 2.6 Hz, 1H), 8.50 (dd, *J* = 8.2, 6.2 Hz, 1H), 8.44 (d, *J* = 8.8 Hz, 1H), 7.90 (d, *J* = 16.0 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.67 (d, *J* = 16.0 Hz, 1H), 7.51 (t, *J* = 7.4 Hz, 1H), 7.46-7.36 (m, 4H), 7.09 (d, *J* = 8.0 Hz, 2H), 2.44 (s, 3H), 2.28 (s, 3H); <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  193.4, 149.2, 146.8, 146.0, 145.9, 145.7, 142.8, 138.5, 137.6, 137.42, 137.35, 136.1, 134.7, 132.3, 132.0, 131.7, 131.6, 130.3, 129.1, 128.0, 127.8, 125.9, 125.4, 121.5, 20.8, 20.3; HRMS (ESI, positive) *m/z* calcd for C<sub>21</sub>H<sub>16</sub>N<sub>3</sub>O<sub>5</sub> [M–C<sub>7</sub>H<sub>7</sub>O<sub>3</sub>S]<sup>+</sup>:



#### **Compound 1i**

NO<sub>2</sub>

1i

NO<sub>2</sub>

1j

NO<sub>2</sub>

<sup>-</sup>OTs

1k

NO2

OMe

NO2

OTs

νo

Reaction of 3-[2-(4-methylphenyl)ethenyl]pyridine (0.20 g, 1.0 mmol) with 2,4dinitrophenyltosylate (0.51 g, 1.5 mmol) in toluene (5 mL) gave compound **1i** (0.48 g, 91%, yellow solid).

<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  9.61 (s, 1H), 9.20 (d, *J* = 5.6 Hz, 1H), 9.15 (s, 1H), 9.08-8.97 (m, 2H), 8.46 (d, *J* = 8.8 Hz, 1H), 8.40 (t, *J* = 7.0 Hz, 1H), 7.69 (d, *J* = 16.8 Hz, 1H), 7.56 (d, *J* = 7.6 Hz, 2H), 7.49-7.37 (m, 3H), 7.28 (d, *J* = 7.6 Hz, 2H), 7.10 (d, *J* = 7.6 Hz, 2H), 2.34 (s, 3H), 2.28 (s, 3H); <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  149.2, 145.8, 144.3, 143.4, 143.3, 143.0, 139.5, 138.7, 137.7, 137.6, 136.4, 132.6, 131.9, 130.3, 129.8, 128.1, 127.8, 127.3, 125.5, 121.6, 120.0, 21.0, 20.8; HRMS (ESI, positive) *m/z* calcd for C<sub>20</sub>H<sub>16</sub>N<sub>3</sub>O<sub>4</sub> [M–C<sub>7</sub>H<sub>7</sub>O<sub>3</sub>S]<sup>+</sup>: 362.1135, found: 362.1138; m.p.: 250-252 °C.

#### Compound 1j

Reaction of 3-[2-(4-bromophenyl)ethenyl]pyridine (0.26 g, 1.0 mmol) with 2,4dinitrophenyltosylate (0.50 g, 1.5 mmol) in toluene (5 mL) gave compound **1j** (0.58 g, 97%, pale yellow solid).

<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  9.65 (s, 1H), 9.25 (d, *J* = 6.0 Hz, 1H), 9.13 (d, *J* = 2.4 Hz, 1H), 9.06 (d, *J* = 8.4 Hz, 1H), 8.99 (dd, *J* = 8.6, 2.6 Hz, 1H), 8.46 (d, *J* = 8.8 Hz, 1H), 8.42 (dd, *J* = 8.4, 6.0 Hz, 1H), 7.77-7.65 (m, 3H), 7.61 (d, *J* = 8.4 Hz, 2H), 7.51 (d, *J* = 16.8 Hz, 1H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 7.6 Hz, 2H), 2.28 (s, 3H); <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  149.2, 145.7, 144.6, 143.8, 143.7, 142.9, 138.7, 137.6, 137.2, 135.1, 134.6, 132.1, 131.9, 130.3, 129.2, 128.0, 127.8, 125.5, 122.8, 121.9, 121.5, 20.8; HRMS (ESI, positive) *m/z* calcd for C<sub>19</sub>H<sub>13</sub>BrN<sub>3</sub>O<sub>4</sub> [M–C<sub>7</sub>H<sub>7</sub>O<sub>3</sub>S]<sup>+</sup>: 426.0084, found: 426.0082; m.p.: 240-242 °C.

#### **Compound 1k**

Reaction of 3-[2-(4-methoxyphenyl)ethenyl]pyridine (0.21 g, 1.0 mmol) with 2,4dinitrophenyltosylate (0.51 g, 1.5 mmol) in toluene (5 mL) gave compound **1k** (0.50 g, 92%, yellow solid).



|                                   | Compound 11                                                                                                                                                                             |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | Reaction of 3-[2-(ethoxycarbonyl)ethenyl]pyridine (0.18 g, 1.0 mmol) with 2,4-                                                                                                          |
|                                   | dinitrophenyltosylate (0.51 g, 1.5 mmol) in toluene (5 mL) gave compound 11 (0.37                                                                                                       |
| 0                                 | g, 72%, yellow solid).                                                                                                                                                                  |
| OEt                               | <sup>1</sup> H NMR (400 MHz, DMSO- $d_6$ ): $\delta$ 9.79 (s, 1H), 9.38 (d, $J = 6.0$ Hz, 1H), 9.24 (d, $J =$                                                                           |
| N <sup>2</sup><br>NO <sub>2</sub> | 8.0 Hz, 1H), 9.13 (s, 1H), 9.00 (d, <i>J</i> = 8.0 Hz, 1H), 8.48 (t, <i>J</i> = 7.0 Hz, 1H), 8.42 (d,                                                                                   |
|                                   | J = 8.8 Hz, 1H), 7.83 (d, J = 16.4 Hz, 1H), 7.44 (d, J = 7.6 Hz, 2H), 7.10 (d, J = 8.0                                                                                                  |
| NO <sub>2</sub> OTs               | Hz, 3H), 4.24 (q, $J = 6.9$ Hz, 2H), 2.28 (s, 3H), 1.27 (t, $J = 7.0$ Hz, 3H); <sup>13</sup> C NMR                                                                                      |
| 11                                | (100 MHz, DMSO-d <sub>6</sub> ): δ 165.0, 149.3, 146.7, 146.0, 145.8, 145.7, 142.8, 138.4,                                                                                              |
|                                   | 137.6, 136.6, 134.2, 132.0, 130.3, 128.1, 127.9, 125.7, 125.5, 121.5, 60.9, 20.8, 14.1;                                                                                                 |
|                                   | HRMS (ESI, positive) $m/z$ calcd for C <sub>16</sub> H <sub>14</sub> N <sub>3</sub> O <sub>6</sub> [M–C <sub>7</sub> H <sub>7</sub> O <sub>3</sub> S] <sup>+</sup> : 344.0877, found:   |
|                                   | 344.0876; m.p.: 195-197 °C.                                                                                                                                                             |
|                                   | Compound 1m                                                                                                                                                                             |
|                                   | Reaction of 3-[2-(toluenesulfonyl)ethenyl]pyridine (0.26 g, 1.0 mmol) with 2,4-                                                                                                         |
|                                   | dinitrophenyltosylate (0.51 g, 1.5 mmol) in toluene (5 mL) gave compound <b>1m</b> (0.55                                                                                                |
|                                   | g, 93%, white solid).                                                                                                                                                                   |
| Ts                                | <sup>1</sup> H NMR (400 MHz, DMSO- $d_6$ ): $\delta$ 9.73 (s, 1H), 9.40 (d, $J = 6.0$ Hz, 1H), 9.19 (d, $J =$                                                                           |
|                                   | 8.4 Hz, 1H), 9.12 (d, J = 2.8 Hz, 1H), 8.99 (dd, J = 8.6, 2.6 Hz, 1H), 8.48 (dd, J =                                                                                                    |
|                                   | 8.2, 6.2 Hz, 1H), 8.38 (d, J = 8.8 Hz, 1H), 7.98 (d, J = 15.2 Hz, 1H), 7.88-7.80 (m,                                                                                                    |
| ľ<br>NO₂ ¯OTs                     | 3H), 7.51 (d, <i>J</i> = 8.0 Hz, 2H), 7.45 (d, <i>J</i> = 8.0 Hz, 2H), 7.10 (d, <i>J</i> = 8.0 Hz, 2H), 2.42                                                                            |
| 1m                                | (s, 3H), 2.28 (s, 3H); <sup>13</sup> C NMR (100 MHz, DMSO- <i>d</i> <sub>6</sub> ): δ 149.3, 147.4, 146.4, 146.3,                                                                       |
|                                   | 145.8, 145.2, 142.7, 138.3, 137.5, 136.2, 135.5, 133.9, 132.6, 131.9, 130.4, 130.3,                                                                                                     |
|                                   | 128.0, 127.7, 125.5, 121.5, 21.1, 20.8 (One peak is missing due to overlapping.);                                                                                                       |
|                                   | HRMS (ESI, positive) $m/z$ calcd for C <sub>20</sub> H <sub>16</sub> N <sub>3</sub> O <sub>6</sub> S [M–C <sub>7</sub> H <sub>7</sub> O <sub>3</sub> S] <sup>+</sup> : 426.0754, found: |
|                                   | 426.0750; m.p.: 268-270 °C.                                                                                                                                                             |
|                                   | Compound 1n                                                                                                                                                                             |
|                                   | Reaction of 3-(2-nitroethenyl)pyridine (0.26 g, 1.5 mmol) with 2,4-                                                                                                                     |
|                                   | dinitrophenyltosylate (0.76 g, 2.3 mmol) in toluene (5 mL) gave compound <b>1n</b> (0.42                                                                                                |
| NO <sub>2</sub>                   | g, 58%, brown solid).                                                                                                                                                                   |
| NO <sub>2</sub>                   | <sup>1</sup> H NMR (400 MHz, DMSO- $d_6$ ): $\delta$ 9.83 (s, 1H), 9.48 (d, $J = 6.0$ Hz, 1H), 9.29 (d, $J =$                                                                           |
|                                   | 8.4 Hz, 1H), 9.14 (d, <i>J</i> = 2.4 Hz, 1H), 9.01 (dd, <i>J</i> = 8.6, 2.6 Hz, 1H), 8.55 (dd, <i>J</i> = 8.2,                                                                          |
| NO <sub>2</sub> OTs               | 6.2 Hz, 1H), 8.51-8.42 (m, 2H), 8.30 (d, <i>J</i> = 13.6 Hz, 1H), 7.44 (d, <i>J</i> = 8.0 Hz, 2H),                                                                                      |
| 1n                                | 7.10 (d, $J = 8.0$ Hz, 2H), 2.28 (s, 3H); <sup>13</sup> C NMR (100 MHz, DMSO- $d_6$ ): $\delta$ 149.3,                                                                                  |
|                                   | 147.8, 147.2, 146.6, 145.7, 143.0, 142.7, 138.3, 137.6, 131.9, 131.6, 130.8, 130.4,                                                                                                     |
|                                   | 128.04, 127.98, 125.5, 121.6, 20.8; HRMS (ESI, positive) $m/z$ calcd for C <sub>13</sub> H <sub>9</sub> N <sub>4</sub> O <sub>6</sub>                                                   |
|                                   | [M–C <sub>7</sub> H <sub>7</sub> O <sub>3</sub> S] <sup>+</sup> : 317.0517, found: 317.0517; m.p.: 160-162 °C.                                                                          |

#### Compound 1o

NO<sub>2</sub>

10

.NO<sub>2</sub>

OTs

1p

NO<sub>2</sub>

1q

OTs

νo2

ŃΟэ

OTs

Reaction of 3-(2-cyanoethenyl)pyridine (0.13 g, 1.0 mmol) with 2,4dinitrophenyltosylate (0.51 g, 1.5 mmol) in toluene (5 mL) gave compound 10 (0.39 g, 82%, white solid).

<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  9.67 (s, 1H), 9.42 (d, *J* = 6.0 Hz, 1H), 9.17-9.10 (m, 2H), 9.00 (dd, *J* = 8.4, 2.4 Hz, 1H), 8.51 (dd, *J* = 8.4, 6.4 Hz, 1H), 8.42 (d, *J* = 8.4 Hz, 1H), 7.87 (d, *J* = 16.8 Hz, 1H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 6.91 (d, *J* = 16.8 Hz, 1H), 2.28 (s, 3H); <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  149.3, 146.7, 146.0, 145.7, 145.4, 143.2, 142.8, 138.4, 137.6, 133.5, 131.9, 130.3, 128.0, 127.9, 125.5, 121.5, 117.2, 104.8, 20.8; HRMS (ESI, positive) *m/z* calcd for C<sub>14</sub>H<sub>9</sub>N<sub>4</sub>O<sub>4</sub> [M–C<sub>7</sub>H<sub>7</sub>O<sub>3</sub>S]<sup>+</sup>: 297.0618, found: 297.0606; m.p.: 201-203 °C.

#### **Compound 1p**

Reaction of 1-adamantyl 2-(3-pyridyl)vinyl ketone (0.27 g, 1.0 mmol) with 2,4dinitrophenyltosylate (0.51 g, 1.5 mmol) in toluene (10 mL) gave compound **10** (0.36 g, 59%, white solid).

<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  9.81 (s, 1H), 9.37 (d, *J* = 6.0 Hz, 1H), 9.31 (d, *J* = 8.4 Hz, 1H), 9.14 (d, *J* = 2.4 Hz, 1H), 9.01 (dd, *J* = 8.8, 2.4 Hz, 1H), 8.52-8.42 (m, 2H), 7.86 (d, *J* = 15.6 Hz, 1H), 7.67 (d, *J* = 15.6 Hz, 1H), 7.44 (d, *J* = 8.4 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 2.28 (s, 3H), 2.09-2.02 (m, 3H), 1.89-1.82 (m, 6H), 1.79-1.65 (m, 6H); <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  202.4, 149.2, 146.9, 145.80, 145.75, 145.6, 142.8, 138.5, 137.5, 134.9, 134.2, 132.0, 130.3, 128.02, 127.98, 127.8, 125.5, 121.5, 45.2, 36.7, 35.9, 27.2, 20.8; HRMS (ESI, positive) *m/z* calcd for C<sub>24</sub>H<sub>24</sub>N<sub>3</sub>O<sub>5</sub> [M-C<sub>7</sub>H<sub>7</sub>O<sub>3</sub>S]<sup>+</sup>: 434.1710, found: 434.1702; m.p.: 220-223 °C.

#### **Compound 1q**

Reaction of 3-(3-pyridinyl)-2-cyclohexen-1-one (0.17 g, 1.0 mmol) with 2,4dinitrophenyltosylate (0.51 g, 1.5 mmol) in toluene (5 mL) gave compound 1q (0.47 g, 92%, pale yellow solid).

<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  9.72 (s, 1H), 9.39 (d, *J* = 6.0 Hz, 1H), 9.19 (d, *J* = 8.8 Hz, 1H), 9.14 (d, *J* = 2.4 Hz, 1H), 8.99 (dd, *J* = 8.6, 2.6 Hz, 1H), 8.49 (dd, *J* = 8.2, 6.2 Hz, 1H), 8.41 (d, *J* = 8.8 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 6.74 (s, 1H), 2.93-2.70 (m, 2H), 2.49-2.40 (m, 2H), 2.28 (s, 3H), 2.11 (quint, *J* = 6.4 Hz, 2H); <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  198.5, 151.9, 149.3, 145.9, 145.8, 145.4, 144.3, 142.9, 138.5, 137.8, 137.6, 132.2, 130.2, 128.6, 128.0, 127.7, 125.5, 121.3, 36.6, 26.5, 21.9, 20.8; HRMS (ESI, positive) *m/z* calcd for C<sub>17</sub>H<sub>14</sub>N<sub>3</sub>O<sub>5</sub> [M-C<sub>7</sub>H<sub>7</sub>O<sub>3</sub>S]<sup>+</sup>: 340.0928, found: 340.0927; m.p.: 216-218 °C.

#### **Compound 1r**

Reaction of **S1q** (0.36 g, 1.0 mmol) with 2,4-dinitrophenyltosylate (0.51 g, 1.5 mmol) in toluene (5 mL) gave compound **1r** (0.56 g, 81%, brown solid).

<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  9.86 (d, *J* = 8.8 Hz, 2H), 9.73 (s, 1H), 9.17 (d, *J* = 2.4 Hz, 1H), 9.05 (dd, *J* = 8.6, 2.2 Hz, 1H), 8.53 (d, *J* = 8.4 Hz, 1H), 8.46 (d, *J* = 16.0 Hz, 1H), 8.15 (d, *J* = 8.0 Hz, 2H), 8.04 (d, *J* = 7.6 Hz, 2H), 7.94 (d, *J* = 15.6 Hz, 1H), 7.86 (d, *J* = 8.4 Hz, 2H), 7.72-7.63 (m, 3H), 7.44 (d, *J* = 7.6 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 2.28 (s, 3H); <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  187.7, 149.3, 145.7, 144.1, 143.8, 142.7, 139.3, 138.5, 137.6, 136.2, 135.7, 134.8, 132.4, 132.2, 132.1, 130.81, 130.77, 130.3, 129.6, 128.7, 128.3, 128.0, 127.8, 125.5, 121.5, 20.8 (One peak is missing due to overlapping.); HRMS (ESI, positive) *m/z* calcd for C<sub>26</sub>H<sub>17</sub>BrN<sub>3</sub>O<sub>5</sub> [M-C<sub>7</sub>H<sub>7</sub>O<sub>3</sub>S]<sup>+</sup>: 530.0346, found: 530.0352; m.p.: 267-269 °C.

#### **Compound 1s**

Reaction of **S1r** (0.20 g, 0.54 mmol) with 2,4-dinitrophenyltosylate (0.29 g, 0.85 mmol) in toluene (5 mL) gave compound **1s** (0.36 g, 94%, white solid).

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ):  $\delta$  10.07 (d, J = 1.2 Hz, 1H), 9.46 (dd, J = 6.4, 1.2



NO<sub>2</sub>

1r

OTs

ΝO2



Hz, 1H), 9.19 (d, J = 2.4 Hz, 1H), 9.05 (dd, J = 8.6, 2.6 Hz, 1H), 8.56 (d, J = 6.4 Hz, 1H), 8.52 (d, J = 8.4 Hz, 1H), 8.14 (d, J = 15.6 Hz, 1H), 8.03 (d, J = 8.0 Hz, 2H), 7.81 (d, J = 8.4 Hz, 2H), 7.78-7.72 (m, 5H), 7.63 (d, J = 15.6 Hz, 1H), 7.44 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 7.6 Hz, 2H), 2.28 (s, 3H); <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ ):  $\delta$  187.6, 158.5, 149.3, 145.8, 145.5, 144.9, 142.9, 138.3, 137.5, 135.6, 135.4, 133.9, 132.3, 132.1, 131.7, 130.7, 130.4, 130.0, 129.5, 128.5, 128.3, 128.1, 128.0, 125.5, 121.5, 20.8 (One peak is overlapping due to overlapping.); HRMS (ESI, positive) m/z calcd for C<sub>26</sub>H<sub>17</sub>BrN<sub>3</sub>O<sub>5</sub> [M–C<sub>7</sub>H<sub>7</sub>O<sub>3</sub>S]<sup>+</sup>: 530.0346, found: 530.0341; m.p.: 273-276 °C.

#### **Compound 1t**

Reaction of **S1t** (0.29 g, 1.0 mmol) with 2,4-dinitrophenyltosylate (0.51 g, 1.5 mmol) in toluene (5 mL) gave compound **1t** (0.45 g, 72%, orange solid).



<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  9.78 (s, 1H), 9.38 (d, *J* = 6.0 Hz, 1H), 9.19 (d, *J* = 8.0 Hz, 1H), 9.11 (d, *J* = 2.4 Hz, 1H), 8.98 (dd, *J* = 8.6, 2.2 Hz, 1H), 8.52-8.39 (m, 2H), 7.78 (dd, *J* = 16.4, 1.6 Hz, 1H), 7.43 (dd, *J* = 8.0, 1.6 Hz, 2H), 7.28 (dd, *J* = 16.6, 2.2 Hz, 1H), 7.09 (d, *J* = 6.8 Hz, 2H), 6.85 (s, 1H), 6.80 (dd, *J* = 8.0, 2.0 Hz, 1H), 6.70 (d, *J* = 7.6 Hz, 1H), 5.95 (d, *J* = 2.4 Hz, 2H), 3.04 (t, *J* = 6.8 Hz, 2H), 2.82 (t, *J* = 7.0 Hz, 2H), 2.28 (s, 3H); <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  198.8, 149.2, 147.2, 146.7, 145.9, 145.7, 145.5, 145.4, 142.8, 138.5, 137.6, 134.8, 134.7, 134.2, 132.5, 131.9, 130.3, 128.05, 127.95, 125.5, 121.5, 121.1, 108.8, 108.1, 100.7, 42.2, 28.9, 20.8; HRMS (ESI, positive) *m/z* calcd for C<sub>23</sub>H<sub>18</sub>N<sub>3</sub>O<sub>7</sub> [M–C<sub>7</sub>H<sub>7</sub>O<sub>3</sub>S]<sup>+</sup>: 448.1139,



|  | 128.0, 125.5, 121.5, 116.2 (d, $J = 22.9$ Hz), 20.8; <sup>19</sup> F NMR (376 MHz, DMSO- $d_6$ ): $\delta$                                                                            |
|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | -104.5 (s, 1F); HRMS (ESI, positive) $m/z$ calcd for C <sub>20</sub> H <sub>13</sub> FN <sub>3</sub> O <sub>5</sub> [M-C <sub>7</sub> H <sub>7</sub> O <sub>3</sub> S] <sup>+</sup> : |
|  | 394.0834, found: 394.0834; m.p.: 292-294 °C.                                                                                                                                          |

#### 4. Procedure of benzene ring formation via amine-catalyzed activation of pyridine rings

#### **General procedure**

A 40 mL pressure tube equipped with a magnetic stirring bar and a septum was dried under vacuum with heating. After the tube was cooled to room temperature, it was purged with argon gas. Pyridinium 1 (1 equiv.), THF solution (30 mL/1 mmol of 1) of piperidine (20 mol%), K<sub>2</sub>CO<sub>3</sub> (2.0 equiv.), and H<sub>2</sub>O (100 equiv.) were added to the tube, and it was sealed by Teflon cap. The tube was heated at 120 °C with magnetic stirring for 42 hours. The reaction mixture was cooled to room temperature and the tube was opened to air. After removal of the solvent under vacuum, the crude product was purified with flash chromatography or GPC to obtain the desired product 2.

|    | 3-(4-bromobenzoyl)benzaldehyde (2a) <sup>17</sup>                                                                     |
|----|-----------------------------------------------------------------------------------------------------------------------|
|    | Reaction of <b>1a</b> (63 mg, 0.10 mmol) gave the title compound (22 mg, 77%, white                                   |
|    | solid).                                                                                                               |
|    | Column solvent: Hexane/EtOAc = $100/0$ to $4/1$                                                                       |
| Br | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ): $\delta$ 10.09 (s, 1H), 8.24 (s, 1H), 8.13 (dd, <i>J</i> = 7.6, 1.2 |
| 20 | Hz, 1H), 8.05 (dd, $J = 7.8$ , 1.0 Hz, 1H), 7.72-7.65 (m, 5H); <sup>13</sup> C NMR (100 MHz,                          |
| 28 | CDCl <sub>3</sub> ): δ 194.6, 191.4, 138.2, 136.5, 135.6, 135.4, 133.2, 132.1, 131.6, 131.2,                          |
|    | 129.5, 128.4.                                                                                                         |
|    | 3-benzoylbenzaldehyde (2b) <sup>18</sup>                                                                              |
|    | Reaction of <b>1b</b> (55 mg, 0.10 mmol) gave the title compound (17 mg, 79%, yellow                                  |
| 0  | solid).                                                                                                               |
|    | Column solvent: Hexane/EtOAc = $100/0$ to $4/1$                                                                       |
|    | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ): $\delta$ 10.10 (s, 1H), 8.28 (s, 1H), 8.12 (d, $J$ = 7.6 Hz,        |
| 2h | 1H), 8.09 (d, <i>J</i> = 7.6 Hz, 1H), 7.81 (d, <i>J</i> = 7.6 Hz, 2H), 7.72-7.60 (m, 2H), 7.52 (t,                    |
| 20 | $J = 7.2$ Hz, 2H); <sup>13</sup> C NMR (100 MHz, CDCl <sub>3</sub> ): $\delta$ 195.6, 191.6, 138.6, 137.0, 136.5,     |
|    | 135.6, 133.1, 132.8, 131.5, 130.2, 129.4, 128.7.                                                                      |
|    | 3-(4-methylbenzoyl)benzaldehyde (2c) <sup>19</sup>                                                                    |
|    | Reaction of 1c (56 mg, 0.10 mmol) gave the title compound (18 mg, 82%, yellow                                         |
|    | solid).                                                                                                               |
|    | Column solvent: Hexane/EtOAc = $100/0$ to $4/1$                                                                       |
| 2c | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ): $\delta$ 10.09 (s, 1H), 8.26 (s, 1H), 8.10 (d, $J$ = 7.6 Hz,        |

Y. Yamazaki, M. Sumikura, Y. Masuda, Y. Hayashi, H. Yasui, Y. Kiso, T. Chinen, T. Usui, F. Yakushiji, B. Potts, S. Neuteboom, M. Palladino, G. K. Lloyd and Y. Hayashi, *Bioorg. Med. Chem.*, 2012, 20, 4279-4289.
P. Miziak, J. Zoń, N. Amrhein and R. Gancarz, *Phytochemistry*, 2007, 68, 407-415.

<sup>&</sup>lt;sup>19</sup> Z. Zhang, M. G. Lindale and L. S. Liebeskind, J. Am. Chem. Soc., 2011, 133, 6403-6410.

|     | 1H), 8.06 (d, <i>J</i> = 7.6 Hz, 1H), 7.72 (d, <i>J</i> = 7.2 Hz, 2H), 7.67 (t, <i>J</i> = 7.8 Hz, 1H),                                  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------|
|     | 7.31 (d, $J = 7.6$ Hz, 2H), 2.46 (s, 3H); <sup>13</sup> C NMR (100 MHz, CDCl <sub>3</sub> ): $\delta$ 195.4, 191.6,                      |
|     | 144.1, 139.0, 136.4, 135.5, 134.3, 132.6, 131.4, 130.4, 129.4, 129.3, 21.9.                                                              |
|     | 3-(3-methylbenzoyl)benzaldehyde (2d)                                                                                                     |
|     | Reaction of 1d (57 mg, 0.10 mmol) gave the title compound (19 mg, 83%, yellow                                                            |
|     | solid).                                                                                                                                  |
| 0   | Column solvent: Hexane/EtOAc = $100/0$ to $4/1$                                                                                          |
|     | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ): $\delta$ 10.09 (s, 1H), 8.27 (s, 1H), 8.12 (d, $J$ = 7.6 Hz,                           |
|     | 1H), 8.07 (d, J = 7.6 Hz, 1H), 7.68 (t, J = 7.6 Hz, 1H), 7.63 (s, 1H), 7.57 (d, J =                                                      |
| 24  | 7.2 Hz, 1H), 7.48-7.36 (m, 2H). 2.44 (s, 3H); <sup>13</sup> C NMR (100 MHz, CDCl <sub>3</sub> ): δ                                       |
| 20  | 195.9, 191.6, 138.8, 138.7, 137.0, 136.5, 135.6, 133.9, 132.7, 131.5, 130.5, 129.4,                                                      |
|     | 128.5, 127.5, 21.5; HRMS (ESI, positive) $m/z$ calcd for $C_{15}H_{13}O_2$ [M+H] <sup>+</sup> :                                          |
|     | 225.0910, found: 225.0904; m.p.: 47-50 °C.                                                                                               |
|     | 3-(2-methylbenzoyl)benzaldehyde (2e)                                                                                                     |
|     | Reaction of 1e (60 mg, 0.11 mmol) gave the title compound (18 mg, 76%, yellow                                                            |
|     | solid).                                                                                                                                  |
| 0   | Column solvent: Hexane/EtOAc = $100/0$ to $4/1$                                                                                          |
|     | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ): $\delta$ 10.06 (s, 1H), 8.26 (t, <i>J</i> = 1.6 Hz, 1H), 8.14-8.05                     |
|     | (m, 2H), 7.65 (t, <i>J</i> = 7.6 Hz, 1H), 7.43 (dt, <i>J</i> = 7.2, 1.6 Hz, 1H), 7.37-7.23 (m, 3H),                                      |
|     | 2.36 (s, 3H); <sup>13</sup> C NMR (100 MHz, CDCl <sub>3</sub> ): δ 197.4, 191.6, 138.9, 137.7, 137.3,                                    |
| Ze  | 136.7, 135.6, 133.3, 131.7, 131.5, 131.0, 129.5, 128.9, 125.6, 20.2; HRMS (ESI,                                                          |
|     | positive) <i>m/z</i> calcd for C <sub>15</sub> H <sub>13</sub> O <sub>2</sub> [M+H] <sup>+</sup> : 225.0910, found: 225.0904; m.p.: 115- |
|     | 117 °C.                                                                                                                                  |
|     | 3-(4-methoxylbenzoyl)benzaldehyde (2f) <sup>20</sup>                                                                                     |
|     | Reaction of 1f (58 mg, 0.10 mmol) gave the title compound (18 mg, 76%, yellow                                                            |
|     | solid).                                                                                                                                  |
|     | Column solvent: Hexane/EtOAc = $100/0$ to $4/1$                                                                                          |
| MeO | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ): $\delta$ 10.09 (s, 1H), 8.23 (s, 1H), 8.10 (d, $J$ = 7.6 Hz,                           |
| 26  | 1H), 8.04 (d, J = 7.2 Hz, 1H), 7.83 (d, J = 8.8 Hz, 2H), 7.67 (t, J = 7.6 Hz, 1H),                                                       |
| 21  | $6.99 (d, J = 8.8 Hz, 2H), 3.91 (s, 3H); {}^{13}C NMR (100 MHz, CDCl_3): \delta 194.3, 191.7,$                                           |
|     | 163.8, 139.3, 136.4, 135.3, 132.7, 132.4, 131.2, 129.5, 129.3, 114.0, 55.7.                                                              |
|     | 3-(4-cyanobenzoyl)benzaldehyde (2g)                                                                                                      |
|     | Reaction of 1g (58 mg, 0.10 mmol) gave the title compound (23 mg, 95%, yellow                                                            |
|     | solid).                                                                                                                                  |
| NC  | Column solvent: Hexane/EtOAc = $100/0$ to $4/1$                                                                                          |
| 2g  | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ): $\delta$ 10.09 (s, 1H), 8.25 (s, 1H), 8.16 (d, $J$ = 7.6 Hz,                           |

<sup>&</sup>lt;sup>20</sup> A. M. Echavarren and J. K. Stille, J. Am. Chem. Soc., 1988, **110**, 1557-1565.

|     | 1H), 8.07 (d, J = 7.6 Hz, 1H), 7.89 (d, J = 8.4 Hz, 2H), 7.83 (d, J = 8.4 Hz, 2H),                                                                                          |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | 7.72 (t, $J = 7.8$ Hz, 1H); <sup>13</sup> C NMR (100 MHz, CDCl <sub>3</sub> ): $\delta$ 194.0, 191.2, 140.5, 137.3,                                                         |
|     | 136.7, 135.4, 133.9, 132.6, 131.1, 130.3, 129.8, 117.9, 116.4; HRMS (ESI,                                                                                                   |
|     | positive) <i>m/z</i> calcd for C <sub>15</sub> H <sub>10</sub> NO <sub>2</sub> [M-C <sub>7</sub> H <sub>7</sub> O <sub>3</sub> S] <sup>+</sup> : 236.0706, found: 236.0711; |
|     | m.p.: 168-171 °C.                                                                                                                                                           |
|     | 3-phenylbenzaldehyde (2h) <sup>21</sup>                                                                                                                                     |
|     | Reaction of <b>1h</b> (54 mg, 0.10 mmol) gave the title compound (16 mg, 82%, yellow                                                                                        |
| 0   | oil).                                                                                                                                                                       |
|     | Column solvent: Hexane/EtOAc = $100/0$ to $4/1$                                                                                                                             |
|     | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ): $\delta$ 10.10 (s, 1H), 8.11 (t, <i>J</i> = 1.6 Hz, 1H), 7.87 (dd, <i>J</i>                                               |
|     | = 7.8, 1.8 Hz, 2H), 7.71-7.59 (m, 3H), 7.51-7.47 (m, 2H), 7.45-7.37 (m, 1H); <sup>13</sup> C                                                                                |
| 2h  | NMR (100 MHz, CDCl <sub>3</sub> ): δ 192.5, 142.3, 139.8, 137.1, 133.2, 129.6, 129.1, 128.8,                                                                                |
|     | 128.3, 128.2, 127.3.                                                                                                                                                        |
|     | 3-(4-methylphenyl)benzaldehyde (2i) <sup>22</sup>                                                                                                                           |
|     | Reaction of 1i (56 mg, 0.10 mmol) gave the title compound (15 mg, 69%, white                                                                                                |
| 0   | solid).                                                                                                                                                                     |
|     | Column solvent: Hexane/EtOAc = $100/0$ to $4/1$                                                                                                                             |
|     | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ): $\delta$ 10.09 (s, 1H), 8.09 (s, 1H), 7.85 (t, <i>J</i> = 5.4 Hz, 2H),                                                    |
|     | 7.60 (t, J = 7.6 Hz, 1H), 7.54 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 7.6 Hz, 2H), 2.42 (s,                                                                                      |
| 2i  | 3H); <sup>13</sup> C NMR (100 MHz, CDCl <sub>3</sub> ): δ 192.6, 142.2, 138.1, 137.0, 136.9, 133.0,                                                                         |
|     | 129.9, 129.6, 128.5, 128.1, 127.1, 21.3.                                                                                                                                    |
|     | 3-(4-bromophenyl)benzaldehyde (2j) <sup>23</sup>                                                                                                                            |
|     | Reaction of <b>1j</b> (61 mg, 0.10 mmol) gave the title compound (17 mg, 63%, yellow                                                                                        |
|     | solid).                                                                                                                                                                     |
|     | Column solvent: Hexane/EtOAc = $100/0$ to $4/1$                                                                                                                             |
|     | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ): $\delta$ 10.09 (s, 1H), 8.07 (s, 1H), 7.88 (d, $J$ = 7.6 Hz,                                                              |
| Br  | 1H), 7.82 (d, $J = 7.6$ Hz, 1H), 7.66-7.57 (m, 3H), 7.50 (d, $J = 8.0$ Hz, 2H); <sup>13</sup> C                                                                             |
| 2j  | NMR (100 MHz, CDCl <sub>3</sub> ): δ 192.3, 141.1, 138.7, 137.1, 132.9, 132.3, 129.8, 129.3,                                                                                |
|     | 128.9, 127.9, 122.6.                                                                                                                                                        |
|     | 3-(4-methoxyphenyl)benzaldehyde (2k) <sup>24</sup>                                                                                                                          |
|     | Reaction of <b>1k</b> (56 mg, 0.10 mmol) gave the title compound (14 mg, 62%, yellow                                                                                        |
|     | solid).                                                                                                                                                                     |
| OMe | Column solvent: Hexane/EtOAc = $100/0$ to $4/1$                                                                                                                             |
| 2k  | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ); δ 10.08 (s, 1H), 8.06 (s, 1H), 7.84-7.78 (m, 2H),                                                                         |

 <sup>&</sup>lt;sup>21</sup> B. Tao and D. W. Boykin, *J. Org. Chem.*, 2004, **69**, 4330-4335.
<sup>22</sup> B. Karimi, D. Elhamifar, J. H. Clark and A. J. Hunt, *Chem. Eur. J.*, 2010, **16**, 8047-8053.
<sup>23</sup> H. Bonin, D. Delbrayelle, P. Demonchaux and E. Gras, *Chem. Commun.*, 2010, **46**, 2677.
<sup>24</sup> C. A. Hunter, M. C. Misuraca and S. M. Turega, *J. Am. Chem. Soc.*, 2011, **133**, 582-594.

|                 | 7.62-7.55 (m, 3H), 7.01 (d, $J = 8.4$ Hz, 2H), 3.87 (s, 3H); <sup>13</sup> C NMR (100 MHz,                                                 |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|                 | CDCl <sub>3</sub> ): δ 192.6, 159.8, 141.9, 137.0, 132.7, 132.3, 129.6, 128.3, 128.2, 127.8,                                               |
|                 | 114.6, 55.5.                                                                                                                               |
|                 | 3-(ethoxycarbonyl)benzaldehyde (21) <sup>25</sup>                                                                                          |
|                 | Reaction of 11 (106 mg, 0.21 mmol) gave the title compound (22 mg, 60%, yellow                                                             |
|                 | oil).                                                                                                                                      |
|                 | Column solvent: Hexane/EtOAc = $100/0$ to $4/1$                                                                                            |
| EtOOO           | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ): $\delta$ 10.07 (s, 1H), 8.52 (t, <i>J</i> = 1.6 Hz, 1H), 8.30 (dt, <i>J</i>              |
| 21              | = 7.9, 1.4 Hz, 1H), 8.07 (dt, J = 7.6, 1.2 Hz, 1H), 7.62 (t, J = 7.6 Hz, 1H), 4.42 (q,                                                     |
|                 | $J = 7.2$ Hz, 2H), 1.42 (t, $J = 7.2$ Hz, 3H); <sup>13</sup> C NMR (100 MHz, CDCl <sub>3</sub> ): $\delta$ 191.6,                          |
|                 | 165.6, 136.6, 135.3, 133.1, 131.7, 131.3, 129.3, 61.6, 14.4.                                                                               |
|                 | 3-(toluenesulfonyl)benzaldehyde (2m)                                                                                                       |
|                 | Reaction of <b>1m</b> (62 mg, 0.10 mmol) gave the title compound (18 mg, 66%, yellow                                                       |
|                 | solid).                                                                                                                                    |
|                 | Column solvent: Hexane/EtOAc = $100/0$ to $4/1$                                                                                            |
|                 | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ): $\delta$ 10.05 (s, 1H), 8.40 (s, 1H), 8.18 (d, $J$ = 7.6 Hz,                             |
| Ts              | 1H), 8.06 (d, <i>J</i> = 7.6 Hz, 1H), 7.86 (d, <i>J</i> = 8.0 Hz, 2H), 7.68 (t, <i>J</i> = 7.6 Hz, 1H),                                    |
| 2m              | 7.33 (d, $J = 8.0$ Hz, 2H), 2.41 (s, 3H); <sup>13</sup> C NMR (100 MHz, CDCl <sub>3</sub> ): $\delta$ 190.4, 145.0,                        |
|                 | 143.7, 137.9, 137.2, 133.4, 132.9, 130.33, 130.31, 128.9, 128.0, 21.7; HRMS (ESI,                                                          |
|                 | positive) <i>m/z</i> calcd for C <sub>14</sub> H <sub>13</sub> O <sub>3</sub> S [M+H] <sup>+</sup> : 261.0580, found: 261.0580; m.p.: 109- |
|                 | 111 °C.                                                                                                                                    |
|                 | 3-nitrobenzaldehyde (2n) <sup>26</sup>                                                                                                     |
|                 | Reaction of <b>1n</b> (97 mg, 0.20 mmol) gave the title compound (15 mg, 51%, yellow                                                       |
| 0               | solid).                                                                                                                                    |
| NO <sub>2</sub> | Column solvent: Hexane/EtOAc = $100/0$ to $4/1$                                                                                            |
| 2n              | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ): $\delta$ 10.12 (s, 1H), 8.71 (s, 1H), 8.49 (d, $J$ = 7.2 Hz,                             |
|                 | 1H), 8.23 (d, $J = 7.6$ Hz, 1H), 7.77 (t, $J = 7.8$ Hz, 1H); <sup>13</sup> C NMR (100 MHz,                                                 |
|                 | CDCl <sub>3</sub> ): δ 189.9, 148.9, 137.5, 134.8, 130.5, 128.7, 124.6.                                                                    |
|                 | 3-cyanobenzaldehyde (20) <sup>27</sup>                                                                                                     |
|                 | Reaction of <b>10</b> (94 mg, 0.20 mmol) gave the title compound (12 mg, 47%, yellow                                                       |
| 0               | solid).                                                                                                                                    |
| CN              | Column solvent: Hexane/EtOAc = $100/0$ to $4/1$                                                                                            |
|                 | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ): $\delta$ 10.05 (s, 1H), 8.18 (s, 1H), 8.13 (dt, $J = 8.0, 1.4$                           |
| 20              | Hz, 1H), 7.92 (dt, $J = 7.6$ , 1.4 Hz, 1H), 7.70 (t, $J = 7.6$ Hz, 1H); <sup>13</sup> C NMR (100                                           |
|                 | MHz, CDCl <sub>3</sub> ): δ 190.1, 137.4, 137.0, 133.4, 133.3, 130.2, 117.7, 113.9.                                                        |

Y. Lin, L. Zhu, Y. Lan and Y. Rao, *Chem. Eur. J.*, 2015, **21**, 14937-14942.
S. Wertz and A. *Studer, Adv. Synth. Catal.*, 2011, **353**, 69-72.
B. T. Gregg, K. C. Golden and J. F. Quinn, *J. Org. Chem.*, 2007, **72**, 5890-5893.



<sup>&</sup>lt;sup>28</sup> Y. Lin, L. Zhu, Y. Lan and Y. Rao, *Chem. Eur. J.*, 2015, **21**, 14937.

<sup>&</sup>lt;sup>29</sup> Y. Ning, T. Fukuda, H. Ikeda, Y. Otani, M. Kawahata, K. Yamaguchi and T. Ohwada, Org. Biomol. Chem., 2017, 15, 1381-1392.





#### 3-(4-fluorobenzoyl)benzaldehyde (2w)<sup>7</sup>

Reaction of 1w (57 mg, 0.10 mmol) gave the title compound (21 mg, 90%, yellow solid).

Column solvent: Hexane/EtOAc = 100/0 to 4/1

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  10.10 (s, 1H), 8.25 (s, 1H), 8.12 (d, *J* = 7.6 Hz, 1H), 8.05 (d, *J* = 7.6 Hz, 1H), 7.85 (t, *J* = 6.8 Hz, 2H), 7.69 (t, *J* = 7.6 Hz, 1H), 7.20 (t, *J* = 8.4 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  194.1, 191.5, 165.8 (d, *J* = 253.7 Hz), 138.5, 136.5, 135.4, 133.2 (d, *J* = 3.0 Hz), 133.0, 132.8 (d, *J* = 9.2 Hz), 131.1, 129.5, 116.0 (d, *J* = 21.8 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  –104.7 (s, 1F).

## 5. Unsuccessful substrates

These pyridiniums could not be synthesized because N-arylation did not occur.



These pyridiniums did not afford the desired benzene derivatives under the optimized reaction conditions.



## 5. NMR and HRMS spectra



Figure S1. <sup>1</sup>H NMR (400 MHz) spectrum of S1g in CDCl<sub>3</sub>.



Figure S2. <sup>13</sup>C NMR (100 MHz) spectrum of S1g in CDCl<sub>3</sub>.



Figure S3. <sup>1</sup>H NMR (400 MHz) spectrum of S1p in CDCl<sub>3</sub>.



Figure S4. <sup>13</sup>C NMR (100 MHz) spectrum of S1p in CDCl<sub>3</sub>.



Figure S5. <sup>1</sup>H NMR (400 MHz) spectrum of S1r in CDCl<sub>3</sub>.



Figure S6. <sup>13</sup>C NMR (100 MHz) spectrum of S1r in CDCl<sub>3</sub>.



Figure S7. <sup>1</sup>H NMR (400 MHz) spectrum of S1s in CDCl<sub>3</sub>.



Figure S8. <sup>13</sup>C NMR (100 MHz) spectrum of S1s in CDCl<sub>3</sub>.



# 78.559 7.8.15 7.8.15 7.7.315 7.7.315 7.7.315 7.7.315 7.7.315 7.7.315 7.7.315 7.7.315 7.7.315 7.7.315 7.7.315 7.7.456 7.7.458 7.7.275 7.2.275 7.2.275 7.2.275 7.2.275 7.2.275 7.2.275 7.2.275 7.2.275 7.2.275 7.2.275 7.2.275 7.2.275 7.2.275 7.2.276 7.2.276 7.2.276 7.2.275 7.2.275 6.5.727 6.5.721 6.6.631 6.6.721 6.6.631 6.6.631 6.6.631 6.6.631 6.6.631 6.6.631 7.2.2950 7



Figure S9. <sup>1</sup>H NMR (400 MHz) spectrum of S1t in CDCl<sub>3</sub>.



Figure S10. <sup>13</sup>C NMR (100 MHz) spectrum of S1t in CDCl<sub>3</sub>.



Figure S11. <sup>1</sup>H NMR (400 MHz) spectrum of S1u in CDCl<sub>3</sub>.



Figure S12. <sup>13</sup>C NMR (100 MHz) spectrum of S1u in CDCl<sub>3</sub>.







Figure S13. <sup>1</sup>H NMR (400 MHz) spectrum of S1v in CDCl<sub>3</sub>.



Figure S14. <sup>13</sup>C NMR (100 MHz) spectrum of S1v in CDCl<sub>3</sub>.



Figure S15. <sup>1</sup>H NMR (400 MHz) spectrum of 5 in CDCl<sub>3</sub>.



Figure S16. <sup>13</sup>C NMR (100 MHz) spectrum of 5 in CDCl<sub>3</sub>.


Figure S17. <sup>19</sup>F NMR (376 MHz) spectrum of 5 in CDCl<sub>3</sub>.





Figure S18. <sup>1</sup>H NMR (400 MHz) spectrum of 1a in DMSO-*d*<sub>6</sub>.



Figure S19. <sup>13</sup>C NMR (100 MHz) spectrum of 1a in DMSO-d<sub>6</sub>.





Figure S20. <sup>1</sup>H NMR (400 MHz) spectrum of 1b in DMSO-*d*<sub>6</sub>.



Figure S21. <sup>13</sup>C NMR (100 MHz) spectrum of 1b in DMSO- $d_6$ .





Figure S22. <sup>1</sup>H NMR (400 MHz) spectrum of 1c in DMSO-*d*<sub>6</sub>.



Figure S23. <sup>13</sup>C NMR (100 MHz) spectrum of 1c in DMSO-*d*<sub>6</sub>.



Figure S24. <sup>1</sup>H NMR (400 MHz) spectrum of 1d in DMSO-d<sub>6</sub>.



Figure S25. <sup>13</sup>C NMR (100 MHz) spectrum of 1d in DMSO-d<sub>6</sub>.



Figure S26. <sup>1</sup>H NMR (400 MHz) spectrum of 1e in DMSO-*d*<sub>6</sub>.

Ö



Figure S27. <sup>13</sup>C NMR (100 MHz) spectrum of 1e in DMSO-d<sub>6</sub>.



Figure S28. <sup>1</sup>H NMR (400 MHz) spectrum of 1f in DMSO-*d*<sub>6</sub>.



Figure S29. <sup>13</sup>C NMR (100 MHz) spectrum of 1f in DMSO-*d*<sub>6</sub>.



Figure S30. <sup>1</sup>H NMR (400 MHz) spectrum of 1g in DMSO-*d*<sub>6</sub>.

0



Figure S31. <sup>13</sup>C NMR (100 MHz) spectrum of 1g in DMSO- $d_6$ .



Figure S32. <sup>1</sup>H NMR (400 MHz) spectrum of 1h in DMSO-*d*<sub>6</sub>.



Figure S33. <sup>13</sup>C NMR (100 MHz) spectrum of 1h in DMSO-*d*<sub>6</sub>.



Figure S34. <sup>1</sup>H NMR (400 MHz) spectrum of 1i in DMSO-*d*<sub>6</sub>.



Figure S35. <sup>13</sup>C NMR (100 MHz) spectrum of 1i in DMSO-d<sub>6</sub>.





Figure S36. <sup>1</sup>H NMR (400 MHz) spectrum of 1j in DMSO-*d*<sub>6</sub>.



Figure S37. <sup>13</sup>C NMR (100 MHz) spectrum of 1j in DMSO-d<sub>6</sub>.



Figure S38. <sup>1</sup>H NMR (400 MHz) spectrum of 1k in DMSO-*d*<sub>6</sub>.



Figure S39. <sup>13</sup>C NMR (100 MHz) spectrum of 1k in DMSO- $d_6$ .



Figure S40. <sup>1</sup>H NMR (400 MHz) spectrum of 11 in DMSO-*d*<sub>6</sub>.

O ↓ OEt



Figure S41. <sup>13</sup>C NMR (100 MHz) spectrum of 11 in DMSO-*d*<sub>6</sub>.



Figure S42. <sup>1</sup>H NMR (400 MHz) spectrum of 1m in DMSO-*d*<sub>6</sub>.



Figure S43. <sup>13</sup>C NMR (100 MHz) spectrum of 1m in DMSO- $d_6$ .



Figure S44. <sup>1</sup>H NMR (400 MHz) spectrum of 1n in DMSO-*d*<sub>6</sub>.



Figure S45. <sup>13</sup>C NMR (100 MHz) spectrum of 1n in DMSO-*d*<sub>6</sub>.



Figure S46. <sup>1</sup>H NMR (400 MHz) spectrum of 10 in DMSO-*d*<sub>6</sub>.



Figure S47. <sup>13</sup>C NMR (100 MHz) spectrum of 10 in DMSO-d<sub>6</sub>.





Figure S48. <sup>1</sup>H NMR (400 MHz) spectrum of 1p in DMSO-*d*<sub>6</sub>.



Figure S49. <sup>13</sup>C NMR (100 MHz) spectrum of 1p in DMSO-*d*<sub>6</sub>.



Figure S50. <sup>1</sup>H NMR (400 MHz) spectrum of 1q in DMSO-d<sub>6</sub>.



Figure S51. <sup>13</sup>C NMR (100 MHz) spectrum of 1q in DMSO-d<sub>6</sub>.





Figure S52. <sup>1</sup>H NMR (400 MHz) spectrum of 1r in DMSO-*d*<sub>6</sub>.


Figure S53. <sup>13</sup>C NMR (100 MHz) spectrum of 1r in DMSO-d<sub>6</sub>.





Figure S54. <sup>1</sup>H NMR (400 MHz) spectrum of 1s in DMSO-*d*<sub>6</sub>.



Figure S55. <sup>13</sup>C NMR (100 MHz) spectrum of 1s in DMSO-d<sub>6</sub>.



Figure S56. <sup>1</sup>H NMR (400 MHz) spectrum of 1t in DMSO-*d*<sub>6</sub>.



Figure S57. <sup>13</sup>C NMR (100 MHz) spectrum of 1t in DMSO-d<sub>6</sub>.



Figure S58. <sup>1</sup>H NMR (400 MHz) spectrum of 1u in DMSO-*d*<sub>6</sub>.

0



Figure S59. <sup>13</sup>C NMR (100 MHz) spectrum of 1u in DMSO- $d_6$ .



## 7,444 7,338 7,338 7,338 7,338 7,338 7,338 7,339 7,331 7,311 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,301 7,302 7,302 7,302 7,302 7,302 7,302 7,302 7,302 7,302 7,302 7,302 7,302 7,302 7,302 7,302 7,302 7,302 7,302 7,302 7,302 7,302 7,302 7,302 7,302 7,302 7,302 7,302 7,302 7,302 7,302 7,302 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,202 7,2020 8.419 8.469 8.453 8.440 .637 .464 .687 .647 -67 9.378 9.363 9.245 9.245 9.145 9.145 9.015 8.999 8.993 8.490 8.474 8.469 8.453 9.754 $H_2O$ DMSO M 9.5 8.5 ppm 9.0 1.97 ទ 8 66. 5 4 10 8 ż 6 5 3 2 Ó ppm 9 1 0.97 3.03 **5.03** 2.99 2.97 0.98 1.97 <u>9</u>8 8 16.97

Figure S60. <sup>1</sup>H NMR (400 MHz) spectrum of 1v in DMSO-*d*<sub>6</sub>.



Figure S61. <sup>13</sup>C NMR (100 MHz) spectrum of 1v in DMSO-d<sub>6</sub>.





Figure S62. <sup>1</sup>H NMR (400 MHz) spectrum of 1w in DMSO-*d*<sub>6</sub>.



Figure S63. <sup>13</sup>C NMR (100 MHz) spectrum of 1w in DMSO-*d*<sub>6</sub>.



Figure S64. <sup>19</sup>F NMR (376 MHz) spectrum of 1w in DMSO- $d_6$ .



Figure S65. <sup>1</sup>H NMR (400 MHz) spectrum of 2a in CDCl<sub>3</sub>.



Figure S66. <sup>13</sup>C NMR (100 MHz) spectrum of 2a in CDCl<sub>3</sub>.



Figure S67. <sup>1</sup>H NMR (400 MHz) spectrum of 2b in CDCl<sub>3</sub>.



Figure S68. <sup>13</sup>C NMR (100 MHz) spectrum of 2b in CDCl<sub>3</sub>.



Figure S69. <sup>1</sup>H NMR (400 MHz) spectrum of 2c in CDCl<sub>3</sub>.



Figure S70. <sup>13</sup>C NMR (100 MHz) spectrum of 2c in CDCl<sub>3</sub>.



Figure S71. <sup>1</sup>H NMR (400 MHz) spectrum of 2d in CDCl<sub>3</sub>.



Figure S72. <sup>13</sup>C NMR (100 MHz) spectrum of 2d in CDCl<sub>3</sub>.



Figure S73. <sup>1</sup>H NMR (400 MHz) spectrum of 2en CDCl<sub>3</sub>.



Figure S74. <sup>13</sup>C NMR (100 MHz) spectrum of 2e CDCl<sub>3</sub>.



Figure S75. <sup>1</sup>H NMR (400 MHz) spectrum of 2f CDCl<sub>3</sub>.



Figure S76. <sup>13</sup>C NMR (100 MHz) spectrum of 2f CDCl<sub>3</sub>.



Figure S77. <sup>1</sup>H NMR (400 MHz) spectrum of 2g in CDCl<sub>3</sub>.



Figure S78. <sup>13</sup>C NMR (100 MHz) spectrum of 2g in CDCl<sub>3</sub>.



Figure S79. <sup>1</sup>H NMR (400 MHz) spectrum of 2h in CDCl<sub>3</sub>.



Figure S80. <sup>13</sup>C NMR (100 MHz) spectrum of 2h in CDCl<sub>3</sub>.



Figure S81. <sup>1</sup>H NMR (400 MHz) spectrum of 2i in CDCl<sub>3</sub>.



Figure S82. <sup>13</sup>C NMR (100 MHz) spectrum of 2i in CDCl<sub>3</sub>.



Figure S83. <sup>1</sup>H NMR (400 MHz) spectrum of 2j in CDCl<sub>3</sub>.



Figure S84. <sup>13</sup>C NMR (100 MHz) spectrum of 2j in CDCl<sub>3</sub>.



Figure S85. <sup>1</sup>H NMR (400 MHz) spectrum of 2k in CDCl<sub>3</sub>.



Figure S86. <sup>13</sup>C NMR (100 MHz) spectrum of 2k in CDCl<sub>3</sub>.



Figure S87. <sup>1</sup>H NMR (400 MHz) spectrum of 2l in CDCl<sub>3</sub>.



Figure S88. <sup>13</sup>C NMR (100 MHz) spectrum of 2l in CDCl<sub>3</sub>.


Figure S89. <sup>1</sup>H NMR (400 MHz) spectrum of 2m in CDCl<sub>3</sub>.



Figure S90. <sup>13</sup>C NMR (100 MHz) spectrum of 2m in CDCl<sub>3</sub>.



Figure S91. <sup>1</sup>H NMR (400 MHz) spectrum of 2n in CDCl<sub>3</sub>.



Figure S92. <sup>13</sup>C NMR (100 MHz) spectrum of 2n in CDCl<sub>3</sub>.



Figure S93. <sup>1</sup>H NMR (400 MHz) spectrum of 20 in CDCl<sub>3</sub>.



Figure S94. <sup>13</sup>C NMR (100 MHz) spectrum of 20 in CDCl<sub>3</sub>.



Figure S95. <sup>1</sup>H NMR (400 MHz) spectrum of 2p in CDCl<sub>3</sub>.



Figure S96. <sup>13</sup>C NMR (100 MHz) spectrum of 2p in CDCl<sub>3</sub>.



Figure S97. <sup>1</sup>H NMR (400 MHz) spectrum of 2q in CDCl<sub>3</sub>.



Figure S98. <sup>13</sup>C NMR (100 MHz) spectrum of 2q in CDCl<sub>3</sub>.



## 8.196 8.192 7.7737 7.7737 7.7737 7.7735 7.7715 7.7715 7.7715 7.7715 7.7715 7.7715 7.7715 7.661 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.675 7.665 7.765 7.665 7.765 7.665 7.765 7.665 7.765 7.665 7.765 7.665 7.765 7.665 7.765 7.665 7.765 7.665 7.765 7.665 7.765 7.765 7.765 7.665 7.765 7.665 7.765 7.665 7.765 7.665 7.765 7.665 7.765 7.765 7.765 7.765 7.765 7.765 7.765 7.765 7.765 7.765 7.765 7.765 7.765 7.765 7.775 7.765 7.775 7.765 7.775 7.765 7.775 7.765 7.775 7.765 7.775 7.765 7.775 7.775 7.775 7.745 7.775 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.745 7.7457 7.7457 7.7477 7.74



Figure S99. <sup>1</sup>H NMR (400 MHz) spectrum of 2r in CDCl<sub>3</sub>.



Figure S100. <sup>13</sup>C NMR (100 MHz) spectrum of 2r in CDCl<sub>3</sub>.



Figure S101. <sup>1</sup>H NMR (400 MHz) spectrum of 2s in CDCl<sub>3</sub>.



Figure 102. <sup>13</sup>C NMR (100 MHz) spectrum of 2s in CDCl<sub>3</sub>.



Figure S103. <sup>1</sup>H NMR (400 MHz) spectrum of 2t in CDCl<sub>3</sub>.



Figure S104. <sup>13</sup>C NMR (100 MHz) spectrum of 2t in CDCl<sub>3</sub>.



Figure S105. <sup>1</sup>H NMR (400 MHz) spectrum of 2u in CDCl<sub>3</sub>.



Figure S106. <sup>13</sup>C NMR (100 MHz) spectrum of 2u in CDCl<sub>3</sub>.





Figure S107. <sup>1</sup>H NMR (400 MHz) spectrum of 2v in CDCl<sub>3</sub>.





Figure S108. <sup>13</sup>C NMR (100 MHz) spectrum of 2v in CDCl<sub>3</sub>.



Figure S109. <sup>1</sup>H NMR (400 MHz) spectrum of 2w in CDCl<sub>3</sub>.



Figure S110. <sup>13</sup>C NMR (100 MHz) spectrum of 2w in CDCl<sub>3</sub>.



Figure S111. <sup>19</sup>F NMR (376 MHz) spectrum of **2w** in CDCl<sub>3</sub>.



**Figure S112.** <sup>1</sup>H NMR (400 MHz) spectrum of the reaction mixture of *N*-arylpyridinium **6** with 0.5 equiv. of piperidine. DMSO- $d_6$  was used. The peaks with proton numbers in red were assigned to **6**. The peaks with proton numbers in blue were assigned to **7**. The peaks with proton numbers in green were assigned to 2,4-dinitroaniline.





Figure S113. HRMS spectrum of 9.



 $\times$  unidentified peak



Figure S114. HRMS spectrum of 10.