Electronic Supplementary Information

Synthesis of Vinyl-Substituted Alcohols Using Acetylene as C2 Building Block

Zhicong Lin, Boxiang Liu, Yu Wang, Siju Li, Shifa Zhu*

Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China E-Mail: <u>zhusf@scut.edu.cn</u>

Table of contents

General Information	2
General Procedures	3
Optimization of Reaction Condition	5
All the Incompatible Substrates	11
Sythesis of Vinyl Alcohol with Acetylene	12
Gram-Scale Reaction	
Synthetic Applications of Products.	
Comparative Studies of Substituted Alkynes Versus Acetylene	40
Ni-catalyzed Alkenylation of Different Alkynes with Aldehydes	40
Competition of Ni-catalyzed Alkenylation among Different Alkynes	41
Mechanistic Studies of Acetylene	42
Original Spectrum	45
References	

General Information

¹H, ¹³C, ¹⁹F NMR spectra were recorded on a Bruker AVANCE 400 (400 MHz for ¹H; 101 MHz for ¹³C; 376 MHz for ¹⁹F) or Bruker AVANCE 500 (500 MHz for ¹H; 126 MHz for ¹³C; 470 MHz for ¹⁹F), ¹H NMR and ¹³C NMR chemical shifts were determined relative to internal standard TMS at δ 0.0 and ¹⁹F NMR chemical shifts were determined relative to CFCl₃ as external standard. Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Infrared (IR) spectra are recorded on a Nicolet 210 spectrophotometer and were recorded in potassium bromide (KBr) pellet. The following abbreviations were used to explain the intensity and shape of peaks: s = strong, m = middle, w = weak, br = broad. Mass spectra (MS) were obtained using ESI, DART mass spectrometer. Melting points were determined using a hot stage apparatus. All reactions that required heating were proceeded in oil bath. All reagents were used as received from commercial sources, unless specified otherwise, or prepared as described in the literature.

General Procedures

General procedure for the optimization of reaction involving gaseous acetylene (GP1):

1) Nickel catalyst and ligand were weighed out and transferred into a Schlenk tube in the glovebox.

2) The tube was then sealed with a hollow glass plug and taken out of the glovebox.

3) Putting the tube under nitrogen via 3 vacuum / N_2 backfill cycles and unplugged the hollow glass plug.

4) Add 1 mL solvent and base (if needed) and seal the tube with a three-way valve.

5) Stir the solution at room temperature until all the solid dissolved for 2 min.

6) Add 4 equiv silane via syringe after the same operation of step 3.

7) Stir the solution at room temperature for 2 min.

8) Attach the gaseous acetylene balloon to one valve of the three-way valve.

9) Putting the tube under acetylene via 10 vacuum / C_2H_2 backfill cycles with a water pump and sealed with a hollow glass plug (for the volatile solvent, it requires cooling to -20 °C in advance)

10) Unplugged the glass plug and add 4-biphenylcarboxaldehyde (0.3 mmol, 54.7 mg) dissolved in 0.5 mL solvent via syringe ASAP.

11) Stir the solution at 35 °C for 24 h.

12) After completion of reaction, filtrate the mixture by a short pad of silica gel and wash with EA and was then concentrated under reduced pressure.

13) Add the 4-nitrotoluene as internal for calculation of ¹H NMR yield.

General procedure for the preparation of saturated solution of acetylene in THF (GP2):

The procedure was carried out according to liternature^[1] with minor modification.

1) 80 mL anhydrous THF was filled in a 100mL Schlenk bottle. Vacuumize the system with oil pump

for about 60 seconds. (Note: the solvent will be boiling and should prevent the solvent from flushing into the pump by applying a surge flask.

2) Bubble the solution with acetylene through a long needle about 2 h after consumption of 2 acetylene balloon in size of roughly 10 cm in diameter for the initial preparation.

3) Draw the solution via syringe under protection or bubbling of acetylene while using.

General procedure for the optimization of reaction involving saturated solution of acetylene in THF (GP3):

1) Nickel catalyst and ligand were weighed out and transferred into a Schlenk tube in the glove box.

2) The tube was then sealed with a hollow glass plug and taken out of the glovebox.

3) Putting the tube under nitrogen via 3 vacuum / N_2 backfill cycles and unplugged the hollow glass plug.

4) Add 1 mL solvent and base (if needed) and seal the tube with a three-way valve.

5) Stir the solution at room temperature until all the solid dissolved (2 min).

6) Add 4 equiv silane via syringe after the same operation of step 3.

7) Stir the solution at room temperature for 2 min.

8) Add 4-biphenylcarboxaldehyde (0.2 mmol) dissolved in 800μ L (4.4 equiv) saturated solution of acetylene in THF (0.55 mol/L).

9) Stir the solution at 35°C, monitored by TLC.

10) After completion of reaction, filtrate the mixture by a short pad of silica gel and wash with EA and was then concentrated under reduced pressure.

11) Add the 4-nitrotoluene as internal for calculation of ¹H NMR yield. Purify the crude via column chromatography if needed.

Note: Due to gas-liquid equilibrium, few acetylene gas desorbed from the liquid phase. As a result, a bit more amount of acetylene saturated solution added to ensure no less than 4 equiv acetylene employed in reaction.

General procedure for the synthesis of vinyl alcohol (GP4):

1) 11.0 mg Ni(cod)₂ (0.04 mmol, 20 mol%), 34.0 mg IPr·HCl (0.08 mmol, 40 mol%) were weighed out and transferred into a Schlenk tube in the glove box.

2) The tube was then sealed with a hollow glass plug and taken out of the glovebox.

3) Putting the tube under nitrogen via 3 vacuum / N_2 backfill cycles and unplugged the hollow glass plug.

4) Add 1.0 mL solvent and KO'Bu 88µL (0.088 mmol, 44 mol%,1 mol/L in THF).

5) Stir the solution at room temperature until all the solid dissolved (2 min).

6) Add 93mg (128 μ L, ρ = 0.728 g/mL at 25°C) triethylsilane (0.8 mmol, 4 equiv) via syringe after the same operation of step 3.

7) Stir the solution at room temperature for 2 min.

8) Add aldehyde (0.2 mmol) dissolved in 800µL saturated solution of acetylene in THF (0.55 mol/L). if the aldehyde was sparingly soluble, add aldehyde directly into solution followed by rapid addition of saturated solution of acetylene.

9) Stir the solution at 35 °C, monitored by TLC.

10) After consumption of aldehyde, filtrate the mixture by a short pad of silica gel and wash with EA and was then concentrated under reduced pressure.

11) Purify the crude via column chromatography.

Optimization of Reaction Condition

Tuble ST optimization of the preculary sta	Table S1.	Optimization of	f Ni precatalysts ^[a]	
---	-----------	-----------------	----------------------------------	--

	Ph	+ H- 	- Et ₃ SiH	[Ni] (x mol%) IPr·HCl (2x mol%) KO ^t Bu (2.2x mol%) THF, 35 °C	Ph	OSiEt ₃
	1a	1 equiv	2 equiv		2a	
Entry	[]	Ni] cat.		Ligand		Yield ^[b]
1	$Ni(acac)_2$ (20 mo	1%) + Zn (40 i	mol%.)	IPr·HCl (40 n	nol%)	N.D
2	Ni(cod)D	Q (10 mol%)		IPr·HCl (20 n	nol%)	7%
3	Ni ^F (stb)	3 (10 mol%)		IPr·HCl (20 n	nol%)	trace
4	Ni(cod)	2 (10 mol%)		IPr·HCl (20 n	nol%)	28%
5 ^[b]	Ni(cod)D	Q (20 mol%)		IPr·HCl (40 n	nol%)	26%

[a] all the solvents were anhydrous. acetylene saturated solution in THF was prepared according to GP2, the reaction was carried out by using GP3. Yield was determined by ¹H NMR spectroscopy with 4-nitrotoluene as internal standard. Ni(acac)₂: nickel(II) acetylacetonate. Ni(cod)₂: bis(1,5-cyclooctadiene)nickel(0). Ni(cod)DQ: (cycloocta-1,5-diene)(duroquinone)nickel (II). Ni^F(stb)₃: tris(trans-1,2-bis(4-(trifluoromethyl)phenyl)ethene)nickel(0) [b] the reaction was conducted in comparison to the optimized conditions shown in the article.

Conclusion : Ni^0 in situ generated from reduction of Ni^{II} by Zn dust seem incompatible in this reaction. $Ni(cod)_2$ was the best catalyst. Entry 5 was compared with standard condition.

PI	СНО	[Ni] (10 mol%) + H→━━→H + Et₃SiH	OSiEt ₃
	1a	2 equiv	2a
	Entry	НС≡СН	Yield ^[b]
	1	Saturated solution in THF	28%
	2	balloon	6%

Table S2. Comparison of saturated solution of acetylene in THF and acetylene balloon^[a]

[a] all the solvents were anhydrous. acetylene saturated solution in THF was prepared according to GP2, the reaction was carried out by using GP3. Yield was determined by ¹H NMR spectroscopy with 4-nitrotoluene as internal standard.

Conclusion: saturated solution of acetylene in THF was given a better result than gaseous acetylene balloon.

Ph	+0 + H −₽₽ −H	+ Et₃SiH -	Ni(cod) ₂ (10 mol%) IPr·HCI (20 mol%) KO ^t Bu (22 mol%) solvent, 35 °C Ph [°]	OSiEt ₃
1a	1 equiv	2 equiv		2a
	Entry	solvent	Yield ^[b]	_
	1	THF	28%	
	2	DCE	10%	
	3	DMF	28%	
	4	CH ₃ CN	7%	
	5	Et ₃ N	23%	
	6	Toluene	24%	
	7	ⁱ PrOH	N.D	
	8 ^[b]	DCE	21%	
	9 ^[b]	Toluene	32%	_

Table S3. Optimization of solvents^[a]

[a] all the solvents were anhydrous. acetylene saturated solution in THF was prepared according to GP2, the reaction was carried out by using GP3. Yield was determined by ¹H NMR spectroscopy with 4-nitrotoluene as internal standard. [b] the reaction was conducted in the optimized conditions with the replacement of [Ni] cat.

Conclusion: THF was the best solvent. Entry 8,9 were compared with standard condition.

Ph	0 + H-œF	N H + Et ₃ SiH <u>I</u> I	li(cod) ₂ (10 mol%) Pr·HCl (20 mol%) ≺O ^t Bu (22 mol%) THF, 35 °C	Ph
1a	1 equiv	x equiv		2a
-	Entry	Et ₃ SiH (x eq	.) Yield	
-	1	1	16%	
	2	2	28%	
	3	3	30%	
	4	4	34%	
	5	8	26%	
	6 ^[b]	2	49%	

Table S4. Optimization of the loading of Et₃SiH^[a]

[a] all the solvents were anhydrous. acetylene saturated solution in THF was prepared according to GP2, the reaction was carried out by using GP3. Yield was determined by ¹H NMR spectroscopy with 4-nitrotoluene as internal standard. [b] the reaction was conducted in the optimized conditions with the replacement of the loading of Et₃SiH.

Conclusion: 4 equivalent Et₃SiH was the best. Entry 6 was compared with standard condition.

Table S5. Optimization of the ligand^[a]

Ph	+ H	Et ₃ SiH	Ni(cod) ₂ (10 mol%) Ligand (20 mol%) Base (22 mol%) THF, 35 °C	Ph
1a	1 equiv	4 equiv		2a

Entry	Ligand (x mol%)	Base (1.1x mol%)	Yield of 2a
1	IPr·HCl (20 mol%)	KO ^t Bu (22 mol%)	34%
2	SIPr·HCl (20 mol%)	KO ^t Bu (22 mol%)	27%
3	IMes·HCl (20 mol%)	KO ^t Bu (22 mol%)	7%
4	SIMes·HCl (20 mol%)	KO ^t Bu (22 mol%)	trace
5	IAd·HBF4 (20 mol%)[c]	KO ^t Bu (22 mol%)	30%
6	SIAd·HBF ₄ (20 mol%)	KO ^t Bu (22 mol%)	9%
7	I ^t Bu·HBF ₄ (20 mol%) ^[c]	KO ^t Bu (22 mol%)	25%
8	SI ^t Bu·HCl (20 mol%)	KO ^t Bu (22 mol%)	12%
9	ICy·HCl (20 mol%)	KO ^t Bu (22 mol%)	N.D
10	PPh ₃ (20 mol%)	/	6%
11	PCy ₃ (20 mol%)	/	19%
12	Johnphos (20 mol%)	/	trace
13	Xphos (20 mol%)	/	6%
14	dppe (20 mol%)	/	N.D
15	dppp (20 mol%)	/	N.D
16	rac-BINAP (20 mol%)	/	N.D
17	S-SEGphos (20 mol%)	/	N.D
18	Xantphos (20 mol%)	/	N.D
19	DPEphos (20 mol%)	/	N.D
20	L1 (20 mol%)	/	N.D
21	2,2'-bpy (20 mol%)	/	N.D
22	1,10-phenanthroline	1	ND
22	(20 mol%)	1	IN.D
23	L2 (20 mol%)	KO ^t Bu (40 mol%)	N.D
24	L3 (20 mol%)	/	N.D
25 ^[b]	IMes·HCl (40 mol%)	KO ^t Bu (44 mol%)	17%
26 ^[b]	IAd·HBF ₄ (40 mol%)	KO ^t Bu (44 mol%)	40%

[a] all the solvents were anhydrous. acetylene saturated solution in THF was prepared according to GP2, the reaction was carried out by using GP3. Yield was determined by ¹H NMR spectroscopy with 4-nitrotoluene as internal standard. [b] the reaction was conducted in the optimized conditions with the replacement of ligand.

Conclusion: IPr·HCl was the best ligand. Entry 26,27 were compared with standard condition.

Scheme S1. Ligands which were trialed for the optimization studies.

Ph	СНО	+ H-Œ-H ·	+ Et₃SiH	Ni(cod) ₂ (10 mol%) IPr·HCl (x mol%) KO ^t Bu (1.1x mol%) THF, 35 °C Ph	OSiEt ₃
	1a	1 equiv	4 equiv		2a
Entry	Ni($cod)_2$ (10 mol%	%)	Ligand (x mol%)	Yield
1	Ni(cod) ₂ (10 mol%	%)	IPr·HCl (10 mol%)	17%
2	Ni(cod)2 (10 mol%	%)	IPr·HCl (20 mol%)	34%
3	Ni(cod) ₂ (10 mol%	%)	IPr·HCl (30 mol%)	21%
4	Ni(cod) ₂ (10 mol%	%)	IPr·HCl (40 mol%)	25%
5	Ni(cod) ₂ (10 mol%	%)	IPr·HCl (50 mol%)	31%

Table S6. Optimization of the ratio of ligand and catalyst^[a]

[a] all the solvents were anhydrous. acetylene saturated solution in THF was prepared according to GP2, the reaction was carried out by using GP3. Yield was determined by ¹H NMR spectroscopy with 4-nitrotoluene as internal standard.

Conclusion: 2 equivalents of IPr·HCl compared to Ni(cod)₂ was the most reasonable.

Table S7.	Optimization	of the	base ^[a]
-----------	--------------	--------	---------------------

Ph	CHO +	HH	+ Et ₃ SiH	Ni(cod) ₂ (10 mol IPr·HCl (20 mol base (22 mol% THF, T	%) 5) Ph	OSiEt ₃
1a	a	1 equiv	4 equiv		:	2a
_	Entry		base		Yield	_
	1	KO	Bu (20 m	ol%)	34%	
	2	NaC	^t Bu (20 m	nol%)	11%	
	3	LiO	^t Bu (20 m	ol%)	5%	
	4	'nBı	1Li (20 mo	ol%)	7%	
	5 ^[b]	NaC) ^t Bu (44 m	nol%)	39%	

[b] all the solvents were anhydrous. acetylene saturated solution in THF was prepared according to GP2, the reaction was carried out by using GP3. Yield was determined by ¹H NMR spectroscopy with 4-nitrotoluene as internal standard. [b] the reaction was conducted in the optimized conditions with the replacement of the base.

Conclusion: KO^tBu was the best base. Entry 5 was compared with standard condition.

Ph	CHO +	H	+ Et ₃ SiH	Ni(cod) ₂ (10 mol%) IPr·HCl (20 mol%) base (22 mol%) THF, T	Ph
	1	1 equiv	4 equiv		2
	Entry		T (°C)	Y	rield
	1		25	1	3%
	2		35	3	4%
	3		45	2	26%
	4 ^[b]		25	5	56%

Table S8. Optimization of the temperature^[a]

[c] all the solvents were anhydrous. acetylene saturated solution in THF was prepared according to GP2, the reaction was carried out by using GP3. Yield was determined by ¹H NMR spectroscopy with 4-nitrotoluene as internal standard. [b] the reaction was conducted in the optimized conditions with the replacement of the base.

Conclusion: 35 °C was the most suitable reaction tempertature. Entry 5 was compared with standard condition. Either temperature higher than 45 °C or lower than 25 °C lead to less than trace amount of desired products.

Table S9. Optimization of the loading of the Ni catalyst ^[a]											
Ph	СНО + нн +		Et₃SiH	Ni(cod) ₂ (x mol%) IPr·HCl (2x mol%) base (2.2x mol%) THF, 35 °C Ph		OSiEt ₃					
	1a	1 equiv	4 equiv		2	a					
	Entry	Loadi	ng of Ni	$(cod)_2$	Yield	_					
	1		5		15%	_					
	2		10		34%						
	3		15		44%						
	4		20		53%						
	5		25		56%						

The ligand/nickel ratio is 2:1, which we had wrote it 1:1 by mistake. And the base should be 1.1 equivalent to ligand.

[d] all the solvents were anhydrous. acetylene saturated solution in THF was prepared according to GP2, the reaction was carried out by using GP3. Yield was determined by ¹H NMR spectroscopy with 4-nitrotoluene as internal standard. [b] the reaction was conducted in the optimized conditions with the replacement of the base.

Conclusion: while the loading of Ni(cod)₂ was 20% seemed to be the most reasonable choice.

Ph	CHO +	H 	Et₃SiH	Ni(cod) ₂ (x mol%) IPr·HCl (2x mol%) base (2.2x mol%) THF, 35 °C	Ph OS	SiEt ₃
	1a	x equiv	4 equiv		2a	
•	Entry Loading of H			C≡CH	Yield	
	1 1 equival 2 2 equival 3 3 equival		equivale	ent	53%	
			2 equivalent		74%	
			equivale	ent	72%	
	4	4	4 equivalent		70%	
	5 Gaseous acetylen			e balloon	18%	

Table S10. Optimization of the loading of the acetylene^[a]

[e] all the solvents were anhydrous. acetylene saturated solution in THF was prepared according to GP2, the reaction was carried out by using GP3. Yield was determined by ¹H NMR spectroscopy with 4-nitrotoluene as internal standard. [b] the reaction was conducted in the optimized conditions with the replacement of the base.

Conclusion: while the loading of acetylene was 2 equivalent compared to aldehyde seemed to be the most reasonable choice.

All the Incompatible Substrates

All the substrates that were tested but gave a poor yield or a messy result were listed below.

Scheme S2. Collection of failed substrates.

Sythesis of Vinyl Alcohol with Acetylene

2a ((1-([1,1'-biphenyl]-4-yl)allyl)oxy)triethylsilane

¹**H** NMR (500 MHz, CDCl₃) δ 7.60 – 7.53 (m, 4H), 7.42 (t, *J* = 7.8 Hz, 4H), 7.35 – 7.29 (m, 1H), 5.97 (ddd, *J* = 16.6, 10.2, 6.1 Hz, 1H), 5.31 (d, *J* = 16.9 Hz, 1H), 5.21 (d, *J* = 6.0 Hz, 1H), 5.10 (d, *J* = 10.2 Hz, 1H), 0.94 (t, *J* = 8.0 Hz, 9H), 0.62 (qd, *J* = 7.8, 2.9 Hz, 6H). ¹³**C** NMR (126 MHz, CDCl₃) δ 142.9, 141.6, 141.0, 140.0, 128.7, 127.2, 127.1, 127.0, 126.4, 113.7,

75.5, 6.9, 5.0.

IR: 2955(w), 1764(m), 1459(w), 1377(m), 1243(s), 1057(m), 1008(w), 914(w), 813(w), 744(m). **HRMS:** Calculation for $C_{21}H_{28}OSi$, $[M+H^+]^+$: 325.1982, Found: 325.1975.

2b ((1-([1,1'-biphenyl]-3-yl)allyl)oxy)triethylsilane

Followed GP4 with 36.4 mg (0.2 mmol) of **1b**, 55.6 mg **2b** was obtained as colorless liquid, $R_f = 0.6$ (PE), yield= 86%.

¹**H** NMR (400 MHz, CDCl₃) δ 7.65 -7.63 (m, 3H), 7.54 – 7.37 (m, 6H), 6.10 – 5.96 (m, 1H), 5.36 (ddd, *J* = 17.0, 1.6 Hz, 1H), 5.27 (d, *J* = 6.0 Hz, 1H), 5.14 (dt, *J* = 10.2, 1.5 Hz, 1H), 0.99 (t, *J* = 7.9 Hz, 9H), 0.67 (qd, *J* = 7.8, 2.1 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 144.3, 141.6, 141.4, 141.1, 128.7, 128.7, 127.2, 127.2, 126.0, 125.0, 124.9, 113.8, 75.8, 6.9, 5.0.

IR: 3463(s), 2956(m), 1763(w), 1637(s), 1242(m), 1070(w), 916(w), 738(m).

HRMS: Calculation for C₂₁H₂₈OSi, [M+H⁺]⁺: 325.1982, Found: 325.1978.

2c ((1-([1,1'-biphenyl]-2-yl)allyl)oxy)triethylsilane

Followed GP4 with 36.4 mg (0.2 mmol) of 1c, 56.3 mg 2c was obtained as colorless liquid, $R_f = 0.6$ (PE), yield= 87%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.63 (dd, J = 7.8, 1.4 Hz, 1H), 7.43 – 7.33 (m, 4H), 7.27 (tdd, J = 5.0, 3.3, 1.4 Hz, 3H), 7.17 (dd, J = 7.6, 1.5 Hz, 1H), 5.93 (ddd, J = 17.0, 10.3, 5.3 Hz, 1H), 5.25 (dt, J = 5.3, 1.5 Hz, 1H), 5.01 (dt, J = 12.3, 1.7 Hz, 1H), 4.97 (dt, J = 5.6, 1.7 Hz, 1H), 0.79 (t, J = 7.9 Hz, 9H), 0.39 (qd, J = 8.3, 1.2 Hz 6H).

¹³C NMR (101 MHz, CDCl₃) δ 141.5, 141.3, 141.1, 140.0, 129.4, 128.0, 128.0, 127.7, 127.2, 127.1, 126.8, 113.4, 71.5, 6.7, 4.8.

IR: 3455(w), 2955(w), 2880(w),1764(w), 1633(w), 1469(w), 1377(w), 1242(m), 1058(w),1009(w), 916(w), 845(w), 743(m), 701(m), 508(w).

HRMS: Calculation for C₂₁H₂₈OSi, [M+Na⁺]⁺: 347.1801, Found: 347.1797.

2d ((1-(4-phenoxyphenyl)allyl)oxy)triethylsilane

Followed GP4 with 39.6 mg (0.2 mmol) of 1d, 41.3 mg 2d was obtained as light-yellow liquid, $R_f = 0.5$ (PE), yield= 61%.

¹**H** NMR (400 MHz, CDCl₃) δ 7.40 – 7.31 (m, 4H), 7.15 – 7.06 (m, 1H), 7.01 (ddd, J = 13.2, 7.6, 1.6 Hz, 4H), 5.98 (ddd, J = 16.6, 10.2, 5.9 Hz, 1H), 5.31 (dt, J = 17.0, 1.6 Hz, 1H), 5.18 (d, J = 5.9 Hz, 1H), 5.12 (dt, J = 10.2, 1.5 Hz, 1H), 0.96 (t, J = 7.9 Hz, 9H), 0.64 (qd, J = 7.9, 2.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 157.4, 156.2, 141.6, 138.8, 129.7, 127.5, 123.1, 118.7, 118.7, 113.6, 75.3, 6.8, 4.9.

IR: 3513(m), 2956(m), 1765(m), 1648(w), 1591(w), 1490(w), 1377(w), 1241(s), 1057(m), 926(w), 846 (w), 744(w), 692(w).

HRMS: Calculation for $C_{21}H_{28}O_2Si$, $[M+H^+]^+$: 341.1932, Found: 341.1936.

2e ((1-(4-(benzyloxy)phenyl)allyl)oxy)triethylsilane

Followed GP4 with 42.4 mg (0.2 mmol) of 1e, 25.8 mg 2e was obtained as light-yellow liquid, $R_f = 0.5$ (PE), yield= 36%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 – 7.35 (m, 5H), 7.29 (d, J = 5.8 Hz, 2H), 6.99 –

6.94 (m, 2H), 5.96 (ddd, *J* = 16.5, 10.2, 5.9 Hz, 1H), 5.28 (dt, *J* = 17.0, 1.6 Hz, 1H), 5.15 (d, *J* = 6.0 Hz, 1H), 5.11 – 5.07 (m, 3H), 0.95 (t, *J* = 8.0 Hz, 9H), 0.62 (qd, *J* = 7.9, 2.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 158.0, 141.8, 137.2, 136.3, 128.6, 127.9, 127.5, 127.3, 114.5, 113.3, 75.3, 70.1, 6.8, 4.9.

IR: 3407(m), 2954(w), 2878(m), 1614(w), 1508(w), 1460(w), 1237(w), 1171(w), 1080(w), 1015(w),

843(w), 735(w), 611(w). HRMS: Calculation for C₂₂H₃₀O₂Si, [M+Na⁺]⁺: 377.1907, Found: 377.1906.

2f ((1-(4-(trifluoromethoxy)phenyl)allyl)oxy)triethylsilane

OSiEt₂ F₂CO

Followed GP4 with 38.0 mg (0.2 mmol) of 1f, 42.4 mg 2f was obtained as colorless liquid, $R_f = 0.6$ (PE), yield= 64%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 (d, J = 8.7 Hz, 2H), 7.16 (d, J = 8.2 Hz, 2H), 5.90 (ddd, *J* = 16.7, 10.2, 6.1 Hz, 1H), 5.28 (dt, *J* = 17.1, 1.5 Hz, 1H), 5.16 (d, *J* = 6.1 Hz, 1H), 5.10 (dt, *J* = 10.2, 1.4 Hz, 1H), 0.92 (t, *J* = 8.0 Hz, 9H), 0.60 (qd, *J* = 7.9, 2.0 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 148.22 (q, J = 2.0 Hz), 142.5, 141.2, 127.3, 123.6, 120.59 (q, J = 256.6 Hz), 120.7, 119.5, 117.7, 114.1, 75.1, 6.7, 4.9.

IR: 3449(s), 2957(m), 1743(w), 1640(w), 1457(w), 1380(w), 1243(m), 1084(w), 1047(m), 1009(w), 917(w), 840(w), 776(w), 737(m).

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -57.88.

HRMS: Calculation for C₁₆H₂₃F₃O₂Si, [M+H⁺]⁺: 333.1492, Found: 333.1493.

333.1475 333.148 333.1485 333.149 333.1495 333.15 333.1505 333.1515 333.1515 333.152 333.1525 333.153 Counts vs. Mass-to-Charge (m/z)

2g 4-(1-((triethylsilyl)oxy)allyl)phenyl acetate

Followed GP4 with 32.8 mg (0.2 mmol) of 1g, 41.3 mg 2g was obtained as light-yellow liquid, $R_f = 0.4$ (PE:EA= 20:1), yield= 67%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.31 (m, 2H), 7.07 – 6.99 (m, 2H), 5.91 (ddd, J

= 16.6, 10.2, 6.1 Hz, 1H), 5.27 (dt, J = 17.0, 1.6 Hz, 1H), 5.15 (d, J = 6.1 Hz, 1H), 5.08 (dt, J = 10.2, 10.2

1.5 Hz, 1H), 2.28 (s, 3H), 0.92 (t, J = 7.9 Hz, 9H), 0.60 (qd, J = 7.9, 1.9 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 169.5, 149.6, 141.4, 141.3, 127.0, 121.2, 113.8, 75.2, 21.2, 6.8, 4.9.

IR: 3483(w), 2958(w), 2883(w), 1764(w), 1629(w), 1463(w), 1378(w), 1345(w), 1244(m), 1171(w), 1132(m), 1052(w), 915(w), 844(w), 742(m).

HRMS: Calculation for C₁₇H₂₆O₃Si, [M+Na⁺]⁺: 329.1543, Found: 329.1545.

2h ((1-phenylallyl)oxy)triethylsilane

Followed GP4 with 21 μ L (21.2mg, 0.2 mmol) of **1h**, 34.5 mg **2h** was obtained as colorless liquid, $R_f = 0.6$ (PE), yield= 69%.

¹**H NMR** (500 MHz, CDCl₃) δ 7.36 – 7.27 (m, 4H), 7.25 – 7.20 (m, 1H), 5.94 (ddd, J = 16.9, 10.2, 5.9 Hz, 1H), 5.27 (dt, J = 17.1, 1.6 Hz, 1H), 5.19 – 5.12 (m, 1H), 5.07 (dt, J = 10.2, 1.5 Hz, 1H), 0.92 (t, J = 8.0 Hz, 9H), 0.60 (qd, J = 7.9, 3.6 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 143.8, 141.7, 128.2, 127.1, 126.0, 113.6, 75.7, 6.8, 4.9.

IR: 3452(s), 1762(w), 1636(m), 1379(w), 1243(w), 1055(w), 914(w), 712(w).

HRMS: Calculation for C₁₅H₂₄OSiv [M+Na⁺]⁺: 271.1488, Found: 271.1483.

2i ((1-(4-fluorophenyl)allyl)oxy)triethylsilane

Followed GP4 with 24.8 mg (0.2 mmol) of 1i, 29.8 mg 2i was obtained as colorless liquid, $R_f = 0.6$ (PE), yield= 56%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.33 (dd, *J* = 8.6, 5.6 Hz, 2H), 7.02 (t, *J* = 8.7 Hz, 2H),

5.93 (ddd, *J* = 17.0, 10.2, 5.9 Hz, 1H), 5.29 (dt, *J* = 17.0, 1.5 Hz, 1H), 5.17 (d, *J* = 5.9 Hz, 1H), 5.10 (dt, *J* = 10.2, 1.5 Hz, 1H), 0.95 (t, *J* = 8.0 Hz, 9H), 0.62 (qd, *J* = 7.9, 2.2 Hz, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 161.97 (d, *J* = 244.6 Hz), 141.5, 139.56 (d, *J* = 3.1 Hz), 127.61 (d, *J* = 7.9 Hz), 114.96 (d, *J* = 21.3 Hz), 113.7, 75.1, 6.8, 4.9.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -116.04.

IR: 3441(m), 2960(m), 2881(m), 2228(w), 1738(s), 1456(w), 1375(w), 1245(s), 1083(m), 1047(s), 919(w), 808(w), 734(w), 641(s), 558(w).

HRMS: Calculation for C₁₅H₂₃OFSi, [M+Na⁺]⁺: 289.1394, Found: 289.1392.

2j ((1-(4-chlorophenyl)allyl)oxy)triethylsilane

Followed GP4 with 29.1 mg (0.2 mmol) of 1j, 40.0 mg 2j was obtained as colorless liquid, $R_f = 0.6$ (PE), yield= 71%.

¹**H** NMR (400 MHz, CDCl₃) δ 7.31 (s, 4H), 5.92 (ddd, J = 17.0, 10.2, 6.0 Hz, 1H), 5.29 (dt, J = 17.0, 1.5 Hz, 1H), 5.15 (dt, J = 6.0, 1.4 Hz, 1H), 5.11 (dt, J = 10.1, 1.4 Hz, 1H), 0.95 (t, J = 7.9 Hz, 9H), 0.62 (qd, J = 7.9, 2.1 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 142.4, 141.3, 132.7, 128.3, 127.4, 114.0, 6.8, 4.9.

IR: 3449(s), 2956(w), 1763(w), 1635(w), 1379(w), 1243(m), 1051(w), 917(w), 880(w), 736(m). **HRMS:** Calculation for C₁₅H₂₃ClOSi, [M+H⁺]⁺: 283.1280, Found: 283.1277.

2k ((1-(4-bromophenyl)allyl)oxy)triethylsilane

Followed GP4 with 37.0 mg (0.2 mmol) of 1k, 30.9 mg 2k was obtained as colorless liquid, $R_f = 0.6$ (PE), yield= 47%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.49 – 7.43 (m, 2H), 7.27 – 7.20 (m, 2H), 5.91 (ddd, J = 17.0, 10.2, 6.0 Hz, 1H), 5.29 (dt, J = 17.0, 1.5 Hz, 1H), 5.13 (d, J = 6.7 Hz, 1H), 5.11 (dt, J = 10.2, 1.4 Hz, 1H), 0.94 (t, J = 7.9 Hz, 9H), 0.62 (qd, J = 7.9, 2.1 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 142.9, 141.2, 131.3, 127.8, 120.9, 114.0, 75.1, 6.8, 4.9.

IR: 3426(s), 2956(m), 2880(m), 1733(w), 1641(m), 1480(w), 1408(w), 1077(w), 928(m), 841(w), 730(m).

HRMS: Calculation for C₁₅H₂₃BrOSi, [M+Na⁺]⁺: 349.0594, Found: 349.0592.

2l ((1-(4-iodophenyl)allyl)oxy)triethylsilane

Followed GP4 with 46.4 mg (0.2 mmol) of **11**, 34.5 mg **21** was obtained as colorless liquid, $R_f = 0.6$ (PE), yield= 46%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.4 Hz, 2H), 7.12 (d, *J* = 8.3 Hz, 2H), 5.91 (ddd, *J* = 16.6, 10.2, 6.0 Hz, 1H), 5.29 (d, *J* = 17.0 Hz, 1H), 5.15 – 5.06 (m, 2H), 0.95 (t, *J* = 7.9 Hz, 9H), 0.62 (qd, *J* = 7.9, 2.1 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 143.6, 141.2, 137.3, 128.1, 114.0, 92.5, 75.2, 6.8, 4.9.

IR: 3774(m), 3664(s), 2953(s), 2878(s), 1595(w), 1473(w), 1404(w), 1237(w), 1074(m), 1004(m), 924(w), 840(m), 799(m), 733(s), 606(w), 509(w).

HRMS: Calculation for C₁₅H₂₃OISi, [M+Na⁺]⁺: 397.0455, Found: 397.0456.

2m ((1-(4-(trifluoromethyl)phenyl)allyl)oxy)triethylsilane

F₃C

Followed GP4 with 34.8 mg (0.2 mmol) of 1m, 39.5 mg 2m was obtained as light-yellow liquid, $R_f = 0.6$ (PE), yield=62%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.57 (d, J = 8.1 Hz, 2H), 7.51 – 7.40 (m, 2H), 5.90 (ddd, J = 17.0, 10.2, 6.1 Hz, 1H), 5.30 (dt, J = 17.0, 1.5 Hz, 1H), 5.21 (d, J = 6.1 Hz, 1H), 5.11 (dt, J = 10.2, 10.2

1.4 Hz, 1H), 0.93 (t, *J* = 7.9 Hz, 9H), 0.61 (qd, *J* = 8.4, 8.0, 2.2 Hz, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ (126 MHz, CDCl3) δ 147.8, 140.9, 129.31 (q, *J* = 32.2 Hz), 125.18 (q, *J* = 3.8 Hz), 124.56 (q, *J* = 271.4 Hz), 121.0, 114.4, 75.3, 6.7, 4.9.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -62.37.

IR: 3427(s), 2976(w), 1736(w), 1644(w), 1380(w), 1261(m), 1167(w), 1084(w), 1047(m), 917(w), 737(w).

HRMS: Calculation for C₁₆H₂₃F₄OSi, [M+H⁺]⁺: 317.1543, Found: 317.1542.

2n ((1-(2,4-bis(trifluoromethyl)phenyl)allyl)oxy)triethylsilane

Followed GP4 with 48.4 mg (0.2 mmol) of 1n, 42.2 mg 2n was obtained as yellow liquid, $R_f = 0.5$ (PE), yield= 55%.

¹**H** NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.3 Hz, 1H), 7.90 – 7.76 (m, 2H), 5.92 (ddd, J = 16.9, 10.3, 4.7 Hz, 1H), 5.64 (dd, J = 4.9, 2.0 Hz, 1H), 5.38 (d, J = 17.0 Hz, 1H), 5.12 (dt, J = 10.3, 1.6 Hz, 1H), 0.92 (t, J = 7.9 Hz, 9H), 0.61 (qd, J = 7.9, 5.0 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 147.5, 139.9, 129.7, 129.67 (q, J = 33.5 Hz), 128.85 (d, J = 3.7 Hz), 126.78 (q, J = 31.6 Hz), 124.5, 123.49 (q, J = 274.0 Hz), 122.40 (q, J = 1.7 Hz), 114.1, 70.0, 6.5, 4.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -58.54, -62.77.

IR: 3453(s), 2956(m), 2880(m), 1723(m), 1637(m), 1428(w), 1277(m), 1187(m), 1106(m), 1011(w), 920(w), 840(w), 739(m).

HRMS: Calculation for C₁₇H₂₂F₆OSi, [M+H⁺]⁺: 385.1417, Found: 385.1408.

20 triethyl((1-(4-nitrophenyl)allyl)oxy)silane

Followed GP4 with 21.2 mg (0.1 mmol) of **10**, 12.5 mg **20** was obtained as yellow liquid, $R_f = 0.4$ (PE:EA= 20:1), yield= 43%.

¹**H** NMR (500 MHz, CDCl₃) δ 8.12 (d, *J* = 8.8 Hz, 2H), 5.81 (ddd, *J* = 16.7, 10.2, 6.2 Hz, 1H), 5.26 (dt, *J* = 17.1, 1.4 Hz, 1H), 5.17 (d, *J* = 6.2 Hz, 1H), 5.08 (dt, *J* = 10.3, 1.3 Hz, 1H), 0.86 (t, *J* = 7.9 Hz, 9H), 0.55 (qd, *J* = 7.9, 2.9 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 150.2, 146.1, 139.3, 125.7, 122.6, 114.1, 74.1, 5.7, 3.8.

IR: 3452(s), 3162(s), 1646(s), 1403(s), 721(m), 559(m).

HRMS: Calculation for C₁₅H₂₃NO₃Si, [M+Na⁺]⁺: 316.1339, Found: 316.1344.

2p 4-(1-((triethylsilyl)oxy)allyl)benzonitrile

Followed GP4 with 26.2 mg (0.2 mmol) of 1p, 18.9 mg 2p was obtained as light-yellow liquid, $R_f = 0.6$ (PE), yield= 35%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.3 Hz, 2H), 7.46 (d, *J* = 8.3 Hz, 2H), 5.86 (ddd, *J* = 16.7, 10.2, 6.2 Hz, 1H), 5.31 (dt, *J* = 17.0, 1.4 Hz, 1H), 5.19 (d, *J* = 6.2 Hz, 1H), 5.13 (dt, *J* = 17.0, 1.4 Hz, 1H), 5.19 (d, *J* = 6.2 Hz, 1H), 5.13 (dt, J = 6.2 Hz, 1H), 5.14 (dt, J = 6.

10.2, 1.3 Hz, 1H), 0.93 (t, *J* = 7.9 Hz, 9H), 0.61 (qd, *J* = 7.9, 2.1 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 149.2, 140.4, 132.1, 126.6, 119.0, 114.9, 110.9, 75.2, 6.7, 4.8.

IR: 3691(w), 2959(m), 1763(w), 1377(w), 1325(w), 1243(m), 1166(m), 1129(m), 1065(w), 916(w), 849(w), 742(w).

HRMS: Calculation for C₁₆H₂₃NOSi, [M+Na⁺]⁺: 296.1441, Found: 296.1433.

2q 1-(4-(1-((triethylsilyl)oxy)allyl)phenyl)ethan-1-one

Followed GP4 with 29.6 mg (0.2 mmol) of 1q, 45.9 mg 2q was obtained as yellow

liquid, $R_f = 0.4$ (PE:EA= 20:1), yield= 79%.

¹**H NMR** (500 MHz, CDCl₃) δ 7.34 (d, J = 8.5 Hz, 2H), 7.03 (d, J = 8.3 Hz, 2H), 5.91 (ddd, J = 16.6, 10.2, 6.1 Hz, 1H), 5.27 (d, J = 17.0 Hz, 1H), 5.15 (d, J = 6.1 Hz, 1H), 5.08 (d, J = 10.1 Hz, 1H), 2.28 (s, 3H), 0.92 (t, J = 7.9 Hz, 9H), 0.60 (qd, J = 7.9, 3.0 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 169.5, 149.7, 141.4, 141.3, 127.0, 121.2, 113.8, 75.2, 21.2, 6.8, 4.9.

IR: 3450(w), 2956(w), 1763(m), 1685(w), 1607(w), 1375(w), 1243(s), 1054(m), 915(w), 846(w), 741(m).

HRMS: Calculation for C₁₇H₂₆O₂Si, [M+H⁺]⁺: 291.1775, Found: 291.1779.

2r methyl 4-(1-((triethylsilyl)oxy)allyl)benzoate

Followed GP4 with 32.8 mg (0.2 mmol) of 1r, 54.2 mg 2r was obtained as yellow liquid, $R_f = 0.4$ (PE:EA= 60:1), yield= 89%.

^b ¹**H NMR** (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.4 Hz, 2H), 7.44 (d, *J* = 8.3 Hz, 2H), 6.03 – 5.81 (m, 1H), 5.31 (ddd, J = J = 14.2, 1.5, 1.4 Hz, 1H), 5.22 (d, *J* = 6.0 Hz, 1H), 5.12 (dt, *J* = 10.2, 1.4 Hz, 1H), 3.93 (s, 3H), 0.94 (t, *J* = 7.9 Hz, 9H), 0.63 (qd, *J* = 8.0, 2.3 Hz, 6H).

¹³C NMR(101 MHz, CDCl₃) δ 167.1, 149.0, 140.9, 129.6, 129.0, 125.9, 114.3, 75.4, 52.0, 6.8, 4.9. IR: 3455(s), 1763(w), 1637(m), 1243(w), 743(w).

HRMS: Calculation for C₁₇H₂₆O₃Si, [M+H⁺]⁺: 307.1724, Found: 307.1724.

2s N-(4-(1-((triethylsilyl)oxy)allyl)phenyl)acetamide

Followed GP4 with 32.6 mg (0.2 mmol) of 1s, 25.0 mg 2s was obtained as yellow liquid, $R_f = 0.3$ (PE:EA= 1:1), yield= 41%.

^H ¹**H NMR** (500 MHz, CDCl₃) δ 7.45 (d, J = 8.1 Hz, 2H), 7.31 – 7.26 (m, 2H), 5.91 (ddd, J = 16.6, 10.2, 5.9 Hz, 1H), 5.25 (d, J = 17.0 Hz, 1H), 5.12 (d, J = 5.9 Hz, 1H), 5.06 (d, J = 10.2 Hz, 1H), 2.15 (s, 3H), 0.91 (t, J = 8.0 Hz, 9H), 0.59 (qd, J = 7.8, 3.2 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 168.4, 141.6, 139.8, 136.8, 126.7, 119.7, 113.5, 75.3, 24.5, 6.8, 4.9.
IR: 3478(s), 3415(s), 3131(m), 2957(m), 2878(m), 1765(m), 1668(m), 1606(m), 1540(m), 1460(w), 1409(w), 1374(w), 1317(w), 1243(s), 1055(m), 1010(w), 916(w), 846(w), 743(s), 607(w), 541(w).
HRMS: Calculation for C₁₇H₂₇NO₂Si, [M+Na⁺]⁺: 328.1703, Found: 328.1701.

2t ((1-(4-(methylsulfonyl)phenyl)allyl)oxy)triethylsilane

OSIEt₃

Followed GP4 with 36.8 mg (0.2 mmol) of 1t, 30.0 mg 2t was obtained as yellow liquid, $R_f = 0.5$ (PE:EA= 3:1), yield= 46%.

¹**H** NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.3 Hz, 2H), 7.57 (d, *J* = 8.1 Hz, 2H), 5.90 (ddd, *J* = 16.7, 10.2, 6.2 Hz, 1H), 5.34 (dt, *J* = 17.0, 1.4 Hz, 1H), 5.25 (d, *J* = 6.2 Hz, 1H), 5.15 (dt, *J* = 10.2, 1.3 Hz, 1H), 3.06 (s, 3H), 0.95 (t, *J* = 7.9 Hz, 9H), 0.64 (qd, *J* = 7.9, 1.7 Hz, 6H).

¹³C NMR(101 MHz, CDCl₃) δ 150.2, 140.5, 139.2, 127.4, 126.8, 114.9, 75.2, 44.6, 6.7, 4.8.

IR: 3679(w), 2988(m), 1762(w), 1377(w), 1309(w), 1243(s), 1148(w), 1053(m), 917(w), 842(w), 740(m), 534(w).

HRMS: Calculation for C₁₆H₂₆O₃SSi, [M+Na⁺]⁺: 349.1264, Found: 349.1264.

2u (E)-4-(1-((triethylsilyl)oxy)allyl)styryl acetate

Followed GP4 with 38.0 mg (0.2 mmol) of 1u, 43.8 mg 2u was obtained as yellow liquid, $R_f = 0.4$ (PE:EA= 40:1), yield= 66%.

¹**H** NMR (500 MHz, CDCl₃) δ 7.68 (d, *J* = 16.0 Hz, 1H), 7.48 (d, *J* = 7.9 Hz, 2H), 7.37 (d, *J* = 7.9 Hz, 2H), 6.42 (d, *J* = 16.0 Hz, 1H), 5.91 (ddd, *J* = 16.6, 10.0, 6.0 Hz, 1H), 5.29 (dt, *J* = 17.0, 1.5 Hz, 1H), 5.17 (d, *J* = 6.1 Hz, 1H), 5.09 (dt, *J* = 10.1, 1.4 Hz, 1H), 3.80 (s, *J* = 1.3 Hz, 3H),

0.93 (t, *J* = 8.0 Hz, 9H), 0.60 (qd, *J* = 7.9, 3.1 Hz, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 167.5, 146.3, 144.7, 141.1, 133.2, 128.1, 126.5, 117.4, 114.1, 75.4, 51.7, 6.8, 4.9.

IR: 3444(s), 2963(w), 1718(m), 1641(m), 1408(w), 1319(w), 1270(w), 1170(w), 1063(w), 1048(w), 837(w), 735(w), 536(w).

HRMS: Calculation for C₁₉H₂₈NO₂Si, [M+Na⁺]⁺: 355.1700, Found: 355.1695.

2v ((1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)allyl)oxy)triethylsilane

Et₃SiO

Followed GP4 with 46.4 mg (0.2 mmol) of 1v, 52.9 mg 2v was obtained as yellow liquid, $R_f = 0.5$ (PE:EA= 80:1), yield= 71%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.1 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 5.92 (ddd, *J* = 17.0, 10.2, 5.9 Hz, 1H), 5.26 (dt, *J* = 17.0, 1.5 Hz, 1H), 5.16 (d, *J* =

5.9 Hz, 1H), 5.06 (dt, *J* = 10.2, 1.5 Hz, 1H), 1.33 (s, 12H), 0.91 (t, *J* = 7.9 Hz, 9H), 0.60 (qd, *J* = 7.8, 2.4 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 147.0, 141.4, 134.8, 125.4, 113.7, 83.7, 75.7, 24.9, 6.8, 4.9. IR: 3451(s), 2955(w), 1637(m), 1242(w), 1073(w), 744(m).

HRMS: Calculation for C₂₁H₃₅BO₃Si, [M+H⁺]⁺: 375.2522, Found: 375.2525.

2w 1,4-bis(1-((triethylsilyl)oxy)allyl)benzene

 \sim SiEt₃ Followed GP4 with 13.4mg (0.1 mmol) of **1w**, 22.3mg **2w** was obtained as colorless liquid, Rf=0.4 (PE), yield= 53%.

¹**H NMR** (500 MHz, CDCl₃) δ 7.28 (s, 4H), 5.93 (ddd, *J* = 16.6, 10.2, 5.9 Hz, 2H), 5.26 (dt, *J* = 17.1, 1.7 Hz, 2H), 5.14 (d, *J* = 5.9, 2H), 5.06 (dt, *J* = 10.2, 1.6 Hz, 2H), 0.91 (t, *J* = 8.0 Hz, 18H), 0.58 (qd, *J* = 7.8, 3.3 Hz, 12H).

¹³C NMR (126 MHz, CDCl₃) δ 142.6, 141.7, 125.9, 113.5, 75.6, 6.8, 4.9.

IR: 3450(s), 1764(w), 1636(m), 1379(w), 1242(m), 1060(w), 916(w), 740(w).

HRMS: Calculation for $C_{24}H_{42}O_2Si_2$, $[M+H^+]^+$: 419.2796, Found: 419.2789.

2x ((1-cyclohexylallyl)oxy)triethylsilane

Followed GP4 with 34.4mg (0.2 mmol) of 1x, 31.3mg 2x was obtained as yellow liquid, $R_f = 0.4$ (PE:EA= 1:1), yield= 50%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.51 – 7.46 (m, 2H), 7.36 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 1.7 Hz, 1H), 7.21 (s, 1H), 5.95 (ddd, J = 16.6, 10.2, 6.1 Hz, 1H), 5.33 (dt, J = 17.0, 1.5 Hz, 1H), 5.23 (d, J = 6.2 Hz, 1H), 5.14 (dt, J = 10.2, 1.4 Hz, 1H), 0.96 (t, J = 8.0 Hz, 9H), 0.64 (qd, J = 7.9, 2.0 Hz, 6H). ¹³C **NMR** (126 MHz, CDCl₃) δ 143.4, 141.1, 136.5, 136.2, 130.3, 127.4, 121.3, 114.2, 75.1, 6.8, 4.9. **IR:** 3411(s), 3176(s), 2927(s), 1630(s), 1455(m), 1401(s), 1240(w), 1146(w), 1065(m), 1010(m), 823 (m), 734(w), 611(w), 524(w).

HRMS: Calculation for C₁₈H₂₆N₂OSi: [M+H⁺]⁺: 313.1958, Found: 313.1959.

2y ((1-(naphthalen-1-yl)allyl)oxy)triethylsilane

Followed GP4 with 31.2 mg (0.2 mmol) of 1z, 33.2 mg 2z was obtained as light-yellow liquid, $R_f = 0.5$ (PE), yield= 56%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.85 – 7.77 (m, 4H), 7.50 – 7.42 (m, 3H), 6.01 (ddd, J =

17.2, 10.2, 5.5 Hz, 1H), 5.39 – 5.29 (m, 2H), 5.11 (dt, *J* = 10.0, 1.3 Hz, 1H), 0.94 (t, *J* = 7.9 Hz, 9H), 0.62 (qd, *J* = 7.9, 3.0 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 141.6, 141.2, 133.3, 132.8, 128.0, 127.9, 127.7, 125.9, 125.6, 124.6, 124.4, 113.8, 75.8, 6.8, 4.9.

IR: 3455(w), 2955(w), 2880(w),1764(w), 1633(w), 1468(w), 1377(w), 1242(m), 1058(w),1009(w), 743(m), 701(w), 508(w).

HRMS: Calculation for C₁₉H₂₆OSi, [M+H⁺]⁺: 299.1826, Found: 299.1822.

2z ((1-(naphthalen-1-yl)allyl)oxy)triethylsilane

Et₃SiO Followed GP4 with 31.2 mg (0.2 mmol) of **1y**, 33.1 mg **2y** was obtained as light-yellow liquid, $R_f = 0.5$ (PE), yield= 56%.

¹**H** NMR (400 MHz, CDCl₃) δ 8.23 (dd, *J* = 8.3, 1.5 Hz, 1H), 7.90 (dd, *J* = 7.6, 2.0 Hz, 1H), 7.81 (d, *J* = 8.3 Hz, 1H), 7.70 (dt, *J* = 7.2, 1.0 Hz, 1H), 7.54 – 7.49 (m, 3H), 6.18 (ddd, *J* = 17.1, 10.3, 5.2 Hz, 1H), 5.93 – 5.85 (m, 1H), 5.40 (dt, *J* = 17.1, 1.6 Hz, 1H), 5.14 (dt, *J* = 10.3, 1.6 Hz, 1H), 0.95 (t,

J = 7.9 Hz, 9H), 0.64 (qd, *J* = 8.4, 8.0, 5.8 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 141.0, 139.3, 133.9, 130.3, 128.8, 127.9, 125.6, 125.5, 125.4, 124.1, 124.0, 113.9, 73.6, 6.9, 4.9.

IR: 3461(s), 2955(m), 2879(m), 1764(m), 1643(m), 1487(w), 1408(m), 1242(s), 1080(m), 1009(m), 919(w), 843(w), 738(m), 518(w), 470(w).

HRMS: Calculation for C₁₉H₂₆OSi, [M+H⁺]⁺: 299.1826, Found: 299.1826.

2aa ((1-(phenanthren-9-yl)allyl)oxy)triethylsilane

Followed GP4 with 41.2 mg (0.2 mmol) of **1aa**, 49.4 mg **2aa** was obtained as light-yellow liquid, $R_f = 0.3$ (PE), yield= 71%.

¹**H** NMR(400 MHz, CDCl₃) δ 8.76 (dd, *J* = 29.1, 8.0 Hz, 2H), 8.34 (d, *J* = 7.9 Hz, 1H), 8.05 - 7.91 (m, 2H), 7.68 (h, *J* = 6.9 Hz, 4H), 6.27 (ddd, *J* = 16.3, 10.3, 5.1 Hz, 1H), 5.94 (d, *J* = 5.1

Hz, 1H), 5.47 (d, *J* = 17.1 Hz, 1H), 5.22 (d, *J* = 10.3 Hz, 1H), 1.01 (t, *J* = 8.0 Hz, 9H), 0.72 (q, *J* = 7.3 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 140.8, 137.5, 131.7, 130.9, 130.2, 129.7, 128.8, 126.7, 126.5, 126.3, 126.2, 125.1, 124.9, 123.2, 122.5, 114.6, 74.0, 6.9, 5.0.

IR: 3449(s), 2957(m), 1743(w), 1640(w), 1458(w), 1381(w), 1243(m), 1048(m), 1009(w), 917(w), 840(w), 776(w), 737(m).

HRMS: Calculation for C₂₃H₂₈OSi, [M+H⁺]⁺: 371.1801, Found: 371.1798.

2ab ((1-(anthracen-9-yl)allyl)oxy)triethylsilane

Followed GP4 with 41.2 mg (0.2 mmol) of **1ab**, 24.4 mg **2ab** was obtained as light-yellow liquid, $R_f = 0.5$ (PE), yield = 35%.

¹**H** NMR (400 MHz, CDCl₃) δ 8.66 (s, 2H), 8.43 (s, 1H), 8.02 (dd, *J* = 7.5, 2.2 Hz, 2H), 7.59 – 7.38 (m, 4H), 6.76 (dt, *J* = 4.3, 2.1 Hz, 1H), 6.43 (ddd, *J* = 17.1, 10.4, 4.2 Hz, 1H), 5.43 (dt, *J* = 17.1, 1.8 Hz, 1H), 5.20 (dt, *J* = 10.4, 1.9 Hz, 1H), 0.79 (t, *J* = 7.9 Hz, 9H), 0.59 – 0.35 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 140.9, 134.1, 131.7, 129.3, 129.1, 127.9, 127.3, 125.3, 124.7, 113.8, 70.9, 6.6, 4.7.

IR: 3452(s), 2990(w), 1763(s), 1637(m), 1377(m), 1243(s), 1055(m), 915(w), 743(m). **HRMS:** Calculation for C₂₃H₂₈OSi, [M+H⁺]⁺: 349.1982, Found: 349.1975.

2ba (undec-1-en-3-yloxy)triethylsilane

Followed GP4 with 25.6 mg (0.2 mmol) of **1ba**, 37.6 mg **2ba** was obtained as colorless liquid, $R_f = 0.6$ (PE), yield= 66%.

¹**H NMR** (400 MHz, CDCl₃) δ 5.82 (ddd, *J* = 16.9, 10.3, 6.4 Hz, 1H), 5.15 (dt, *J* =

17.2, 1.6 Hz, 1H), 5.03 (dt, *J* = 10.4, 1.5 Hz, 1H), 4.08 (qt, *J* = 6.3, 1.3 Hz, 1H), 1.68 – 1.23 (m, 14H), 0.98 (t, *J* = 7.9 Hz, 9H), 0.90 (t, *J* = 6.7 Hz, 3H), 0.62 (q, *J* = 8.1 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 141.9, 113.5, 73.9, 38.2, 31.9, 29.6, 29.3, 25.3, 22.7, 14.1, 6.9, 4.9. IR: 3547(w), 3398(w), 3160(m), 2982(w), 1741(m), 1615(w), 1401(m), 1244(m), 1047(m), 851(w), 734 (m), 611(m).

HRMS: Calculation for C₁₇H₃₆OSi, [M+Na⁺]⁺: 307.2427, Found: 307.2429.

2bb ((5-phenylpent-1-en-3-yl)oxy)triethylsilane

Followed GP4 with 26.8 mg (0.2 mmol) of **1bb**, 42.3 mg **2bb** was obtained as colorless liquid, $R_f = 0.7$ (PE), yield= 76%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 (td, *J* = 7.1, 1.6 Hz, 2H), 7.24 – 7.20 (m, 3H), 5.89 (ddd, *J* = 16.9, 10.3, 6.4 Hz, 1H), 5.22 (dt, *J* = 17.1, 1.5 Hz, 1H), 5.11 (dt, *J* = 10.4, 1.4 Hz, 1H), 4.18 (qt, *J* = 6.2, 1.2 Hz, 1H), 2.78 – 2.62 (m, 2H), 1.86 (tt, *J* = 9.5, 6.3 Hz, 2H), 1.00 (t, *J* = 7.9 Hz, 9H), 0.64 (q, *J* = 7.7 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 142.4, 141.4, 128.4, 128.3, 125.7, 114.2, 73.4, 39.8, 31.5, 6.9, 5.0. IR: 3689(w), 3478(w), 3409(w), 3104(s), 1401(s), 1164(m), 1050(m), 958(m), 617(w), 473(w). HRMS: Calculation for C₁₇H₂₈OSi, [M+Na⁺]⁺: 277.1982, Found: 277.1983.

2bc methyl 6-((triethylsilyl)oxy)oct-7-enoate

^{OSIEI}₃ Followed GP4 with 28.8mg (0.2 mmol) of **1bc**, 44.1mg **2bc** was obtained as colorless liquid, R_f = 0.5 (PE:EA = 40:1), yield= 77%.
¹H NMR (400 MHz, CDCl₃) δ 5.80 (ddd, J = 16.9, 10.3, 6.4 Hz, 1H), 5.14 (dt, J = 17.0, 1.4 Hz, 1H), 5.03 (ddd, J = 10.3, 1.9, 1.0 Hz, 1H), 4.08 (q, J = 6.2 Hz, 1H), 3.67 (s, 3H), 2.32 (t, J = 7.6 Hz, 2H), 1.64 (p, J = 7.5 Hz, 2H), 1.56 - 1.32 (m, 4H), 0.96 (t, J = 7.9 Hz, 9H), 0.60 (q, J = 7.7 Hz, 6H).
¹³C NMR (101 MHz, CDCl₃) δ 174.2, 141.6, 113.8, 73.6, 51.4, 37.7, 34.1, 25.0, 24.7, 6.8, 4.9.
IR: 3449(s), 2955(s), 1742(m), 1633(s), 1401(s), 1240(w), 1072(m), 1007(m), 923(m), 733(m).

HRMS: Calculation for C₁₅H₃₀O₃Si, [M+Na⁺]⁺: 309.1856, Found: 309.1853.

2bd ((5-(benzyloxy)pent-1-en-3-yl)oxy)triethylsilane

OSiEt₃ Ph'

Followed GP4 with 32.8 mg (0.2 mmol) of 1bd, 30.4 mg 2bd was obtained as light-yellow liquid, $R_f = 0.5$ (PE:EA= 10:1), yield= 50%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.29 (m, 5H), 5.85 (ddd, *J* = 16.9, 10.3,

6.4 Hz, 1H), 5.18 (dt, J = 17.2, 1.5 Hz, 1H), 5.05 (dt, J = 10.4, 1.4 Hz, 1H), 4.52 (q, J = 11.9 Hz, 2H), 4.34 (q, J = 6.4 Hz, 1H), 3.58 (ddt, J = 30.9, 9.3, 6.4 Hz, 2H), 1.83 (qd, J = 6.2, 1.9 Hz, 2H), 0.98 (t, J = 8.0 Hz, 9H), 0.66 – 0.59 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 141.6, 138.6, 128.3, 127.7, 127.5, 113.9, 73.0, 70.9, 66.7, 38.2, 6.8, 4.9.

IR: 3413(s), 3134(s), 1625(m), 1401(s), 1142(w), 953(w), 739(w), 619(w), 479(w). HRMS: Calculation for C₁₈H₃₀O₂Si, [M+Na⁺]⁺: 329.1907, Found: 329.1906.

329.15 329.16 329.17 329.18 329.19 329.2 329.21 329.22 329.23 329.24 329.25 329.26 329.27 329.28 329.29 329.3

2be ((1-cyclopropylallyl)oxy)triethylsilane

Followed GP4 with 14.0 mg (0.2 mmol) of 1be, 27.8 mg 2be was obtained as OSiEt₃ light-yellow liquid, $R_f = 0.7$ (PE), yield= 66%.

¹**H NMR** (400 MHz, CDCl₃) δ 5.92 (ddd, J = 17.2, 10.4, 5.9 Hz, 1H), 5.19 (dt, J = 17.1, 1.6 Hz, 1H),

5.04 (ddd, J = 10.4, 1.9, 1.2 Hz, 1H), 3.60 (tt, J = 5.8, 1.4 Hz, 1H), 0.98 (t, J = 7.9 Hz, 10H), 0.62 (d, J = 7.9 Hz, 6H), 0.51 – 0.43 (m, 2H), 0.37 – 0.31 (m, 1H), 0.28 – 0.21 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 140.91, 113.31, 17.63, 6.82, 5.00, 3.14, 1.78.

IR: 3380(w), 2916(w), 1746(w), 1627(w), 1462(w), 1244(w), 1149(w), 1055(w), 958(w), 736(w), 616 (w), 527(w).

HRMS: Calculation for C₁₂H₂₄OSi, [M+H⁺]⁺: 213.1669, Found: 213.1662.

2bf ((1-cyclobutylallyl)oxy)triethylsilane

 $\label{eq:siEt_3} \overbrace{\begin{subarray}{c} \text{SiEt_3}\\ \hline \begin{subarray}{c} \text{Solewed GP4 with 16.8 mg (0.2 mmol) of 1bf, 28.6 mg 2bf was obtained as light-yellow liquid, $R_f = 0.7$ (PE), yield= 63\%$.}$

¹**H NMR**(400 MHz, CDCl₃) δ 5.75 (ddd, *J* = 17.0, 10.4, 6.4 Hz, 1H), 5.15 (dt, *J* = 17.2, 1.6 Hz, 1H), 5.03 (ddd, *J* = 10.4, 2.2, 1.1 Hz, 1H), 3.98 (t, *J* = 6.8 Hz, 1H), 2.45 – 2.27 (m, 1H), 1.98 (ddd, *J* = 11.5, 7.1, 4.2 Hz, 1H), 1.88 (ddt, *J* = 12.4, 7.5, 3.5 Hz, 3H), 1.78 (ddt, *J* = 6.8, 4.9, 3.5 Hz, 2H), 0.98 (t, *J* = 7.9 Hz, 9H), 0.63 (q, *J* = 7.7 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 139.8, 114.0, 41.4, 24.5, 24.0, 17.8, 6.9, 5.0.

IR: 3444(s), 2963(m), 1718 (m), 1641(m), 1408(w), 1319(w), 1270(w), 1170 (w), 1083(w), 1048 (w), 837(w), 735(m), 536(w).

HRMS: Calculation for C₁₃H₂₆OSi, [M+Na⁺]⁺: 249.1645, Found: 249.1642.

2bg ((1-cyclopentylallyl)oxy)triethylsilane

OSiEt₃ Followed GP4 with 19.6 mg (0.2 mmol) of **1bg**, 31.1 mg **2bg** was obtained as light-yellow liquid, $R_f = 0.7$ (PE), yield= 65%.

¹**H** NMR (400 MHz,CDCl₃) δ 5.83 (ddd, J = 17.2, 10.3, 6.9 Hz, 1H), 5.14 (ddd, J = 17.2, 1.9, 1.1 Hz, 1H), 5.04 (ddd, J = 10.3, 2.0, 1.0 Hz, 1H), 3.90 (tt, J = 7.0, 1.1 Hz, 1H), 1.94 (q, J = 7.8 Hz, 1H), 1.81 – 1.69 (m, 1H), 1.63 – 1.49 (m, 5H), 1.40 (ddd, J = 12.3, 10.0, 6.7 Hz, 1H), 1.27 – 1.17 (m, 1H), 0.97 (t, J = 7.9 Hz, 9H), 0.65 – 0.58 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 141.3, 114.0, 78.0, 46.6, 28.8, 25.6, 6.9, 5.1.

IR: 3452(s), 3139(s), 2957(s), 1634(s), 1401(s), 1240(w), 1072(m), 1007(m), 923(m), 733(m). **HRMS:** Calculation for C₁₄H₂₈OSi, [M+H⁺]⁺: 241.1982, Found: 241.1992.

2bh ((1-cyclohexylallyl)oxy)triethylsilane

OSIEt₃ Followed GP4 with 22.4 mg (0.2 mmol) of **1bh**, 36.7 mg **2bh** was obtained as light-yellow liquid, $R_f = 0.7$ (PE), yield= 72%.

¹**H NMR** (400 MHz, CDCl₃) δ 5.80 (ddd, *J* = 17.2, 10.3, 7.0 Hz, 1H), 5.15 – 5.00 (m, 2H), 3.80 (t, *J* = 6.6 Hz, 1H), 1.85 (dtd, *J* = 12.3, 3.7, 2.0 Hz, 1H), 1.79 – 1.64 (m, 5H), 1.35 (dtd, *J* = 11.7, 5.9, 5.4, 2.8 Hz, 1H), 1.26 – 1.05 (m, 4H), 0.98 (d, *J* = 7.9 Hz, 9H), 0.64 – 0.57 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 140.5, 114.6, 78.7, 44.3, 28.8, 26.7, 26.3, 6.9, 5.0.

IR: 3411(s), 3176(s), 2927(s), 1630(s), 1455(m), 1401(s), 1240(w), 1146(w), 1065(m), 1010(m), 823 (m), 734(w), 611(w), 524(w).

HRMS: Calculation for C15H30OSi, [M+Na⁺]⁺: 277.1958, Found: 277.1954.

2ca ((5-(4-isopropylphenyl)-4-methylpent-1-en-3-yl)oxy)triethylsilane

Followed GP4 with 38.0 mg (0.2 mmol) of **1ca**, 60.1 mg **2ca** was obtained as light-yellow liquid, $R_f = 0.7$ (PE), yield= 90%, 1.5:1 dr. **¹H NMR** (400 MHz, CDCl₃) δ 7.18 (dd, *J* = 8.1, 1.9 Hz, 2H), 7.12 (dd, *J* =

8.1, 3.9 Hz, 2H), 5.91 (ddd, *J* = 16.9, 10.2, 6.6 Hz, 1H), 5.22 (d, *J* = 17.1 Hz,

1H), 5.19 – 5.13 (m, 1H), 4.10 (dd, *J* = 6.5, 4.7 Hz, 1H), 3.01 – 2.84 (m, 2H), 2.22 (ddd, *J* = 23.6, 13.5, 10.0 Hz, 1H), 1.88 (ddd, *J* = 13.1, 6.7, 4.0 Hz, 1H), 1.29 (d, *J* = 6.9 Hz, 6H), 1.01 (dt, *J* = 13.8, 7.9 Hz, 9H), 0.85 (dd, *J* = 6.8, 2.5 Hz, 3H), 0.65 (dt, *J* = 15.3, 7.8 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 146.2, 139.6, 138.9, 129.0, 126.2, 115.1, 77.6, 42.0, 38.4, 33.7, 24.1, 14.6, 7.0, 5.1.

IR: 3553(s), 3404(s), 3138(s), 2960(s), 1763(w), 1625(m), 1512(w), 1459(w), 1401(s), 1292(w), 1241(w), 1146(w), 1064(m), 1016(w), 955(w), 827(w), 735(w), 614(w), 524(w).

2cb ((5-(4-(tert-butyl)phenyl)-4-methylpent-1-en-3-yl)oxy)triethylsilane

¹**H NMR** (400 MHz, CDCl₃) δ 7.33 (dd, *J* = 8.3, 2.1 Hz, 2H), 7.12 (dd, *J* = 8.1, 4.2 Hz, 2H), 5.90 (dtd, *J* = 16.9, 10.2, 6.6 Hz, 1H), 5.22 (dt, *J* = 17.2,

1.5 Hz, 1H), 5.19 – 5.13 (m, 1H), 4.09 (t, *J* = 5.5 Hz, 1H), 2.92 (ddd, *J* = 24.3, 13.4, 4.5 Hz, 1H), 2.22 (ddd, *J* = 23.6, 13.4, 10.0 Hz, 1H), 1.88 (ddq, *J* = 10.6, 8.1, 3.8, 3.3 Hz, 1H), 1.35 (s, 9H), 1.05 – 0.98 (m, 9H), 0.84 (dd, *J* = 6.8, 2.7 Hz, 3H), 0.65 (dt, *J* = 15.6, 7.9 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 148.4, 139.5, 138.5, 128.9, 125.1, 115.1, 77.6, 42.0, 38.2, 34.4, 31.4, 14.6, 6.9, 5.0.

IR: 3370(m), 3128(m), 2961(m), 1627(m), 1460(w), 1401(m), 1293(w), 1241(w), 1149(w), 1063(w), 957(w), 829(w), 735(w), 613(w), 527(w).

HRMS: Calculation for C₂₂H₃₈OSi, [M+Na⁺]⁺: 369.2584, Found: 369.2580.

2cc ((5-(benzo[d][1,3]dioxol-5-yl)-4-methylpent-1-en-3-yl)oxy)triethylsilane.

OSIEt₃

Followed GP3 with 40.8 mg (0.2 mmol) of 1cc, 58.8 mg 2cc was obtained as light-yellow liquid, $R_f = 0.7$ (PE), yield= 59%, 1.5:1 dr.

 ^{1}H NMR (500 MHz, CDCl_3) δ 6.78 – 6.51 (m, 3H), 5.97 – 5.76 (m, 3H), 5.22 –

5.05 (m, 2H), 4.02 (t, *J* = 5.6 Hz, 1H), 2.83 (ddd, *J* = 25.8, 13.5, 4.5 Hz, 1H), 2.12 (ddd, *J* = 28.5, 13.5, 10.1 Hz, 1H), 1.77 (tdq, *J* = 10.6, 6.6, 3.9, 2.5 Hz, 1H), 0.96 (dt, *J* = 11.7, 7.9 Hz, 9H), 0.78 (dd, *J* = 6.9, 3.9 Hz, 3H), 0.65 – 0.55 (m, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 147.4, 145.4, 139.5, 135.4, 121.9, 115.2, 109.4, 107.9, 100.7,, 77.5, 42.2, 38.4, 14.5, 6.9, 5.1.

IR: 3407(m), 2958(m), 2881(m), 1635(m), 1493(m), 1403(m), 1245(m), 1191(w), 1081(m), 1041(m), 932(w), 809(w), 734(m).

HRMS: Calculation for C19H30O3Si, [M+Na⁺]⁺: 357.1856, Found: 357.1857.

2cd ((5,7,7-trimethyloct-1-en-3-yl)oxy)triethylsilane

SiEt₃

Followed GP4 with 28.4 mg (0.2 mmol) of **1cd**, 40.7 mg **2cd** was obtained as colorless liquid, $R_f = 0.7$ (PE), yield= 72%, 1.6:1 dr.

¹**H NMR** (400 MHz, CDCl₃) δ 5.82 (dddd, J = 17.2, 10.3, 8.2, 6.8 Hz, 1H), 5.20 – 5.12 (m, 1H), 5.02 (ddd, J = 10.3, 1.8, 1.0 Hz, 1H), 4.20 – 4.06 (m, 1H), 1.60 – 1.34 (m, 2H), 1.30 – 1.17 (m, 2H), 1.10 (t, J = 6.2 Hz, 1H), 1.01 – 0.90 (m, 21H), 0.66 – 0.59 (m, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 142.1, 113.8, 72.5, 51.9, 48.2, 31.2, 30.0, 25.5, 22.6, 6.9, 5.0.

IR: 3407(s), 3174(s), 2961(s), 1627(s), 1401(s), 1293(w), 1241(w), 1148(w), 1061(w), 955(w), 735(w), 613(w), 525(w).

HRMS: Calculation for C₁₇H₃₆OSi, [M+Na⁺]⁺: 307.2427, Found: 307.2424.

2ce ((1-(4-(4-methylpent-3-en-1-yl)cyclohex-3-en-1-yl)allyl)oxy)triethylsilane

OSiEt₃

Followed GP4 with 38.4 mg (0.2 mmol) of **1ce**, 36.3 mg **2ce** was obtained as yellow liquid, $R_f = 0.7$ (PE), yield= 54%, 2:1 dr.

¹**H NMR** (400 MHz, CDCl₃) δ 5.82 (ddd, *J* = 17.3, 10.3, 7.1, Hz, 1H), 5.40 (q, *J* = 5.3, 4.2 Hz, 1H), 5.14 (dddt, *J* = 18.7, 14.5, 9.7, 2.0 Hz, 3H), 3.93 (td, *J* = 6.8, 3.1 Hz, 1H), 2.10 (p, *J* = 7.0, 6.5 Hz, 3H), 1.98 (q, *J* = 8.5, 7.8 Hz, 4H), 1.93 – 1.82 (m, 1H), 1.79 – 1.69 (m, 4H), 1.63 (s, 3H), 1.37 – 1.11 (m, 2H), 0.98 (td, *J* = 7.9, 2.6 Hz, 9H), 0.66 – 0.57 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 140.4, 137.5, 131.2, 124.5, 120.3, 114.7, 78.0, 40.5, 37.8, 28.4, 27.5, 26.5, 25.4, 17.6, 6.9, 5.0.

IR: 3411(s), 3132(s), 2963(s), 1764(w), 1625(m), 1460(w), 1401(s), 1293(w), 1241(w), 1151(w), 1060(w), 952(w), 737(w), 616(w), 525(w).

HRMS: Calculation for C₂₁H₃₈OSi, [M+H⁺]⁺: 335.2765, Found: 335.2765.

2cf ((1-(2,4-dimethylcyclohex-3-en-1-yl)allyl)oxy)triethylsilane

Followed GP4 with 27.6 mg (0.2 mmol) of 1cf, 33.9 mg 2cf was obtained as yellow liquid, $R_f = 0.7$ (PE), yield= 60%, 1:1 dr.

¹**H** NMR (400 MHz, CDCl₃) δ 5.82 (ddd, J = 17.7, 10.3, 7.7 Hz, 1H), 5.36 (dt, J = 5.6,

1.7 Hz, 1H), 5.21 (dd, *J* = 17.2, 1.8 Hz, 1H), 5.11 (dd, *J* = 10.3, 1.8 Hz, 1H), 3.87 (dd, *J* = 9.6, 7.7 Hz, 1H), 2.12 (d, *J* = 6.6 Hz, 1H), 1.95 (td, *J* = 13.8, 11.8, 7.6 Hz, 3H), 1.65 – 1.55 (m, 4H), 1.38 – 1.30 (m, 1H), 0.98 (t, *J* = 7.9 Hz, 9H), 0.84 (d, *J* = 6.9 Hz, 3H), 0.66 – 0.59 (m, 6H).

¹³**C NMR**(101 MHz, CDCl₃) δ 140.7, 133.0, 127.7, 115.1, 76.0, 44.2, 31.0, 30.1, 23.5, 19.5, 15.0, 6.9, 5.1.

IR: 3451(s), 1635(s), 1401(s), 1240(w), 1062(m), 734(m), 520(m).

HRMS: Calculation for $C_{17}H_{32}OSi$, $[M+H^+]^+$: 303.2114, Found: 303.2116.

2cg ((4,9-dimethyldeca-1,8-dien-3-yl)oxy)triethylsilane

 $OSiEt_3$ Followed GP4 with 30.8 mg (0.2 mmol) of **1cg**, 32.1 mg **2cg** was obtained as yellow liquid, $R_f = 0.7$ (PE), yield= 54%, 1:1 dr.

¹**H NMR** (500 MHz, CDCl₃) δ 5.79 (dddd, J = 17.2, 14.1, 10.3, 6.7 Hz, 1H), 5.15 – 5.07 (m, 2H), 5.01 (ddt, J = 10.1, 8.4, 1.4 Hz, 1H), 4.18 – 4.11 (m, 1H), 1.97 (tq, J = 15.7, 7.6 Hz, 2H), 1.68 (t, J = 1.4 Hz, 3H), 1.60 (s, 3H), 1.53 (ddd, J = 17.6, 8.7, 4.6 Hz, 1H), 1.44 – 1.31 (m, 2H), 1.21 – 1.03 (m, 2H), 0.98 – 0.93 (m, 9H), 0.89 (dd, J = 6.6, 1.3 Hz, 3H), 0.62 – 0.57 (m, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 142.2, 131.1, 124.9, 113.6, 72.3, 45.7, 37.4, 28.6, 25.5, 19.7, 17.6, 6.9, 5.0.

IR: 3414(s), 3182(s), 2961(s), 1757(m), 1629(m), 1458(w), 1400(s), 1242(s), 1149(w), 1055(m), 917(w), 839(w), 738(m), 610(w), 527(w).

HRMS: Calculation for C₁₈H₃₆OSi, [M+Na⁺]⁺: 319.2427, Found: 319.2424.

2ch 7-dimethyl-8-((triethylsilyl)oxy)dec-9-en-2-ol

Followed GP4 with 38.4 mg (0.2mmol) of **1ch**, 48.4 mg **2ch** was obtained as yellow liquid, $R_f = 0.7$ (PE), yield= 72%, 1:1 dr.

¹**H NMR** (500 MHz, CDCl₃) δ 5.86 – 5.72 (m, 1H), 5.12 (d, *J* = 17.1 Hz, 1H),

5.01 (t, *J* = 10.9 Hz, 1H), 4.15 (t, *J* = 6.7 Hz, 1H), 1.62 (p, *J* = 6.5 Hz, 1H), 1.58 – 1.27 (m, 9H), 1.21 (s, 6H), 0.95 (t, *J* = 7.9 Hz, 9H), 0.90 (d, *J* = 6.6 Hz, 3H), 0.60 (q, *J* = 7.9 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 142.1, 113.7, 72.2, 71.0, 45.7, 44.2, 37.8, 29.1, 28.8, 21.7, 19.8, 6.9, 5.0.

IR: 3419(s), 3187(s), 2963(m), 1764(w), 1630(s), 1400(s), 1241(m), 1060(m), 739(w), 611(w), 528(w). **HRMS:** Calculation for C₁₈H₃₈O₂Si, [M+Na⁺]⁺: 337.2533, Found: 337.2534.

Gram-Scale Reaction

3ca 5-(4-isopropylphenyl)-4-methylpent-1-en-3-ol

1) 50 mg Ni(cod)₂ (2 mmol, 20 mol%), 1.7 g IPr·HCl (4 mmol, 40 mol%) were weighed out and transferred into a Schlenk tube in the glove box.

The tube was then sealed with a hollow glass plug and taken out of the glovebox.

2) Putting the tube under nitrogen via 3 vacuum / N_2 backfill cycles and unplugged the hollow glass plug.

3) Add 20 mL THF and 4.4 mL KO'Bu (4.4 mmol, 44 mol%,1 mol/L in THF).

4) Stir the solution at room temperature until all the solid dissolved (2 min).

5) Add 4.65 g (6.4 mL, ρ = 0.728 g/mL at 25 °C) triethylsilane (40 mmol, 4 equiv) via syringe after the same operation of step 3.

6) Stir the solution at room temperature for 2 min.

7) Add 1.9 g cyclamen aldehyde (10 mmol) dissolved in 37 mL (2.05 equiv) saturated solution of acetylene in THF (0.55 mol/L).

8) Stir the solution at 35 °C for about 18 h, monitored by TLC.

9) After completion of reaction, filtrate the mixture by a short pad of silica gel and wash with EA and was then concentrated under reduced pressure.

10) Purify the crude by column chromatography with PE ($R_f = 0.6$).

11) Add 12 mL TBAF (12 mmol, 1.2 equiv, 1 mol/L in THF) to the purified product in 25 mL round bottom flask.

12) Stir the solution for 10 min, monitored by TLC.

13) Quench the reaction by adding saturated NH₄Cl and extract with EA.

14) Concentrated the residue under reduced pressure.

15) Separate the residue by column chromatography with PE:EA= 10:1 (R_f=0.4).

After the above procedures, 1.68 g 3ca was obtained as light-yellow liquid, yield= 77%, 1.5:1 dr.

¹**H NMR** (400 MHz, CDCl₃) δ 7.20 (qd, J = 8.3, 2.9 Hz, 4H), 6.04 – 5.93 (m, 1H), 5.39 – 5.19 (m, 2H),

4.13 (t, *J* = 5.0 Hz, 1H), 2.94 (tt, *J* = 13.0, 6.4 Hz, 2H), 2.43 (td, *J* = 13.0, 9.1 Hz, 1H), 1.98 (q, *J* = 6.7

Hz, 1H), 1.34 – 1.31 (m, 6H), 0.94 (dd, *J* = 8.3, 6.8 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 146.4, 146.3, 139.9, 139.0, 138.3, 138.1, 129.2, 129.1, 126.3, 126.3,

116.2, 115.2, 75.5, 40.7, 40.6, 38.8, 38.3, 33.7, 24.1, 14.9, 13.9.

Characterization data matched those reported in the literature.^[2]

3q methyl 4-(1-hydroxyallyl)benzoate

1) 550 mg Ni(cod)₂ (2 mmol, 20 mol%), 1.7g IPr·HCl (4 mmol, 40 mol%) were weighed out and transferred into a Schlenk tube in the glove box.

The tube was then sealed with a hollow glass plug and taken out of the glovebox.

2) Putting the tube under nitrogen via 3 vacuum / N2 backfill cycles and unplugged the hollow glass

plug.

3) Add 20 mL THF and 4.4mL KO'Bu (4.4 mmol, 44 mol%,1 mol/L in THF).

4) Stir the solution at room temperature until all the solid dissolved (2min).

5) Add 4.65 g (6.4 mL, ρ = 0.728 g/mL at 25 °C) triethylsilane (40 mmol, 4 equiv) via syringe after the same operation of step 3.

6) Stir the solution at room temperature for 2 min.

7) Add 1.64 g methyl 4-formylbenzoate (10 mmol) dissolved in 37 mL (2.05 equiv) saturated solution of acetylene in THF (0.55 mol/L).

8) Stir the solution at 35 °C for about 18 h, monitored by TLC.

9) After completion of reaction, filtrate the mixture by a short pad of silica gel and wash with EA and was then concentrated under reduced pressure.

10) Purify the crude by column chromatography with PE:EA= 100:1 ($R_f = 0.3$).

11) Add 12 mL TBAF (12 mmol, 1.2 equiv, 1 mol/L in THF) to the purified product in 25 mL round bottom flask.

12) Stir the solution for 10 min, monitored by TLC.

13) Quench the reaction by adding saturated NH₄Cl and extract with EA.

14) Concentrated the residue under reduced pressure.

15) Separate the residue by column chromatography with PE:EA= 5:1 ($R_f = 0.4$).

After the above procedures, 0.96 g 3q was obtained as yellow liquid, yield= 50%.

¹**H NMR** (400 MHz, CDCl₃) δ 8.02 (d, J = 8.3 Hz, 2H), 7.45 (d, J = 8.3 Hz, 2H), 6.02 (ddd, J = 16.8,

10.3, 6.2 Hz, 1H), 5.36 (dt, *J* = 17.1, 1.3 Hz, 1H), 5.28 – 5.18 (m, 2H), 3.92 (s, 3H), 2.52 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 167.0, 147.6, 139.7, 129.8, 129.4, 126.2, 115.9, 75.0, 52.1.

Characterization data matched those reported in the literature.^[3]

Synthetic Applications of Products.

4 methyl 4-(3-phenylpropanoyl)benzoate

1) Add 40.4 mg iodobenzene (0.2 mmol), 48.0 mg 3q (0.25 mmol) and 0.45 mg Pd(OAc)₂ (0.002 mmol, 1 mol%) to 25 ml Schlenk tube.

2) Evacuate the Schlenk tube with oil pump and refill the tube with N2, repeat it 3 times.

3) Add 1 mL anhydrous CH₃CN to the Schlenk tube.

4) Stir the mixture for 24 h at 100 °C.

5) Filtrate the mixture by thin layer of silica gel.

6) Concentrated the residue under reduced pressure.

7) Separate the residue by column chromatography with PE:EA= 40:1 (R_f = 0.4).

After the above procedures, 44.9 mg 4 was obtained as white solid, yield= 84%.

¹**H** NMR (500 MHz, CDCl₃) δ 8.01 (d, *J* = 8.1 Hz, 2H), 7.90 (d, *J* = 8.2 Hz, 2H), 7.27 – 7.07 (m, 5H), 3.85 (s, 3H), 3.23 (t, *J* = 7.6 Hz, 2H), 2.98 (t, *J* = 7.6 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 198.7, 166.2, 141.0, 140.1, 133.9, 129.8, 128.6, 128.4, 127.9, 126.2, 52.4, 40.8, 30.0.

IR: 3410(s), 3132(s), 1766(w), 1621(w), 1401(s), 1243(m),1107(w),1055(w), 860(w), 757(w), 698(w), 624(w), 530(w).

HRMS: Calculation for C₁₇H₁₆O, [M+Na⁺]⁺: 291.0991, Found: 291.0990.

5 methyl 4-(hydroxy(oxiran-2-yl)methyl)benzoate

1) Add 25.9 mg 3-chloroperoxybenzoic acid (0.15 mmol), 19.2 mg 3q (0.25 mmol), 42 mg NaHCO3

(0.5 mmol, 1 mol%), to 25 ml round bottom flask.

2) Add 1mL CH₂Cl₂ to the flask.

3) Stir the mixture for 12 h at room temperature.

4) Quench the reaction by saturated NaHCO3 solution and extract with CH2Cl2.

8) Concentrated the residue under reduced pressure.

5) Separate the residue by column chromatography with PE:EA= 1:1 ($R_f = 0.5$).

After the above procedures, 18.8 mg 5 was obtained as colorless liquid, yield= 90%, 1:1 dr.

¹**H NMR** (500 MHz, CDCl₃) δ 8.05 (dd, J = 8.4, 2.2 Hz, 2H), 7.49 (t, J = 8.6 Hz, 2H), 4.99 (d, J = 3.1 H)

Hz, 1H), 4.56 (d, J = 5.3 Hz, 1H), 3.92 (s, 3H), 3.28 – 3.18 (m, 1H), 2.91 – 2.83 (m, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 166.8, 145.0, 144.5, 130.0, 130.0, 130.0, 129.9, 126.2, 126.2, 73.9, 70.4, 55.7, 54.8, 52.2, 45.4, 43.5.

IR: 3410(s), 3132(s), 1766(m), 1621(m), 1401(s), 1243(m),1107(w), 1055(w), 860(w), 757(w), 698(w), 624(w), 530(w).

HRMS: Calculation for C11H12O, [M+Na⁺]⁺: 231.0628, Found: 231.0624.

6 methyl (E)-4-(3-tosylprop-1-en-1-yl)benzoate

1) Add 24.6 mg *p*-toluenesulfonic acid (0.12 mmol), 19.2 mg 3q (0.2 mmol) and 5.8 mg Pd(PPh₃)₄ (0.005 mmol, 5 mol%) to 25 ml Schlenk tube.

2) Evacuate the Schlenk tube with oil pump and refill the tube with N₂, repeat it 3 times.

3) Add 1 mL deionized water to the Schlenk tube.

4) Stir the mixture for 12 h at 40 °C.

5) Extract the mixture with EA.

6) Wash the combined organic layer with brine, dry over Na₂SO₄.

7) Concentrated the residue under reduced pressure.

8) Separate the residue by column chromatography with PE:EA= 3:1 ($R_f = 0.3$).

After the above procedures, 26.2 mg 6 was obtained as colorless liquid, yield= 79%.

¹**H NMR** (500 MHz, CDCl₃) δ 7.97 (d, *J* = 8.1 Hz, 2H), 7.75 (d, *J* = 8.0 Hz, 2H), 7.34 (t, *J* = 8.7 Hz, 4H), 6.44 (d, *J* = 15.9 Hz, 1H), 6.21 (dt, *J* = 15.5, 7.6 Hz, 1H), 3.95 (d, *J* = 7.6 Hz, 2H), 3.91 (s, 3H), 2.43 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 166.6, 144.9, 140.1, 138.0, 135.6, 130.0, 129.9, 129.9, 129.8, 128.5, 126.5, 118.1, 60.5, 52.1, 21.6.

IR: 3413(s), 3131(s), 1765(w), 1621(w), 1401(s), 1243(w), 1054(w), 914(w), 744(w), 531(w). **HRMS:** Calculation for C₁₈H₁₈O4S, [M+Na⁺]⁺: 353.0818, Found: 353.0814.

7 methyl (E)-4-(3-(p-tolyl)prop-1-en-1-yl)benzoate

1) Add 32.6 mg 4-tolylboronic acid (0.24 mmol), 38.4 mg 3q (0.2 mmol) and 1.15 mg Pd(PPh₃)₄ (0.001 mmol, 0.5 mol%) to 25 ml Schlenk tube.

2) Evacuate the Schlenk tube with oil pump and refill the tube with N_2 , repeat it 3 times.

3) Add 1 mL anhydrous THF to the Schlenk tube.

4) Stir the mixture for 6 h at 80 °C.

5) Filtrate the mixture by thin layer of silica gel.

6) Concentrated the residue under reduced pressure.

7) Separate the residue by column chromatography with PE:EA= 40:1 (R_f = 0.4).

After the above procedures, 44.3 mg 7 was obtained as colorless liquid, yield= 83%.

¹**H** NMR (500 MHz, CDCl₃) δ 7.95 (d, J = 8.1 Hz, 2H), 7.38 (d, J = 8.1 Hz, 2H), 7.12 (s, 4H), 6.45 (d, J = 2.9 Hz, 2H), 3.88 (s, 3H), 3.52 (d, J = 4.7 Hz, 2H), 2.32 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 167.0, 142.1, 136.5, 135.9, 132.6, 130.0, 129.9, 129.3, 128.6, 128.5, 126.0, 52.0, 39.0, 21.1.

IR: 3417(s), 3129(s), 1637(m), 1621(m 1401(s), 1277(w), 1177(w), 1104(w), 966(w), 762(w), 529(w). **HRMS:** Calculation for C₁₈H₁₈O₂, [M+Na⁺]⁺: 289.1199, Found: 289.1196.

8 5-(4-isopropylphenyl)-4-methylpent-1-en-3-one

1) Add 12.5 mg Dess-Martin periodinane (0.3 mmol), 43.6 mg **3ca** (0.2 mmol) to 25 ml round bottom flask.
2) Add 2 mL anhydrous CH₂Cl₂ to the flask.

3) Stir the mixture for 10 min at room temperature.

4) Quench the reaction by saturated solution of NaS₂O₃ and NaHCO₃ (1:1) and extract with CH₂Cl₂.

5) Wash the combined organic layer with brine, dry over Na₂SO₄.

6) Concentrated the residue under reduced pressure.

7) Separate the residue by column chromatography with PE:EA= 40:1 (R_f = 0.5).

After the above procedures, 35.1 mg 8 was obtained as light-yellow liquid, yield= 81%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.16 (d, *J* = 7.8 Hz, 2H), 7.11 (d, *J* = 7.7 Hz, 2H), 6.43 (dd, *J* = 17.5, 10.5 Hz, 1H), 6.31 – 6.17 (m, 1H), 5.83 – 5.71 (m, 1H), 3.13 (q, *J* = 6.9 Hz, 1H), 3.04 (dd, *J* = 13.6, 6.3 Hz, 1H), 2.94 – 2.85 (m, 1H), 2.59 (dd, *J* = 13.6, 7.8 Hz, 1H), 1.26 (d, *J* = 6.9 Hz, 6H), 1.13 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 203.6, 146.8, 137.0, 135.3, 128.9, 128.2, 126.4, 45.3, 38.5, 33.7, 24.0, 16.5.

IR: 3414(s), 3132(s), 2964(m), 1677(w), 1616(s), 1513(w),1401(s), 1052(w), 970(w), 816(w), 515(w). **HRMS:** Calculation for C₁₅H₂₀O, [M+Na⁺]⁺: 239.1406, Found: 239.1404.

9 2,5-bis(1-(4-isopropylphenyl)propan-2-yl)furan

1) Add 1.3 mg pyridinium *p*-toluenesulfonate (PPTS) (0.005 mmol, 2.5 mol%) and 6.3 mg Grubbs-Hoveyda (0.01 mmol, 5 mol%) to 25 ml Schlenk tube.

2) Evacuate the Schlenk tube with oil pump and refill the tube with N_2 , repeat it 3 times.

3) Add 1 mL anhydrous CH_2Cl_2 to the Schlenk tube.

4) Cool the solution to -78 °C.

5) Add 43.6 mg 3ca (0.2 mmol) and 95 mg 8ca (1 mmol, 5 equiv) to the solution in dropwise.

6) Stir the mixture for 24 h at 40 °C.

7) Filtrate the mixture by thin layer of silica gel.

8) Concentrated the residue under reduced pressure.

9) Separate the residue by column chromatography with PE:EA= 40:1 (R_f = 0.4).

After the above procedures, 52.0 mg 9 was obtained as light-yellow liquid, yield= 67%.

¹**H NMR** (500 MHz, CDCl₃) δ 7.03 (d, J = 7.7 Hz, 4H), 6.94 (d, J = 7.7 Hz, 4H), 5.73 (s, 2H), 2.95 (dq, J = 15.3, 7.0 Hz, 4H), 2.78 (p, J = 7.0 Hz, 2H), 2.62 – 2.51 (m, 2H), 1.15 (d, J = 7.1 Hz, 12H), 1.09 (d, J = 6.4 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 158.2, 158.2, 146.4, 137.6, 129.2, 126.2, 104.1, 104.0, 41.9, 41.8, 35.0, 33.7, 24.1, 18.4, 18.3.

IR: 3414(s), 3131(s), 1765(w), 1621(w), 1400(s), 1243(w), 1054(w), 914(w), 744(w), 531(w). HRMS: Calculation for C₂₈H₃₆O, [M+Na⁺]⁺: 411.2658, Found: 411.2654.

1) Add 7.0 mg ferric acetylacetonate (0.02 mmol, 10 mol%), 76.2 mg bis(pinacolato)diborane (0.3 mmol, 1.5 equiv), 24.0 mg lithium tert-butoxide (0.3 mmol, 1.5 equiv) and 43.6 mg 3ca (0.2 mmol) to 25 ml Schlenk tube.

2) Evacuate the Schlenk tube with oil pump and refill the tube with N_2 , repeat it 3 times.

3) Add 1.0 mL DMAc to the Schlenk tube.

4) Stir the mixture for 12 h at room temperature.

5) Filtrate the mixture by thin layer of silica gel.

6) Concentrated the residue under reduced pressure.

7) Separate the residue by column chromatography with PE:EA= 60:1 (R_f = 0.4).

After the above procedures, 46.0 mg 12 was obtained as colorless liquid, yield= 70%.

¹**H NMR** (500 MHz, CDCl₃) δ 7.11 (d, J = 8.3 Hz, 2H), 7.06 (d, J = 7.8 Hz, 2H), 5.52 - 5.29 (m, 2H),

2.86 (p, J = 6.8 Hz, 1H), 2.64 (h, J = 6.3, 5.3 Hz, 1H), 2.49 – 2.32 (m, 2H), 1.62 (d, J = 5.8 Hz, 2H),

1.24 (d, J = 3.5 Hz, 18H), 0.93 (d, J = 6.2 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 146.0, 138.4, 136.4, 129.2, 126.0, 123.1, 83.1, 43.4, 38.2, 33.7, 24.8, 24.7, 24.1, 24.1, 20.0.

Characterization data matched those reported in the literature.^[2]

11 ethyl (E)-6-(4-isopropylphenyl)-5-methylhex-3-enoate

1) Evacuate the Schlenk tube with oil pump and refill the tube with N₂, repeat it 3 times.

2) Add 43.6 mg 3ca, triethyl orthoacetate (0.26 mmol, 1.3 equiv) and 0.9 µL propionic acid (0.012 mmol, 6 mol%) to 25 ml Schlenk tube.

3) Reflux the mixture for 3 h at 140 °C.

4) Concentrated the residue under reduced pressure.

5) Separate the residue by column chromatography with PE:EA= 100:1 ($R_f = 0.5$)

After the above procedures, 43.5 mg 11 was obtained as colorless liquid, yield= 75%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.16 (d, J = 7.8 Hz, 2H), 7.08 (d, J = 7.8 Hz, 2H), 5.54 – 5.21 (m, 2H), 4.16 (q, J = 7.1 Hz, 1H), 2.91 (p, J = 6.9 Hz, 1H), 2.64 (dd, J = 13.1, 6.5 Hz, 1H), 2.45 (ddd, J = 27.5, 13.4, 7.3 Hz, 5H), 1.28 (d, J = 6.9 Hz, 9H), 0.98 (d, J = 6.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 173.3, 146.2, 138.1, 137.0, 129.2, 126.4, 126.1, 60.2, 43.2, 38.3, 34.4, 33.7, 28.0, 24.1, 19.9, 14.3.

IR: 3413(s), 3126(s), 1741(w), 1620(w), 1400(s), 1242(w), 1178(w), 1054(w), 915(w), 744(w), 530(w).

HRMS: Calculation for C₁₈H₂₆O₂, [M+Na⁺]⁺: 297.1825, Found: 297.1821.

Comparative Studies of Substituted Alkynes Versus

Acetylene

Ni-catalyzed Alkenylation of Different Alkynes with Aldehydes.

All the following operations were carried out in parallel in four separate flasks respectively.

1) 11.0 mg Ni(cod)₂ (0.04 mmol, 20 mol%), 34.0 mg IPr·HCl (0.08 mmol, 40 mol%) were weighed out and transferred into a Schlenk tube in the glove box.

2) The tube was then sealed with a hollow glass plug and taken out of the glovebox.

3) Putting the tube under nitrogen via 3 vacuum / N_2 backfill cycles and unplugged the hollow glass plug.

4) Add 1.0 mL solvent and KO'Bu 88 µL (0.088 mmol, 44 mol%,1 mol/L in THF).

5) Stir the solution at room temperature until all the solid dissolved (2 min).

6) Add 93 mg (128 μ L, ρ = 0.728 g/mL at 25 °C) triethylsilane (0.8 mmol, 4 equiv) via syringe after the same operation of step 3.

7) Stir the solution at room temperature for 2 min.

8) Add aldehyde (0.2 mmol) and alkyne (0.4 mmol) dissolved in 800 µL THF.

9) Stir the solution at 35 °C, monitored by TLC.

10) After consumption of aldehyde, filtrate the mixture by a short pad of silica gel and wash with EA and was then concentrated under reduced pressure.

11) Add the 4-nitrotoluene as internal for calculation of ¹H NMR yield.

The results were listed above or in Scheme 4a in the main text.

Competition of Ni-Catalyzed Alkenylation among Different Alkynes.

All the following operations were carried out parallelly in four flasks respectively.

1) 11.0 mg Ni(cod)₂ (0.04 mmol, 20 mol%), 34.0 mg IPr·HCl (0.08 mmol, 40 mol%) were weighed out and transferred into a Schlenk tube in the glove box.

2) The tube was then sealed with a hollow glass plug and taken out of the glovebox.

3) Putting the tube under nitrogen via 3 vacuum / N_2 backfill cycles and unplugged the hollow glass plug.

4) Add 1.0 mL solvent and KOtBu 88 µL (0.088 mmol, 44 mol%,1 mol/L in THF).

5) Stir the solution at room temperature until all the solid dissolved (2 min).

6) Add 93 mg (128 μ L, ρ = 0.728g/mL at 25 °C) triethylsilane (0.8 mmol, 4 equiv) via syringe after the same operation of step 3.

7) Stir the solution at room temperature for 2 min.

8) Add the solution of substituted alkynes (0.4 mmol) and 36.4 mg 4-biphenylcarboxaldehyde (0.2 mmol) dissolved in 800μ L saturated solution of acetylene in THF.

9) Stir the solution at 35 °C, monitored by TLC.

10) After completion of reaction, filtrate the mixture by a short pad of silica gel and wash with EA and was then concentrated under reduced pressure.

11) Add the 4-nitrotoluene as internal for calculation of ¹H NMR yield.

The results were listed above or in Scheme 4b in the main text.

Mechanistic Studies of Acetylene

d-1a [1,1'-biphenyl]-4-carbaldehyde-d

The deuterated substrate d-1a was prepared according to reported procedure.^[4]

1) 7.9 mg 2,4,5,6-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) (0.01 mmol, 5 mol%), 8.6 mg sodium benzoate (0.06 mmol, 30 mol%) and 36.4 mg 4-biphenylcarboxaldehyde (0.2 mmol) were weighed out and transferred into a Schlenk tube .

2) Putting the tube under nitrogen via 3 vacuum / N_2 backfill cycles and unplugged the hollow glass plug.

3) Add 60 μ L triisopropylsilanethiol (0.06 mmol, 30 mol%), 160 μ L D₂O (8 mmol, 40 equiv) and 2 mL anhydrous EA.

4) Stir the solution under irradiation of blue LED (425 nm, 10 W) for 6 h.

5) Extract the mixture with EA.

6) Wash the combined organic layer with brine, dry over Na_2SO_4 \circ

7) Concentrated the residue under reduced pressure.

8) Separate the residue by column chromatography with PE:EA = 40:1 ($R_f = 0.4$).

After the above procedures, 33.0 mg *d*-1a was obtained as yellow liquid, yield = 90%, The ratio of 1 ± 1000 m 1000 m 1000

deuteration was determined by ¹H NMR, 95% - D ratio.

¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, *J* = 7.9 Hz, 2H), 7.78 (d, *J* = 8.1 Hz, 2H), 7.72 – 7.59 (m, 2H), 7.48 (dt, *J* = 25.9, 7.4 Hz, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 191.9, 191.8, 191.6, 191.4, 147.2, 139.7, 135.2, 135.2, 135.1, 130.3, 129.0, 128.5, 127.7, 127.4.

Characterization data matched those reported in the literature.^[4]

d-2a ((1-([1,1'-biphenyl]-4-yl)allyl-1-d)oxy)triethylsilane

1) 11.0 mg Ni(cod)₂ (0.04 mmol, 20 mol%), 34.0 mg IPr·HCl (0.08 mmol, 40 mol%) were weighed out and transferred into a Schlenk tube in the glove box.

2) The tube was then sealed with a hollow glass plug and taken out of the glovebox.

3) Putting the tube under nitrogen via 3 vacuum / N_2 backfill cycles and unplugged the hollow glass plug.

4) Add 1.0 mL solvent and KO'Bu 88 µL (0.088 mmol, 44 mol%,1 mol/L in THF).

5) Stir the solution at room temperature until all the solid dissolved (2 min).

6) Add 93mg (128 μ L, ρ =0.728 g/mL at 25 °C) triethylsilane (0.8 mmol, 4 equiv) via syringe after the same operation of step 3.

7) Stir the solution at room temperature for 2 min.

8) Add [1,1'-biphenyl]-4-carbaldehyde-d, *d*-1a, (0.2 mmol) dissolved in 800 μL saturated solution of acetylene in THF (0.55 mol/L).

9) Stir the solution at 35 °C, monitored by TLC.

10) After completion of reaction, filtrate the mixture by a short pad of silica gel and wash with EA and was then concentrated under reduced pressure.

11) Purify the crude via column chromatography with PE ($R_{\rm f}$ =0.4).

After the above procedures, 18.3 mg d-2a was obtained as colorless liquid, yield= 28 %, The ratio of deuteration was determined by ¹H NMR, 93%-D ratio.

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 – 7.56 (m, 4H), 7.50 – 7.42 (m, 4H), 7.39 – 7.33 (m, 1H), 6.01 (dd, *J* = 17.0, 10.2 Hz, 1H), 5.35 (dd, *J* = 17.1, 1.8 Hz, 1H), 5.14 (dd, *J* = 10.2, 1.7 Hz, 1H), 0.98 (t, *J* = 7.9 Hz, 9H), 0.66 (qd, *J* = 7.9, 1.9 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 142.8, 141.5, 141.0, 140.0, 128.7, 127.1, 127.1, 127.0, 126.4, 113.7, 6.8, 4.9.

IR: 3414(s), 3137(s), 1637(m), 1401(s), 1294(w), 1089(w), 1007(w), 846(w), 741(w), 695(w), 618(w), 514(w).

HRMS: Calculation for C₂₁H₂₇DOSi, [M+Na⁺]⁺: 348.1864, Found: 348.1862.

d-2a' (Z)-((1-([1,1'-biphenyl]-4-yl)allyl-3-d)oxy)triethylsilane

1) 11.0 mg Ni(cod)₂ (0.04 mmol, 20 mol%), 34.0 mg IPr·HCl (0.08 mmol, 40 mol%) were weighed out and transferred into a Schlenk tube in the glove box.

2) The tube was then sealed with a hollow glass plug and taken out of the glovebox.

3) Putting the tube under nitrogen via 3 vacuum / N_2 backfill cycles and unplugged the hollow glass plug.

4) Add 1.0 mL solvent and KO'Bu 88 µL (0.088 mmol, 44 mol%,1 mol/L in THF).

5) Stir the solution at room temperature until all the solid dissolved (2 min).

6) Add 93 mg (128 μ L, ρ = 0.737 g/mL at 25 °C) triethylsilane-d (0.4 mmol, 4 equiv) via syringe after the same operation of step 3.

7) Stir the solution at room temperature for 2 min.

8) Add [1,1'-biphenyl]-4-carbaldehyde-d (0.2 mmol) dissolved in 800 μ L saturated solution of acetylene in THF (0.55 mol/L).

9) Stir the solution at 35 °C, monitored by TLC.

10) After completion of reaction, filtrate the mixture by a short pad of silica gel and wash with EA and was then concentrated under reduced pressure.

11) Purify the crude via column chromatography with PE ($R_f = 0.4$).

After the above procedures, 16.0 mg d-2a' was obtained as colorless liquid, yield= 25%, The ratio of deuteration was determined by ¹H NMR, 96%-*D* ratio.

¹**H** NMR (500 MHz, CDCl₃) δ 7.61 – 7.57 (m, 2H), 7.55 (d, *J* = 7.9 Hz, 2H), 7.45 – 7.39 (m, 4H), 7.32 (t, *J* = 7.4 Hz, 1H), 5.96 (ddt, *J* = 10.7, 5.5, 2.3 Hz, 1H), 5.21 (d, *J* = 6.0 Hz, 1H), 5.09 (dd, *J* = 10.1, 1.2 Hz, 1H), 0.94 (t, *J* = 7.9 Hz, 9H), 0.62 (qd, *J* = 7.9, 2.9 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 142.9, 141.5, 141.0, 140.0, 128.7, 127.1, 127.0, 126.4, 113.6, 113.4, 113.2, 75.5, 6.8, 4.9.

IR: 3417(s), 3135(s), 1621(m), 1401(s), 1067(w), 1007(w), 803(w), 737(w), 695(w), 621(w), 514(w). **HRMS:** Calculation for C₂₁H₂₇DOSi, [M+Na⁺]⁺:348.1864 , Found: 348.1861.

Original Spectrum

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

^{20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22} f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

References

- [1] T. Cheng, B. Liu, R. Wu, S. Zhu, Chem. Sci. 2022, 7604-7609.
- [2] W. Su, T.-T. Wang, X. Tian, J.-R. Han, X.-L. Zhen, S.-M. Fan, Y.-X. You, Y.-K. Zhang, R.-X. Qiao, Q. Cheng, S. Liu, Org. Lett. 2021, 23, 9094-9099.
- [3] M. Lafrance, M. Roggen, E. M. Carreira, Angew. Chem. Int. Ed. 2012, 51, 3470-3473.
- [4] Y. Zhang, P. Ji, Y. Dong, Y. Wei, W. Wang, ACS Catalysis 2020, 10, 2226-2230.