Supporting information for

Amides as Modifiable Directing Groups in Electrophilic Borylation

S. A. Iqbal ${ }^{a \ddagger}$, M. Uzelac ${ }^{a \ddagger}$, I. Nawazab ${ }^{\text {ab }}$, Z. Wang ${ }^{\text {a }}$, T. H. Jones ${ }^{\text {a }}$, K. Yuan ${ }^{\text {a }}$, C. R. P. Millet ${ }^{\text {a }}$, G. S Nichol, ${ }^{\text {a }}$ G. Abbas Chotana ${ }^{\text {b }}$ and M. J. Ingleson*a
a School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
b. Department of Chemistry and Chemical Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan

Contents

1 General considerations 2
2 Amide Synthesis 3
3 Borylation - reduction of 2-phenylacetamides 10
4 Borylation-Reduction of Aniline Derivatives 30
5 Borylation of Carbazole Compounds: 43
6 Double Borylation - reduction studies 50
7 Synthesis and characterisation of B,N-PAH derivatives 64
7.1 Two step synthesis of N-pivaloyl-7-naphthyl-1,2,3,4-tetrahydroquinoline (Compound 26-THQ) 64
7.2 Directed borylation of N-pivaloyl-7-naphthyl-1,2,3,4-tetrahydroquinoline (27-THQ) 67
7.3 Reduction of 27-THQ with triethylsilane to afford 28-THQ 72
7.4 Isolation of 29-THQ 74
7.5 Synthesis of N-pivaloyl-2-methyl-5-naphthylaniline (26-Me) 79
7.6 Directed borylation of N-pivaloyl-2-methyl-5-naphthylaniline (27-Me) 81
7.7 Reduction of 27-Me and isolation of 29-Me. 86
8 X-Ray Crystallography 92
9 Computational details 97
10 References 111

1 General considerations

Unless otherwise indicated all manipulations were conducted under inert conditions either using standard Schlenk techniques or in a MBraun UniLab glovebox (<0.1 ppm H $\mathrm{H}_{2} \mathrm{O} / \mathrm{O}_{2}$). All chemicals were purchased from commercial sources and used as received without further purification unless otherwise stated. BBr_{3} solution (1 M in DCM) was transferred and stored in J Young tap fitted ampoules. Solvents were dried using an Innovative Technology SPS system and stored over activated molecular sieves. NMR spectra were recorded on Bruker Avance III 400 MHz and 500 MHz spectrometers. Chemical shifts are reported as dimensionless δ values and are frequency referenced relative to residual protio- impurities in the NMR solvents for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ respectively, while ${ }^{11} \mathrm{~B}$ and ${ }^{19} \mathrm{~F}$ shifts are referenced relative to external $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ and hexafluorobenzene, respectively. Coupling constants J are given in Hertz (Hz) as positive values regardless of their real individual signs. The multiplicity of the signals is indicated as " s ", " d ", " t " " q " "pent", "sept" or " m " for singlet, doublet, triplet, quartet, pentet, septet or multiplet, respectively.

Column chromatography was performed on 40-63 $\mu \mathrm{m}$ silica gel manually or using a CombiFlash NextGen 300+ Autocolumn system. Electrospray ionization (ESI) measurements were performed at the Scottish Instrumentation and Resource Centre for Advanced Mass Spectrometry (SIRCAMS) based in the School of Chemistry at the University of Edinburgh. High resolution mass spectra were recorded on a Bruker Daltonics 12T SolariX Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FT-ICR-MS). Elemental analyses were carried out by Elemental Analysis Ltd., measured in duplicate.

2 Amide Synthesis

Amide synthesis

Amides $\mathbf{S 1 a} \mathbf{- d},{ }^{[1]} \mathbf{S} \mathbf{2}^{[1]}$ and $\mathbf{S 3}{ }^{[1]}$ and $\mathbf{S} \mathbf{S}^{[2]}$ were prepared according to previously reported procedures.

Synthesis of \mathbf{N}-acylated substrates: General procedure 1

To an ampoule, triethylamine (1.5 eq) was added to the solution of respective amine (1 eq) in dry DCM. To this stirred solution was added dropwise the acyl chloride (1.2 eq) at $0^{\circ} \mathrm{C}$ and the mixture was left stirring at room temperature (for up to two days). Upon reaction completion (monitored by TLC), all volatiles were removed under vacuum. The reaction mixture was extracted with DCM ($\times 3$), and combined organic fractions were washed with brine, dried over MgSO_{4}, filtered, concentrated under vacuum, and purified by column chromatography to afford the desired product.

Synthesis of \mathbf{N}-acylated substrates: General procedure 2

To an ampoule, sodium hydride in mineral oil (1.5 eq) was added to the solution of the amine (1 eq) in dry THF (20 mL) and stirred for 10 minutes at $0^{\circ} \mathrm{C}$ on an ice bath. The clear solution obtained was transferred to a solution of acyl chloride (1.2 eq) in dry THF (10 mL) at $0^{\circ} \mathrm{C}$ and allowed to stir at room temperature. On completion (monitored by TLC), all volatiles were removed under vacuum. The reaction mixture was extracted with $\operatorname{DCM}(\times 3)$, and combined organic fractions were washed with brine, dried over MgSO_{4}, filtered, concentrated under vacuum, and purified by column chromatography to afford the product.

N,N'-(1,4-phenylene)bis(2,2-dimethylpropanamide)

The title compound was prepared following general procedure 1 using p-phenylenediamine (1.08 g , $10 \mathrm{mmol}, 1 \mathrm{eq}), \mathrm{Et}_{3} \mathrm{~N}(3.3 \mathrm{~mL}, 24 \mathrm{mmol}, 2.4 \mathrm{eq})$, and DCM (40 mL). To a stirred solution was then added pivaloyl chloride ($2.7 \mathrm{~mL}, 22 \mathrm{mmol}, 2.2 \mathrm{eq}$). The crude reaction mixture obtained was purified by column chromatography on silica gel (petroleum ether/ ethyl acetate $=9: 1$) to afford the product as a white crystalline solid ($2.6 \mathrm{~g}, 94 \%$). [Acc. Mass] Calculated for $[\mathrm{M}+\mathrm{H}]^{+}: 277.1924$, found $[\mathrm{M}+\mathrm{H}]^{+}$ 277.1911.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 7.49$ (s, 4H), 7.29 (br s, 2H), 1.31 (s, 18H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 176.6,134.4,120.7,39.7,27.7$.

Figure $\mathbf{S 1} .^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

Figure S2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum in CDCl_{3}.

N,N'-(naphthalene-1,5-diyl)bis(2,2-dimethylpropanamide)

The title compound was prepared following general procedure 1 using 1,5-diamminonapthalene (1.58 $\mathrm{g}, 10 \mathrm{mmol}, 1 \mathrm{eq}), \mathrm{Et}_{3} \mathrm{~N}(3.3 \mathrm{~mL}, 24 \mathrm{mmol}, 2.4 \mathrm{eq})$, and $\mathrm{DCM}(40 \mathrm{~mL})$. To a stirred solution was then added pivaloyl chloride ($2.7 \mathrm{~mL}, 22 \mathrm{mmol}, 2.2 \mathrm{eq}$). Upon completion, monitored by TLC, the reaction mixture was evaporated, and washed several times with water, to remove triethylammonium salt to get the pure product as a white solid ($2.71 \mathrm{~g}, 83 \%$). [Acc. Mass] Calculated for $[\mathrm{M}+\mathrm{H}]^{+}: 327.20887$, found $[\mathrm{M}+\mathrm{H}]^{+}$327.20670.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 8.04$ (d, J=7.4 Hz, 2H), 7.80 (br s, 2H), 7.63 (d, J=8.5 Hz, 2H), 7.53
 120.9, 117.5, 40.1, 28.0.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

Figure S4. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum in CDCl_{3}.

1-(9H-carbazol-9-yl)octan-1-one (1c)

The title compound was prepared following general procedure 2 using carbazole ($836 \mathrm{mg}, 5 \mathrm{mmol}, 1$ eq), 90 \% dry suspension of sodium hydride in mineral oil ($180 \mathrm{mg}, 7.5 \mathrm{mmol}, 1.5 \mathrm{eq}$), and dry THF (20 mL). The stirred solution was then added to the solution of octanoyl chloride ($1.0 \mathrm{~mL}, 6 \mathrm{mmol}, 1.2 \mathrm{eq}$) in dry THF (10 mL). The crude product obtained was purified by column chromatography on silica gel (petroleum ether) to afford the product as a white crystalline solid ($661 \mathrm{mg}, 45 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 8.23(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.02-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.39$ (td, J=7.5, $0.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.17-3.12 (m, 2H), 1.97-1.90 (m, 2H), 1.54-1.47 (m, 2H) 1.44-1.37 (m, 2H), 1.36$1.29(\mathrm{~m}, 4 \mathrm{H}), 0.93-0.88(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 173.6,138.7,127.4,126.5$, 123.6, 119.9, 116.6, 39.4, 31.9, 29.4, 29.3, 24.9, 22.8, 14.2.

Analytical data are in accordance with the literature report. ${ }^{[3]}$

Figure $\mathbf{S 5}^{1}{ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

Figure S6. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum in CDCl_{3}.

3 Borylation - reduction of 2-phenylacetamides

Ortho borylation of the phenyl acetylamides to generate $\mathbf{1}\left[\mathrm{BBr}_{4}\right], 4$ and $\mathbf{8}$ was conducted according to our previously reported procedure. ${ }^{1}$

Reduction of $1\left[\mathrm{BBr}_{4}\right]$: in-situ monitoring

To an NMR tube fitted with a J. Young valve was added $1\left[\mathrm{BBr}_{4}\right]$ ($0.1 \mathrm{mmol}, 0.059 \mathrm{~g}$) in a glove box. To the tube was added anhydrous DCE (1 mL), the tube was sealed and shaken to form a brown solution. To this tube was added $\mathrm{SiHEt}_{3}(0.25 \mathrm{mmol}, 40 \mu \mathrm{~L})$ to form a colourless solution. The reaction mixture was monitored at intervals at room temperature and at $60^{\circ} \mathrm{C}$.

Figure S7. Top, stacked in-situ ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ (inset) NMR spectra showing conversion from $\mathbf{1}\left[\mathrm{BBr}_{4}\right]$ to $\mathbf{2 a} / \mathbf{3}$ and then completely to $\mathbf{2 a}$ in dichloroethane. Bottom, full spectrum of the same monitoring reactions - note growth and disappearance of resonances at 3.1 ppm for the diastereotopic CH_{2} protons in 3 .

Altering the silane source (which had negligible effect on selectivity).

Table S1: Comparison between various hydrosilanes. Number of equivalents (n) and time are reported as those where the best results were obtained. All reactions conducted at room temperature. Ratio of products determined by in-situ ${ }^{1} \mathrm{H}$ NMR spectroscopy. $\mathbf{S M}=$ =starting material. $\mathrm{HA}=$ hemiaminal (3). AB=amine-borane (2a).

Silane	n	Time	Conversion (\%) $1\left[\mathrm{BBr}_{4}\right]: 3: 2 \mathrm{ad}$ $\mathrm{SM}: \mathrm{HA}: \mathrm{AB}$
SiHEt ${ }_{3}$	2	3 h	$0: 66: 34$
	1.6	1 h	$30: 52: 19$
SiHPh_{3}	1	10 min	$69: 24: 7$
	$2\left[^{\mathrm{b}]}\right.$	6 h	$0: 60: 40$
$\mathrm{SiH}_{2} \mathrm{Ph}_{2}$	1	2 h	$0: 66: 34$
$\mathrm{SiHMe}_{2} \mathrm{Ph}$	2	3 h	$0: 64: 36$

[a] Conversion ratios stated at point selectivity could be conclusively determined by 1 H NMR spectroscopy. [b] $2^{\text {nd }}$ equivalent added after stirring with 1 equivalent for 16 h .

Isolation of amine boranes

Compound 2a

Compound $1\left[\mathrm{BBr}_{4}\right](0.059 \mathrm{~g}, 0.1 \mathrm{mmol})$ was added to an NMR tube fitted with a J. Young valve. The solid was dissolved in $\mathrm{DCM}\left(0.7 \mathrm{~mL}\right.$) and $\mathrm{SiHEt}_{3}(2.5 \mathrm{eq} .40 \mu \mathrm{~L}$) was added, the tube was sealed and heated to $60{ }^{\circ} \mathrm{C}$ for 16 h during which a white precipitate formed. The precipitate was removed by filtration of the reaction mixture through a $0.22 \mu \mathrm{~m}$ filter syringe and the product extracted from the remaining solids with DCM (1 mL). The combined filtrates were concentrated under vacuum and the product dried to give $\mathbf{2 a}(0.026 \mathrm{~g}, 83 \%)$ as a white solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.77(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.07-6.99(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{t}$, J $=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{~s}, 6 \mathrm{H}) .{ }^{11} \mathbf{B} \operatorname{NMR}\left(128 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 4.5 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(126$ $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 135.3,133.2,128.2,127.4,126.8,58.1,49.3,27.5$. [Acc. Mass] calcd for $[\mathrm{M}]=\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{BBr}_{2} \mathrm{~N}: 316.9581$, found 316.9592.

Compound 2a: 2-step-1-pot synthesis

Compound S1 ($0.024 \mathrm{~g}, 0.15 \mathrm{mmol})$ was added to an NMR tube fitted with a J. Young valve. The solid was dissolved in DCM (0.4 mL) and BBr_{3} (1 M in DCM, 2.5 eq., 0.38 mL) was added. The tube was sealed, and the reaction mixture heated at $60^{\circ} \mathrm{C}$ for 48 h . The solvents/volatiles were removed under vacuum and the product dried. The borylated species was dissolved in DCM (1.1 mL) and $\operatorname{SiHEt}_{3}(2.5 \mathrm{eq} ., 60 \mu \mathrm{~L}$) was added, the tube was sealed and heated to $60^{\circ} \mathrm{C}$ for 16 h during which a white precipitate formed. The precipitate was removed by filtration of the reaction mixture through a $0.22 \mu \mathrm{~m}$ filter syringe and the product extracted from the remaining solids with DCM (1 mL). The combined filtrates were concentrated under vacuum and the product dried to give $\mathbf{2 a}(0.039 \mathrm{~g}, 81 \%)$ as a white solid.

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 a}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S9. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{2 a}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S10. ${ }^{11} \mathrm{~B}$ NMR spectrum of compound $\mathbf{2 a}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Compound 2b

To an NMR tube fitted with a J-Youngs valve was added N,N-dimethyl-2-phenylacetamide (0.024 g, $0.15 \mathrm{mmol})$ which was dissolved in DCM (0.4 mL). $\mathrm{BBr}_{3}(1 \mathrm{M}$ in $\mathrm{DCM}, 0.38 \mathrm{~mL}, 0.375 \mathrm{mmol})$ was added and the tube was sealed and heated at $60^{\circ} \mathrm{C}$ for 16 hours. The solvents were removed under vacuum and the product dried. The solid was dissolved in DCM (1.1 mL) and $\operatorname{SiHEt}_{3}(60 \mu \mathrm{~L}, 0.375$ mmol) was added. The tube was sealed and heated at $60^{\circ} \mathrm{C}$ for 16 hours. White precipitate formed, which was removed by filtration through $0.22 \mu \mathrm{~m}$ filter syringe. The tube was extracted by DCM (1 mL) and all solutions were combined. The solution was dried under vacuum to give the desired product ($0.046 \mathrm{~g}, 92 \%$) as a white solid without any further purification.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ $-3.57(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{~s}, 6 \mathrm{H}), 3.04(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR ($\left.160 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 4.7. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.1,133.2,131.0,129.6,126.9,57.8,49.0,25.5,19.7$. [Acc. Mass] calcd for [M] $=\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{BBr}_{2} \mathrm{~N}$: 330.97371, found 330.97484.

Figure $\mathbf{S 1 1} .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 b}$ in CDCl_{3}.

Figure S12．${ }^{11} \mathrm{~B}$ NMR spectrum of compound $\mathbf{2 b}$ in CDCl_{3} ．

Figure $\mathbf{S 1 3} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{2 b}$ in CDCl_{3} ．

Compound 2c

To an ampule fitted with a J-Youngs valve was added 4-fluorophenylacetyl chloride ($0.27 \mathrm{~g}, 1.5$ mmol) which was dissolved in DCM (7.5 mL). $\mathrm{BBr}_{3}(0.36 \mathrm{~mL}, 3.75 \mathrm{mmol})$ was added and the ampule was sealed and heated at $60^{\circ} \mathrm{C}$ for 6 days (note borylation times can be reduced using higher boiling solvents and higher temperatures). The solvents were removed under vacuum and the product dried. The solid was dissolved in DCM (11 mL) and $\mathrm{SiHEt}_{3}(0.60 \mathrm{~mL}, 3.75 \mathrm{mmol})$ was added. The ampule was sealed and heated at $60^{\circ} \mathrm{C}$ for 16 hours. White precipitate formed which was removed by filtration through a $0.22 \mu \mathrm{~m}$ filter syringe. The ampule was extracted by DCM ($3 \times 2 \mathrm{~mL}$) and all solutions were combined. The solution was dried under vacuum and the product was washed with pentane (5 mL stirred for 30 minutes). The pentane was decantedand the remaining solid was dried to give a pale-yellow product ($0.427 \mathrm{~g}, 85 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52(\mathrm{dd}, \mathrm{J}=10.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{td}, \mathrm{J}=8.4,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.64(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{t}, \mathrm{J}=6.5,2 \mathrm{H}), 3.05(\mathrm{~s}, 6 \mathrm{H}) .{ }^{11} \mathrm{~B} \mathbf{N M R}\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.9 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl ${ }_{3}$) $\delta 162.0(\mathrm{~d}, \mathrm{~J}=245.1 \mathrm{~Hz}), 128.9(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}), 127.7$ (d, J=2.9 Hz), 120.9 (d, J = 20.4 Hz), 115.5 (d, J = 22.2 Hz), 57.9, 49.1, 26.7. [Acc. Mass] calcd for [M]= $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BBr}_{2} \mathrm{FN}$:, found. 334.94863 , found 334.94784

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 c}$ in CDCl_{3}.

Figure $\mathbf{S 1 5}$. ${ }^{11} \mathrm{~B}$ NMR spectrum of compound $\mathbf{2 c}$ in CDCl_{3}.

Figure S16. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{2 c}$ in CDCl_{3}.

Figure S17. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of compound $\mathbf{2 c}$ in CDCl_{3}.

Compound 2d

To an NMR tube fitted with a J-Youngs valve was added 2-(3-bromophenyl)-N,N-dimethylacetamide $(0.030 \mathrm{~g}, 0.125 \mathrm{mmol})$ which was dissolved in DCM (0.35 mL). BBr_{3} (1 M in DCM, $0.5 \mathrm{~mL}, 0.5 \mathrm{mmol}$) was added and the tube was sealed and heated at $60^{\circ} \mathrm{C}$ for 5 days. The solvents were removed under vacuum and the product dried. The solid was dissolved in DCM (1.1 mL) and $\operatorname{SiHEt}_{3}(50 \mu \mathrm{~L}$, 0.31 mmol) was added. The tube was sealed and heated at $60^{\circ} \mathrm{C}$ for 16 hours. White precipitate formed which was removed by filtration through a $0.22 \mu \mathrm{~m}$ filter syringe. The tube was extracted by DCM (1 mL) and all solutions were combined. The solution was dried under vacuum and the solid was washed by pentane (5 mL and stirred for 30 minutes). The pentane solution was decanted and the remaining solid was dried to give a pale-yellow product ($0.032 \mathrm{~g}, 64 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{dd}, \mathrm{J}=2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.64(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{~s}, 6 \mathrm{H}) .{ }^{11} \mathrm{~B} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.2 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}) $\delta 136.9,134.2,130.0,129.6,122.1,57.4,49.0,26.9$. [Acc. Mass] calcd for $[\mathrm{M}]=\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BBr}_{3} \mathrm{~N}$: 394.86857, found 394.86937.

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 2d in CDCl_{3}.

Figure S19. ${ }^{11} \mathrm{~B}$ NMR spectrum of compound $\mathbf{2 d}$ in CDCl_{3}.

Figure S20. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of compound 2d in CDCl_{3}.

Compound 5

Compound 4 ($0.090 \mathrm{~g}, 0.15 \mathrm{mmol}$) was added to an NMR tube fitted with a J. Young valve. To the solid was added DCM (1.7 mL) to form a suspension followed by $\mathrm{SiHEt}_{3}(2.5 \mathrm{eq} ., 60 \mu \mathrm{~L})$ which resulted in a clear solution. The tube was sealed and heated to $60{ }^{\circ} \mathrm{C}$ for 16 h during which a white precipitate formed. The precipitate was removed by filtration of the reaction mixture through a $0.22 \mu \mathrm{~m}$ filter syringe and the product extracted from the remaining solids with DCM (1 mL). The combined filtrates were concentrated under vacuum and the product dried to give $5(0.0463 \mathrm{~g}, 89 \%)$ as a white solid. (Crystals suitable for X-ray diffraction studies were grown by slow evaporation of a DCM/pentane solution of 5).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.81(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.17(\mathrm{~m}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 3.04(\mathrm{~s}, 6 \mathrm{H}), 1.45$ (s, 6H). ${ }^{11}$ B NMR ($128 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 5.0 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$ 143.1, 134.6, 128.9, 126.6, $125.42,70.8,50.6,36.2,33.4$. [Acc. Mass]. calcd for [M] $=\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{BBr}_{2} \mathrm{~N}$: 344.9894, found 344.9894. Product is bench stable in the solid-state but decomposes slowly when left in a wet $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution for >24 h

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S22. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{5}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S23. ${ }^{11} \mathrm{~B}$ NMR spectrum of compound $\mathbf{5}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. Note trace impurity at ca. +30 ppm is assigned to the product from reaction with water, presumably the boronic acid derived from hydrolysis of the $\mathrm{B}-\mathrm{Br}$ bonds.

Compound 9

Compound 8 ($0.320 \mathrm{~g}, 0.5 \mathrm{mmol}$) was added to an ampoule fitted with a J. Young valve. To the ampoule was added DCM (5 mL) and the suspension stirred while $\mathrm{SiHEt}_{3}(0.4 \mathrm{~mL}, 5 \mathrm{eq}$.) was added dropwise. The ampoule was sealed and stirred at $60^{\circ} \mathrm{C}$ for 16 h . The solvents/volatiles were removed under vacuum and the product dried to give a clear oil. The oil was redissolved in DCM (6 mL) and pentane $(20 \mathrm{~mL})$ was added slowly to induce precipitation. The precipitate was removed by filtration through a $0.22 \mu \mathrm{~m}$ syringe filter and the filtrate concentrated and dried under vacuum to give compound 9 ($0.092 \mathrm{~g}, 84 \%$) as a clear oil.
${ }^{1} \mathbf{H}\left\{{ }^{11} \mathbf{B}\right\}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.97(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{hept}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.55$ (br s, 2H), $1.36(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.29(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{11} \mathrm{~B} \operatorname{NMR}\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-10.41\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{BH}}=\right.$ 90.05 Hz). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 138.8,132.4,125.9,125.4,124.3,59.4,51.0,31.4,19.3$, 18.7. [Acc. Mass]. calcd for [M]= $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{BN}$: 217.1996, found 217.1998.

Figure S24. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 9 in CDCl_{3}. The inset shows the broad $\mathrm{B}-\mathrm{H}$ resonances overlapped with the aliphatic resonances.

Compound 9
${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR CDCl_{3}

Figure S25. ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR spectrum of compound $\mathbf{9}$ in CDCl_{3}.

Compound 9
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR
CDCl_{3}

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NM}$
CDCl

$$
\begin{aligned}
& \left.{ }^{1} \mathrm{H}\right\} \text { NMR } \\
& \mathrm{DCl}_{3}
\end{aligned}
$$

Figure S26. $\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{9}$ in CDCl_{3}.

©
Compound 9 ${ }^{11} \mathrm{~B}$ NMR CDCl_{3}

Figure S27. ${ }^{11} \mathrm{~B}$ NMR spectrum of compound 9 in CDCl_{3}.

Compound 7

1[BBr_{4}] ($0.058 \mathrm{~g}, 0.1 \mathrm{mmol}$) was added to an NMR tube fitted with a J. Youngs valve. The solid was dissolved in DCM (0.7 mL) and $\mathrm{SiHEt}_{3}(2.5 \mathrm{eq} .40 \mu \mathrm{~L})$ added, the tube was sealed and rotated at room temperature for 2.5 h after which a solution of $\mathrm{K}_{2} \mathrm{CO}_{3}\left(0.07 \mathrm{~g}, 5 \mathrm{eq}\right.$.) in $\mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{~mL})$ was added, the tube was shaken vigorously and rotated at room temperature for 16 h . The product was extracted with DCM. The organic fraction was dried over MgSO_{4} and concentrated in vacuo. Yield determination versus mesitylene added as an internal standard showed 26% yield. Column chromatography on silica gel (EtOAc:PET) gave 7 ($0.002 \mathrm{~g}, 14 \%$) as a clear oil. Analytical data for 7 consistent with the literature report. ${ }^{[4]}$

Figure S28. Crude ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7}$ in CDCl_{3}. Inset the ${ }^{11} \mathrm{~B}$ NMR spectrum for $\mathbf{7}$.

2-(2-(dimethylamino)ethyl)phenol (Compound 6)

To an oven-dried ampoule 2-(2-(dibromoboraneyl)phenyl)- N, N-dimethylethan-1-amine ($10 \mathrm{mg}, 0.03$ $\mathrm{mmol}, 1 \mathrm{eq})$, and dry THF (0.1 mL) was added. To which $\mathrm{NaBO}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}(14 \mathrm{mg}, 0.09 \mathrm{mmol}, 3 \mathrm{eq})$ was added followed by water (0.1 mL). The reaction mixture was allowed to stir at room temperature overnight. The mixture was dried over MgSO_{4}, filtered, and NMR spectra were taken. The NMR data showed quantitative conversion into desired phenol product as the only species present. [Acc. Mass] Calculated for $[\mathrm{M}+\mathrm{H}]^{+}: 166.1226$, found $[\mathrm{M}+\mathrm{H}]^{+}$166.1220.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 7.12$ (td, J=7.7, 1.7 Hz, 1H), 7.01 (dd, J=7.4, 1.7 Hz, 1H), 6.89 (dd, J=8.0, 1.2 Hz, 1H), 6.75 (td, J=7.3, 1.2 Hz, 1H), 2.91 (dd, J=6.8, 4.7 Hz, 2H), 2.81 (dd, J=6.8, 4.7 Hz, 2H), 2.51 (s, 6H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\mathrm{CDCl}_{3}, 298 \mathrm{~K}$): δ 156.8, 130.9, 128.6, 126.3, 119.4, 117.6, 59.7, 44.5, 30.7.

$\begin{array}{llllllllllllllllllll}8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5\end{array}$

Figure S29. ${ }^{1} \mathrm{H}$ NMR spectrum of 6 in CDCl_{3} - without any additional purification.

Figure S30. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 6 without any additional purification in CDCl_{3}.

4 Borylation-Reduction of Aniline Derivatives

The synthesis of ortho borylated anilines, $\mathbf{1 0}-\mathbf{B r}$ and $\mathbf{S 5}$, was based on our previously reported procedure. ${ }^{2}$

$10-\mathrm{Br}$

S5

Attempted direct reduction of $10-\mathrm{Br}$
Multiple attempts were made to reduce 10-Br directly, this involved varying the equivalents of silane and reaction duration, however, unreacted amide was always present in these reactions (vide infra). The addition of an internal standard $\left(\mathrm{CH}_{2} \mathrm{Br}_{2}\right)$ enabled estimation of conversions in these reactions. Note attempts to isolate 11-Pin and 12-Pin from silane by-product was not possible in our hands.

Figure $\mathbf{S 3 1}$. In -situ ${ }^{1} \mathrm{H}$ NMR spectrum of the crude reaction mixture from the reduction of $\mathbf{1 0 - B r}$.

Figure S32. In-situ ${ }^{1} \mathrm{H}$ NMR spectrum of the crude reaction mixture from the reduction of $\mathbf{1 0 - B r}$ using a large excess of hydrosilanes and long reaction time.

$\stackrel{\rightharpoonup}{\sigma}$
$\stackrel{\infty}{\infty}$

$\underset{\text { volatiles }}{\text { removed }} \xrightarrow[\text { DCM }, \text { rt }, 4 \mathrm{~h}]{5 \mathrm{eq} \text { pinacol/ } \mathrm{NE}_{3}}$ removed
volatiles $\mathrm{NaHCO}_{3} / \mathrm{EtOAc}$

Figure S33. In-situ ${ }^{1} \mathrm{H}$ NMR spectrum of the crude reaction mixture (with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ added) from the reduction of $10\left[\mathrm{BBr}_{4}\right]$.

```
~M
```


Figure S34. In-situ ${ }^{11} \mathrm{~B}$ NMR spectrum of the crude reaction mixture (with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ added) from the reduction of $10\left[\mathrm{BBr}_{4}\right]$.

Compound 11-Dan

$10-\mathrm{Br}$ ($0.035 \mathrm{~g}, 0.1 \mathrm{mmol}$) was added to an ampoule fitted with a J. Young valve. The ampoule was evacuated and refilled with N_{2}. To this was added DCM $(2 \mathrm{~mL})$ followed by $\mathrm{BBr}_{3} 1 \mathrm{M}$ in heptanes (0.1 $\mathrm{mmol}, 0.1 \mathrm{~mL}$) - to convert it to $\mathbf{1 0}\left[\mathrm{BBr}_{4}\right]$. To the stirring solution was added $\mathrm{SiHEt}_{3}(0.3 \mathrm{mmol}, 48 \mu \mathrm{~L}$), the ampoule was sealed and stirred overnight at room temperature. The volatiles were removed, and the crude intermediate was dried under vacuum. To the ampoule was added a biphasic solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{mmol}, 0.069 \mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{O}(0.8 \mathrm{~mL})$ and 1,8-diaminonaphtalene ($0.3 \mathrm{mmol}, 0.047 \mathrm{~g}$) in DCM (0.8 $\mathrm{mL})$. The solution was stirred vigorously for 16 h . The contents of the reaction were diluted with DCM $(20 \mathrm{~mL})$ and dried over MgSO_{4}, filtered and volatiles were removed in vacuo and the yield was calculated by NMR spectroscopy to be 44% using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as an internal standard. The crude product was purified by flash chromatography on silica-gel (DCM/PET) to give the pure product ($0.008 \mathrm{~g}, 24 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(\mathrm{dd}, J=7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=8.3,7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.06 (dd, J = 8.3, 1.0 Hz, 2H), $6.79(\mathrm{bs}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.42-6.33(\mathrm{~m}, 2 \mathrm{H}), 6.18(\mathrm{~s}, 2 \mathrm{H}), 4.15(\mathrm{~s}, 1 \mathrm{H})$, $2.91(\mathrm{~s}, 2 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) .{ }^{11} \mathbf{B}$ NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.0 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.3$, 141.1, 136.5, 133.4, 131.5, 127.8, 120.0, 118.1,117.8, 110.9, 106.2, 56.3 31.7, 28.1. [Acc. Mass]. calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BN}_{3}=329.2058$, found $=329.2066$.

Figure S35. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 11-Dan in CDCl_{3}.

Figure S36. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound 11-Dan in CDCl_{3}.

Compound 11-Dan
${ }^{11} \mathrm{~B}$ NMR
CDCl_{3}
$\stackrel{\otimes}{\underset{\sim}{\oplus}}$

Figure S37. ${ }^{11} \mathrm{~B}$ NMR spectrum of compound 11-Dan in CDCl_{3}.

Compound 12

Note in this case, overnight with 3 eq. of hydrosilanes is sufficient to reduce the amide in the neutral species, $\mathbf{S 5}$. Though the borenium analogue of $\mathbf{S 5}$ (formed by addition of an additional equivalent of BBr_{3}) undergoes full reduction of the amide to the amine within 2 h at room temperature using 2 equiv. HSiEt_{3}, indicating the borenium is still more reactive.

Compound $\mathbf{S 5}$ ($0.108 \mathrm{~g}, 0.3 \mathrm{mmol}$) was added to an ampoule fitted with a J. Young valve. The ampoule was evacuated and refilled with N_{2}. To this was added DCM (5 mL) followed $\mathrm{SiHEt}_{3}(0.9 \mathrm{mmol}, 0.15$ mL) dropwise, the ampoule was sealed and stirred overnight at room temperature. The volatiles were removed, and the crude intermediate was dried under vacuum. The residue was redissolved in DCM $(4 \mathrm{~mL})$ and a biphasic solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(0.15 \mathrm{mmol}, 0.207 \mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and 1,8-diaminonaphtalene $(0.9 \mathrm{mmol}, 0.14 \mathrm{~g})$ in DCM (1 mL). The solution was stirred vigorously for 16 h . The contents of the reaction were diluted with $\mathrm{DCM}(20 \mathrm{~mL})$ and dried over MgSO_{4}, filtered and volatiles were removed in vacuo and the yield was calculated by NMR to be 76% using 1,2-dibromoethane as an internal standard. The crude product was purified by flash chromatography on silica-gel (DCM/PET) to give the pure product ($0.023 \mathrm{~g}, 22 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(\mathrm{dd}, \mathrm{J}=7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (dd, J = 8.3, $7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.08 (td, $J=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.04 (dd, J = 8.3, 1.0 Hz, 2H), $6.99(\mathrm{~s}, 2 \mathrm{H}), 6.39$ (dd, J = 7.3, 1.0 Hz, 2H), $3.04(\mathrm{~s}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}) .{ }^{11} \mathbf{B}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.7 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}) $\delta 161.0,141.8,136.6,133.4,131.0,127.8,122.6,121.0,120.1,117.4,105.7$, 67.7, 50.0, 34.2, 29.0. [Acc. Mass]. calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{BN}_{3}=343.2214$, found $=343.2226$.

Figure S38. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 2}$ in CDCl_{3}.

Figure S39. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{1 2}$ in CDCl_{3}.

Compound 12-Dan
${ }^{11} \mathrm{~B}$ NMR CDCl_{3}

Figure S40. ${ }^{11} \mathrm{~B}$ NMR spectrum of compound $\mathbf{1 2}$ in CDCl_{3}.

Compound 13

N-benzyl-2-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)aniline (3c)

Compound 13 was prepared using benzanilide ($138 \mathrm{mg}, 0.7 \mathrm{mmol}, 1 \mathrm{eq}$) dissolved in DCM (0.5 mL). To the stirred solution was added $\mathrm{BBr}_{3}(1 \mathrm{M}$ solution in DCM$)(0.8 \mathrm{~mL}, 0.8 \mathrm{mmol}, 1.1 \mathrm{eq})$ and heated at 60 ${ }^{\circ} \mathrm{C}$ (in a sealed ampoule) for 18 h . The white suspension obtained was evaporated and dried under vacuum to get a dry solid. Dry DCM (1 mL) and $\mathrm{Et}_{3} \mathrm{SiH}(0.3 \mathrm{~mL}, 1.5 \mathrm{mmol}, 2.2 \mathrm{eq})$ were then added and the mixture was stirred at room temperature overnight. The clear solution obtained was evaporated and dried under a vacuum, to which the biphasic solution of DAN ($133 \mathrm{mg}, 0.8 \mathrm{mmol}, 1.2 \mathrm{eq}$ in 0.5 mL DCM) and $\mathrm{K}_{2} \mathrm{CO}_{3}(676 \mathrm{mg}, 4.9 \mathrm{mmol}$, 7 eq in 1 mL H O) was added and stirred at room temperature overnight. MgSO_{4} was added to the reaction mixture diluted with DCM and left for an hour. The mixture was filtered, and volatiles removed under vacuum to get crude product which was purified by column chromatography on silica gel (petroleum ether/ DCM =8:2) to get a maroon sticky solid (120 $\mathrm{mg}, 49 \%)$. [Acc. Mass] Calculated for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~B}_{1} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 350.1823$, found $[\mathrm{M}+\mathrm{H}]^{+} 250.1827$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 7.41-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{dd}, \mathrm{J}=8.3,7.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.06 (dd, J=8.3, 1.0 Hz, 2H), 6.86-6.81 (m, 1H), $6.70(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{dd}, J=7.2,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.10$ (br s, 2H), 4.47 (br s, 1H), 4.38 (s, 2H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 151.2,141.0,139.3$, $136.4,133.3,131.3,128.9,127.7,127.5,120.0,118.3,118.3,118.1,112,106.2,99.0 .{ }^{11}$ B NMR (160 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta 30.1$.

Figure S41. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 3}$ in CDCl_{3}.

Figure S42. $\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 3}$ in CDCl_{3}.

Figure S43. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{3 c}$ in CDCl_{3}.

Attempted reduction of Compound 14 using literature conditions ${ }^{[5]}$

To a dried NMR tube fitted with a J. Young valve was added zinc acetate ($10 \mathrm{~mol} \%, 2 \mathrm{mg}$), dry THF (0.5 mL) and (EtO$)_{3} \mathrm{SiH}(55 \mu \mathrm{~L}, 3 \mathrm{eq})$. Compound $14(32 \mathrm{mg}, 0.1 \mathrm{mmol}, 1 \mathrm{eq})$ was then added and the tube rotated at room temperature overnight. NMR spectra taken showed no reaction progress, so the reaction mixture was heated at $40^{\circ} \mathrm{C}$ for 23 h . After that solvent was evaporated to get crude NMR in CDCl_{3} which showed a 56% formation of "deprotected" product (15) ${ }^{[6]}$ with 44% of unreacted starting material (14). Attempts to drive this reaction to completion using a larger excess of silane failed as this did not lead to formation of only 15 but led to multiple species, as evidenced by the ${ }^{1} \mathrm{H}$ NMR spectra.

Figure S44. ${ }^{1} \mathrm{H}$ NMR spectra of the attempted zinc catalysed reduction of 14 , top with 3 equiv. hydrosilane, bottom 4 equiv. hydrosilane.

For comparison 12-Pin made via our methodology.
12-Pin can be made in good in-situ conversion (vs $\mathrm{CH}_{2} \mathrm{Br}_{2}$ added as an internal standard), however, it cannot be isolated cleanly from the silane by-products, while it proved sensitive to column
chromatography. For reference the crude ${ }^{1} \mathrm{H}$ NMR spectrum of 12-Pin is provided below to confirm that the zinc catalysed approach does afford some of this product.

人

$\stackrel{\text { ले® }}{\text { ì }}$
removed volatiles
removed
volatiles

Figure S45. ${ }^{1} \mathrm{H}$ NMR spectrum of crude 12-Pin.

5 Borylation of Carbazole Compounds:

Compound 16

Amide S2 ($0.054 \mathrm{~g}, 0.2 \mathrm{mmol}$) was added to an NMR tube fitted with a J. Young valve. The tube was evacuated and refilled with N_{2}. The solid was dissolved in DCM (1 mL) and $\mathrm{BBr}_{3} 1 \mathrm{M}$ in DCM (0.44 mmol , 0.44 mL) was added. The tube was sealed and heated at $60{ }^{\circ} \mathrm{C}$ for 16 h . The solvents/volatiles were removed under vacuum and the intermediate was dried. The solid was redissolved in DCM (1 mL) and $\mathrm{SiHEt}_{3}(0.6 \mathrm{mmol}, 96 \mu \mathrm{~L})$ was added, the reaction was heated at $60{ }^{\circ} \mathrm{C}$ for 2 hours before all solvents/volatiles were removed under vacuum. DCM (1 mL) was added followed by pinacol (0.4 $\mathrm{mmol}, 0.05 \mathrm{~g}$) and $\mathrm{NEt}_{3}(3 \mathrm{mmol}, 0.42 \mathrm{~mL})$. The tube was sealed and stirred at room temperature for 16 hours. The crude product was then directly purified by flash chromatography on silica gel (DCM/PET) to give the pure product ($0.023 \mathrm{~g}, 61 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{dt}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=7.2$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.02(\mathrm{~m}, 2 \mathrm{H}), 6.02(\mathrm{~s}, 2 \mathrm{H}), 1.20(\mathrm{~s}$, 12H). ${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.5 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.6,141.4,138.6,135.0$, $128.5,126.8,126.1,125.9,123.5,123.4,123.3,119.9,119.5,118.7,109.7,84.1,48.1,24.7$. [Acc. Mass]. Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{BNO}_{2} \mathrm{Na}=406.1949$, found $=406.1942$.

Figure S46. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 16 in CDCl_{3}.

1-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazol-9-yl)octan-1-one

Compound 18

Compound 18 was prepared using 17 ($147 \mathrm{mg}, 0.5 \mathrm{mmol}, 1 \mathrm{eq}$) dissolved in DCM (1 mL). To the stirred solution was added $\mathrm{BBr}_{3}(1 \mathrm{M}$ solution in DCM$)(0.6 \mathrm{~mL}, 0.6 \mathrm{mmol}, 1.2 \mathrm{eq})$ and heated at $60^{\circ} \mathrm{C}$ (in a sealed ampoule) for 16 h . A biphasic solution of pinacol ($71 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.1 \mathrm{eq} \mathrm{in} 0.5 \mathrm{~mL} \mathrm{DCM}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}\left(249 \mathrm{mg}, 1.8 \mathrm{mmol}, 3.5 \mathrm{eq}\right.$ in $\left.1 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}\right)$ was added and stirred at room temperature overnight. MgSO_{4} was added to the reaction mixture diluted with DCM and left for an hour. The mixture was filtered, evaporated and dried under vacuum at $60^{\circ} \mathrm{C}$ to remove excess pinacol to get the pure product (196 mg, 93\%). [Acc. Mass] Calculated for [M+H] ${ }^{+}$: 420.2705, found [M+H]+ 420.2718.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 7.99(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.38(\mathrm{~m}, 3 \mathrm{H}), 3.17(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{p}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 1.55-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 12 \mathrm{H}), 1.43-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.30(\mathrm{~m}, 4 \mathrm{H}), 0.93-0.88(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl, $298 \mathrm{~K}): ~ \delta 173.7,140.8,137.0,132.2,128.6,125.4,124.6,124.5,121.0,119.6$, 115.6, 82.6, 37.7, 31.8, 29.2, 25.8, 24.3, 22.8, 14.2. ${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta 21.8$.

Figure S49. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 8}$ in CDCl_{3}.

Figure S50. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 8}$ in CDCl_{3}.
$\stackrel{\text { Nìn }}{\substack{\text { Ni }}}$

Figure $\mathrm{S} 51 .{ }^{11} \mathrm{~B}$ NMR spectrum 18 in CDCl_{3}.

9-octyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole

Compound 19

Compound 19 was prepared using 17 ($110 \mathrm{mg}, 0.37 \mathrm{mmol}, 1 \mathrm{eq}$) dissolved in DCM (0.5 mL). To the stirred solution was added $\mathrm{BBr}_{3}(1 \mathrm{M}$ solution in $\mathrm{DCM}, 0.44 \mathrm{~mL}, 0.44 \mathrm{mmol}, 1.2 \mathrm{eq})$ and heated at 60 ${ }^{\circ} \mathrm{C}$ (in a sealed ampoule) for 18 h . The solution obtained was evaporated and dried under vacuum to get a dry solid. Dry DCM (1 mL) and $\mathrm{Et}_{3} \mathrm{SiH}(0.12 \mathrm{~mL}, 0.74 \mathrm{mmol}, 2.0 \mathrm{eq})$ were added and stirred at room temperature overnight. The clear yellow solution obtained was evaporated and dried under vacuum. To the residue the biphasic solution of pinacol ($52 \mathrm{mg}, 0.44 \mathrm{mmol}, 1.2 \mathrm{eq} \mathrm{in} 0.5 \mathrm{~mL}$ DCM) and $\mathrm{K}_{2} \mathrm{CO}_{3}\left(179 \mathrm{mg}, 1.3 \mathrm{mmol}, 3.5 \mathrm{eq}\right.$ in $\left.1 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}\right)$ was added and stirred at room temperature overnight. MgSO_{4} was added to the reaction mixture diluted with DCM and left for an hour. The mixture was filtered, and volatiles removed under vacuum to get crude product which was purified by cold hexane washing (hexane dissolved the desired product but left silicon containing impurities behind) to get the product as a white solid ($80 \mathrm{mg}, 53 \%$). \%). [Acc. Mass] Calculated for $[\mathrm{M}+\mathrm{H}]^{+}: 406.2912$, found $[\mathrm{M}+\mathrm{H}]^{+}$ 406.2903.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 8.24$ (dd, $\left.J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.12(\mathrm{dt}, J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.97$ (dd, $J=7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.22(\mathrm{~m}, 2 \mathrm{H}), 4.74-4.67(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}$, $12 \mathrm{H}), 1.41-1.21(\mathrm{~m}, 12 \mathrm{H})^{\mathrm{a}}, 0.91-0.88(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 143.6,141.1$, 134.9, 125.6, 123.4, 123.3, 123.1, 120.0, 119.0, 118.2, 109.3, 84.1, 44.3, 32.0, 29.8, 29.4, 27.3, 25.1, 22.8, 14.2. ${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta 31.8$.
(a) slightly increased integration value corresponds to minor pinacol impurity overlapping with this resonance.

Figure S52．${ }^{1} \mathrm{H}$ NMR spectrum of 19 in CDCl_{3} ．

		$\begin{aligned} & \vec{j} \\ & \text { N } \end{aligned}$	N゙さ	

Figure S53．${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 19 in CDCl_{3} ．

Figure S54. ${ }^{11} \mathrm{~B}$ NMR spectrum of 19 in CDCl_{3}.

6 Double Borylation - reduction studies

1,1,7,7-tetrabromo-3,9-di-tert-butyl-1,4,7,10-tetrahydro-114,213,714,813-naphtho[1,8-cd:5,4c'd']bis([1,6,2]oxazaborepine)

An oven-dried ampoule was charged with 21 ($1.63 \mathrm{~g}, 5 \mathrm{mmol}, 1 \mathrm{eq}$), followed by addition of dry DCM $(15 \mathrm{~mL})$ and BBr_{3} (1 M solution in heptane, $15 \mathrm{~mL}, 15 \mathrm{mmol}, 3 \mathrm{eq}$). Sealed ampoule was a heated at 60 ${ }^{\circ} \mathrm{C}$ for 65 h . Obtained white suspension was then evaporated under vacuum to get a dry white solid ($3.1 \mathrm{~g}, 93 \%$). Because of the very low solubility in appropriate organic solvents (e.g. halocarbons), we could not perform representative spectral analysis.

N,N'-(4,8-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalene-1,5-diyl)bis(2,2dimethylpropanamide)

Compound 23

An oven-dried ampoule was charged with the solid from the above reaction ($333 \mathrm{mg}, 0.5 \mathrm{mmol}, 1 \mathrm{eq}$) followed by the addition of dry DCM (1 mL). The biphasic solution of pinacol ($130 \mathrm{mg}, 1.1 \mathrm{mmol}, 2.2$ eq in 0.5 mL DCM) and $\mathrm{K}_{2} \mathrm{CO}_{3}\left(484 \mathrm{mg}, 3.5 \mathrm{mmol}, 7 \mathrm{eq}\right.$ in $\left.1 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}\right)$ was then added and stirred at room temperature overnight. MgSO_{4} was added to the reaction mixture diluted with DCM and left for an hour. The reaction mixture was then filtered, evaporated, and dried under vacuum at $60{ }^{\circ} \mathrm{C}$ to remove excess pinacol to get the pure product ($240 \mathrm{mg}, 83 \%$).
[Acc. Mass] Calculated for [M+H] ${ }^{+}$: 579.3771 , found $[\mathrm{M}+\mathrm{H}]^{+} 579.3796 .{ }^{1} \mathrm{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298\right.$ K): $\delta 8.85$ (br s, 2H, H3), 7.83 (d, J=8.4 Hz, 2H, H4), 7.53 (d, J=8.4 Hz, 2H, H5), 1.47 (s, 18H, H2), 1.37 (s, 24H, H1). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl ${ }_{3}, 298 \mathrm{~K}$): $\delta 178.1$ (C10), 134.0 (C9), 130.8 (C7), 125.7 (C6),
125.0 (C5), 117.6 (C8), 82.0 (C2), 39.4 (C4), 27.3 (C3), $25.0(\mathrm{C} 1) .{ }^{11} \mathrm{~B}$ NMR ($160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): δ 17.3.

Figure S55. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 3}$ in CDCl_{3}.

$\begin{gathered} \vec{j} \\ \stackrel{\infty}{\sim} \\ \stackrel{1}{\mid} \end{gathered}$		$\stackrel{\text { ®n }}{\stackrel{N}{7}}$	$\stackrel{\circ}{\stackrel{\circ}{\text { a }}}$	N

Figure S56. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 3}$ in CDCl_{3}.

Figure $\mathbf{S 5 7 . 1}{ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{2 3}$ in CDCl_{3}.

H3
H4 H5

Figure S58. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ HSQC NMR spectrum of $\mathbf{2 3}$ in CDCl_{3}.

Figure S59. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ HSQC NMR spectrum of $\mathbf{2 3}$ in CDCl_{3}.

Figure S60. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{HMBC}$ NMR spectrum of $\mathbf{2 3}$ in CDCl_{3}.

Figure S61. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{HMBC}$ NMR spectrum of $\mathbf{2 3}$ in CDCl_{3}.

Figure S62. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NOESY NMR spectrum of $\mathbf{2 3}$ in CDCl_{3}.

Figure S63. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{HMBC}$ NMR spectrum of $\mathbf{2 3}$ in CDCl_{3}.

N,N'-(2,5-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,4-phenylene)bis(2,2dimethylpropanamide)

Compound 22

Compound $\mathbf{2 2}$ was prepared using the respective amide ($138 \mathrm{mg}, 0.5 \mathrm{mmol}, 1 \mathrm{eq}$) dissolved in DCM (3 mL). To the stirred solution was added $\mathrm{BBr}_{3}(1 \mathrm{M}$ solution in heptane, $1.5 \mathrm{~mL}, 1.5 \mathrm{mmol}, 3 \mathrm{eq})$ and heated at $60^{\circ} \mathrm{C}$ (in a sealed ampoule) for 65 h . The biphasic solution of pinacol ($130 \mathrm{mg}, 1.1 \mathrm{mmol}, 2.2$ eq in 0.5 mL DCM) and $\mathrm{K}_{2} \mathrm{CO}_{3}\left(484 \mathrm{mg}, 3.5 \mathrm{mmol}, 7 \mathrm{eq}\right.$. in $\left.1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}\right)$ was added and stirred at room temperature overnight. MgSO_{4} was added to the reaction mixture diluted with DCM and left for an hour. Filtered, evaporated, and dried under vacuum at $60^{\circ} \mathrm{C}$ to remove excess pinacol to get the pure product ($211 \mathrm{mg}, 80 \%$). [Acc. Mass] Calculated for [M+H] ${ }^{+}: 329.3615$, found [M+H] ${ }^{+}$329.3614.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 9.43(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 8.92(\mathrm{~s}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 24 \mathrm{H}), 1.32(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): δ 177.0, 140.0, 126.4, 120.9a $84.6,40.1,27.8,25.1 .^{11}$ B NMR (160 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$: $\delta 30.4$.
${ }^{\mathrm{a}} 120.9$ (C-B) signal was too weak to be observed by ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$, its assignment was possible by ${ }^{1} \mathrm{H}$ ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{HMBC}$ experiment.

Figure S64. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 2}$ in CDCl_{3}.

Figure S65. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of $\mathbf{2 2}$ in CDCl_{3}.

Figure S66. ${ }^{11} \mathrm{~B}$ NMR spectrum of 22 in CDCl_{3}.

2,5-bis(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-N1,N4-dineopentylbenzene-1,4-diamine

Compound 24

Compound 24 was prepared directly from the starting amide ($138 \mathrm{mg}, 0.5 \mathrm{mmol}, 1 \mathrm{eq}$) dissolved in DCM (3 mL). To the stirred solution was added BBr_{3} (1 M solution in DCM) ($2 \mathrm{~mL}, 2 \mathrm{mmol}, 4 \mathrm{eq}$) and heated at $60{ }^{\circ} \mathrm{C}$ (in a sealed ampoule) for 65 h . To obtained white suspension was then added $\mathrm{Et}_{3} \mathrm{SiH}$ $(0.4 \mathrm{~mL}, 2.5 \mathrm{mmol}, 5 \mathrm{eq})$ and stirred at room temperature overnight. The clear solution obtained was evaporated under vacuum to get a dry solid. The biphasic solution of 1,8-diaminonapthalene (348 mg , $1.1 \mathrm{mmol}, 2.2 \mathrm{eq}$ in 0.5 mL DCM) and $\mathrm{K}_{2} \mathrm{CO}_{3}\left(484 \mathrm{mg}, 3.5 \mathrm{mmol}, 7 \mathrm{eq}\right.$ in $\left.1 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}\right)$ was added and stirred at room temperature overnight. MgSO_{4} was added to the reaction mixture diluted with DCM and left for an hour. The reaction mixture was filtered, and volatiles removed under vacuum to get crude product which was purified by column chromatography on silica gel (petroleum ether/ DCM = $8: 2$) to get maroon solid ($70 \mathrm{mg}, 24 \%$). [Acc. Mass] Calculated for $[\mathrm{M}+\mathrm{H}]^{+}: 580.3652$, found $[\mathrm{M}+\mathrm{H}]^{+}$ 580.3668 .
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 7.15(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.07$ (d, J=8.2 Hz, 4H), $6.82(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.40$ (d, J=7.3 Hz, 4H), 6.38 (br s, 4H), 3.51 (br s, 2H), 2.89 (br s, 4H), 1.06 (s, 18 H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 141.1,136.5,127.8,126.4,120.1,118.0,111.7,106.2,53.6,31.7,28.1 .{ }^{11}$ B NMR (160 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta 30.4$.

Figure $\mathbf{5 6 7 .}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 4}$ in CDCl_{3}.

Figure S68. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 4}$ in CDCl_{3}.

Figure S69. ${ }^{11} \mathrm{~B}$ NMR spectrum of 24 in CDCl_{3}.

Compound 25

Compound 25 was prepared directly from the respective amide ($333 \mathrm{mg}, 0.5 \mathrm{mmol}, 1 \mathrm{eq}$) dissolved in DCM (3 mL). To the stirred solution was added BBr_{3} (1 M solution in DCM) ($1 \mathrm{~mL}, 2 \mathrm{mmol}, 2 \mathrm{eq}$) and heated at $60{ }^{\circ} \mathrm{C}$ (in a sealed ampoule) for 18 h . To obtained white suspension was then added $\mathrm{Et}_{3} \mathrm{SiH}$ $(0.4 \mathrm{~mL}, 2.5 \mathrm{mmol}, 5 \mathrm{eq})$ and stirred at room temperature overnight. The clear solution obtained was evaporated under vacuum to get a dry solid. The biphasic solution of pinacol ($130 \mathrm{mg}, 1.1 \mathrm{mmol}, 2.2$ eq in 0.5 mL DCM) and $\mathrm{K}_{2} \mathrm{CO}_{3}\left(484 \mathrm{mg}, 3.5 \mathrm{mmol}, 7\right.$ eq in $\left.1 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}\right)$ was added and stirred at room temperature overnight. MgSO_{4} was added to the reaction mixture diluted with DCM and left for an hour. The mixture was then filtered, evaporated, and dried under vacuum. DCM and hexane (1:1) were then added to the crude material and the sample was left in the fridge overnight to get the off white crystalline solid. Filtration and washing with hexane afforded the pure product ($112 \mathrm{mg}, 40 \%$). [Acc. Mass] Calculated for $[\mathrm{M}+\mathrm{H}]^{+}$: 551.4186, found $[\mathrm{M}+\mathrm{H}]^{+} 551.4188$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 7.73(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.55(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.03$ $(\mathrm{s}, 4 \mathrm{H}), 1.37(\mathrm{~s}, 24 \mathrm{H}), 1.06(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 157.0,131.0,130.1,117.8$, 113.3, 83.8, 63.8, 33.0, 27.8, 25.1. ${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta 31.7$.

Figure S70. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 5}$ in CDCl_{3}.

Figure $\mathbf{S 7 1 .}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of $\mathbf{2 5}$ in CDCl_{3}.

Figure S72. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{2 5}$ in CDCl_{3}.

7 Synthesis and characterisation of B,N-PAH derivatives

7.1 Two step synthesis of N-pivaloyl-7-naphthyl-1,2,3,4-tetrahydroquinoline

 (Compound 26-THQ)

7-naphthyl-1,2,3,4-tetrahydroquinoline

7-bromo-1,2,3,4-tetrahydroquinoline ($553 \mathrm{mg}, 2.6 \mathrm{mmol}, 1$ eq), naphthalene-1-boronic acid (516 mg , $3.0 \mathrm{mmol}, 1.1 \mathrm{eq}$) and sodium carbonate ($826 \mathrm{mg}, 7.8 \mathrm{mmol}, 3 \mathrm{eq}$) were loaded into a Schlenk tube and suspended in a mixture of 1,4 -dioxane (16 mL) and water (4 mL). Obtained suspension was degassed under the stream of argon for 30 min . Then tetrakis(triphenylphosphine)palladium(0) (300 $\mathrm{mg}, 0.26 \mathrm{mmol}, 0.1 \mathrm{eq}$) was added and the mixture was heated at $90^{\circ} \mathrm{C}$ for 18 h . Once cooled to room temperature, the reaction mixture was extracted with ethyl acetate and washed with sodium carbonate and brine. The organic fractions were dried over magnesium sulfate and purified by column chromatography on silica gel (petroleum ether/DCM $=8: 2$) to give 7-naphthyl-1,2,3,4tetrahydroquinoline as light yellow oil ($598 \mathrm{mg}, 89 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): 2.03(q, 2H, CH ${ }_{2}$), 2.87(t, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.37\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}-\mathrm{H})$, 6.76 (d, 1H, C-H), $7.07(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}-\mathrm{H}), 7.41(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}-\mathrm{H}), 7.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}-\mathrm{H}), 7.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}-\mathrm{H}), 7.49(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C}-\mathrm{H}), 7.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}-\mathrm{H}), 7.88(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}-\mathrm{H}), 8.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}-\mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): 22.07$, 26.71, 42.24, 117.09, 120.69, 121.82, 125.48, 125.78, 125.95, 126.46, 126.78, 127.48, 128.28, 129.57, 131.81, 133.90, 139.61, 140.47, 142.79
[Acc. Mass] Calculated $[\mathrm{M}+\mathrm{H}]^{+}: 260.1434 \mathrm{gmol}^{-1}$, Observed $[\mathrm{M}+\mathrm{H}]^{+} 260.1443$ gmol $^{-1}$

Figure S73. ${ }^{1} \mathrm{H}$ NMR spectrum of 7-naphthalen-1-yl-1,2,3,4-tetrahydroquinoline in CDCl_{3}.
ii)

Obtained 7-naphthyl-1,2,3,4-tetrahydroquinoline ($446 \mathrm{mg}, 1.7 \mathrm{mmol}, 1 \mathrm{eq}$) was loaded into a Schlenk tube, followed by 4-N,N-dimethylaminopyridine ($42 \mathrm{mg}, 0.34 \mathrm{mmol}, 0.2 \mathrm{eq}$) and dissolved in dry DCM $(4 \mathrm{~mL})$. Dry triethylamine ($0.36 \mathrm{~mL}, 2.6 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added and the solution was cooled to $0^{\circ} \mathrm{C}$ (ice/water bath). Pivaloyl chloride ($0.25 \mathrm{~mL}, 2 \mathrm{mmol}, 1.2 \mathrm{eq}$) was dropwise added and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min , and then overnight at room temperature. All volatiles were removed under vacuum and the crude was extracted with ethyl acetate and washed with ammonium chloride solution. The combined organic layers were dried over magnesium sulfate and purified by column chromatography on silica gel (petroleum ether/ ethyl acetate $=9: 1$) to afford N-pivaloyl-7-naphtyhyl-1,2,3,4-tetrahydroquinoline (26-THQ) as off-white solid ($440 \mathrm{mg}, 75 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): 1.32(s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.08\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.89\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.87\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 7.22(m, 1H, C-H), 7.23(m, 1H, C-H), 7.43(m, 1H, C-H), 7.46(m, 1H, C-H), 7.49(m, 1H, C-H), 7.51(m, 1H, C-H), 7.54(d, 1H, C-H), 7.83(d, 1H, C-H), 7.89(d, 1H, C-H), 7.96(d, 1H, C-H). ${ }^{13}$ C\{ $\left.{ }^{1} \mathrm{H}\right\}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): 24.31,26.17,29.09,40.51,45.52,125.48,125.83,126.14,126.27,126.87,127.12,127.47$, 127.70, 128.34, 128.53, 130.61, 131.83, 133.91, 138.28, 139.94, 140.94, 178.38
[Acc. Mass] Calculated $[\mathrm{M}+\mathrm{H}]^{+}: 343.2010$ gmol $^{-1}$, Observed $[\mathrm{M}+\mathrm{H}]^{+} 343.1974 \mathrm{gmol}^{-1}$

Figure S74. ${ }^{1} \mathrm{H}$ NMR spectrum of $26-\mathrm{THQ}$ in CDCl_{3} at room temperature.

Figure $\mathbf{S 7 5 .}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of $\mathbf{2 6 - T H Q}$ in CDCl_{3} at room temperature.
7.2 Directed borylation of N-pivaloyl-7-naphthyl-1,2,3,4-tetrahydroquinoline (27-THO)

$\mathrm{BBr}_{3} 1 \mathrm{M}$ in DCM ($2.6 \mathrm{~mL}, 2.6 \mathrm{mmol}, 2 \mathrm{eq}$) was added to a stirred solution of N-pivaloyl-7-naphthyl-1,2,3,4-tetrahydroquinoline ($0.44 \mathrm{~g}, 1.3 \mathrm{mmol}, 1 \mathrm{eq}$) in dry $\mathrm{DCM}(5 \mathrm{~mL})$. The reaction mixture was stirred for 10 min and then left to stand at room temperature overnight affording light yellow crystals of [(27-THQ)•DCM] (821 mg, 84 \% yield). [Acc. Mass] Calculated for cation $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{BNO}[\mathrm{M}]^{+}$: 352.1867, found $[\mathrm{M}+\mathrm{H}]^{+} 352.1854$. Note the BBr_{4}^{-}peak was also observed in the negative mode.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta 8.68$ (dd, J=7.7, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{N} 2}$), 8.58 (dd, J=6.9, 1.4 Hz, $1 \mathrm{H}, \mathrm{CH}_{\mathrm{N} 8}$), 8.53 (d, J=8.2 Hz, 1H, CH Q_{Q}), 8.36 (dd, J=8.1, $1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{N6}}$), 8.16 (dd, J=8.1, 1.1 Hz, 1H, CH N_{N}), 7.89 (dd, J=8.3, 1.0 Hz, 1H, CH ${ }_{\mathrm{Q} 5}$), $7.84\left(\mathrm{dd}, J=8.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{N}}\right), 7.80\left(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{N} 3}\right), 4.73(\mathrm{~m}, 1 \mathrm{H}$, Q1- CH_{2}), $3.22\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Q} 3-\mathrm{CH}_{2}\right), 2.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Q} 2-\mathrm{CH}_{2}\right), 1.87\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(126$ $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta 176.8\left(C_{\mathrm{P} 3}\right), 141.3\left(C_{\mathrm{Q} 7}\right), 137.7\left(C_{\mathrm{Q} 9}\right), 137.3\left(C_{\mathrm{Q} 5}\right), 137.1\left(C_{\mathrm{N6}}\right), 136.0\left(C_{\mathrm{N} 8}\right), 133.9$ $\left(C_{N 5}\right), 133.6\left(C_{\mathrm{N} 10}\right), 133.0\left(C_{\mathrm{N} 4}\right), 129.8\left(C_{\mathrm{N} 1}\right), 127.9\left(C_{\mathrm{Q} 4}\right), 127.2\left(C_{\mathrm{N} 2}\right), 127.0\left(C_{\mathrm{N} 3}\right), 126.7\left(C_{\mathrm{N} 7}\right), 125.3\left(C_{\mathrm{Q} 6}\right)$, $51.8\left(\mathrm{Q} 1-\mathrm{CH}_{2}\right), 42.6\left(\mathrm{P} 2-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.8\left(\mathrm{P} 1-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.5\left(\mathrm{Q} 3-\mathrm{CH}_{2}\right), 21.6\left(\mathrm{Q} 2-\mathrm{CH}_{2}\right) \mathrm{ppm}$. Resonances for $C_{\mathrm{N} 9}$ and $C_{\mathrm{Q} 8}$ were not detected in ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ due to quadrupolar effects, but a cross-peak in ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-$ ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{HMBC}$ spectrum at 122.5 ppm can be assigned to $\mathrm{C}_{\mathrm{Q} 8} .{ }^{11} \mathbf{B} \mathrm{NMR}\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta$ 36.53, -24.47 ppm.

Figure S76. ${ }^{1} \mathrm{H}$ NMR of 27-THQ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S77. ${ }^{11} \mathrm{~B}$ NMR of $\mathbf{2 7 - T H Q}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S78. $\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ NMR of 27-THQ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S79. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of 27-THQ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S80. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of $\mathbf{2 7}-\mathrm{THQ}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S81. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ HSQC NMR spectrum of $\mathbf{2 7}-\mathrm{THQ}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S82. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ HSQC NMR spectrum of 27-THQ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S83. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{HMBC}$ NMR spectrum of $\mathbf{2 7}-\mathrm{THQ}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S84. ${ }^{13} \mathrm{C}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ HMBC NMR spectrum of $\mathbf{2 7}-\mathrm{THQ}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

7.3 Reduction of 27-THQ with triethylsilane to afford 28-THQ

To a suspension of 27-THQ•DCM ($173 \mathrm{mg}, 0.22 \mathrm{mmol}, 1 \mathrm{eq}$) in DCM (5 mL) triethylsilane ($76 \mu \mathrm{~L}, 0.48$ $\mathrm{mmol}, 2.2 \mathrm{eq}$) was added. The mixture was stirred for 2 h at room temperature until a clear dark yellow solution was obtained. All volatiles were removed under vacuum, and benzene (5 mL) was added which induced precipitation of white solid. The liquid phase was decanted and white precipitate washed with more benzene (3 mL). Once again the liquid was decanted and the white solid dried under vacuum affording $\mathbf{2 8}-\mathrm{THQ} \cdot \mathbf{C}_{6} \mathbf{H}_{6}$ ($98 \mathrm{mg}, 73 \%$ yield). Crystals suitable for X-ray diffraction were grown from a solution in DCM layered with benzene at room temperature. Anal. Calc. for $\mathrm{C}_{36} \mathrm{H}_{37} \mathrm{~B}_{2} \mathrm{Br}_{2} \mathrm{NO}: \mathrm{C}, 63.48 ; \mathrm{H}, 5.48 ; \mathrm{N}, 2.06$; found: $\mathrm{C}, 63.25 ; \mathrm{H}, 5.74 ; \mathrm{N}, 2.99$. The microanalysis data corresponds to 28-THQ with two molecules of benzene.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 6.68$ (dd, J=6.8, 1.5 Hz, 1H,Ar-CH), 8.49 (dd, J=7.7, 1.1 Hz, 1H, ArCH), 8.533 (d, J=8.3 Hz, 1H, Ar-CH), 8.20 (dd, J=8.1, 1.5 Hz, 1H, Ar-CH), 8.01 (dd, J=8.1, 1.1 Hz, 1H, ArCH), 7.76 (dd, J=8.1, $6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}$), $7.66(\mathrm{t}, \mathrm{J}=7.7,1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}), 7.49$ (d, J=8.2 Hz, 1H, Ar-CH), 4.77 (m, 1H, CH2), $3.95\left(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.78\left(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.69\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.11(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 0.64\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{11}$ B NMR (160 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 40.3,6.1 \mathrm{ppm}$.

Figure S85. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 8}$-THQ in CDCl_{3} at room temperature. \# denotes unidentified impurity.

Figure S86. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{2 8}$-THQ in CDCl_{3} at room temperature.

(29-THQ)
28-THQ $\cdot \mathbf{C}_{6} \mathrm{H}_{6}(97 \mathrm{mg}, 0.16 \mathrm{mmol}, 1 \mathrm{eq})$ was treated with ethyl acetate and aqueous solution of sodium carbonate. Organic layer was washed with brine and dried over magnesium sulfate. Obtained bright yellow solution was evaporated to dryness and yellow solid of 29-THQ was isolated (57 mg , quantitative). Crystals suitable for X-ray diffraction were grown from a solution in CHCl_{3} left at $+4{ }^{\circ} \mathrm{C}$ for several days.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 11.9$ (s, 1H, BOH), 8.52 (dd, J=6.7, $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{N} 8}$), 8.37 (m, 1H, $\mathrm{CH}_{\mathrm{N} 2}$), 8.09 (m, 2H, CH Q_{6} and $\mathrm{CH}_{\mathrm{N} 6}$ overlapping), 7.91 (dd, J=8.0, 1.1 Hz, $1 \mathrm{H}, \mathrm{CH}_{\mathrm{N} 4}$), 7.69 (dd, J=8.1, 6.8 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{N} 7}$), 7.59 (dd, J=8.1, $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{N} 3}$), 7.32 (dd, J=8.2, $0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Q} 5}$), $3.65\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Q} 1}\right)$, 3.19 (br s, 1H, CH Q_{1}), 2.97 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{Q} 3-\mathrm{CH}_{2}$ and $\mathrm{CH}_{\mathrm{P} 3}$ overlapping), 2.39 (br s, $1 \mathrm{H}, \mathrm{CH}_{\mathrm{Q} 2}$), 1.75 (br s, 1 H , $\mathrm{CH}_{\mathrm{Q} 2}$), $1.15\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 157.5$ ($\mathrm{C}_{\mathrm{Q} 9}$), 142.7(C. $\mathrm{C}_{\mathrm{Q} 7}$), $133.5\left(C_{\mathrm{N} 10}\right), 133.3\left(C_{\mathrm{N} 8}\right), 133.2\left(C_{\mathrm{N} 6}\right), 133.1\left(C_{\mathrm{N5}}\right), 133.0\left(C_{\mathrm{Q} 5}\right), 132.4\left(C_{\mathrm{N} 1}\right), 130.2\left(C_{\mathrm{Q} 4}\right), 129.5\left(C_{\mathrm{N} 4}\right), 125.9$ $\left(C_{\mathrm{N} 7}\right), 125.7\left(C_{\mathrm{N} 3}\right), 123.8\left(C_{\mathrm{N} 2}\right), 121.2\left(\mathrm{C}_{\mathrm{Q} 6}\right), 67.9\left(\mathrm{P} 3-\mathrm{CH}_{2}\right), 46.5\left(\mathrm{Q} 1-\mathrm{CH}_{2}\right), 32.4\left(\mathrm{P} 2-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.6(\mathrm{P} 1-$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.9\left(\mathrm{Q} 3-\mathrm{CH}_{2}\right), 15.6\left(\mathrm{Q} 2-\mathrm{CH}_{2}\right) \mathrm{ppm}$. Resonances for $\mathrm{C}_{\mathrm{N} 9}$ and $\mathrm{C}_{\mathrm{Q} 8}$ were not detected in ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ due to quadrupolar effects. ${ }^{11} \mathbf{B}$ NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 40.8 \mathrm{ppm}$.
[Acc. Mass] Calculated for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{BNO}[\mathrm{M}+\mathrm{H}]^{+}: 356.2180$, found $[\mathrm{M}+\mathrm{H}]^{+} 356.2195$.

Figure S87. ${ }^{1} \mathrm{H}$ NMR spectrum of $29-\mathrm{THQ}$ in CDCl_{3} at room temperature.

Figure S88. ${ }^{11} \mathrm{~B}$ NMR spectrum of 29-THQ in CDCl_{3} at room temperature.

Figure S89. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of $\mathbf{2 9 - T H Q}$ in CDCl_{3} at room temperature.

Figure S90. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of $\mathbf{2 9 - T H Q}$ in CDCl_{3} at room temperature.

Figure $\mathbf{S 9 1} \mathbf{I}^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of $\mathbf{2 9 - T H Q}$ in CDCl_{3} at room temperature.

Figure S92. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ HSQC NMR spectrum 29-THQ in CDCl_{3} at room temperature.

Figure S93. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ HSQC NMR spectrum 29-THQ in CDCl_{3} at room temperature.

Figure S94. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{HMBC}$ NMR spectrum of $\mathbf{2 9 - T H Q}$ in CDCl_{3} at room temperature.

Figure S95. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ HMBC NMR spectrum of 29-THQ in CDCl_{3} at room temperature.

7.5 Synthesis of N -pivaloyl-2-methyl-5-naphthylaniline (26-Me)

i)

2-methyl-5-bromoaniline ($1.86 \mathrm{~g}, 10 \mathrm{mmol}, 1 \mathrm{eq}$) was loaded into a Schlenk tube and dissolved in dry DCM (30 mL). Dry triethylamine ($1.67 \mathrm{~mL}, 12 \mathrm{mmol}, 1.2 \mathrm{eq}$) was added and the solution was cooled to $0^{\circ} \mathrm{C}$ (ice/water bath). Pivaloyl chloride ($1.35 \mathrm{~mL}, 11 \mathrm{mmol}, 1.1 \mathrm{eq}$) was dropwise added and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min , and then overnight at room temperature. $\mathrm{HCl}(1 \mathrm{M})$ was added to the crude mixture and the mixture was extracted with DCM ($20 \mathrm{~mL} \times 3$), washed with brine ($20 \mathrm{~mL} \times 3$) and dried over MgSO_{4}. Then, the extract was concentrated and N -(2-methyl-5bromophenyl)pivalamide precipitated with hexane as an off-white solid ($2.18 \mathrm{~g}, 81 \%$ yield).
N-(2-methyl-5-bromophenyl)pivalamide ($0.81 \mathrm{~g}, 3 \mathrm{mmol}, 1 \mathrm{eq}$), naphthalene-1-boronic acid (0.62 g , $3.6 \mathrm{mmol}, 1.2 \mathrm{eq})$ and sodium carbonate ($1.14 \mathrm{~g}, 10.8 \mathrm{mmol}, 3.6 \mathrm{eq}$) were loaded into a Schlenk tube and suspended in a mixture of 1,4-dioxane (20 mL) and water (5 mL). Obtained suspension was degassed under the stream of argon for 30 min . Then tetrakis(triphenylphosphine)palladium(0) (173 $\mathrm{mg}, 0.15 \mathrm{mmol}, 0.05 \mathrm{eq}$) was added and the mixture was heated at $90{ }^{\circ} \mathrm{C}$ for 16 h . Once cooled to room temperature, the reaction mixture was extracted with ethyl acetate and washed with sodium carbonate and brine. The organic fractions were dried over MgSO_{4} and all volatiles were removed under vacuum affording 26-Me as an off-white solid ($0.77 \mathrm{~g}, 81 \%$ yield).

Figure S96. ${ }^{1} \mathrm{H}$ NMR spectrum of N -(2-methyl-5-bromophenyl)pivalamide in CDCl_{3} at room temperature.

Figure S97. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of N -(2-methyl-5-bromophenyl)pivalamide in CDCl_{3} at room temperature.

Figure S98. ${ }^{1} \mathrm{H}$ NMR spectrum of crude $\mathbf{2 6 - M e}$ in CDCl_{3} at room temperature.
7.6 Directed borylation of N -pivaloyl-2-methyl-5-naphthylaniline (27-Me)

$\mathrm{BBr}_{3} 1 \mathrm{M}$ in DCM (3.6 mL , $3.6 \mathrm{mmol}, 2 \mathrm{eq}$) was added to a stirred solution of N -pivaloyl-2-methyl-5naphthylaniline ($0.57 \mathrm{~g}, 1.8 \mathrm{mmol}, 1 \mathrm{eq}$) in dry DCM (5 mL). The reaction mixture was stirred for 10 min and then left to stand at room temperature overnight affording light yellow solid of $\mathbf{2 7 - \mathrm { Me }}$ (924 $\mathrm{mg}, 78 \%$ yield). Anal. Calc. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~B}_{2} \mathrm{Br}_{4} \mathrm{NO}: \mathrm{C}, 40.24 ; \mathrm{H}, 3.22 ; \mathrm{N}, 2.13$; found: $\mathrm{C}, 41.18 ; \mathrm{H}, 3.16 ; \mathrm{N}$, 2.08 .
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta 8.67$ (dd, J=7.5, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{N} 2}$), 8.62 (dd, J=6.8, $1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{N} 8}$), $8.50\left(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A} 4}\right), 8.36$ (dd, J=8.1, 1.4 Hz, 1H, CH N_{N}), 8.16 (dd, J=8.1, 1.1 Hz, 1H, CH Na), 7.90 (dd, J=8.3, $0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A} 3}$), $7.85\left(\mathrm{dd}, \mathrm{J}=8.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{N} 7}\right), 7.79\left(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{N}_{3}\right), 2.73(\mathrm{~s}, 3 \mathrm{H}$, A7-CH H_{3}), $1.82\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{P} 1-\mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta 180.3\left(\mathrm{C}_{\mathrm{P} 3}\right), 140.8\left(\mathrm{C}_{\mathrm{A5}}\right)$, $137.7\left(C_{\mathrm{A} 3}\right), 136.9\left(C_{\mathrm{N} 6}\right), 135.6\left(C_{\mathrm{N} 8}\right), 134.2\left(C_{\mathrm{N} 1}\right), 134.0\left(C_{\mathrm{N5}}\right), 133.5\left(C_{\mathrm{N} 10}\right), 132.9\left(C_{\mathrm{N} 4}\right), 129.8\left(C_{\mathrm{A} 2}\right), 126.9$ $\left(C_{\mathrm{N} 3}\right), 126.8\left(C_{\mathrm{N} 7}\right), 126.6\left(C_{\mathrm{N} 2}\right), 125.5\left(C_{\mathrm{A} 4}\right), 124.8\left(C_{\mathrm{A} 1}\right), 40.6\left(\mathrm{P} 2-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 27.1\left(\mathrm{P} 1-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 16.1\left(C_{\mathrm{A} 7}\right)$, ppm. Resonances for $C_{\mathrm{N} 9}$ and $C_{\mathrm{A} 6}$ were not detected in ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ due to quadrupolar effects. ${ }^{11} \mathrm{~B}$ NMR ($160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta 36.7,-24.44 \mathrm{ppm}$.

Figure S99. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 7}-\mathbf{M e}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature. Residual benzene is from washing of 27-Me during isolation.

Figure S100. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{2 7}-\mathrm{Me}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S101. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 27-Me in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S102. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of 27-Me in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S103. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of $\mathbf{2 7}-\mathrm{Me}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S104. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ HSQC NMR spectrum of $\mathbf{2 7}-\mathrm{Me}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S105. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ HSQC NMR spectrum of $\mathbf{2 7}-\mathrm{Me}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S106. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{HMBC}$ NMR spectrum of $27-\mathrm{Me}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

7.7 Reduction of $27-\mathrm{Me}$ and isolation of $29-\mathrm{Me}$

To a suspension of $\mathbf{2 7}-\mathrm{Me}(500 \mathrm{mg}, 0.76 \mathrm{mmol}, 1 \mathrm{eq})$ in DCM (5 mL) triethylsilane ($0.25 \mathrm{~mL}, 1.6 \mathrm{mmol}$, 2.1 eq) was added. After a couple of minutes stirring a yellow solution is formed which was further stirred overnight (20 h) again forming a suspension. All volatiles were removed under vacuum, and obtained yellow solid washed with DCM ($5 \mathrm{~mL} \times 2$). Finally, benzene was introduced (5 mL) but no precipitation occurred. The reaction mixture was extracted with ethyl acetate and aqueous solution of sodium carbonate. Organic layer was washed with brine and dried over magnesium sulfate. Obtained bright yellow solution was evaporated to dryness and upon addition of pentane (5 mL) yellow solid of $29-\mathrm{Me}$ was precipitated ($191 \mathrm{mg}, 76 \%$ yield).
Anal. Calc. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{BNO}: \mathrm{C}, 80.26$; H, 7.35 ; N, 4.25; found: C, 79.82; H, 7.49; N, 4.14. [Acc. Mass] Calculated for $[\mathrm{M}+\mathrm{H}]^{+}: 330.20237$, found $[\mathrm{M}+\mathrm{H}]^{+} 330.2022$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 11.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{BOH}$), 8.54 (dd, J=6.8, $1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ м8), 8.40 (dd, J=7.7, $1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Na}}$), 8.13 (d, J=8.2 Hz, $1 \mathrm{H}, \mathrm{CH}_{\mathrm{A} 4}$), 8.10 (dd, J=8.1, $1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{N}}$), 7.91 (dd, J=8.1, 1.1 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{N} 2}$), 7.69 (dd, $\left.\mathrm{J}=8.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{N} 7}\right), 7.60\left(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{N}_{3}\right.$), $7.44(\mathrm{dd}, \mathrm{J}=8.2,0.8 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{CH}_{\mathrm{A} 3}$), 3.36 (t, J=7.2 Hz, $1 \mathrm{H}, \mathrm{NH}$), 2.73 (d, J=7.2 Hz, $2 \mathrm{H}, \mathrm{CH}_{2}$), $2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 1.17\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 152.8\left(C_{\mathrm{A} 1}\right), 143.1\left(C_{\mathrm{A} 5}\right), 134.3\left(\mathrm{C}_{\mathrm{A3}}\right), 133.6\left(C_{\mathrm{N} 10}\right), 133.4$ $\left(C_{\mathrm{N} 8}\right), 133.2\left(C_{\mathrm{N} 5}\right), 133.0\left(C_{\mathrm{N} 6}\right), 132.1\left(C_{\mathrm{N} 1}\right), 131.2\left(C_{\mathrm{N} 9}\right), 130.5\left(C_{\mathrm{A} 2}\right), 127.7\left(C_{\mathrm{A} 6}\right), 129.6\left(C_{\mathrm{N} 2}\right), 125.9\left(C_{\mathrm{N} 7}\right)$, $125.6\left(C_{\mathrm{N} 3}\right), 123.7\left(C_{\mathrm{N} 4}\right), 121.5\left(\mathrm{C}_{\mathrm{A} 4}\right), 64.8\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 27.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 16.8\left(\mathrm{Ar}-\mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{11} \mathbf{B}$ NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 41.08 \mathrm{ppm}$.

Figure S107. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 9 - M e}$ in CDCl_{3} at room temperature.

Figure S108. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{2 9 - M e}$ in CDCl_{3} at room temperature.

Figure S109. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 9 - M e}$ in CDCl_{3} at room temperature.

Figure S110. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of $\mathbf{2 9 - M e}$ in CDCl_{3} at room temperature.

Figure S111. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of $\mathbf{2 9 - M e}$ in CDCl_{3} at room temperature.

Figure S112. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ HSQC NMR spectrum 29-Me in CDCl_{3} at room temperature.

Figure S113. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ HSQC NMR spectrum 29-Me in CDCl_{3} at room temperature.

Figure S114. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{HMBC}$ NMR spectrum of $\mathbf{2 9 - M e}$ in CDCl_{3} at room temperature.

Figure S115. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{HMBC}$ NMR spectrum of $\mathbf{2 9 - M e}$ in CDCl_{3} at room temperature.

Figure S116. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{HMBC}$ NMR spectrum of $\mathbf{2 9 - M e}$ in CDCl_{3} at room temperature.

Figure S117. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ HMBC NMR spectrum of $\mathbf{2 9}-\mathrm{Me}$ in CDCl_{3} at room temperature.

8 X-Ray Crystallography

Figure S118. ORTEP representation of 5 with thermal ellipsoids at 50% probability level. All hydrogen atoms have been omitted for clarity.

Figure S119. ORTEP representation of $\mathbf{2 5}$ with thermal ellipsoids at 50\% probability level. All hydrogen atoms have been omitted for clarity. Symmetry operator: $-x,-y,-z$.

Figure S120. ORTEP representation of 27-Me with thermal ellipsoids at 50% probability level. All hydrogen atoms, except NH, and crystallising molecule of DCM have been omitted for clarity.

Figure S121. ORTEP representation of 27-THQ with thermal ellipsoids at 30\% probability level. All hydrogen atoms, and disordered crystallising molecule of DCM have been omitted for clarity.

Figure S122. ORTEP representation of 28-THQ with thermal ellipsoids at 50% probability level. All hydrogen atoms, and crystallising benzene molecule have been omitted for clarity.

Figure S123 ORTEP representation of 29-THQ with thermal ellipsoids at 50\% probability level. Asymmetric unit contains two independent molecules of [(29-THQ)•DCM], only one is shown here. All hydrogen atoms, and crystallising molecule of DCM have been omitted for clarity.

Crystallographic data for compounds 5, 25, 27-Me, 27-THQ, 28-THQ, and 29-THQ were recorded on a Rigaku Oxford Diffraction Excalibur diffractometer, at 120 K with Mo K α radiation ($\lambda=0.71073 \AA$) equipped with Eos CCD detector.

The CrysAlisPro ${ }^{[7]}$ software package was used for data collection, cell refinement and data reduction. For all datasets the CrysAlisPro software package was used for empirical absorption corrections, which were applied using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. All further data processing was undertaken within the Olex2 software package. ${ }^{[8]}$ The molecular structures of all compounds were solved with the ShelXT ${ }^{[9]}$ structure solution program using Intrinsic Phasing and refined with the ShelXL ${ }^{[10-12]}$ refinement package using Least Squares minimisation. Nonhydrogen atoms were refined anisotropically. Hydrogen atoms were all located in a difference map and repositioned geometrically.

Selected crystallographic data are presented in Table S2 and S3 and full details in cif format can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.uk/data request/cif.

Table S2. Selected crystallographic data for compounds 5, 25 and 27-THQ.

	5	25	27-THQ
CCDC No	2221503	2221501	2221504
Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{BBr}_{2} \mathrm{~N}$	$\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{~B}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$	$\mathrm{C}_{24.5} \mathrm{H}_{24} \mathrm{~B}_{2} \mathrm{Br}_{4} \mathrm{ClNO}$
Formula Weight	346.90	550.429	725.16
Temperature (K)	120.01(11)	120.00(10) K	120.01(13)
Radiation	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Triclinic	Monoclinic
Space group	P $21 / \mathrm{c}$	P-1	P 21/c
a (A)	15.7521(4)	9.6072(4)	17.5337(11)
b (Å)	6.96070(10)	10.0198(4)	9.0190(3)
c (Å)	12.1360(2)	10.2726(4)	18.6811(8)
$\alpha\left({ }^{\circ}\right)$	90	81.790(3)	90
$\beta\left({ }^{\circ}\right)$	90.573(2)	67.850(4)	117.156(6)
$\gamma\left({ }^{\circ}\right)$	90	63.025(4)	90
Cell volume (\AA^{3})	1330.59(4)	815.76(7)	2628.5(3)
Z	4	1	4
ρ calc (gcm^{-3})	1.732	1.120	1.832
$\mu\left(\mathrm{mm}^{-1}\right)$	6.065	0.071	6.245
$F(000)$	688.0	300.172	1412.0
Crystal size/ mm ${ }^{3}$	$0.514 \times 0.259 \times 0.095$	$0.269 \times 0.101 \times 0.048$	$0.280 \times 0.222 \times 0.043$
2θ range for data collection/ ${ }^{\circ}$	6.716 to 58.958	3.84 to 29.12	6.522 to 58.682
Index ranges	$\begin{gathered} -21 \leq h \leq 21 ; \\ -9 \leq k \leq 9 ; \\ -16 \leq l \leq 15 \end{gathered}$	$\begin{gathered} -13 \leq h \leq 13 ; \\ -12 \leq k \leq 13 ; \\ -13 \leq 1 \leq 14 \end{gathered}$	$\begin{gathered} -23 \leq h \leq 21 ; \\ -11 \leq k \leq 11 ; \\ -24 \leq 1 \leq 24 \end{gathered}$
Reflections collected	28453	21826	29847
Independent reflections	$\begin{aligned} & 3401\left[R_{\text {int }}\right.=0.0387 ; R_{\text {sigma }}= \\ &0.0268] \end{aligned}$	$\begin{aligned} 4116\left[R_{\text {int }}\right. & =0.0415 ; R_{\text {sigma }} \\ = & 0.0383] \end{aligned}$	$\begin{aligned} & 6372\left[R_{\text {int }}\right.=0.0517 ; R_{\text {sigma }}= \\ &0.0591] \end{aligned}$
Data/restraints/parameters	3401/0/149	4116/0/415	6372/56/319
Goodness-of-fit-on F^{2} (GOF)	1.047	1.0975	1.013
Final R indices [$1>2 \sigma(1)]$	$\mathrm{R}_{1}=0.0236 ; \mathrm{wR}_{2}=0.0485$	$\mathrm{R}_{1}=0.0340 ; \mathrm{wR}_{2}=0.0494$	$\mathrm{R}_{1}=0.0497 ; \mathrm{wR}_{2}=0.0992$
R indices (all data)	$\mathrm{R}_{1}=0.0343 ; \mathrm{wR}_{2}=0.0511$	$\mathrm{R}_{1}=0.0514 ; \mathrm{wR}_{2}=0.0538$	$\mathrm{R}_{1}=0.0913 ; \mathrm{wR}_{2}=0.1163$
Largest diff. peak and hole (e \AA^{-3})	0.61/-0.38	0.24 / -0.23	1.96 / -1.26
Flack parameter			

Table S3. Selected crystallographic data for compounds 29-THQ, 27-Me and 25.

	28-THQ	29-THQ	27-Me
CCDC No	2221506	2221505	2221502
Empirical formula	$\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{~B}_{2} \mathrm{Br}_{2} \mathrm{NO}$	$\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{BCl}_{3} \mathrm{NO}$	$\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~B}_{2} \mathrm{Br}_{4} \mathrm{Cl}_{2} \mathrm{NO}$
Formula Weight	603.00	474.63	741.58
Temperature (K)	119.99(17)	120.1(5)	120.01(10)
Radiation	0.71073	0.71073	0.71073
Crystal system	Orthorhombic	Triclinic	Triclinic
Space group	$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$	P-1	P-1
a (Å)	9.83580(10)	11.9253(5)	7.3365(2)
b (Å)	11.60820(10)	13.1059(8)	12.5616(4)
c (Å)	22.5888(2)	16.0617(6)	15.3464(4)
$\alpha\left({ }^{\circ}\right)$	90	86.088(4)	107.814(3)
$\beta\left({ }^{\circ}\right)$	90	72.721(3)	93.035(2)
$\gamma\left({ }^{\circ}\right)$	90	77.089(4)	97.768(2)
Cell volume (\AA^{3})	2579.10(4)	2336.4(2)	1327.45(7)
Z	4	4	2
ρ calc (gcm^{-3})	1.553	1.349	1.855
$\mu\left(\mathrm{mm}^{-1}\right)$	3.168	0.410	6.283
$F(000)$	1224.0	992.0	720.0
Crystal size/ mm^{3}	$0.355 \times 0.339 \times 0.261$	$0.380 \times 0.245 \times 0.109$	$0.253 \times 0.143 \times 0.124$
2θ range for data collection/ ${ }^{\circ}$	7.02 to 58.99	6.644 to 58.824	6.902 to 58.652
Index ranges	$\begin{gathered} -13 \leq h \leq 13 ; \\ -15 \leq k \leq 15 ; \\ -31 \leq l \leq 30 \end{gathered}$	$\begin{gathered} -16 \leq h \leq 16 ; \\ -18 \leq k \leq 17 ; \\ -21 \leq l \leq 21 \end{gathered}$	$\begin{gathered} -9 \leq h \leq 9 ; \\ -17 \leq k \leq 15 ; \\ -20 \leq l \leq 20 \end{gathered}$
Reflections collected	57746	18790	29297
Independent reflections	$\begin{gathered} 6623\left[R_{\text {int }}=0.0380 ;\right. \\ \left.R_{\text {sigma }}=0.0275\right] \end{gathered}$	$\begin{gathered} 18790\left[\mathrm{R}_{\text {int }}=0582 ;\right. \\ \left.\mathrm{R}_{\text {sigma }}=0.0860\right] \end{gathered}$	$\begin{gathered} 6512\left[R_{\text {int }}=0.0351 ;\right. \\ \left.R_{\text {sigma }}=0.0364\right] \end{gathered}$
Data/restraints/parameters	6623/0/329	18790/0/568	6512/1/316
Goodness-of-fit-on F^{2} (GOF)	1.050	0.961	1.065
Final R indices [$1>2 \sigma(/)]$	$\begin{gathered} \mathrm{R}_{1}=0.0256 ; w \mathrm{R}_{2}= \\ 0.0557 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0479 ; w \mathrm{R}_{2}= \\ 0.0953 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0288 ; w \mathrm{R}_{2}= \\ 0.0555 \end{gathered}$
R indices (all data)	$\begin{gathered} \mathrm{R}_{1}=0.0312 \\ \mathrm{wR}_{2}=0.0576 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0800 ; w \mathrm{R}_{2}= \\ 0.1004 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0445 ; w \mathrm{R}_{2}= \\ 0.0597 \end{gathered}$
Largest diff. peak and hole (e \AA^{-3})	0.40 / -0.46	0.58/-0.55	0.52 / -0.48
	0.494(8)		

9 Computational details

All calculations were performed using the Gaussian09 series of programs. ${ }^{[13]}$ Geometries were optimized with the DFT method using M06-2X functional ${ }^{[14]}$ with a $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set. All geometry optimizations were full, with no restrictions. All stationary points were characterized as minima by vibrational analysis. Solvent effects were introduced using the self-consistent field approach, by means of the integral equation formalism polarizable continuum model (IEFPCM). ${ }^{[15]}$

Compound $\mathbf{1}^{+}$

$E($ RM062X $)=-3117.128717$
$\begin{array}{llll}\mathrm{Br} & 7.20757500 & 6.10605100 & 12.73864700\end{array}$
$\begin{array}{llll}0 & 7.79243600 & 5.72093500 & 15.43531700\end{array}$
$\begin{array}{lllll}\mathrm{N} & 7.83885500 & 5.09145100 & 17.56411900\end{array}$
$\begin{array}{lllll}C & 8.34209000 & 5.82857300 & 16.62935700\end{array}$
$\begin{array}{lllll}C & 9.82845500 & 7.70199200 & 15.76126600\end{array}$
$\begin{array}{llll}C & 9.20741100 & 7.59881300 & 14.50836100\end{array}$
$\begin{array}{lllll}C & 10.78422400 & 8.68811800 & 15.98661600\end{array}$
$\begin{array}{lllll}H & 11.26402200 & 8.76924200 & 16.95568700\end{array}$
$\begin{array}{lllll}C & 8.38040500 & 5.10720700 & 18.93144700\end{array}$
$\begin{array}{llll}H & 9.46595300 & 5.15515000 & 18.91314300\end{array}$
$\begin{array}{llll}\mathrm{H} & 8.07514200 & 4.18364900 & 19.41556200\end{array}$
$\begin{array}{llll}\mathrm{H} & 7.96991300 & 5.95806400 & 19.47662200\end{array}$
$\begin{array}{lllll}C & 9.50412500 & 6.73794800 & 16.87710100\end{array}$
$\begin{array}{lllll}\mathrm{H} & 10.37431100 & 6.09601400 & 17.06831300\end{array}$
$\begin{array}{llll}H & 9.32142600 & 7.28149400 & 17.80781800\end{array}$
$\begin{array}{lllll}C & 9.56080200 & 8.49469900 & 13.48916600\end{array}$
$\begin{array}{llll}\mathrm{H} & 9.08116400 & 8.41409600 & 12.52050500\end{array}$
$\begin{array}{lllll}C & 11.12009200 & 9.56938600 & 14.96683000\end{array}$
$\begin{array}{lllll}H & 11.86304100 & 10.33687100 & 15.14796000\end{array}$
$\begin{array}{lllll}C & 10.51094600 & 9.47568000 & 13.71530100\end{array}$
$\begin{array}{lllll}H & 10.78024600 & 10.16704100 & 12.92711900\end{array}$
$\begin{array}{llll}\text { B } & 8.15223000 \quad 6.51249300 & 14.34427300\end{array}$
$\begin{array}{lllll}C & 6.67933200 & 4.21158600 & 17.34727300\end{array}$
$\begin{array}{llll}H & 5.94317700 & 4.44128400 & 18.11622500\end{array}$
$\begin{array}{llll}H & 7.01053700 & 3.17912900 & 17.45242400\end{array}$
H
$6.25889000 \quad 4.3752350016 .36244700$

1-BH (hydride added at B)

$E($ RM062X $)=-3117.894006$
$\begin{array}{llll}\mathrm{Br} & 9.59471900 & 4.69632300 & 13.42962900\end{array}$
$\begin{array}{llll}0 & 7.74037400 & 5.75700700 & 15.40940400\end{array}$
$\begin{array}{llll}\mathrm{N} & 7.80992500 & 5.20079800 & 17.56339300\end{array}$
$\begin{array}{lllll}C & 8.37220900 & 5.77122500 & 16.52444500\end{array}$
$\begin{array}{lllll}C & 9.89241700 & 7.58286100 & 15.68977900\end{array}$
$\begin{array}{llll}C & 9.26172000 & 7.53495000 & 14.44362700\end{array}$
$\begin{array}{lllll}C & 10.68551900 & 8.66808000 & 16.05426400\end{array}$
$\begin{array}{llll}\mathrm{H} & 11.16204900 & 8.69244900 & 17.02905600\end{array}$
$\begin{array}{lllll}C & 8.47061400 & 5.11871900 & 18.87061400\end{array}$
H
H
H
$\begin{array}{llll}C & 9.73008700 & 6.40703900 & 16.62889900\end{array}$
$\begin{array}{llll}H & 10.44872500 & 5.61961600 & 16.35899700\end{array}$
$\begin{array}{llll}\mathrm{H} & 9.93699400 & 6.70139300 & 17.65559000\end{array}$
$\begin{array}{lllll}\text { C } & 9.44521000 & 8.60695600 & 13.56793200\end{array}$
$\begin{array}{lllll}\mathrm{H} & 8.95416700 & 8.59094100 & 12.59991400\end{array}$
$\begin{array}{lllll}\text { C } & 10.86647700 & 9.72097400 & 15.16297000\end{array}$
$\begin{array}{llll}H & 11.48424900 & 10.56594900 & 15.44375800\end{array}$
$\begin{array}{lllll}C & 10.24667200 & 9.68958700 & 13.91645600\end{array}$
$\begin{array}{llll}\text { H } & 10.38324300 & 10.51140200 & 13.22311200\end{array}$
$\begin{array}{llll}\text { B } & 8.34808300 & 6.28349100 & 14.12896600\end{array}$
$\begin{array}{lllll}C & 6.47432600 & 4.60248300 & 17.48117700\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.85811200 & 5.02700900 & 18.27395100\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.55741900 & 3.52453400 & 17.62463100\end{array}$
$\begin{array}{llll}H & 6.03251400 & 4.81396400 & 16.51430200\end{array}$
$\begin{array}{llll}\mathrm{H} & 7.48429100 & 6.40151900 & 13.31655600\end{array}$

1-CH (hydride added at C)
$E($ RM062X $)=-3117.898158$
$\begin{array}{lllll}\mathrm{Br} & 6.42886400 & 7.06538900 & 13.14803500\end{array}$
$\begin{array}{lllll}O & 7.41345000 & 6.11180700 & 15.60298000\end{array}$
$\begin{array}{lllll}\mathrm{N} & 7.60641200 & 5.28997100 & 17.74597300\end{array}$
$\begin{array}{lllll}C & 8.36890700 & 5.84442900 & 16.65269700\end{array}$
$\begin{array}{lllll}C & 9.72884700 & 7.78769000 & 15.81518300\end{array}$
$\begin{array}{llll}C & 9.05597700 & 7.72773800 & 14.58307200\end{array}$
$\begin{array}{lllll}C & 10.92288200 & 8.49728100 & 15.91365800\end{array}$
$\begin{array}{lllll}\mathrm{H} & 11.44295300 & 8.54794100 & 16.86425600\end{array}$
$\begin{array}{lllll}C & 8.41511600 & 5.10140500 & 18.94671500\end{array}$
$\begin{array}{llll}H & 8.71280700 & 6.05808800 & 19.37414000\end{array}$

H

H
C
$\begin{array}{lllll}C & 11.45113000 & 9.13629300 & 14.79672500\end{array}$
$\begin{array}{llll}\mathrm{H} & 12.38452700 & 9.68065300 & 14.88181600\end{array}$
$\begin{array}{lllll}C & 10.79123600 & 9.07722400 & 13.57104800\end{array}$
$\begin{array}{llll}\mathrm{H} & 11.20916600 & 9.57462200 & 12.70441800\end{array}$
$\begin{array}{llll}\text { B } & 7.73681700 & 6.92451300 & 14.59216900\end{array}$
$\begin{array}{lllll}C & 6.99825200 & 4.02015000 & 17.35155300\end{array}$
$\begin{array}{llll}H & 6.35459100 & 3.66828700 & 18.15821800\end{array}$
$\begin{array}{llll}\mathrm{H} & 7.75817700 & 3.24774000 & 17.14701800\end{array}$

H

H
$6.39131900 \quad 4.1611920016 .45968000$
$9.07709700 \quad 5.10407500 \quad 16.23708700$

Compound 3

$E($ RM062X $)=-8291.805289$
$\begin{array}{lllll}C & -6.79001600 & -0.64188100 & -0.14665300\end{array}$
$\begin{array}{llll}C & -5.40870700 & -0.66916400 & 0.01799400\end{array}$
$\begin{array}{llll}C & -4.69576700 & 0.52189700 & 0.11187900\end{array}$
$\begin{array}{llll}C & -5.37444000 & 1.75026000 & 0.04732200\end{array}$
$\begin{array}{lllll}C & -6.76384600 & 1.76132600 & -0.11176100\end{array}$
$\begin{array}{lllll}C & -7.47109500 & 0.57153500 & -0.21282500\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.99582400 & 0.53192400 & 1.41147100\end{array}$
$\begin{array}{llll}\mathrm{H} & -7.33746700 & -1.57370200 & -0.22593000\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.88648000 & -1.61819700 & 0.06995600\end{array}$
$\begin{array}{llll}C & -3.19594800 & 0.50959800 & 0.33575300\end{array}$
$\begin{array}{llll}\mathrm{H} & -7.28692400 & 2.71003800 & -0.16035100\end{array}$
$\begin{array}{llll}\mathrm{H} & -8.54612800 & 0.58463800 & -0.34240000\end{array}$
$\begin{array}{lllll}C & -2.55980200 & 1.70311100 & -0.36503900\end{array}$
$\begin{array}{llll}C & -0.83439300 & 2.35182000 & 1.27833500\end{array}$
$\begin{array}{llll}H & 0.22858900 & 2.27157100 & 1.48471600\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.15395300 & 3.38677600 & 1.36071200\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.38992100 & 1.72809500 & 1.97572800\end{array}$
$\begin{array}{lllll}C & -0.38871700 & 0.55799400 & -0.30272800\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.61799200 & -0.08577800 & 0.54439100\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.72000100 & 0.10039600 & -1.23227100\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.68250800 & 0.73969000 & -0.34791900\end{array}$
$\begin{array}{lllll}\mathrm{H} & -2.78232700 & -0.41601900 & -0.06350600\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.67506400 & 1.59452900 & -1.44496600\end{array}$
$\begin{array}{lllll}\text { B } & -4.49220600 & 3.00816000 & 0.16571200\end{array}$
$\begin{array}{llll}\text { B } & -0.51442300 & 3.00680200 & -1.15602200\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.15497700 & 3.99010100 & -1.02306400\end{array}$
$\begin{array}{llll}0 & -3.15040100 & 2.92325500 & 0.03818800\end{array}$

Br	1.44113200	3.40305100	-0.75690700
Br	-0.68276700	2.32259200	-3.07106900
N	-1.07290100	1.87506100	-0.12366000
Br	-5.19885500	4.77404800	0.52774500

Compound 3-0

$E($ RM062X $)=-8291.811568$
$\begin{array}{llll}C & -6.73004600 & -0.65324300 & 0.08464000\end{array}$
$\begin{array}{lllll}C & -5.42727500 & -0.46897100 & 0.53560100\end{array}$
$\begin{array}{llll}C & -4.81432000 & 0.78007200 & 0.47533700\end{array}$
$\begin{array}{lllll}C & -5.52162200 & 1.88507600 & -0.05326000\end{array}$
$\begin{array}{lllll}C & -6.83211400 & 1.67097400 & -0.49943900\end{array}$
$\begin{array}{lllll}C & -7.43679200 & 0.42204800 & -0.43596100\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.30627600 & 1.66966100 & 1.75794000\end{array}$
$\begin{array}{llll}\mathrm{H} & -7.18616900 & -1.63435400 & 0.14308900\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.88005800 & -1.31153800 & 0.94395400\end{array}$
$\begin{array}{llll}C & -3.39604500 & 0.88169400 & 1.00222000\end{array}$
$\begin{array}{llll}\mathrm{H} & -7.39096900 & 2.50555800 & -0.90471200\end{array}$
$\begin{array}{llll}\mathrm{H} & -8.45183800 & 0.29147300 & -0.79033000\end{array}$
$\begin{array}{lllll}C & -2.39494900 & 1.17707300 & -0.06603600\end{array}$
$\begin{array}{llll}\text { C } & -0.50758300 & 0.85734300 & 1.41322500\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.21042600 & -0.19251200 & 1.42138300\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.36915600 & 1.49329100 & 1.51258100\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.19606800 & 1.06988200 & 2.22457200\end{array}$
$\begin{array}{lllll}C & -0.18271600 & 1.43720100 & -0.96915800\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.53583500 & 0.61942100 & -1.01586400\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.71976800 & 1.53143800 & -1.90838500\end{array}$
$\begin{array}{lllll}H & 0.32486300 & 2.37400300 & -0.73654100\end{array}$

H	-3.11880100	-0.05919600	1.48570500
H	-2.73387900	1.40491200	-1.07266700
B	-4.86418800	3.30290000	-0.15459900
O	-3.60083800	3.49806700	0.19740900
N	-1.12953800	1.15402200	0.11655000
B	-2.70274600	4.61774800	0.12347900
Br	-5.91200100	4.82125300	-0.85235500
Br	-1.21906700	4.27209000	1.54792000
Br	-1.81608500	4.57695900	-1.76157400
H	-3.15195000	5.69887400	0.31053800

Compound D

$E($ RM062X $)=-1083.001006$
$\begin{array}{llll}0 & -0.94570500 & 4.06351200 & 10.30002500\end{array}$
$\begin{array}{lllll}\mathrm{N} & 0.03183400 & 2.80205400 & 8.67115900\end{array}$
$\begin{array}{llll}C & -6.14224100 & 2.53713000 & 8.64058000\end{array}$
$\begin{array}{llll}H & -6.26857000 & 1.83837200 & 7.82459100\end{array}$
$\begin{array}{lllll}C & -4.75416000 & 3.84089900 & 10.13526900\end{array}$
$\begin{array}{llll}C & -0.05198600 & 0.71212900 & 6.57526700\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.14241400 & 1.17454700 & 5.60174600\end{array}$
$\begin{array}{llll}H & -0.23043200 & -0.34924800 & 6.39676100\end{array}$
$\begin{array}{lllll}C & 1.42024100 & 4.23015400 & 10.26073000\end{array}$
$\begin{array}{llll}C & -4.87464700 & 2.90847300 & 9.04751700\end{array}$
$\begin{array}{lllll}\text { C } & -5.93435600 & 4.34247200 & 10.74928500\end{array}$
$\begin{array}{llll}C & 1.22114800 & 2.39211000 & 7.87369000\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.10954700 & 2.58358800 & 8.45231100\end{array}$
$\begin{array}{llll}H & 1.23350400 & 3.02522800 & 6.98284900\end{array}$

1.04315200	5.22048100	11.37870600
0.44871900	6.05053100	10.99569500
1.96968800	5.62106300	11.79148400
0.48889500	4.73469700	12.18135600
-3.67487400	2.35488100	8.37210000
-4.60189300	5.67951800	12.28779000
-4.53777000	6.38145100	13.10950300
-1.23066600	2.28576400	8.19938000
2.21072300	5.03337800	9.20628800
2.68734600	4.43327900	8.43581400
2.99993100	5.57442800	9.73076000
1.56546800	5.77062500	8.72383200
-7.20846700	3.92657900	10.28964800
-8.09562600	4.32253000	10.77077900
-3.48839200	4.29071500	10.63187800
2.25723100	3.11039600	10.91584100
1.67087500	2.59643300	11.67987200
3.11214800	3.57895900	11.40660500
2.64421300	2.36313700	10.22541900
-7.30645300	3.03930900	9.25272400
-8.27520800	2.71513000	8.89410400
-3.72659600	1.41883500	7.33438100
-4.66665200	1.04315900	6.95397500
-2.55583100	0.92605000	6.77846900
-2.62385800	0.17987600	5.99391400
0.12652600	3.64695400	9.67976100
-2.40061500	2.77458100	8.78864500
-1.28118400	1.32748400	7.18627300
-3.43154900	5.18821100	11.68401900
-2.46388000	5.51993800	12.04717300
-5.82413700	5.26127600	11.82394500

H	-6.73751500	5.63138000	12.27756400
C	1.13859100	0.92582000	7.49364900
H	1.04833900	0.31928300	8.39899000
H	2.07113200	0.65288000	6.99930500
B	-2.26189900	3.73567000	9.93098200

D-BH (hydride added at B)

$$
E(R M 062 X)=-1083.731760
$$

$\begin{array}{lllll}0 & -0.91817900 & 3.96458500 & 10.39085600\end{array}$
$\begin{array}{llll}\mathrm{N} & 0.03886600 & 2.62692000 & 8.82030100\end{array}$
$\begin{array}{llll}C & -6.12959600 & 2.39552300 & 8.76191900\end{array}$
$\begin{array}{llll}H & -6.24984400 & 1.66158700 & 7.97528000\end{array}$
$\begin{array}{lllll}C & -4.74298200 & 3.70810900 & 10.26225800\end{array}$
$\begin{array}{llll}C & -0.06973300 & 1.04247700 & 6.36011600\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.28003100 & 1.76820600 & 5.61724800\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.29851700 & 0.11860100 & 5.82604000\end{array}$
$\begin{array}{lllll}C & 1.40574900 & 4.29015400 & 10.19659900\end{array}$
$\begin{array}{llll}\text { C } & -4.86709900 & 2.76879800 & 9.17337600\end{array}$
$\begin{array}{lllll}C & -5.92486700 & 4.31899300 & 10.77470600\end{array}$
$\begin{array}{lllll}C & 1.25687200 & 2.14209700 & 8.12709900\end{array}$
$\begin{array}{llll}H & 2.04415300 & 2.02402700 & 8.86376300\end{array}$
$\begin{array}{llll}H & 1.56483600 & 2.88982800 & 7.39398800\end{array}$
$\begin{array}{lllll}C & 1.00194600 & 5.56985900 & 10.95322500\end{array}$
$\begin{array}{llll}H & 0.46351700 & 6.25977300 & 10.30043300\end{array}$
$\begin{array}{llll}H & 1.91313500 & 6.05933800 & 11.30050400\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.37425800 & 5.34886700 & 11.81420300\end{array}$
$\begin{array}{llll}C & -3.65630100 & 2.29254100 & 8.44584900\end{array}$
$\begin{array}{lllll}\text { C } & -4.58693000 & 5.67564800 & 12.26760500\end{array}$

-4.50580200	6.44532600	13.02735400
-1.24690800	2.21377500	8.27800000
2.34368000	4.71951900	9.05200300
2.98996500	3.92244900	8.69291900
2.99507800	5.50884800	9.43040800
1.78485800	5.13164700	8.20817700
-7.19829800	3.91787300	10.29253000
-8.08621400	4.37882100	10.71213300
-3.47506300	4.03289200	10.84322400
2.12604200	3.36581600	11.19941800
1.46891600	3.12909800	12.03892300
3.00081400	3.89286900	11.58689900
2.46924400	2.43000600	10.75747000
-7.29571500	2.95368500	9.32821700
-8.26614100	2.62572400	8.97447900
-3.73285500	1.67037300	7.19231600
-4.68622200	1.48475000	6.71421300
-2.57772000	1.27507300	6.53797900
-2.64942300	0.75272800	5.58973700
0.11014900	3.58211000	9.75549200
-2.39451300	2.53028500	8.99799500
-1.30878800	1.53971600	7.05426300
-3.42623100	5.01355000	11.81041100
-2.46797500	5.26956200	12.25399800
-5.81454400	5.31677200	11.77769400
-6.72126300	5.78368500	12.14799500
1.01113100	0.82900800	7.40889200
0.70328100	0.05862500	8.12108100
1.95295400	0.51496000	6.95652800
-2.22251700	3.13597700	10.44186400
-2.0155970	2.2626850	1127070500

D-CH (hydride added at C)

$E($ RM062X $)=-1083.764528$
$\begin{array}{llll}0 & -0.93230100 & 4.35584100 & 10.12485900\end{array}$
$\begin{array}{lllll}N & 0.06049300 & 2.73937300 & 8.68896400\end{array}$
$\begin{array}{lllll}C & -6.02680600 & 2.10894600 & 9.15687500\end{array}$
$\begin{array}{llll}H & -6.10128800 & 1.15511400 & 8.64984600\end{array}$

C

C

H

H
C

C
C
C

H

H

C
H

H

H
C

C

H

C
$\begin{array}{lllll}C & 1.88389000 & 5.13667100 & 9.74707700\end{array}$
$\begin{array}{llll}H & 2.23353100 & 4.90072800 & 8.74307800\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.71193100 & 5.61124700 & 10.28026100\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.07507900 & 5.86518800 & 9.66193300\end{array}$
$-4.72581400 \quad 3.97126900 \quad 9.99754600$
$-0.04749200 \quad 0.88785500 \quad 6.43187500$
$-0.11007100 \quad 1.35515200 \quad 5.44274400$
$-0.05792600-0.19233300 \quad 6.26603300$
$1.40169700 \quad 3.91796400 \quad 10.54542000$
$-4.80056900 \quad 2.73295200 \quad 9.26769200$
$-5.92368500 \quad 4.5414560010 .51266600$
$1.10336300 \quad 2.73431100 \quad 7.66681000$
$2.04181200 \quad 3.06715700 \quad 8.08782100$
$0.84100100 \quad 3.42889900 \quad 6.85741600$
$1.10480100 \quad 4.39975100 \quad 11.97816700$
$0.40579900 \quad 5.23573100 \quad 11.97539000$
$2.03545000 \quad 4.72371000 \quad 12.44993600$
$0.67882200 \quad 3.59503700 \quad 12.58400800$
-3.59384200
$2.15416500 \quad 8.61862400$
$\begin{array}{lllll}C & -4.66932300 & 6.42311100 & 11.40242100\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.63798700 & 7.36630000 & 11.93456800\end{array}$
$\begin{array}{llll}C & -1.16276200 & 2.19838500 & 8.30908100\end{array}$
$\begin{array}{lllll}C & -7.16130500 & 3.86964300 & 10.34516900\end{array}$
$\begin{array}{llll}\mathrm{H} & -8.06171900 & 4.31752800 & 10.75122700\end{array}$
$\begin{array}{lllll}C & -3.48339800 & 4.64051500 & 10.24119000\end{array}$
$\begin{array}{lllll}C & 2.46501900 & 2.81574600 & 10.65967300\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.09996400 & 2.00782800 & 11.30027100\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.36271200 & 3.22931600 & 11.12582800\end{array}$
H

C

H

C
H
C
H

C

C

C

C
H
C
H

C

H
H

B
H

BEt_{3}
$E($ RM062X $)=-262.461001$
$\begin{array}{llll}\text { B } & 0.56583500 & 0.93255200 & -0.37784000\end{array}$
$\begin{array}{lllll}C & -0.15248800 & -0.38234500 & -0.86246700\end{array}$
$\begin{array}{lllll}\mathrm{H} & 0.38962800 & -1.28313600 & -0.55767100\end{array}$
$\begin{array}{lllll}\mathrm{H} & -1.18031100 & -0.46802900 & -0.49801800\end{array}$
$\begin{array}{lllll}C & -0.17671300 & -0.32081200 & -2.40915100\end{array}$
$\begin{array}{lllll}\mathrm{H} & 0.83561200 & -0.25862500 & -2.81751000\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.65019500 & -1.20823800 & -2.83348100\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.72954800 & 0.55266000 & -2.76558100\end{array}$
$\begin{array}{lllll}C & -0.22245800 & 2.28523400 & -0.20098400\end{array}$
$\begin{array}{llll}H & 0.09472300 & 2.74533900 & 0.74488700\end{array}$
$\begin{array}{lllll}H & 0.17682100 & 2.97341000 & -0.96253900\end{array}$
$\begin{array}{lllll}C & -1.75036200 & 2.23720000 & -0.27989600\end{array}$
$\begin{array}{lllll}\mathrm{H} & -2.19529000 & 3.23058000 & -0.18705000\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.08744300 & 1.81172000 & -1.22868200\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.16444200 & 1.61479500 & 0.51727200\end{array}$
$\begin{array}{lllll}C & 2.12482300 & 0.89112800 & -0.15018500\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.23740000 & 0.39422400 & 0.82805700\end{array}$
$\begin{array}{lllll}\mathrm{H} & 2.58329700 & 0.18759000 & -0.85673100\end{array}$
$\begin{array}{lllll}C & 2.88584800 & 2.21995500 & -0.14093500\end{array}$
$\begin{array}{llll}H & 3.94742700 & 2.08117600 & 0.07548800\end{array}$
$\begin{array}{lllll}\mathrm{H} & 2.80941700 & 2.72093400 & -1.10963800\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.48246300 & 2.90418200 & 0.60939900\end{array}$

10 References

[1] Two Directing Groups Used for Metal Catalysed Meta-C-H Functionalisation Only Effect Ortho Electrophilic C-H Borylation. S. A. Iqbal, C. R. P. Millet, J. Pahl, K. Yuan, M. J. Ingleson, Eur. J. Org. Chem., 2022, e202200901.
[2] Acyl Directed ortho-Borylation of Anilines and C 7 Borylation of Indoles using just BBr_{3}. S. A. Iqbal, J. Cid, R. J. Procter, M. Uzelac, K. Yuan and M. J. Ingleson, Angew. Chem. Int. Ed., 2019, 58, 1538115385.
[3] Ultralong blue room-temperature phosphorescence by cycloalkyl engineering. Z. Cong, M. Han, Y. Fan, Y.Fan, K. Chang, L. Xiao, Y. Zhang, X. Zhen, Q. Li, Z. Li, Mater. Chem. Front. 2022, 6, 1606-1614.
[4] Synthesis of substituted benzooxaborinin-1-ols via palladium-catalysed cyclisation of alkenyl- and alkynyl-boronic acids. L. Benhamou, D. W. Walker, D. K. Bučar, A. E. Aliev, T. D. Sheppard, Org. Biomol. Chem. 2016, 14, 8039-8043.
[5] Zinc-catalyzed reduction of amides: unprecedented selectivity and functional group tolerance. S. Das, D. Addis, S. Zhou, K. Junge, M. Beller, J. Am. Chem. Soc. 2010, 132, 1770-1771.
[6] Synthesis of pyridobenzazepines using a one-pot Rh/Pd-catalyzed process. H. Lam, J. Tsoung, M. Lautens, J. Org. Chem. 2017, 82, 6089-6099.
[7] CrysAlisPro, Agil. Technol. Version 1.171 .35 .19 (release 27-10-2011 CrysAlis171.NET) (compiled Oct 27 2011,150211).
[8] OLEX2: a complete structure solution, refinement and analysis program. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339 - 341.
[9] SUPERFLIP- a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. L. Palatinus, G. Chapuis, J. Appl. Cryst. 2007, 40, 786-790.
[10] Symmetry determination following structure solution in P1. L. Palatinus, A. Van der Lee, J. Appl. Cryst. 2008, 41, 975 - 984.
[11] EDMA: a computer program for topological analysis of discrete electron densities. L. Palatinus, S. J. Prathapa, S. Van Smaalen, J. Appl. Cryst. 2012, 45, 575 - 580.
[12] A short history of SHELX. G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122.
[13] Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,

R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.

[14] The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four Mo6-class functionals and 12 other functionals. Zhao Y.; Truhlar D. G., Theor. Chem. Acc. 2008, 120, 215-241.
[15] Evaluation of Solvent Effects in Isotropic and Anisotropic Dielectrics and in Ionic Solutions with a Unified Integral Equation Method: Theoretical Bases, Computational Implementation, and Numerical Applications. Mennucci B.; Cancès E.; Tomasi J., J. Phys. Chem. B 1997, 101, 10506-10517.

