Contents

2
3
5
6
7
8
9
46
48
139
141

General information

Commercial reagents were used as supplied. Anhydrous solvents were used as supplied. NMR Spectra were recorded on a Bruker AV 400 spectrometer at 400 MHz (¹H NMR), 101 MHz (¹³C NMR), 376 MHz (¹⁹F NMR) or on a Bruker AV 300 spectrometer at 300 MHz (¹H NMR), 282 MHz (¹⁹F NMR). Multiplicities are indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), p (quintet), sext (sextet), m (multiplet), b (broad). All coupling constants were reported in Hz. HR-MS measurements were performed on a Bruker MicrOTOFQ II (ESI) and an Agilent 7200 GC/Q-TOF (EI) mass spectrometers.

General procedure for the synthesis of isothiocyanates

Prepared starting materials (R-NCS): compounds 1a, 1c, 1i, 1j, 1k, 1n, 1p, 1s, 1t, 1u, 1v, 1w, 1y, 1z, 1aa, 1ae are commercially available and were used without further purification.

General procedure A for the synthesis of isothiocyanates (adapted from reported literature procedure¹):

To a 25 mL flask were sequentially added primary amine or ammonium salt (5.0 mmol, 1.0 equiv.), water (5 mL), CS_2 (0.9 mL, 12.5 mmol, 2.5 equiv.), and potassium carbonate (1.38 g, 10.0 mmol, 2.0 equiv.). The mixture was stirred at room temperature overnight, followed by the addition of sodium persulfate (1.19 g, 5.0 mmol, 1.0 equiv.), potassium carbonate (690 mg, 5.0 mmol, 1.0 equiv.), and water (5.0 mL). The mixture was stirred at room temperature for 1 h. After completion,

brine was added (2.0 mL) and the mixture was extracted with ethyl acetate (3×30 mL). The combined organic layers were dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude material obtained was then purified by column chromatography on silica gel.

General procedure B for the synthesis of isothiocyanates (adapted from reported literature procedure²):

A 100 mL round-bottom flask was charged with the amine or ammonium salt (5.0 mmol, 1.0 equiv.), CH_2Cl_2 (25 mL) and saturated aqueous NaHCO₃ (25 mL). To the biphasic system under strong stirring was slowly added thiophosgene (460 µL, 6.0 mmol, 1.2 equiv.) at room temperature. After 1 h, the two phases were separated, and the aqueous phase was extracted with CH_2Cl_2 (3×30 mL). The combined organic layers were dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude material obtained was then purified by column chromatography on silica gel.

General procedure C for the synthesis of isothiocyanates (adapted from reported literature procedure²):

A 50 mL round-bottom flask was charged with the amine (5.0 mmol, 1.0 equiv.) and CH_2Cl_2 (15 mL). To the reaction mixture was added in one portion 1,1'-thiocarbonyldiimidazole (1.07 g, 6.0 mmol, 1.2 equiv.) at room temperature. After 1 h, water was added, and the two layers were separated. The aqueous layer was extracted with ethyl acetate (3×30 mL). The combined organic layers were dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude material obtained was then purified by column chromatography on silica gel.

General procedure D for the synthesis of anilines (adapted from reported literature procedure³): A flame-dried 100 mL round-bottom equipped with a magnetic stir bar was charged with phenols (10.0 mmol, 1.0 equiv.), 4-nitrobenzoyl chloride (12.0 mmol, 1.2 equiv.), and DMAP (1.0 mmol, 10 mol%), before DCM (25 mL) was added. To the resulting solution, Et_3N (15.0 mmol,1.5 equiv.) was added dropwise at 0 °C (ice bath). Then the reaction was allowed to warm up to room temperature and stirred for an additional 12 h. After the reaction was complete, HCl (1M, aq., 30 mL) was added to reaction mixture. The mixture was then extracted using DCM (3×30 mL) and the layers were separated. The organic layers were combined, washed with brine (25 mL), dried over anhydrous sodium sulfate, filtered, and concentrated with the aid of a rotary evaporator. The solvent was removed under reduced pressure with the aid of a rotary evaporator. The crude product was directly used in the next step without further purification.

To the methanol (10 mL) and THF (10 mL) solution of nitro compounds, 10% palladium on active carbon (202 mg) was added under Argon atmosphere. Hydrogen gas was bubbled into the suspension with stirring at room temperature for 15 h. After the palladium on carbon was removed by filtration, the solvent was removed under reduced pressure, to afford the corresponding anilines.

General information of Stability studies

Solution of **3r** (10 mmol/L, 5 mL) and internal standard ((trifluoromethyl)benzene, 0.23 mmol/L, 14.4 μ L) in deuterated acetonitrile was prepared. In an NMR tube, 0.25 mL of the solution with 0.25 mL of respective aqueous solutions or solvents. Remaining of the **3r** was determined based on ¹⁹F NMR analysis at room temperature. ¹⁹F NMR analysis were Performed at 1 hour, 5 hours, 10 hours, 15 hours, 24 hours and 48 hours respectively.

pH 4.00 (sigma-aldrich, B5020), pH 7.00 (sigma-aldrich, B4770), and pH 10.00 (sigma-aldrich, B4895) buffers and saline (sigma-aldrich, 806544) were commercially available. Hydrochloric acid solution with concentration of 1 mol/L (initial pH 1) and sodium hydroxide solution with concentration of 1 mol/L (initial pH 14) were prepared in the lab. The water was deionized. Anhydrous dimethyl sulfoxide and acetonitrile were purchased from sigma-aldrich.

Optimization of the Reaction Conditions (Method with H-tube)

Chamber 1				Chamber 2					V : -1-1-[a]	
1r/mmol	AgF/mmol	additive	MeCN/mL	Temperature/°C	Ph ₂ PCl/mmol	CF ₃ SO ₂ Na/mmol	additive	MeCN/mL	Temperature/°C	r ields ^[a]
0.2	0.8	/	1	r.t	0.6	0.6	/	1	r.t	60%
0.2	0.8	\	1	r.t	1.2	0.6	λ	1	r.t	80%
0.2	0.8	\	2	r.t	1.2	0.6	\	1	r.t	65%
0.2	0.8	\	0.5	r.t	1.2	0.6	\	1	r.t	55%
0.2	0.8	\	1	r.t	2.4	1.2	\	1	r.t	80%
0.2	0.8	\	1	r.t	1.8	0.9	\	1	r.t	80%
0.2	1	\	1	r.t	1.2	0.6	\	1	r.t	80%
0.2	0.6	\	1	r.t	1.2	0.6	\	1	r.t	55%
0.2	1.2	\	1	r.t	1.2	0.6	\	1	r.t	55%
0.2	0.8	\	1	r.t	1.2	0.6	\	1	35	70%
0.2	0.8	CsF (0.2 mmol)	1	r.t	1.2	0.6	\	1	r.t	35%

[a] reaction with standard condition was performed for 16 hours with: Chamber 1 (C1): **1r** (0.2 mmol, 1 equiv.), AgF (0.8 mmol, 4 equiv.) in MeCN (1 mL); Chamber 2 (C2): CF₃SO₂Na (1.2 mmol, 6 equiv.), Ph₂PCl (0.6 mmol, 3 equiv.) in MeCN (1 mL), Yield determined by¹⁹F NMR spectroscopy with PhCF₃ as an internal standard.

Optimization of the Solvents (Method H-tube)

Chamber 1				Chamber 2				
1r/mmol	AgF/mmol	Solvents/1 mL	Temperature/°C	Ph ₂ PCl/mmol	CF ₃ SO ₂ Na/mmol	Solvents/1 mL	Temperature/°C	Y leids ^[a]
0.2	0.8	MeCN	r.t	1.2	0.6	MeCN	r.t	80%
0.2	0.8	THF	r.t	1.2	0.6	MeCN	r.t	8%
0.2	0.8	DMF	r.t	1.2	0.6	MeCN	r.t	55%
0.2	0.8	Toluene	r.t	1.2	0.6	MeCN	r.t	11%
0.2	0.8	DCM	r.t	1.2	0.6	MeCN	r.t	8%
0.2	0.8	Et ₂ O	r.t	1.2	0.6	MeCN	r.t	30%
0.2	0.8	1,4-Dioxane	r.t	1.2	0.6	MeCN	r.t	20%
0.2	0.8	MeCN	r.t	1.2	0.6	THF	r.t	51%
0.2	0.8	MeCN	r.t	1.2	0.6	DMF	r.t	43%
0.2	0.8	MeCN	r.t	1.2	0.6	Toluene	r.t	69%
0.2	0.8	MeCN	r.t	1.2	0.6	DCM	r.t	46%
0.2	0.8	MeCN	r.t	1.2	0.6	Et_2O	r.t	72%
0.2	0.8	MeCN	r.t	1.2	0.6	1,4-Dioxane	r.t	55%

[a] reaction with standard condition was performed for 16 hours with: Chamber 1 (C1): **1r** (0.2 mmol, 1 equiv.), AgF (0.8 mmol, 4 equiv.) in MeCN (1 mL); Chamber 2 (C2): CF₃SO₂Na (1.2 mmol, 6 equiv.), Ph₂PCl (0.6 mmol, 3 equiv.) in MeCN (1 mL), Yield determined by¹⁹F NMR spectroscopy with PhCF₃ as an internal standard.

Mechanism Investigation

General procedure for the synthesis trifluoro((trifluoromethyl)sulfinothioyl)methane:

To a H-tube were sequentially added acetonitrile (1 mL) to chamber A. Then sodium triflate (0.6 mmol, 3.0 equiv.) and acetonitrile (1 mL) were added to chamber B. After sealing the H-tube, chlorodiphenylphosphine (1.2 mmol, 3.0 equiv.) was added to chamber B by syringe. The mixture was stirred at room temperature overnight. After completion, the internal standard (trifluoromethyl)benzene (30 μ L, 0.244 mmol) was added, and the ¹⁹F-NMR spectra is shown as follow:

Characterization of starting materials

4-(isothiocyanatomethyl)-1,1'-biphenyl (1b)

The compound **1b** was obtained as a white solid in 63% yield using [1,1'-biphenyl]-4ylmethanamine following the general procedure A after column chromatography on silica gel with pentane.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.55 – 7.46 (m, 4H), 7.40 – 7.32 (m, 2H), 7.32 – 7.22 (m, 3H), 4.64 (s, 2H).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 141.4, 140.3, 133.2, 132.5, 128.9, 127.7, 127.6, 127.4, 127.1, 48.5.

Characterization data matched that reported in the literature⁴

tert-butyl 3-(2-isothiocyanatoethyl)-1H-indole-1-carboxylate (1d)

3-(2-Isothiocyanatoethyl)-1H-indole was obtained as a colorless oil in 82% yield using 2-(1H-indol-3-yl)ethan-1-amine following the general procedure C after column chromatography on silica gel with cyclohexane/ethyl acetate (5/1).

The compound **1d** was obtained as a colorless oil in 70% yield following literature's procedure⁵: 3-(2-isothiocyanatoethyl)-1H-indole (808 mg, 1.0 equiv.) was added to a reaction tube and dissolved in DCM (2.0 mL). Triethylamine (0.66 mL, 1.2 equiv.) and 4- dimethylaminopyridine (48 mg, 0.1 equiv.) were added to the reaction tube. Boc anhydride (1.05 g, 2.4 equiv.) was dissolved in DCM (4 mL) and added to the reaction tube. The mixture was stirred in the sealed tube at rt for 10 h. The reaction mixture was extracted with a saturated solution of NH₄Cl (5.0 mL), water (5.0 mL) and a saturated solution of NaCl (5.0 mL). The combined organic layers were dried over Na₂SO₄ and the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel with cyclohexane/ethyl acetate (50/1).

¹H NMR (300 MHz, Chloroform-*d*) δ 8.05 (d, *J* = 8.2 Hz, 1H), 7.37 (s, 1H), 7.35 – 7.32 (m, 1H), 7.24 – 7.19 (m, 1H), 7.15 – 7.10 (m, 1H), 3.62 (t, *J* = 6.9 Hz, 2H), 2.93 (t, *J* = 6.8 Hz, 2H), 1.55 (s, 9H).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 149.5, 135.6, 131.1, 129.8, 124.7, 124.2, 122.7, 118.5,

115.8, 115.5, 83.8, 28.2, 27.0, 26.2.

HRMS (ESI) calculated for $C_{16}H_{19}N_2O_2S$: 303.1162 [M+H]⁺, Found: 303.1161.

2-(2-isothiocyanatopropoxy)-1,3-dimethylbenzene (1e)

The compound **1e** was obtained as a colorless oil in 74% yield using 1-(2,6-dimethylphenoxy) propan-2-amine hydrochloride following the general procedure A after column chromatography on silica gel with pentane.

¹H NMR (300 MHz, Chloroform-*d*) δ 6.95 – 6.92 (m, 2H), 6.89 – 6.84 (m, 1H), 4.12 – 4.01 (m, 1H),

3.71 (d, *J* = 5.5 Hz, 2H), 2.22 (s, 6H), 1.42 (d, *J* = 6.7 Hz, 3H).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 154.7, 132.8, 130.78, 129.0, 124.4, 74.2, 53.6, 18.4, 16.3.

Characterization data matched that reported in the literature²

(3-isothiocyanatopropyl)benzene (1f)

The compound **1f** was obtained as a colorless oil in 99% yield using 3-phenylpropan-1-amine following the general procedure A after column chromatography on silica gel with cyclohexane.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.35 – 7.30 (m, 2H), 7.27 – 7.15 (m, 3H), 3.51 (t, *J* = 6.5 Hz, 2H), 2.77 (t, *J* = 7.4 Hz, 2H), 2.08 – 1.98 (m, 2H).

¹³C{¹H} NMR (75 MHz, Chloroform-d) δ 139.9, 128.6, 128.8, 126.4, 44.1, 32.5, 31.4.

Characterization data matched that reported in the literature⁶

1-benzyl-4-isothiocyanatopiperidine (1g)

Bn-N -NCS

The compound 1g was obtained as a yellow oil in 40% yield using 1-benzylpiperidin-4-amine following the general procedure A after column chromatography on silica gel with pentane/ethyl acetate (10/1).

¹H NMR (300 MHz, Chloroform-*d*) δ 7.36 – 7.06 (m, 5H), 3.68 – 3.63(m, 1H), 3.42 (s, 2H), 2.57 – 2.50 (m, 2H), 2.27 – 2.20 (m, 2H), 1.92 – 1.83 (m, 2H), 1.81 – 1.70 (m, 2H).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 138.2, 131.0, 129.0, 128.3, 127.2, 63.0, 53.4, 50.3, 32.5.

HRMS (ESI) calculated for $C_{13}H_{17}N_2S$: 233.1107 [M+H]⁺, Found: 233.1110

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

CENTRE COMMUN DE SPECTROMETRIE DE MASSE

Analysis Info					
Analysis Name	Impact2 220719	06 YY293-P2.d			
Method	Tune_pos_Standa	rd.m	Acquisition Date 7/19/2	022 1:53:52 PM	
Comment				Instrument / Ser# impac	t II 1825265.1
Acquisition Par	ameter				0081
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.3 Bar
Focus	Active	Set Capillary	4500 V	Set Dry Heater	200 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/min
Scan End	1000 m/z	Set Collision Cell RF	750.0 Vpp	Set Divert Valve Source	

tert-butyl 4-isothiocyanatopiperidine-1-carboxylate (1h)

Boc-N >-NCS

The compound **1h** was obtained as a colorless oil in 91% yield using tert-butyl 4-aminopiperidine-1-carboxylate following the general procedure A after column chromatography on silica gel with pentane/ethyl acetate (20/1).

¹H NMR (300 MHz, Chloroform-*d*) δ 3.98 (sept, J = 7.4, 3.8 Hz, 1H), 3.73 - 3.65 (m, 2H), 3.46 - 3.38 (m, 2H), 2.03 - 1.94 (m, 2H), 1.89 - 1.78 (m, 2H), 1.53 (s, 9H).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 154.4, 132.2, 79.9, 53.2, 40.6, 32.1, 28.3.

Characterization data matched that reported in the literature²

5-isothiocyanatobenzo[d][1,3]dioxole (11)

NCS

The compound **11** was obtained as a white solid in 77% yield using benzo[d][1,3]dioxol-5-amine following the general procedure A after column chromatography on silica gel with cyclohexane.

¹H NMR (300 MHz, Chloroform-*d*) δ 6.76-6.73 (m, 3H), 6.02 (s, 2H).

 $^{13}C\{^{1}H\}$ NMR (75 MHz, Chloroform-*d*) δ 148.2, 146.9, 119.6, 108.5, 106.7, 102.0.

Characterization data matched that reported in the literature⁷

1-(benzyloxy)-4-isothiocyanatobenzene (1m)

The compound **1m** was obtained as a white solid in 75% yield using 4-(benzyloxy)aniline following the general procedure A after column chromatography on silica gel with pentane.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.44 – 7.15 (m, 5H), 7.12 – 7.00 (m, 2H), 6.90 – 6.77 (m, 2H), 4.97 (s, 2H).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 157.7, 136.3, 134.1, 128.7, 128.2, 127.5, 127.0, 123.9, 115.8, 70.3.

Characterization data matched that reported in the literature⁸

4-(4-isothiocyanatophenyl)morpholine (10)

The compound 10 was obtained as a white solid in 83% yield using 4-morpholinoaniline following

the general procedure A after column chromatography on silica gel with pentane/ethyl acetate (8/1).

¹H NMR (300 MHz, Chloroform-*d*) δ 7.12 – 7.01 (m, 2H), 6.78 – 6.72 (m, 2H), 3.81 – 3.75 (m, 4H), 3.12 – 3.07 (m, 4H).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 150.1, 133.4, 126.7, 122.1, 115.7, 66.7, 48.6.

Characterization data matched that reported in the literature⁹

2-isothiocyanato-9H-fluorene (1q)

The compound 1q was obtained as a yellow solid in 50% yield using 9H-fluoren-2-amine following the general procedure A after column chromatography on silica gel with pentane/ethyl acetate (20/1).

¹H NMR (300 MHz, Chloroform-*d*) δ 7.67 – 7.67 (m, 2H), 7.45 (d, *J* = 7.2 Hz, 1H), 7.35 – 7.20 (m, 3H), 7.17 – 7.11 (m, 1H), 3.78 (s, 2H).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 144.5, 143.4, 141.0, 140.4, 134.8, 129.2, 127.3, 127.1, 125.1, 124.6, 122.5, 120.5, 120.2, 36.8.

Characterization data matched that reported in the literature²

4-isothiocyanato-1,1'-biphenyl (1r)

Ph-____NCS

The compound 1r was obtained as a white solid in 75% yield using 4-(benzyloxy)aniline following

the general procedure A after column chromatography on silica gel with pentane.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.61 – 7.54 (m, 4H), 7.49 – 7.42 (m, 2H), 7.41 – 7.34 (m, 1H), 7.33 – 7.27 (m, 2H).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 140.3, 139.7, 130.3, 128.9, 128.2, 127.9, 127.0, 126.1.

Characterization data matched that reported in the literature⁶

(140.3) 139.7 139.3 130.3 128.9 128.2 128.2 127.0 127.0 126.1

4-isothiocyanatophenyl acetate (1x)

4-Isothiocyanatophenol was obtained as a yellowish oil in 80% yield using 4-aminophenol following the general procedure A after column chromatography on silica gel with cyclohexane/ethyl acetate (20/1).

The compound 1x was obtained as a yellow solid in 81% yield following literature's procedure¹⁰: Acetic anhydride (0.95 mL, 2.0 equiv.), DIPEA (1.23 mL, 1.4 equiv.), and DMAP (61.1 mg, 0.1 equiv.) were added to a solution of the 4-isothiocyanatophenol (755 mg, 1.0 equiv.) in Acetonitrile (5 mL). The mixture was stirred at room temperature until starting material is consumed. The reaction was poured into water (10 mL), and the mixture was stirred vigorously for 30 min. The aqueous phase was extracted with ethyl acetate (3×10 mL). The combined organic layers were washed with 1 M aq. HCl (10 mL), saturated aq. NaHCO₃ (10 mL), water (10 mL) and brine (10 mL), and dried over anhydrous Na₂SO₄. The solvent was evaporated under reduced and vacuum to give the compound **1x** without further purification.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.22 – 7.12 (m, 2H), 7.09 – 6.98 (m, 2H), 2.22 (s, 3H).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 169.0, 149.3, 136.0, 128.8, 126.7, 122.9, 21.1.

Characterization data matched that reported in the literature²

1-fluoro-4-(4-isothiocyanatophenoxy)benzene (1ab)

The compound **1ab** was obtained as a colorless oil in 89% yield using 4-(4-fluorophenoxy)aniline following the general procedure A after column chromatography on silica gel with pentane.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.12 – 7.07 (m, 2H), 7.00 – 6.88 (m, 4H), 6.87 – 6.79 (m, 2H).

¹⁹F NMR (282 MHz, Chloroform-*d*) δ -118.6 – -118.7 (m).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 159.3 (d, J = 242.9 Hz), 156.9, 151.9 (d, J = 2.7 Hz), 135.0, 127.2, 125.8, 121.1 (d, J = 8.3 Hz), 118.7, 116.6 (d, J = 23.4 Hz).

HRMS (EI) calculated for C₁₃H₈FNOS: 245.0305 [M]⁺, Found: 245.0307.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

1-chloro-4-(4-isothiocyanatophenoxy)benzene (1ac)

The compound **1ac** was obtained as a colorless oil in 80% yield using 4-(4-chlorophenoxy)aniline following the general procedure C after column chromatography on silica gel with pentane.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.49 – 7.42 (m, 2H), 7.23 – 7.17 (m, 2H), 6.97 – 6.92 (m, 2H),

6.92 – 6.86 (m, 2H).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 156.1, 154.9, 135.2, 130.0, 129.2, 127.3, 126.3, 120.6, 119.4.

HRMS (EI) calculated for C₁₃H₈ClNOS: 261.0010 [M]⁺, Found: 261.0012.

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

1-bromo-4-(4-isothiocyanatophenoxy)benzene (1ad)

The compound **1ad** was obtained as a colorless oil in 95% yield using 4-(4-bromophenoxy)aniline following the general procedure C after column chromatography on silica gel with pentane.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.38 – 7.26 (m, 1H), 7.25 – 7.14 (m, 1H), 7.00 – 6.89 (m, 3H).

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (75 MHz, Chloroform-d) δ 156.1, 154.9, 130.0, 129.2, 127.3, 126.3, 120.8, 119.4.

HRMS (EI) calculated for C₁₃H₈BrNOS: 304.9504 [M]⁺, Found: 304.9502.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

benzyl (2S,5R,6R)-6-isothiocyanato-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate (1af)

The compound **1af** was obtained as a yellow solid in 95% yield using (2S,5R,6R)-2- ((benzyloxy)carbonyl)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptan-6-aminium

trifluoromethanesulfonate following the general procedure B without further purification.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.36 – 7.25 (m, 5H), 5.93 (d, *J* = 3.3 Hz, 1H), 5.20 – 5.08 (m, 3H), 4.47 (d, *J* = 3.4 Hz, 1H), 1.52 (s, 3H), 1.36 (s, 3H).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 168.3, 168.2, 134.8, 128.7, 128.7, 128.6, 72.2, 70.0, 67.4, 62.8, 62.8, 33.1, 26.4.

Characterization data matched that reported in the literature²

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 4-isothiocyanatobenzoate (1ag)

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 4-aminobenzoate was obtained as a white solid in 99% yield using 4-aminobenzoyl chloride and (1R,2S,5R)-2-isopropyl-5-methylcyclohexan-1-ol following the general procedure D.

The compound **1ag** was obtained as a white solid in 35% yield using (1R,2S,5R)-2-isopropyl-5methylcyclohexyl 4-aminobenzoate following the general procedure C after column chromatography on silica gel with pentane.

¹H NMR (300 MHz, Chloroform-*d*) δ 8.05 – 8.03 (m, 1H), 8.02 – 8.00 (m, 1H), 7.28 – 7.27 (m, 1H), 7.26 – 7.24 (m, 1H), 4.97 – 4.88 (m, 1H), 2.15 – 2.07 (m, 1H), 1.97 – 1.87 (m, 1H), 1.78 – 1.69 (m, 2H), 1.59 – 1.49 (m, 3H), 1.09 (q, *J* = 11.8 Hz, 2H), 0.93 (d, *J* = 3.9 Hz, 3H), 0.91 (d, *J* = 4.4 Hz, 3H), 0.79 (d, *J* = 6.9 Hz, 3H).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 164.9, 137.6, 135.4, 131.0, 129.4, 125.6, 75.4, 47.2, 40.9, 34.3, 31.4, 26.6, 23.6, 22.0, 20.7, 16.5.

HRMS (ESI) calculated for $C_{18}H_{24}NO_2S$: 318.1522 [M+H]⁺, Found: 318.1526.

((3aS,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-yl)methyl 4-isothiocyanatobenzoate (1ah)

((3aS,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3ayl)methyl 4-aminobenzoate was obtained as a white solid in 99% yield using 4-aminobenzoyl chloride and ((3aS,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b:4',5'd]pyran-3a-yl)methanol following the general procedure D.

The compound **1ah** was obtained as a colorless oil in 48% yield using ((3aS,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-yl)methyl 4-aminobenzoate following the general procedure C after column chromatography on silica gel with pentane/ethyl acetate (9/1).

¹H NMR (300 MHz, Chloroform-*d*) δ 8.01 – 7.93 (m, 2H), 7.21 – 7.16 (m, 2H), 5.49 (d, *J* = 4.9 Hz, 1H), 4.60 – 4.57 (m, 1H), 4.48 – 4.43 (m, 1H), 4.39 – 4.32 (m, 1H), 4.29 – 4.27 (m, 1H), 4.26 – 4.22 (m, 1H), 4.12 – 4.07 (m, 1H), 1.42 (d, *J* = 10.3 Hz, 6H), 1.27 (d, *J* = 5.9 Hz, 6H).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 165.2, 137.8, 135.7, 131.7, 128.6, 125.7, 109.7, 108.8, 96.3, 71.1, 70.7, 70.5, 66.1, 64.3, 26.0, 26.0, 25.0, 24.5.

HRMS (EI) calculated for $C_{20}H_{24}NO_7S$: 422.1276 [M+H]⁺, Found: 422.1268.

CENTRE COMMUN DE SPECTROMETRIE DE MASSE

Analysis Info Analysis Name Method	Impact2_220929_02_	YY643-P1.d		Acquisition Date 9	/29/2022 5-11-51 PM
Comment	Ture_pos_Standard.m			Instrument / Ser# in	npact II 1825265.
Acquisition Par	ameter				0001
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.3 Bar
Focus	Active	Set Capillary	1500 V	Set Dry Heater	200 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/min
Scan End	1000 m/z	Set Collision Cell RF	750.0 Vpp	Set Divert Valve	e Source

(R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-yl isothiocyanatobenzoate (1ai)

(R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-yl 4-aminobenzoate was obtained as a white solid in 99% yield using 4-aminobenzoyl chloride and (R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-ol following the general procedure D.

The compound **1ai** was obtained as a yellow oil in 56% yield using(R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-yl 4-aminobenzoate following the general procedure

4-

C after column chromatography on silica gel with pentane/ethyl acetate (50/1).

¹H NMR (300 MHz, Chloroform-*d*) δ 8.16 (d, *J* = 8.5 Hz, 2H), 7.27 (d, *J* = 8.6 Hz, 2H), 2.54 (t, *J* = 6.8 Hz, 2H), 2.04 (s, 3H), 1.97 (s, 3H), 1.92 (s, 3H), 1.81 – 1.69 (m, 2H), 1.55 – 1.44 (m, 3H), 1.40 – 1.30 (m, 4H), 1.27 – 1.13 (m, 11H), 1.10 – 0.98 (m, 6H), 0.80 – 0.76 (m, 12H).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 164.04, 149.61, 140.46, 138.11, 136.15, 131.62, 128.14, 126.75, 125.87, 125.00, 123.24, 117.55, 75.15, 39.39, 37.58, 37.48, 37.41, 37.31, 32.80, 32.72, 31.02, 28.00, 24.84, 24.47, 22.75, 22.65, 21.06, 20.65, 19.78, 19.71, 19.63, 13.08, 12.23, 11.89.

HRMS (EI) calculated for C₃₇H₅₄NO₃S: 592.3819 [M+H]⁺, Found: 592.3823.

-164.0 -164.0 -149.6 -149.6 -149.6 -138.1 -140.5 -131.6 -131.6 -125.9 -125.9 -125.9 -125.0 -23.0 -23.0 -24.5 -23.7 -23.7 -22.7

CENTRE COMMUN DE SPECTROMETRIE DE MASSE

Analysis Name Method	Impact2_220929_04_YY647-P1.d Tune_pos_Standard.m			Acquisition Date	9/29/2022 5:25:06 PM	
Comment				Instrument / Ser#	impact II	1825265.1
Acquisition Par	ameter					0001
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.3	Bar
Focus	Active	Set Capillary	1500 V	Set Dry Heate	er 200	O°C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0	l/min
Scan End	1000 m/z	Set Collision Cell RF	1500.0 Vpp	Set Divert Va	lve Sou	urce

General procedure for the synthesis of N, S-bis(trifluoromethyl)

thiohydroxylamine

General procedure E for the synthesis of N, S-bis(trifluoromethyl)thiohydroxylamine:

To a 10 mL tube were sequentially added isothiocyanates (0.2 mmol, 1 equiv.), silver fluoride (0.6 mmol, 3.0 equiv.), 2-((trifluoromethyl)thio)isoindoline-1,3-dione (0.2 mmol, 1.0 equiv.), cesium fluoride (0.2 mmol, 1.0 equiv.), and acetonitrile (1 mL). The reaction mixture was stirred at room temperature overnight. After completion, the mixture was filtered through a celite pad, then extracted with ethyl acetate (3×10 mL). The combined organic layers were dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude material obtained was then purified by column chromatography on silica gel.

General procedure F for the synthesis of N, S-bis(trifluoromethyl)thiohydroxylamine:

To a H-tube were sequentially added isothiocyanate (0.2 mmol, 1.0 equiv.), silver fluoride (0.8 mmol, 4.0 equiv.), and acetonitrile (1 mL) to chamber A. Then sodium triflate (0.6 mmol, 3.0 equiv.) and acetonitrile (1 mL) were added to chamber B. After sealing the H-tube, chlorodiphenylphosphine (1.2 mmol, 3.0 equiv.) was added to chamber B by syringe. The mixture was stirred at room temperature overnight. After completion, the mixture in chamber A was filtered through a celite pad, then extracted with ethyl acetate (3×10 mL). The combined organic layers were dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude material obtained was then purified by column chromatography on silica gel.

General procedure G for the synthesis of N, S-bis(trifluoromethyl)thiohydroxylamine in large scale (2 g scale):

To a 400 mL H-tube were sequentially added isothiocyanate (10.0 mmol, 1.0 equiv.), silver fluoride (40.0 mmol, 4.0 equiv.), and acetonitrile (50 mL) to chamber A. Then sodium triflate (30.0 mmol, 3.0 equiv.) and acetonitrile (50 mL) was added to chamber B. After sealing the H-tube,

chlorodiphenylphosphine (60.0 mmol, 6.0 equiv.) was slowly added to chamber B slowly syringe. The mixture was stirred at room temperature for 24 hours. The reaction process was monitored by ¹⁹F-NMR. After completion, the mixture in chamber A was filtered through a celite pad, then extracted with ethyl acetate (3×30 mL). The combined organic layers were dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude material obtained was then purified by column chromatography on silica gel.

General procedure H for the synthesis of N, S-bis(trifluoromethyl)thiohydroxylamine in large scale (4 g scale):

To a 400 mL H-tube were sequentially added isothiocyanate (20.0 mmol, 1.0 equiv.), silver fluoride (80.0 mmol, 4.0 equiv.), and acetonitrile (100 mL) to chamber A. Then sodium triflate (60.0 mmol, 3.0 equiv.) and acetonitrile (100 mL) was added to chamber B. After sealing the H-tube, chlorodiphenylphosphine (120.0 mmol, 6.0 equiv.) was slowly added to chamber B slowly syringe at 0 °C (ice bath). The mixture was then stirred at room temperature for 24 hours. The reaction process was monitored by ¹⁹F-NMR. After completion, the mixture in chamber A was filtered through a celite pad, then extracted with ethyl acetate (3×30 mL). The combined organic layers were dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude material obtained was then purified by column chromatography on silica gel.

Characterization of N, S-bis(trifluoromethyl)thiohydroxylamine

N-([1,1'-biphenyl]-4-ylmethyl)-N,S-bis(trifluoromethyl)thiohydroxylamine (3b)

The compound **3b** was obtained as a colorless oil in 57% yield using 4-(isothiocyanatomethyl)-1,1'biphenyl following the general procedure E after column chromatography on silica gel with pentane.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.64 – 7.58 (m, 4H), 7.49 – 7.42 (m, 2H), 7.41 – 7.34 (m, 3H), 4.69 (d, *J* = 14.3 Hz, 1H), 4.43 (d, *J* = 14.3 Hz, 1H).

¹⁹F NMR (282 MHz, Chloroform-*d*) δ -50.5 (q, *J* = 3.4 Hz), -58.3 (q, *J* = 3.4 Hz).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 141.6, 140.4, 133.8, 129.2, 128.8 (q, *J* = 315.2 Hz), 128.8, 127.6, 127.5, 127.1, 123.1 (q, *J* = 260.4 Hz), 56.2.

HRMS (EI) calculated for $C_{15}H_{11}F_6NS$: 351.0511 [M]⁺, Found: 351.0516.

N-(4-methoxybenzyl)-N,S-bis(trifluoromethyl)thiohydroxylamine (3c)

The compound 3c was obtained as a colorless oil in 30% yield using 1-(isothiocyanatomethyl)-4methoxybenzene following the general procedure E after column chromatography on silica gel with pentane.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.25 – 7.22 (m, 2H), 6.92 – 6.88 (m, 2H), 4.56 (d, *J* = 14.1 Hz, 1H), 4.30 (d, *J* = 13.7 Hz, 1H), 3.82 (s, 3H).

¹⁹F NMR (282 MHz, Chloroform-*d*) δ -50.5 (q, *J* = 3.4 Hz), -58.2 (q, *J* = 3.4 Hz).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 159.8, 130.4, 128.9 (q, *J* = 316.9 Hz), 126.8, 123.1 (q, *J*

= 260.4 Hz), 114.1, 55.8, 55.3.

HRMS (EI) calculated for $C_{10}H_9F_6NOS$: 305.0304 [M]⁺, Found: 305.0297.

The compound **3d** was obtained as a colorless oil in 35% yield using tert-butyl 3-(2-isothiocyanatoethyl)-1H-indole-1-carboxylate following the general procedure E after column chromatography on silica gel with pentane.

¹H NMR (300 MHz, Chloroform-*d*) δ 8.15 (d, *J* = 8.1 Hz, 1H), 7.51 (d, *J* = 7.4 Hz, 1H), 7.43 (s, 1H), 7.39 – 7.32 (m, 1H), 7.30 – 7.25 (m, 1H), 3.82 – 3.75 (m, 1H), 3.64 – 3.55 (m, 1H), 3.09 (t, *J* = 8.0 Hz, 2H), 1.68 (s, 9H).

¹⁹F NMR (282 MHz, Chloroform-*d*) δ -51.3 (q, *J* = 3.4 Hz), -58.7 (q, *J* = 3.4 Hz).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 149.6, 135.5, 130.0, 128.7 (q, *J* = 318.1 Hz), 124.7, 123.5, 123.1 (q, *J* = 259.8 Hz), 122.7, 118.4, 115.8, 115.4, 83.8, 53.3, 28.2, 24.4.

HRMS (ESI) calculated for C₁₇H₁₉F₆N₂O₂S: 429.1066 [M+H]⁺, Found: 429.1066.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

The compound 3e was obtained as a colorless oil in 49% yield using 4-(4-isothiocyanatobutyl)morpholine following the general procedure E after column chromatography on silica gel with pentane/ether (3/4).

Isomer A:

¹H NMR (300 MHz, Chloroform-*d*) δ 7.00 (s, 2H), 6.96 – 6.94 (m, 1H), 4.20 – 4.07 (m, 1H), 3.92 – 3.87 (m, 1H), 3.67 – 3.62 (m, 1H), 2.27 (s, 6H), 1.44 (d, *J* = 6.8 Hz, 3H).

¹⁹F NMR (282 MHz, Chloroform-*d*) δ -51.4 (q, *J* = 3.4 Hz), -57.3 (q, *J* = 3.4 Hz).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 154.9, 130.7, 129.0, 128.1 (d, *J* = 314.1 Hz), 124.3, 123.3 (q, *J* = 260.9 Hz), 72.2, 55.7, 16.4, 16.2

Isomer B:

¹H NMR (300 MHz, Chloroform-*d*) δ 7.03 (s, 2H), 6.93 – 6.91 (m, 1H), 4.20 – 4.07 (m, 1H), 3.97 – 3.94 (m, 1H), 3.72 – 3.69 (m, 1H), 2.27 (s, 6H), 1.49 (d, *J* = 6.8 Hz, 3H).

¹⁹F NMR (282 MHz, Chloroform-*d*) δ -51.8 (q, J = 3.4 Hz), -57.1 (q, J = 3.4 Hz).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 155.3, 130.6, 129.0, 128.2 (d, *J* = 314.1 Hz), 124.2, 123.3 (q, *J* = 260.9 Hz), 73.3, 58.0, 16.6, 16.3.

HRMS (EI) calculated for C₁₃H₁₅F₆NOS: 347.0773 [M]⁺, Found: 347.0783.

$\begin{array}{c} < 155.3 \\ < 154.9 \\ 130.7 \\ 130.6 \\ 130.6 \\ 130.2 \\ 130.2 \\ 130.2 \\ 122.0 \\ 1226.0 \\ 1226.0 \\ 1226.0 \\ 1226.0 \\ 1226.0 \\ 1221.6 \\$

N-(3-phenylpropyl)-N,S-bis(trifluoromethyl)thiohydroxylamine (3f)

The compound 3f was obtained as a colorless oil in 67% yield using (3-isothiocyanatopropyl)benzene following the general procedure E after column chromatography on silica gel with pentane.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.34 – 7.29 (m, 2H), 7.26 – 7.15 (m, 3H), 3.44 – 3.32 (m, 2H), 2.68 – 2.59 (m, 2H), 2.09 – 1.98 (m, 2H).

¹⁹F NMR (282 MHz, Chloroform-*d*) δ -51.1 (q, *J* = 3.4 Hz), -59.0 (q, *J* = 3.4 Hz).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 140.6, 128.7 (q, *J* = 314.9 Hz), 128.5, 128.2, 126.2, 123.1 (q, *J* = 259.7 Hz), 52.9, 32.4, 29.6.

HRMS (EI) calculated for C₁₁H₁₁F₆NS: 303.0511 [M]⁺, Found: 303.0500.

N-(1-benzylpiperidin-4-yl)-N,S-bis(trifluoromethyl)thiohydroxylamine (3g)

The compound 3g was obtained as a colorless oil in 63% yield using 1-benzyl-4-isothiocyanatopiperidine following the general procedure E after column chromatography on silica gel with pentane.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.31 – 7.14 (m, 5H), 3.42 (s, 2H), 3.39 – 3.30 (m, 1H), 2.97 – 2.78 (m, 2H), 2.02 – 1.84 (m, 3H), 1.76 – 1.60 (m, 3H).

¹⁹F NMR (282 MHz, Chloroform-*d*) δ -51.7 (q, *J* = 3.4 Hz), -57.5 (q, *J* = 3.4 Hz).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 138.1, 129.0, 128.3, 128.0 (q, *J* = 314.8 Hz), 127.1, 123.5 (q, *J* = 259.9 Hz), 62.7, 58.4, 52.6, 52.5, 30.9, 30.7.

HRMS (EI) calculated for $C_{14}H_{16}F_6N_2S$: 358.0933 [M]⁺, Found: 358.0937.

tert-butyl 4-((trifluoromethyl)((trifluoromethyl)thio)amino)piperidine-1-carboxylate (3h)

The compound **3h** was obtained as a colorless oil in 54% yield using tert-butyl 4isothiocyanatopiperidine-1-carboxylate following the general procedure E after column chromatography on silica gel with pentane/ether (10/1).

¹H NMR (300 MHz, Chloroform-*d*) δ 4.22 (s, 2H), 3.60 – 3.50 (m, 1H), 2.75 – 2.67 (m, 2H), 1.83 – 1.60 (m, 4H), 1.46 (s, 9H).

¹⁹F NMR (282 MHz, Chloroform-*d*) δ -51.6 (q, J = 3.4 Hz), -57.5 (q, J = 3.4 Hz).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 154.4, 127.9 (q, J = 315.2 Hz), 123.3 (q, J = 260.5 Hz), 80.0, 58.2, 42.8, 30.8, 30.5, 28.3.

HRMS (EI) calculated for C₁₂H₁₈F₆N₂O₂S: 368.0988 [M]⁺, Found: 368.0998.

N-(4-morpholinobutyl)-N,S-bis(trifluoromethyl)thiohydroxylamine (3i)

The compound **3i** was obtained as a colorless oil in 56% yield using 4-(4-isothiocyanatobutyl)morpholine following the general procedure E after column chromatography on silica gel with pentane/ether (3/4).

¹H NMR (300 MHz, Chloroform-*d*) δ 3.68 – 3.60 (m, 4H), 3.38 (dt, *J* = 27.3, 7.6 Hz, 2H), 2.46 – 2.33 (m, 4H), 2.29 (t, *J* = 6.9 Hz, 2H), 1.79 (p, *J* = 6.8 Hz, 2H).

¹⁹F NMR (282 MHz, Chloroform-*d*) δ -51.4 (q, J = 3.4 Hz), -58.9 (q, J = 3.4 Hz).

¹³C {¹H} NMR (75 MHz, Chloroform-*d*) δ 141.7, 141.1, 139.7, 128.9, 128.5 (d, *J* = 314.1 Hz), 128.2, 127.9, 127.3, 127.2, 122.1 (q, *J* = 260.9 Hz).

HRMS (EI) calculated for $C_9H_{14}F_6N_2OS$: 312.0726 [M]⁺, Found: 312.0715.

N-(2,4-dimethoxyphenyl)-N,S-bis(trifluoromethyl)thiohydroxylamine (3j)

The compound **3j** was obtained as a colorless oil in 70% yield using 1-isothiocyanato-2,4dimethoxybenzene following the general procedure F after column chromatography on silica gel with pentane. ¹H NMR (300 MHz, Chloroform-*d*) δ 7.23 (d, *J* = 7.8 Hz, 1H), 6.48 (d, *J* = 2.6 Hz, 1H), 6.43 (dd, *J* = 8.7, 2.7 Hz, 1H), 3.85 (s, 3H), 3.81 (s, 3H).

¹⁹F NMR (282 MHz, Chloroform-*d*) δ -52.40, -58.01 (q, *J* = 3.4 Hz).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 161.4, 156.7, 130.8, 129.1 (q, *J* = 314.7 Hz), 123.2, 122.1 (q, *J* = 260.1 Hz), 104.1, 99.5, 55.8, 55.5.

HRMS (EI) calculated for C₁₀H₉F₆NO₂S: 321.0253 [M]⁺, Found: 321.0248.

-161.4-156.7135.3131.2127.0127.0123.2122.8255.8555.8

The compound **3**I' was obtained as a colorless oil in 73% yield using 4-isothiocyanato-1,2dimethoxybenzene following the general procedure F after column chromatography on silica gel with pentane. ¹H NMR (300 MHz, Chloroform-*d*) δ 6.95 – 6.91 (m, 1H), 6.86 – 6.79 (m, 2H), 3.89 (s, 3H), 3.88 (s, 3H).

 $^{19}{\rm F}$ NMR (282 MHz, Chloroform-d) δ -51.7 (q, J = 3.4 Hz), -57.0 (q, J = 3.4 Hz).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 149.5, 149.3, 134.8, 128.6 (q, *J* = 315.5 Hz), 122.1 (q, *J* = 259.9 Hz), 120.1, 110.9, 110.9, 56.0, 56.0.

HRMS (EI) calculated for C₁₀H₉F₆NO₂S: 321.0253 [M]⁺, Found: 321.0255.

$\left\{\begin{array}{c} 149.5\\ 149.3\\ 130.7\\ 130.7\\ 130.7\\ 127.3\\ 127.3\\ 127.3\\ 127.3\\ 120.1\\ 120.1\\ 110.9\\ 110.9\\ 110.9\\ 110.9\\ 110.9\\ 56.0\\ 56.0\\ \end{array}\right.$

N-(benzo[d][1,3]dioxol-5-yl)-N,S-bis(trifluoromethyl)thiohydroxylamine (31)

The compound **31** was obtained as a colorless oil in 65% yield using 5isothiocyanatobenzo[d][1,3]dioxole following the general procedure E after column chromatography on silica gel with pentane. 1 H NMR (300 MHz, Chloroform-*d*) δ 6.90 – 6.72 (m, 3H), 6.03 (s, 2H).

¹⁹F NMR (282 MHz, Chloroform-*d*) δ -51.6 (q, *J* = 3.4 Hz), -57.2 (q, *J* = 3.4 Hz).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 148.1, 148.0, 135.7, 128.5 (q, J = 315.6 Hz), 122.0 (q, J = 260.9 Hz), 121.6, 108.7, 108.3, 102.0.

HRMS (EI) calculated for C₉H₅F₆NO₂S: 304.9940 [M]⁺, Found: 304.9946.

$\begin{array}{c} 148.1 \\ 148.0 \\ 135.7 \\ 135.7 \\ 130.6 \\ 130.6 \\ 126.4 \\ 123.8 \\ 121.6 \\ 120.3 \\ 120.3 \\ 108.7 \\ 108.7 \\ 108.7 \\ 108.7 \\ 108.0 \\ 102.0 \end{array}$

N-(4-(benzyloxy)phenyl)-N,S-bis(trifluoromethyl)thiohydroxylamine (3m)

The compound 3h was obtained as a white solid in 57% yield using 1-(benzyloxy)-4-

isothiocyanatobenzene following the general procedure E after column chromatography on silica gel with pentane.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.41 – 7.23 (m, 5H), 7.22 – 7.12 (m, 2H), 6.92 – 6.84 (m, 2H), 4.98 (s, 2H).

 $^{19}{\rm F}$ NMR (282 MHz, Chloroform-d) δ -51.7 (q, J = 3.4 Hz), -57.0 (q, J = 3.4 Hz).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 158.9, 136.4, 135.0, 129.0, 128.7, 128.6 (q, J = 315.7 Hz), 128.2, 127.5, 122.1 (q, J = 259.9 Hz), 115.5, 70.3.

HRMS (EI) calculated for C₁₅H₁₁F₆NOS: 367.0460 [M]⁺, Found: 367.0457.

N-(4-morpholinophenyl)-N,S-bis(trifluoromethyl)thiohydroxylamine (30)

The compound **30** was obtained as a colorless oil in 78% yield using 4-(4-isothiocyanatophenyl)morpholine following the general procedure E after column chromatography on silica gel with toluene.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.18 – 7.11 (m, 2H), 6.82 – 6.75 (m, 2H), 3.82 – 3.72 (m, 4H), 3.15 – 3.06 (m, 4H).

 $^{19}{\rm F}$ NMR (282 MHz, Chloroform-d) δ -51.8 (q, J = 3.4 Hz), -57.0 (q, J = 3.4 Hz).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 151.2, 133.6, 128.5 (q, *J* = 315.2 Hz), 128.5, 122.2 (q, *J* = 259.9 Hz), 115.5, 66.7, 48.6.

HRMS (EI) calculated for $C_{12}H_{12}F_6N_2OS$: 346.0569 [M]⁺, Found: 346.0567.

N-(4-((1s,4r)-4-hexylcyclohexyl)phenyl)-N,S-bis(trifluoromethyl)thiohydroxylamine (3p)

The compound **3p** was obtained as a colorless oil in 36% yield using 1-((1s,4r)-4-hexylcyclohexyl)-4-isothiocyanatobenzene following the general procedure E after column chromatography on silica gel with cyclohexane.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.30 – 7.22 (m, 4H), 2.51 (tt, *J* = 12.2, 3.2 Hz, 1H), 1.91 (d, *J* = 10.6 Hz, 4H), 1.53 – 1.38 (m, 2H), 1.37 – 1.26 (m, 11H), 1.15 – 1.01 (m, 2H), 0.96 – 0.89 (m, 3H).

¹⁹F NMR (282 MHz, Chloroform-*d*) δ -51.7 (q, *J* = 3.4 Hz), -56.7 (q, *J* = 3.4 Hz).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 148.7, 139.7, 128.6 (q, *J* = 315.9 Hz), 127.9, 127.0, 122.2 (q, *J* = 260.7 Hz), 44.2, 37.4, 37.3, 34.2, 33.5, 32.0, 29.7, 26.9, 22.7, 14.1.

HRMS (EI) calculated for C₂₀H₂₇F₆NS: 427.1763 [M]⁺, Found: 427.1749.

N-(9H-fluoren-2-yl)-N,S-bis(trifluoromethyl)thiohydroxylamine (3q)

The compound 3q was obtained as a white solid in 57% yield using 2-isothiocyanato-9H-fluorene following the general procedure E after column chromatography on silica gel with pentane.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.82 – 7.73 (m, 2H), 7.60 – 7.53 (m, 1H), 7.51 (s, 1H), 7.44 – 7.30 (m, 3H), 3.93 (s, 2H).

¹⁹F NMR (282 MHz, Chloroform-*d*) δ -51.5 (q, *J* = 3.4 Hz), -56.5 (q, *J* = 3.4 Hz).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 144.5, 143.6, 142.3, 140.5, 140.3, 128.6 (d, *J* = 315.8 Hz), 127.4, 127.0, 126.1, 125.1, 124.1, 122.2 (d, *J* = 253.7 Hz), 120.5, 120.3, 36.9.

HRMS (EI) calculated for C₁₅H₉F₆NS: 349.0354 [M]⁺, Found: 349.0338.

N-([1,1'-biphenyl]-4-yl)-N,S-bis(trifluoromethyl)thiohydroxylamine (3r)

The compound 3r was obtained as a white solid in 67% yield using 4-isothiocyanato-1,1'-biphenyl following the general procedure E after column chromatography on silica gel with pentane.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.66 – 7.52 (m, 4H), 7.51 – 7.33 (m, 5H).

¹⁹F NMR (282 MHz, Chloroform-*d*) δ -51.4 (q, *J* = 3.4 Hz), -56.5 (q, *J* = 3.4 Hz).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 141.7, 141.1, 139.7, 128.9, 128.5 (d, *J* = 314.1 Hz), 128.2, 127.9, 127.3, 127.2, 122.1 (q, *J* = 260.9 Hz).

HRMS (EI) calculated for $C_{14}H_9F_6NS$: 337.0353 [M]⁺, Found: 337.0359.

141.7 141.1 130.6 130.6 128.9 127.9 127.9 127.3 127.3 127.3 127.3 127.3 127.3 127.3 127.3 127.3 127.3 127.3 127.3 127.3 127.4 127.3 127.4 127.3 127.4

4-((trifluoromethyl)((trifluoromethyl)thio)amino)benzonitrile (3t)

The compound 3t was obtained as a colorless oil in 40% yield using 4-isothiocyanatobenzonitrile following the general procedure F after column chromatography on silica gel with pentane.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.75 – 7.69 (m, 2H), 7.49 (d, *J* = 8.4 Hz, 2H).

¹⁹F NMR (282 MHz, Chloroform-*d*) δ -50.8 (q, J = 3.4 Hz), -55.9 (q, J = 3.4 Hz).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 145.6, 133.6, 128.2 (q, *J* = 316.8 Hz), 126.2, 121.6 (q, *J* = 316.8 Hz), 126.2, 128.2 (q, J = 316.8 Hz), 126.2 (q, J = 316.8

= 262.8 Hz), 117.6, 112.0.

HRMS (EI) calculated for C₉H₄F₆N₂S: 285.9994 [M]⁺, Found: 285.9985.

$-145.6 \\ 145.6 \\ 130.3 \\ 126.2 \\ 126.2 \\ 123.4 \\ 123.4 \\ 119.9 \\ 1117.0 \\ 1112.0 \\$

The compound 3w was obtained as a yellowish oil in 71% yield using 1-(4-isothiocyanatophenyl)ethan-1-one following the general procedure F after column chromatography on silica gel with pentane.

¹H NMR (300 MHz, Chloroform-*d*) δ 8.02 – 7.97 (m, 2H), 7.45 (d, *J* = 8.4 Hz, 2H), 2.61 (s, 3H).

¹⁹F NMR (282 MHz, Chloroform-*d*) δ -51.1 (q, q, J = 3.4 Hz), -56.0 (q, J = 3.4 Hz).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 196.6, 145.2, 136.4, 129.7, 128.3 (q, J = 315.3 Hz), 125.8, 121.8 (q, J = 262.0 Hz), 26.6.

HRMS (EI) calculated for C₁₀H₇F₆NOS: 303.0147 [M]⁺, Found: 303.0151.

4-((trifluoromethyl)((trifluoromethyl)thio)amino)phenyl acetate (3x)

The compound 3x was obtained as a yellowish oil in 58% yield using 4-isothiocyanatophenyl acetate following the general procedure F after column chromatography on silica gel with pentane.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.40 – 7.31 (m, 2H), 7.18 – 7.09 (m, 2H), 2.31 (s, 3H).

 $^{19}{\rm F}$ NMR (282 MHz, Chloroform-d) δ -51.5 (q, J = 3.4 Hz), -56.7 (q, J = 3.4 Hz).

¹³C {¹H} NMR (75 MHz, Chloroform-*d*) δ 169.0, 150.5, 139.3, 128.5 (q, *J* = 316.5 Hz), 128.4, 122.7, 122.0 (q, *J* = 261.2 Hz), 21.1.

HRMS (EI) calculated for C₁₀H₇F₆NO₂S: 319.0096 [M]⁺, Found: 319.0101.

4-((trifluoromethyl)((trifluoromethyl)thio)amino)phenyl 4-pentylbicyclo[2.2.2]octane-1carboxylate (3y)

The compound 3y was obtained as a colorless oil in 65% yield using 4-isothiocyanatophenyl 4pentylbicyclo[2.2.2]octane-1-carboxylate following the general procedure F after column chromatography on silica gel with pentane.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.34 (d, *J* = 8.4 Hz, 2H), 7.08 (d, *J* = 8.5 Hz, 2H), 2.00 – 1.81 (m, 6H), 1.53 – 1.38 (m, 6H), 1.34 – 1.08 (m, 8H), 0.89 (t, *J* = 6.9 Hz, 3H).

¹⁹F NMR (282 MHz, Chloroform-*d*) δ -51.5 (q, J = 3.4 Hz), -56.7 (q, J = 3.4 Hz).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 176.3, 151.0, 139.1, 128.5 (q, *J* = 316.8 Hz), 128.3, 122.7, 122.0 (q, *J* = 260.9 Hz), 41.3, 39.5, 32.8, 30.5, 30.3, 28.6, 23.3, 22.7, 14.0.

HRMS (ESI) calculated for C₂₂H₂₈F₆NO₂S: 484.1739 [M+H]⁺, Found: 484.1739.

CENTRE COMMUN DE SPECTROMETRIE DE MASSE

N-(4-bromophenyl)-N,S-bis(trifluoromethyl)thiohydroxylamine (3z)

The compound 3z was obtained as a colorless oil in 70% yield using 1-bromo-4isothiocyanatobenzene following the general procedure F after column chromatography on silica gel with pentane.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.57 – 7.50 (m, 2H), 7.23 (d, *J* = 8.7 Hz, 2H).

¹⁹F NMR (282 MHz, Chloroform-*d*) δ -51.4 (q, *J* = 3.4 Hz), -56.6 (q, *J* = 3.4 Hz).

 $^{13}C{^{1}H}$ NMR (75 MHz, Chloroform-*d*) δ 141.0, 132.8, 128.6, 128.4 (q, *J* = 316.0 Hz), 122.6, 121.8 (q, *J* = 261.5 Hz).

HRMS (EI) calculated for C₈H₄BrF₆NS: 338.9147 [M]⁺, Found: 338.9155.

-100 fl (ppm)
$\int_{-120}^{110} \frac{141.0}{132.8}$ $\int_{-126.3}^{120.6} \frac{123.5}{123.5}$ $\int_{-122.6}^{122.6} \frac{122.6}{120.1}$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 68 50 40 30 20 10 0 -10 f1 (ppm)

N-(naphthalen-1-yl)-N,S-bis(trifluoromethyl)thiohydroxylamine (3aa)

The compound **3aa** was obtained as a colorless oil in 72% yield using 1-isothiocyanatonaphthalene following the general procedure F after column chromatography on silica gel with pentane.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.94 (d, *J* = 8.3 Hz, 2H), 7.88 – 7.54 (m, 4H), 7.53 – 7.47 (m, 1H).

¹⁹F NMR (282 MHz, Chloroform-*d*) δ -50.9 (q, J = 3.4 Hz), -56.1, -59.1.

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 134.7, 130.2, 128.6, 128.6 (q, *J* = 315.7 Hz), 127.6, 127.1, 126.8, 125.3, 122.3 (q, *J* = 259.0 Hz), 122.3, 122.1.

HRMS (EI) calculated for C₁₂H₇F₆NS: 311.0198 [M]⁺, Found: 311.0190.

134.7 130.6 130.2 130.6 130.2 130.2 130.2 130.2 125.3 125.3 125.3 125.3 125.3 125.3 122.3 122.1 122.1 122.1 122.1 122.1 122.1 122.1 122.1

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 FI (ppm)

N-(4-(4-fluorophenoxy)phenyl)-N,S-bis(trifluoromethyl)thiohydroxylamine (3ab)

The compound **3ab** was obtained as a colorless oil in 67% yield using 1-fluoro-4-(4-isothiocyanatophenoxy)benzene following the general procedure F after column chromatography on silica gel with pentane.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.31 – 7.25 (m, 2H), 7.11 – 6.97 (m, 4H), 6.96 – 6.89 (m, 2H).

¹⁹F NMR (282 MHz, Chloroform-*d*) δ -51.6 (q, J = 3.4 Hz), -56.9 (q, J = 3.4 Hz), -118.5 – -118.7 (m).

¹³C {¹H} NMR (75 MHz, Chloroform-*d*) δ 159.4 (d, *J* = 243.0 Hz), 158.2, 151.7 (d, *J* = 2.6 Hz), 136.6, 1291, 128.5 (q, *J* = 315.7 Hz), 122.0 (q, *J* = 260.6 Hz), 121.4 (d, *J* = 8.4 Hz), 118.2, 116.6 (d, *J* = 23.4 Hz).

HRMS (EI) calculated for C₁₄H₈F₇NOS: 371.0209 [M]⁺, Found: 371.0205.

161.0 157.7 157.7 151.7

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

N-(4-(4-chlorophenoxy)phenyl)-N,S-bis(trifluoromethyl)thiohydroxylamine (3ac)

The compound 3ac was obtained as a colorless oil in 84% yield using 1-chloro-4-(4-

isothiocyanatophenoxy)benzene following the general procedure F after column chromatography on silica gel with pentane.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.36 – 7.27 (m, 4H), 7.01 – 6.93 (m, 4H).

¹⁹F NMR (282 MHz, Chloroform-*d*) δ -51.6 (q, *J* = 3.4 Hz), -56.9 (q, *J* = 3.4 Hz).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 157.4, 154.7, 137.0, 130.0, 129.3, 129.1, 128.5 (q, *J* = 315.8 Hz), 122.0 (q, *J* = 260.4 Hz), 120.9, 118.9.

HRMS (EI) calculated for C₁₄H₈ClF₆NOS: 386.9914 [M]⁺, Found: 386.9906.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

N-(4-(4-bromophenoxy)phenyl)-N,S-bis(trifluoromethyl)thiohydroxylamine (3ad)

The compound 3ad was obtained as a colorless oil in 90% yield using 1-bromo-4-(4-

isothiocyanatophenoxy)benzene following the general procedure F after column chromatography on silica gel with pentane.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.51 – 7.44 (m, 2H), 7.33 – 7.26 (m, 2H), 7.00 – 6.90 (m, 4H).

¹⁹F NMR (282 MHz, Chloroform-*d*) δ -51.6 (q, *J* = 3.4 Hz), -56.9 (q, *J* = 3.4 Hz).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 157.3, 155.3, 137.1, 133.0, 129.1, 128.5 (q, J = 315.8 Hz), 122.0 (q, J = 260.5 Hz), 121.3, 119.0, 116.8.

HRMS (EI) calculated for C₁₄H₈BrF₆NOS: 430.9409 [M]⁺, Found: 430.9407.

157.3 157.3 155.3 137.1 134.8 134.8 134.8 134.8 125.4 125.1 122.2 125.4 122.2 122.2 122.2 122.2 122.2 122.2 122.2 122.2 122.2 120.3 120.3 120.4 120

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

N-(4-(methylthio)phenyl)-N,S-bis(trifluoromethyl)thiohydroxylamine (3ae)

 F_3CS^{-N}

The compound **3ae** was obtained as a colorless oil in 68% yield using (4-isothiocyanatophenyl) (methyl)sulfane following the general procedure F after column chromatography on silica gel with pentane.

 ^1H NMR (300 MHz, Chloroform-d) δ 7.18 – 7.17 (m, 4H), 2.42 (s, 3H).

¹⁹F NMR (282 MHz, Chloroform-*d*) δ -51.5 (q, J = 3.4 Hz), -56.7 (q, J = 3.4 Hz).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 140.1, 138.8, 128.5 (q, *J* = 316.3 Hz), 127.6, 126.9, 122.0 (q, *J* = 260.6 Hz), 15.5.

HRMS (EI) calculated for C₉H₇F₆NS₂: 306.9919 [M]⁺, Found: 306.9918.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 FI (ppm)

benzyl (2S,5R,6R)-3,3-dimethyl-7-oxo-6-((trifluoromethyl)((trifluoromethyl)thio)amino)-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate (3af)

The compound **3af** was obtained as a colorless oil in 33% yield using benzyl (2S,5R,6R)-6isothiocyanato-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate following the general procedure F after column chromatography on silica gel with pentane.

 $[\alpha]_D = +20.5 (c = 1, CHCl_3, 25^{\circ}C)$

¹H NMR (300 MHz, Chloroform-*d*) δ 7.39 – 7.35 (m, 5H), 5.51 (d, *J* = 3.5 Hz, 1H), 5.34 (d, *J* = 3.2 Hz, 1H), 5.19 (s, 2H), 4.60 (s, 1H), 1.74 (s, 3H), 1.44 (s, 3H).

¹⁹F NMR (282 MHz, Chloroform-*d*) δ -52. 7 (q, *J* = 3.4 Hz), -60.0 (q, *J* = 3.4 Hz).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 167.2, 166.2, 134.6, 128.8, 128.8, 127.4 (d, J = 315.0 Hz), 122.2 (q, J = 262.9 Hz), 70.9, 68.8, 68.4, 67.6, 66.5, 32.1, 27.5.

HRMS (ESI) calculated for C₁₇H₁₇F₆N₂O₃S₂: 475.0579 [M+H]⁺, Found: 475.0580.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 r1 (ppm)

¹H-¹H NOESY:

CENTRE COMMUN DE SPECTROMETRIE DE MASSE

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 4-((trifluoromethyl)((trifluoromethyl)thio) amino)benzoate (3ag)

The compound **3ag** was obtained as a colorless oil in 56% yield using (1R,2S,5R)-2-isopropyl-5methylcyclohexyl 4-isothiocyanatobenzoate following the general procedure F after column chromatography on silica gel with pentane. ¹H NMR (300 MHz, Chloroform-*d*) δ 8.09 – 8.02 (m, 2H), 7.40 (d, J = 8.4 Hz, 2H), 4.96 – 4.88 (m, 1H), 2.13 – 2.06 (m, 1H), 1.97 – 1.87 (m, 1H), 1.76 – 1.67 (m, 2H), 1.61 – 1.48 (m, 3H), 1.15 – 1.01 (m, 2H), 0.92 (d, J = 3.1 Hz, 3H), 0.89 (d, J = 3.6 Hz, 3H), 0.77 (d, J = 6.9 Hz, 3H).

¹⁹F NMR (282 MHz, Chloroform-*d*) δ -51.1 (q, *J* = 3.4 Hz), -56.1 (q, *J* = 3.4 Hz).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 164.9, 145.5, 131.0, 130.6, 128.4 (q, *J* = 314.2 Hz), 125.8, 121.8 (d, *J* = 261.8 Hz), 75.4, 47.3, 40.9, 34.3, 31.4, 26.5, 23.6, 22.0, 20.7, 16.5.

HRMS (ESI) calculated for C₁₉H₂₃F₆NO₂S: 444.1426 [M+H]⁺, Found: 444.1426.

 $\begin{array}{c} 8.8.11\\ 8.8.00\\ 8.00\\ 8.00\\ 8.00\\ 8.00\\ 8.00\\ 8.00\\ 8.00\\ 8.00\\ 8.00\\ 8.00\\ 8.00\\ 8.00\\ 1.77\\ 1.77\\ 1.77\\ 1.77\\ 1.77\\ 1.75\\ 1$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

CENTRE COMMUN DE SPECTROMETRIE DE MASSE

((3aS,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-yl)methyl 4-((trifluoromethyl)((trifluoromethyl)thio)amino)benzoate (3ah)

The compound **3ah** was obtained as a colorless oil in 69% yield using ((3aS,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-yl)methyl 4-isothiocyanatobenzoate following the general procedure F after column chromatography on silica gel with pentane/ethyl acetate (15/1).

¹H NMR (300 MHz, Chloroform-*d*) δ 8.06 – 7.99 (m, 2H), 7.35 (d, *J* = 8.2 Hz, 2H), 5.49 (d, *J* = 4.9 Hz, 1H), 4.60 – 4.57 (m, 1H), 4.49 – 4.43 (m, 1H), 4.41 – 4.34 (m, 1H), 4.30 – 4.27 (m, 1H), 4.26

- 4.23 (m, 1H), 4.13 - 4.08 (m, 1H), 1.42 (d, *J* = 11.6 Hz, 6H), 1.27 (d, *J* = 6.2 Hz, 6H).

¹⁹F NMR (282 MHz, Chloroform-*d*) δ -51.1 (q, *J* = 3.4 Hz), -56.0 (q, *J* = 3.4 Hz).

¹³C{¹H} NMR (75 MHz, Chloroform-*d*) δ 165.2, 145.8, 131.1, 129.7, 128.3 (q, *J* = 317.6 Hz), 125.7, 121.8 (q, *J* = 261.8 Hz), 109.7, 108.8, 96.3, 71.1, 70.7, 70.5, 66.1, 64.3, 26.0, 26.0, 24.9, 24.5.

HRMS (EI) calculated for C₂₁H₂₄F₆NO₇S: 548.1172 [M+H]⁺, Found: 548.1178.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

CENTRE COMMUN DE SPECTROMETRIE DE MASSE

(R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-yl 4-((trifluoromethyl) ((trifluoromethyl)thio)amino)benzoate (3ai)

The compound **3ai** was obtained as a colorless oil in 83% yield using (R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-yl 4-isothiocyanatobenzoate following the general procedure F after column chromatography on silica gel with pentane/ethyl acetate (50/1).

¹H NMR (300 MHz, Chloroform-*d*) δ 8.33 – 8.26 (m, 2H), 7.52 (d, *J* = 8.4 Hz, 2H), 2.63 (t, *J* = 6.8

Hz, 2H), 2.13 (s, 3H), 2.06 (s, 3H), 2.02 (s, 3H), 1.90 – 1.87 (m, 2H), 1.60 – 1.51 (m, 3H), 1.48 – 1.36 (m, 4H), 1.30 – 1.21 (m, 11H), 1.17 – 1.03 (m, 6H), 0.90 – 0.84 (m, 12H).

¹⁹F NMR (282 MHz, Chloroform-*d*) δ -51.0 (q, *J* = 3.4 Hz), -55.9 (q, *J* = 3.4 Hz).

¹³C {¹H} NMR (75 MHz, Chloroform-*d*) δ 164.0, 149.6, 146.1, 140.5, 131.6, 129.3, 128.4 (q, *J* = 317.6 Hz), 126.8, 126.0, 125.0, 123.3, 121.8 (q, *J* = 261.8 Hz), 117.6, 75.2, 39.4, 37.6, 37.5, 37.4, 37.3, 32.8, 32.7, 31.0, 28.0, 24.9, 24.5, 23.7, 22.7, 22.6, 21.1, 20.7, 19.8, 19.7, 19.6, 13.1, 12.2, 11.9.

HRMS (EI) calculated for C₃₈H₅₄F₆NO₃S: 718.3723 [M+H]⁺, Found: 718.3723.

= 164.0 = 164.0 = 146.1 = 146.1 = 146.1 = 146.1 = 146.2 = 146.2 = 146.2 = 146.2 = 140.5 = 140.5 = 140.5 = 140.5 = 140.5 = 120.3 = 122.5 = 37.6 =

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

CENTRE COMMUN DE SPECTROMETRIE DE MASSE

Analysis Info

Analysis Name Impact2_220929_05_YY649-P1.d Method Tune_pos_Standard.m С

Comment	rune_poo_olanda.d.			Instrument / Ser#	impact II	1825265.1
Acquisition Parameter 0001						
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.3 Bar	r
Focus	Active	Set Capillary	1500 V	Set Dry Heate	er 200 °C	
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/mi	in
Scan End	1000 m/z	Set Collision Cell RF	1500.0 Vpp	Set Divert Va	lve Source	

Acquisition Date 9/29/2022 5:29:18 PM

Crystallographic data collection and structure determination:

Single-crystal X-ray diffraction data collection of N(SCF3)(CF3)-amine **3m** was performed at low temperature (193 K) on a Bruker-AXS D8-Venture diffractometer equipped with a Mo K α sealed tube ($\lambda = 0.71073$ Å), a multilayer TRIUMPH X-ray mirror, a Photon III-C14 detector and an Oxford Instruments Cryostream 700+ Series low-temperature device. Phi- and omega- scans were used. The data were indexed and integrated using the SAINT program¹¹ and an empirical absorption correction with SADABS was applied¹². The structure was solved by dual space methods (SHELXT)¹³ and refined using a least-squares method on $F2^{14}$. All non-H atoms were refined with anisotropic displacement parameters. Hydrogen atoms were refined isotropically at calculated positions using a riding model with their isotropic displacement parameters. The N(SCF3)(CF3)-group is disordered over 2 positions. Several restraints (SAME, SIMU, DELU) were applied to refine this part of the molecule and to avoid the collapse of the structure during the least-squares refinement by the large anisotropic displacement parameters.

CCDC-2211357 (**3m**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via <u>https://www.ccdc.cam.ac.uk/structures/</u>.

Selected data for 3m : $C_{15}H_{11}F_6NOS$, M = 367.31, triclinic, space group $P_{\overline{I}, a} = 6.173(4)$ Å, b = 7.530(4) Å, c = 17.450(10) Å, $\alpha = 99.942(15)^\circ$, $\beta = 93.614(16)^\circ$, $\gamma = 95.649(16)^\circ$ V = 792.4(8) Å³, Z = 2, crystal size 0.25 x 0.06 x 0.02 mm³, 21071 reflections collected (3248 independent, R*int* = 0.1684), 308 parameters, 365 restraints, R1 [I>2 σ (I)] = 0.0713, wR2 [all data] = 0.2145, largest diff. peak and hole: 0.247 and -0.249 eÅ⁻³.

Molecular structure of **3m**. Thermal ellipsoids represent 50 % probability. H and disordered atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: N1-C3 1.446(6), N1-C2 1.405(7), N1-S1 1.662(5), S1-C1 1.782(3), C1-F3 1.309(7), C1-F2 1.314(8), C1-F1 1.322(7), C2-F4 1.299(6), C2-F5 1.303(7), C2-F6 1.319(7), C3-N1-C2 117.5(4), C3-N1-S1 120.5(3), C2-N1-S1 121.9(4), N1-S1-C1 102.0(3), C4-C3-N1 121.3(4), C8-C3-N1 119.2(4), F3-C1-F2 106.4(6), F3-C1-F1 106.0(6), F2-C1-F1 106.4(6), F3-C1-S1 114.2(5), F2-C1-S1 109.4(5), F1-C1-S1 113.9(5), F4-C2-F5 106.7(5), F4-C2-F6 108.3(6), F5-C2-F6 104.4(6), F4-C2-N1 113.4(6), F5-C2-N1 112.5(5), F6-C2-N1 111.0(5).

reference

1. Fu, Z.; Yuan, W.; Chen, N.; Yang, Z.; Xu, J., Na2S2O8-mediated efficient synthesis of isothiocyanates from primary amines in water. *Green Chemistry* **2018**, *20* (19), 4484-4491.

2. Scattolin, T.; Bouayad-Gervais, S.; Schoenebeck, F., Straightforward access to N-trifluoromethyl amides, carbamates, thiocarbamates and ureas. *Nature* **2019**, *573* (7772), 102-107.

3. Wang, L.-C.; Chen, B.; Wu, X.-F., Cobalt-Catalyzed Direct Aminocarbonylation of Ethers: Efficient Access to α-Amide Substituted Ether Derivatives. *Angewandte Chemie International Edition* **2022**, *61* (23), e202203797.

4. Janczewski, Ł.; Gajda, A.; Gajda, T., Direct, Microwave-Assisted Synthesis of Isothiocyanates. *European Journal of Organic Chemistry* **2019**, *2019* (14), 2528-2532.

5. Kirchberg, S.; Fröhlich, R.; Studer, A., Stereoselective Palladium-Catalyzed Carboaminoxylations of Indoles with Arylboronic Acids and TEMPO. *Angewandte Chemie International Edition* **2009**, *48* (23), 4235-4238.

6. Scattolin, T.; Klein, A.; Schoenebeck, F., Synthesis of Isothiocyanates and Unsymmetrical Thioureas with the Bench-Stable Solid Reagent (Me4N)SCF3. *Organic Letters* **2017**, *19* (7), 1831-1833.

7. Zhang, Z.; Gevorgyan, V., Co-Catalyzed Transannulation of Pyridotriazoles with Isothiocyanates and Xanthate Esters. *Organic Letters* **2020**, *22* (21), 8500-8504.

8. Knaggs, S.; Malkin, H.; Osborn, H. M. I.; Williams, N. A. O.; Yaqoob, P., New prodrugs derived from 6-aminodopamine and 4-aminophenol as candidates for melanocyte-directed enzyme prodrug therapy (MDEPT). *Organic & Biomolecular Chemistry* **2005**, *3* (21), 4002-4010.

9. Bao, J.; Liu, H.; Zhi, Y.; Yang, W.; Zhang, J.; Lu, T.; Wang, Y.; Lu, S., Discovery of benzo[d]oxazole derivatives as the potent type-I FLT3-ITD inhibitors. *Bioorganic Chemistry* **2020**, *94*, 103248.

10. Álvarez-Calero, J. M.; Jorge, Z. D.; Massanet, G. M., TiCl4/Et3N-Mediated Condensation of Acetate and Formate Esters: Direct Access to β-Alkoxy- and β-Aryloxyacrylates. *Organic Letters* **2016**, *18* (24), 6344-6347.

11. SAINT, Program for data reduction, Bruker-AXS.

12. SADABS, Program for data correction, Bruker-AXS.

13. Sheldrick, G., SHELXT - Integrated space-group and crystal-structure determination. *Acta Crystallographica Section A* **2015**, *71* (1), 3-8.

14. Sheldrick, G., Crystal structure refinement with SHELXL. *Acta Crystallographica Section C* **2015**, *71* (1), 3-8.