Diastereodivergent cis- and trans-fused [4+2] annulations of cyclic 1,3dienes and 1-azadienes via ligand-controlled palladium catalysis

Yuan Hu, ${ }^{a}$ Jin-Yu Huang, ${ }^{\text {a }}$ Ru-Jie Yan, ${ }^{\text {a }}$ Zhi-Chao Chen, ${ }^{* a}$ Qin Ouyang, ${ }^{\text {b }}$ Wei Du, ${ }^{\text {a }}$ and Ying-Chun Chen*ab
${ }^{a}$ Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
${ }^{\mathrm{b}}$ College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.
*Corresponding Authors: chenzhichao@scu.edu.cn; ycchen@scu.edu.cn

Supplementary Information

1. General methods and materials S1
2. Preparation and characterization of ligand L15. S2
3. Detailed screening conditions S3
3.1 Preliminary ligand screenings for diastereodivergent [4+2] annulation. S3
3.2 Detailed screening conditions for asymmetric synthesis of $\mathbf{4 a}$ S4
3.3 Detailed screening conditions for asymmetric synthesis of $\mathbf{5 a}$ S4
3.4 Detailed screening conditions for asymmetric synthesis of $\mathbf{3 a}$ S6
4.General procedure for ligand-controlled diastereodivergent synthesis. S6
4.1 Procedure for synthesis of 3a S6
4.2 General procedure for asymmetric synthesis of exo-4. S7
4.3 General procedure for asymmetric synthesis of diastereomers 5 S15
4. More substrate exploration S22
5.1 Exploration of more cyclic dienes and polyenes S22
5.2 Exploration of linear 1,3-dienes S28
5.3 Exploration of linear electron-deficient heterodienes S31
5.4 Unsuccessful substrates attempts S33
5. Mechanism investigation S34
6.1 Control experiments S34
6.2 Proposed origin of the divergent diasteroselectivity S35
6.3 DFT calculations for the reaction of 1-azadiene 2a and 1,3-butadiene $\mathbf{1 5}$ S36
6. Crystal data and structural refinement S37
7. NMR, HRMS spectra and HPLC chromatograms S49
8. Computational method S161

1. General methods and materials

Unless otherwise noted, the reactions were carried out under ambient atmosphere; when the reactions required heating, the heat source was oil bath. ${ }^{1} \mathrm{H}$ NMR (400 or 600 MHz), ${ }^{13} \mathrm{C}$ NMR (100 or 150 MHz), ${ }^{31} \mathrm{P}$ NMR (162 MHz) and ${ }^{19} \mathrm{~F}$ NMR (375 MHz) spectra were recorded on Varian INOVA-400/54, Agilent DD2-600/54 or Bruker Ascend ${ }^{\text {TM }} 400$ instruments (Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl_{3} solution, unless otherwise noted). The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ double doublet, $\mathrm{ddd}=$ doublet of doublet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{m}=$ multiplet, and coupling constants (J) are reported in Hertz (Hz). High resolution mass spectra (HRMS) were recorded on a Waters SYNAPT G2, Agilent G196985000 or Shimadzu LCMS-IT-TOF using a time-of-flight mass spectrometer equipped with electrospray ionization (ESI) source. X-ray diffraction experiments were carried out on an Agilent Xcalibur or Bruker APEX-II CCD diffractometer, and the data obtained were deposited at the Cambridge Crystallographic Data Centre (CCDC 2050823, 2050825-2050826 and 2219802-2219806). In each case, enantiomeric excess was determined by HPLC (Agilent Technologies: 1220 Infinity II, 1200 Series, 1260 Infinity) analysis on a chiral column in comparison with authentic racemate, using a Daicel Chiralpak AD-H Column $(250 \times 4.6 \mathrm{~mm})$, Chiralpak IB Column ($250 \times 4.6 \mathrm{~mm}$), Chiralpak IC Column $(250 \times 4.6 \mathrm{~mm})$, Chiralpak ID Column (250×4.6 mm), Chiralpak IE Column ($250 \times 4.6 \mathrm{~mm}$), Chiralpak IF Column ($250 \times 4.6 \mathrm{~mm}$), Chiralpak IG Column ($250 \times 4.6 \mathrm{~mm}$), Chiralpak IH Column $(250 \times 4.6 \mathrm{~mm})$. UV detection was monitored at 254 nm . The specific optical rotation was obtained from Rudolph Research Analytical Autopol I automatic polarimeter in CHCl_{3} solution at $25^{\circ} \mathrm{C}$. The melting point was obtained from WRX-4 Mel-Temp apparatus. Column chromatography was performed on silica gel (300-400 mesh) eluting with ethyl acetate (EtOAc)/petroleum ether or dichloromethane (DCM)/petroleum ether. TLC was performed on glass-backed silica plates. UV light, I_{2}, and solution of potassium permanganate were used to visualize products or starting materials. Experiments involving moisture and/or air sensitive components were performed under a positive pressure of argon in oven-dried glassware equipped with a rubber septum inlet. Toluene was freshly distilled from CaH_{2} under an atmosphere of dry argon. Dried solvents and liquid reagents were transferred via oven-dried syringe. Petroleum ether and EtOAc were distilled. 1,3-Cyclohexadiene 1a, cycloheptadiene $\mathbf{6}$ and cycloheptatriene $\mathbf{1 0}$ were used without purification as commercially available. Dicyclopentadiene was cracked at $170{ }^{\circ} \mathrm{C}$ and re-
distilled to give 1,3-cyclopentadiene 13. The ligand $\mathbf{L} 7,{ }^{1} \mathbf{L 1 2},{ }^{1} \mathbf{1 b},{ }^{2}$ 1-azadiene 2, ${ }^{3}$ 1,3-diene $\mathbf{1 5}$, ${ }^{4}$ internal diene $\mathbf{1 8},{ }^{5} 2-\mathrm{N}$-tosyliminoacrylate $\mathbf{2 2}^{6}$ and 1 -oxadiene $\mathbf{2 4}{ }^{7}$ were prepared according to the literature procedures.
(1) X. Song, J. Zhang, Y. X. Wu, Q. Ouyang, W. Du and Y.-C. Chen, J. Am. Chem. Soc., 2022, 144, 9564-9569.
(2) H. E. Burks, L. T. Kliman and J. P. Morken, J. Am. Chem. Soc., 2009, 131, 9134-9135.
(3) Z.-Q. Rong, M. Wang, C. H. E. Chow and Y. Zhao, Chem. Eur. J., 2016, 22, 9483-9487.
(4) A. Lishchynskyi and K. Muñiz, Chem. Eur. J., 2022, 18, 2212-2216.
(5) F. Carlet, G. Bertarini, G. Broggini and G. Poli, Eur. J. Org. Chem., 2021, 2162-2168.
(6) H. Liu, Q. Zhang, L. Wang and X. Tong, Chem. Eur. J., 2010, 16, 1968-1972.
(7) A. P. Dieskau, M. S. Holzwarth and B. Plietker, J. Am. Chem. Soc., 2012, 134, 5048-5051.

2. Preparation and characterization of ligand L15

The mixture of $\mathbf{S} \mathbf{1}(2.42 \mathrm{~g}, 10.0 \mathrm{mmol})$ and (R)-1-phenylethylamine $(1.21 \mathrm{~g}, 10.0 \mathrm{mmol})$ in toluene $(12 \mathrm{~mL})$ was stirred at $110^{\circ} \mathrm{C}$ for 2 h . After cooled to room temperature, anhydrous $\mathrm{MgSO}_{4}(30.0 \mathrm{~g})$ was added to the mixture and stirred for 30 min , followed by filtration and concentration. The residue was dissolved in methanol (20.0 mL), and $\mathrm{NaBH}_{4}(378.0 \mathrm{mg}, 10.00 \mathrm{mmol})$ was added in three portions at $0^{\circ} \mathrm{C}$. After 30 min , the mixture was quenched with water (20.0 mL), and extracted with EtOAc ($20 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Then concentrated $\mathrm{HCl}(\mathrm{aq})(2.0 \mathrm{~mL})$ was added dropwise to the solution of the crude secondary amine in diethyl ether (10.0 mL). The white precipitates were filtered and washed with EtOAc to afford $\mathbf{S 2}(3.0 \mathrm{~g}, 86 \%$ yield $)$.

Triethylamine ($0.1 \mathrm{~mL}, 1.2 \mathrm{mmol}, 6.0$ equiv) was added dropwise to a stirred ice-cooled solution
of $\mathrm{PCl}_{3}(0.11 \mathrm{~mL}, 1.2 \mathrm{mmol}, 6.0$ equiv) in dry toluene $(1.0 \mathrm{~mL})$ under argon atmosphere. The resultant mixture was gradually warmed to $40^{\circ} \mathrm{C}$ before $\mathbf{S 2}(154.0 \mathrm{mg}, 0.4000 \mathrm{mmol}, 2.0$ equiv) was added. After stirred for additional 4 h , the mixture was concentrated in vacuo. The residue was dissolved in dry toluene, and (R)-3,3'-dibenzhydryl-[1,1'-binaphthalene]-2,2'-diol (124.0 mg, 0.2000 mmol) and triethylamine ($0.10 \mathrm{~mL}, 1.2 \mathrm{mmol}, 6.0$ equiv) were added sequentially under argon atmosphere. Then the mixture was stirred at room temperature for 12 h . The mixture was concentrated, and the residue was purified by flash chromatography on silica gel ($\mathrm{EtOAc} /$ petroleum ether $=1 / 100$) to give ligand L15: $94 \mathrm{mg}(0.095 \mathrm{mmol})$, as a white solid, 47% yield; $\mathrm{mp}=141-143^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=-139.0(c=0.41$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.60(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-6.96(\mathrm{~m}, 29 \mathrm{H}), 6.90-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.29(\mathrm{~s}$, $1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{dd}$, $J=7.3,2.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 148.71,148.67,147.7,143.9,143.7,142.9$, $142.6,142.1,142.0,141.6,135.8,135.1,132.4,132.0,131.8,131.4,131.2,130.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{FC}}=33.0 \mathrm{~Hz}\right)$, $130.8,130.5,130.1,129.89,129.86,128.8,128.7,128.6,128.4,128.31,128.28,128.12,128.07$, $128.0,127.5,127.4,127.0,126.9,126.7,126.49,126.45,126.3,125.8,125.7,124.9,124.6,124.3$, $123.4\left(\mathrm{~d},{ }^{1}{ }_{\mathrm{FCC}}=272.2 \mathrm{~Hz}\right), 122.13,122.10,120.6(\mathrm{~m}), 57.5(\mathrm{~d}, J=34.7 \mathrm{~Hz}), 51.0,50.3,47.3(\mathrm{~d}, J=$ $4.6 \mathrm{~Hz}), 21.7(\mathrm{~d}, J=24.3 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($375 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})-62.6 ;{ }^{31} \mathrm{P}$ NMR (162 MHz , CDCl_{3}): $\delta(\mathrm{ppm}) 139.4\left(\mathrm{~d}, ~ J=12.0 \mathrm{~Hz}\right.$); HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{63} \mathrm{H}_{47} \mathrm{~F}_{6} \mathrm{NO}_{2} \mathrm{P}^{+}$ 994.3243; Found 994.3246.

3. Detailed screening conditions

3.1 Preliminary ligand screenings for diastereodivergent [4+2] annulation

A series of chiral ligands derived from different backbones were investigated. As outlined above, phosphoramidite ligands L3 and $\mathbf{L 4}$ led to the exclusive formation of 4a, while 1,2-aminoalcoholdrived $\mathbf{L 9}$ and (R, R)-Me-DuPhos monoxide $\mathbf{L 1 0}$ were favourable to produce 3a and 5a, respectively. More relevant ligands and other parameters were screened subsequently in order to realise the diastereodivergent synthesis.

3.2 Detailed screening conditions for asymmetric synthesis of 4a

		$\begin{gathered} \text { CPh } \\ \mathrm{CH}_{3} \end{gathered}$	 L7		$=\sum_{t-\mathrm{Bu}}^{t-\mathrm{Bu}}$
Entry	L	x	Yield (\%) ${ }^{\text {b }}$	4a: $(3 \mathrm{a}+5 \mathrm{a})^{c}$	ee (\%) ${ }^{\text {d }}$
1	L4	20	82	>19:1	93
2	L5	20	30	4:1	71
3	L7	20	95	$>19: 1$	98
4	L7	10	95	$>19: 1$	98
5^{e}	L7	10	50	>19:1	98
6	L12	10	60	>19:1	91

${ }^{a}$ Unless noted otherwise, reactions were performed with $\mathbf{1 a}(0.1 \mathrm{mmol})$, $\mathbf{2 a}(0.05 \mathrm{mmol})$, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5 \mathrm{~mol} \%), \mathbf{L}(\mathrm{x} \mathrm{mol} \%)$ in dry toluene $(0.5 \mathrm{~mL})$ at $60{ }^{\circ} \mathrm{C}$ for 36 h under Ar. ${ }^{b}$ Yield of isolated product. ${ }^{c}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{d}$ The data referred to ee of $\mathbf{4 a}$, determined by HPLC analysis on a chiral stationary phase. ${ }^{e} \mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.5 \mathrm{~mol} \%)$.

3.3 Detailed screening conditions for asymmetric synthesis of 5a

	 A1 A6				 A9		
Entry	[Pd]	L	Solvent	Additive	Yield (\%) ${ }^{\text {b }}$	5a:(3a+4a	ee (\%) ${ }^{\text {d }}$
1	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	L10	Toluene	1	92	>19:1	82
2	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	L11	Toluene	1	Trace	/	/
3	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	L17	Toluene	1	Trace	1	1
4	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	L18	Toluene	1	Trace	1	1
5	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	L19	Toluene	1	Trace	1	1
6	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	L10	THF	1	51	10:1	80
7	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	L10	2-Me-THF	1	61	>19:1	80
8	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	L10	PhCF_{3}	1	10	7:1	77
9	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	L10	Dioxane	1	35	11:1	82
10	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	L10	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	1	26	7:3	83
11	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	L10	CHCl_{3}	1	20	1:2	89
12	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	L10	Xylene	1	Trace	1	1
13	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	L10	EtOAc	1	Trace	1	1
14	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	L10	Anisole	1	Trace	1	1
15	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	L10	Toluene	A1	33	$>19: 1$	83
16	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	L10	Toluene	A2	76	$>19: 1$	80
17	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	L10	Toluene	A3	75	$>19: 1$	80
18	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	L10	Toluene	A4	58	>19:1	80
19	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	L10	Toluene	A5	Trace	1	1
20	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	L10	Toluene	A6	Trace	1	1
21	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	L10	Toluene	A7	Trace	1	/
22	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	L10	Toluene	A8	73	$>19: 1$	80
23	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	L10	Toluene	A9	70	$>19: 1$	80
24	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	L10	Toluene	A10	76	$>19: 1$	80
25	$\left[\mathrm{Pd}(\text { allyl) } \mathrm{Cl}]_{2}\right.$	L10	Toluene	1	90	$>19: 1$	80
26	$\mathrm{Pd}(\mathrm{OAc})_{2}$	L10	Toluene	1	39	$>19: 1$	80
27	$\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}$	L10	Toluene	1	NR	1	/
28^{e}	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	L10	Toluene	1	56	$>19: 1$	82
29^{f}	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	L10	Toluene	1	25	$>19: 1$	82

[^0]
3.4 Detailed screening conditions for asymmetric synthesis of 3a

NR

Trace

20\%, 3a:(4a+5a) = 1:1
93% ee for 3 a

$R=4-O M e ; 45 \%, \mathbf{3 a}:(4 \mathbf{a}+\mathbf{5 a})=2: 3$
12% ee for 3a
$\mathrm{R}=3,5-\left(\mathrm{CF}_{3}\right)_{2} ; 43 \%, 3 \mathrm{a}:(4 \mathbf{a}+5 \mathbf{a})=1: 1$

As the reaction of $\mathbf{1 a}$ with $\mathbf{2 a}$ could not proceeded without palladium at $60^{\circ} \mathrm{C}$, the potential asymmetric synthesis of $\mathbf{3 a}$ also might be achieved. Although a series of 1,2-aminoalcohol-drived bifunctional ligands were screened, bad diastereoselectivity was generally observed. As a result, currently successful construction of chiral endo-3a has not been realised yet.

4.General procedure for ligand-controlled diastereodivergent synthesis

4.1 Procedure for synthesis of 3a

To an oven dried 10 mL Schlenk tube equipped with a stirring bar was added $N-((E)-2-((Z)-$ benzylidene)benzofuran-3(2H)-ylidene)-4-methylbenzenesulfonamide 2a ($37.5 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (0.5 mL) and 1,3-cyclohexadiene $\mathbf{1 a}(19.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 48 h . After complete consumption of 2a, the mixture was directly purified by flash chromatography on silica gel
$(E t O A c /$ petroleum ether $=1 / 50)$ to give product 3a: $30.0 \mathrm{mg}(0.0658 \mathrm{mmol})$, as a white solid, 66% yield; >19:1 dr; mp: 192-194 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.17(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.11(\mathrm{~m}, 5 \mathrm{H}), 7.05-6.97(\mathrm{~m}, 2 \mathrm{H}), 5.72(\mathrm{dd}, J=10.2,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.39-5.33(\mathrm{~m}, 1 \mathrm{H}), 4.72-4.64(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.08-1.98(\mathrm{~m}$, $1 \mathrm{H}), 1.74-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.43(\mathrm{~m}, 2 \mathrm{H}), 0.62-0.42(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ $153.9,148.6,144.0,138.0,134.3,132.0,130.3,129.7,127.6,127.5,127.1,126.9,124.7,124.3,123.0$, 122.4, 117.9, 111.2, 55.9, 41.9, 34.8, 22.0, 21.6, 21.5; HRMS (ESI-TOF) m/z: [M + Na] Calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{SNa}^{+} 478.1447$; Found 478.1456 . Its relative configuration has been determined by X-ray diffraction analysis.

4.2 General procedure for asymmetric synthesis of exo-4

General procdure: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added 1azadiene 2 ($0.1 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5 \mathrm{~mol} \%)$ and $\mathbf{L} 7(10 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) and 1,3cyclohexadiene $\mathbf{1}$ ($0.20 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . After complete consumption of $\mathbf{2}$, the mixture was directly purified by flash chromatography on silica gel (petroleum ether/EtOAc) to afford product 4.

Note: Racemic 4 was obtained by using $P d_{2}(d b a)_{3}$ in combination with racemic $\boldsymbol{L} 7$. The drs indicated the diastereomeric purity of the isolated products.

Synthesis of 4a: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added $N-((E)$-2-((Z)-benzylidene)benzofuran-3(2H)-ylidene)-4-methyl benzenesulfonamide 2a ($37.5 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}$, $0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathbf{L} 7(5.5 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) and 1,3-cyclohexadiene $\mathbf{1 a}$ ($19.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . After complete consumption of 2a, the mixture was directly purified by flash chromatography on silica gel ($\mathrm{EtOAc} /$ petroleum ether $=1 / 50$)
to afford product 4a: $43.1 \mathrm{mg}(0.0948 \mathrm{mmol})$, as a white solid, 95% yield; $\mathrm{mp} 186-188{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=$ +248.2 ($c=0.34$ in CHCl_{3}); >19:1 dr; 98% ee, determined by HPLC analysis (Daicel Chiralpak IG, n-Hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{t}_{\mathrm{R}}=15.12 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=19.19$ $\min ($ minor $) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.35-7.22 (m, 5H), 7.21-7.19 (m, 1H), 7.17-7.04 (m, 2H), $6.50(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.79-5.67(\mathrm{~m}$, $1 \mathrm{H}), 5.57(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-4.96(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.27-2.18$ $(\mathrm{m}, 1 \mathrm{H}), 2.13-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.59(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) 154.2, 150.0, 144.0, 139.7, 134.7, 129.94, 129.87, 128.33, 128.31, 128.1, 128.0, 127.2, 124.7, 124.4, 123.0, 122.4, 116.9, 111.1, 58.3, 39.3, 36.6, 22.1, 21.6, 20.5; HRMS (ESI-TOF) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}^{+}$456.1628; Found 456.1629.

Asymmetric synthesis of 4a on a 1.0 mmol scale: To an oven-dried 100 mL Schlenk tube equipped with a magnetic stirring bar were added $\mathrm{N}-((E)-2-((Z)$-benzylidene)benzofuran-3(2H)-ylidene)-4methylbenzenesulfonamide 2a ($375 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(46.0 \mathrm{mg}, 0.0500 \mathrm{mmol}, 5$ mol\%) and ligand $\mathbf{L} 7(55.0 \mathrm{mg}, 0.100 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The tube was capped, evacuated and backfilled with argon for five times. Then degassed dry toluene (10 mL) and 1,3-cyclohexadiene $\mathbf{1 a}$ (191 $\mu \mathrm{L}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . After complete consumption of 2a, the mixture was concentrated and the residue was purified by flash chromatography on silica gel ($\mathrm{EtOAc} /$ petroleum ether $=1 / 50$) to afford product 4a: $421.2 \mathrm{mg}(0.9245 \mathrm{mmol})$, as a white solid, 92% yield; $>19: 1 \mathrm{dr} ; 98 \%$ ee.

Synthesis of ent-4a: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added $N-((E)$-2-((Z)-benzylidene)benzofuran-3(2H)-ylidene)-4-methylbenzenesulfonamide 2a (37.5 mg , $0.100 \mathrm{mmol}, 1.0$ equiv $), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and ent-L7(5.5 mg, 0.010 mmol , $10 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) and 1,3-cyclohexadiene 1a ($19.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 48 h . After complete consumption of 2a, the mixture was directly purified by flash chromatography on silica gel $(E t O A c /$ petroleum ether $=1 / 50)$ to afford product ent-4a: $41.8 \mathrm{mg}(0.0917 \mathrm{mmol})$, as a white solid, 92% yield; $[\alpha]_{\mathrm{D}}{ }^{25}=-260.0\left(c=0.33\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;>19: 1 \mathrm{dr} ; 97 \%$ ee, determined by HPLC analysis (Daicel Chiralpak IG, n-Hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{t}_{\mathrm{R}}=14.92 \mathrm{~min}$ (minor), $\mathrm{t}_{\mathrm{R}}=18.63 \mathrm{~min}$ (major).

Synthesis of 4b: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added N-((E)-2-((Z)-3-methoxybenzylidene)benzofuran-3(2H)-ylid ene)-4-methylbenzenesulfonamide $\mathbf{2 b}(40.5 \mathrm{mg}, 0.100 \mathrm{mmol}, 0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathbf{L} 7(5.5 \mathrm{mg}, 0.010 \mathrm{mmol}$, $10 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) and 1,3-cyclohexadiene $1 \mathbf{1 a}(19.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . After complete consumption of $\mathbf{2 b}$, the mixture was directly purified by flash chromatography on silica gel (EtOAc/petroleum ether $=1 / 50)$ to afford product 4b: $44.3 \mathrm{mg}(0.0912$ mmol), as a white solid, 91% yield; $\mathrm{mp} 199-201{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+272.6\left(c=0.27\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;>19: 1 \mathrm{dr}$; 98% ee, determined by HPLC analysis (Daicel Chiralpak IG, n-Hexane $/ i$ - $\mathrm{PrOH}=90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{t}_{\mathrm{R}}=19.89 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=22.13 \mathrm{~min}($ minor $) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.11-7.02(\mathrm{~m}$, $1 \mathrm{H}), 6.74(\mathrm{dd}, J=8.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.77-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.57$ (d, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-4.96(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.29-$ $2.15(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}) 159.7,154.2,149.8,144.3,141.2,134.6,130.0,129.9,129.3,128.3,127.9,124.7,124.4$, $122.9,122.5,120.6,117.0,115.2,111.2,111.1,58.3,55.1,39.2,36.3,22.2,21.5,20.6$; HRMS (ESITOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{~S}^{+} 486.1734$; Found 486.1741.

Synthesis of 4c: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added 4-methyl- N-((E)-2-((Z)-4-methylbenzylidene)benzofuran$3(2 \mathrm{H})$-ylidene)benzenesulfonamide $2 \mathrm{c}(38.9 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathbf{L} 7(5.5 \mathrm{mg}, 0.010 \mathrm{mmol}, 10$ $\mathrm{mol} \%)$. The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) and 1,3-cyclohexadiene 1a (19.0 $\mu \mathrm{L}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . After complete consumption of $\mathbf{2 c}$, the mixture was directly purified by flash chromatography on silica gel $($ EtOAc/petroleum ether $=1 / 50)$ to afford product $\mathbf{4 c}: 42.3 \mathrm{mg}$ $(0.0901 \mathrm{mmol})$, as a white solid, 90% yield; $\mathrm{mp} 174-176{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+231.1(c=0.33$ in
CHCl_{3}); >19:1 dr; 97% ee, determined by HPLC analysis (Daicel Chiralpak IG, n-Hexane $/ i-\mathrm{PrOH}=$ $90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{t}_{\mathrm{R}}=14.98 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=19.85 \mathrm{~min}($ minor $) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.20(\mathrm{~d}, J=7.7,1 \mathrm{H}), 7.71-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.21(\mathrm{~m}, 5 \mathrm{H}), 6.94(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.49-6.29(\mathrm{~m}, 2 \mathrm{H}), 5.81-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.59-5.55(\mathrm{~m}, 1 \mathrm{H}), 5.04-5.02(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~d}$, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.73(\mathrm{~m}, 1 \mathrm{H})$, $1.71-1.58(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 154.2,150.3,144.1,137.0,136.6,134.8$, $129.92,129.85,129.1,128.4,128.1,124.8,124.4,123.0,122.4,116.9,111.2,58.3,38.9,36.6,22.2$, 21.6, 21.1, 20.6; HRMS (ESI-TOF) m/z: [M + H $]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~S}^{+} 470.1784$; Found 470.1793 .

Synthesis of 4d: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added N-((E)-2-((Z)-4-fluorobenzylidene)benzofuran-3(2H) -ylidene)-4-methylbenzenesulfonamide $2 \mathbf{2 d}(39.3 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathbf{L} 7(5.5 \mathrm{mg}, 0.010 \mathrm{mmol}, 10$ $\mathrm{mol} \%)$. The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) and 1,3-cyclohexadiene 1a (19.0 $\mu \mathrm{L}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . After complete consumption of $\mathbf{2 d}$, the mixture was directly purified by flash chromatography on silica gel (EtOAc/petroleum ether $=1 / 50$) to afford product $\mathbf{4 d}: 47.0 \mathrm{mg}$ $(0.0992 \mathrm{mmol})$, as a white solid, 99% yield; $\mathrm{mp} 187-189{ }^{\circ} \mathrm{C}$; $[\alpha]_{D^{25}}=+213.8(c=0.58$ in CHCl_{3}); >19:1 dr; 98% ee, determined by HPLC analysis (Daicel Chiralpak IG, n-Hexane $/ i-\mathrm{PrOH}=$ $90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{t}_{\mathrm{R}}=14.60 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=19.85 \mathrm{~min}($ minor $) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.14(\mathrm{~m}, 5 \mathrm{H}), 6.94-$ 6.68 (m, 2H), 6.64-6.29 (m, 2H), 5.74-5.70 (m, 1H), 5.57 (dt, $J=10.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-5.00(\mathrm{~m}$, $1 \mathrm{H}), 3.81(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.33-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.59(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 161.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{FC}}=246.2 \mathrm{~Hz}\right), 154.2,149.7,144.1,135.39,135.36$, 134.8, 129.91, 129.87, $129.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{FC}}=7.9 \mathrm{~Hz}\right.$), 128.3, 128.1, 124.64, 124.56, 123.1, 122.5, 117.0, $115.3\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{FC}}=21.3 \mathrm{~Hz}\right), 111.1,58.3,38.5,36.7,22.0,21.6,20.5 ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(375 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm) -115.1; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{FNO}_{3} \mathrm{SNa}^{+} 496.1353$; Found 496.1359.

Synthesis of 4e: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added 4-methyl- N-((2Z,3E)-2-(naphthalen-2-ylmethylene)-benzo-furan- $3(2 H)$-ylidene)benzenesulfonamide $2 \mathrm{e}(42.6 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathbf{L} 7(5.5 \mathrm{mg}, 0.010 \mathrm{mmol}, 10$ $\mathrm{mol} \%)$. The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) and 1,3-cyclohexadiene $\mathbf{1 a}$ (19.0 $\mu \mathrm{L}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . After complete consumption of $\mathbf{2 e}$, the mixture was directly purified by flash chromatography on silica gel $($ EtOAc/petroleum ether $=1 / 50)$ to afford product $4 \mathbf{e}: 44.6 \mathrm{mg}$ $(0.0882 \mathrm{mmol})$, as a white solid, 88% yield; $\mathrm{mp} 240-242{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{25}=+343.4(c=0.39$ in CHCl_{3}); >19:1 dr; 97% ee, determined by HPLC analysis (Daicel Chiralpak IG, n-Hexane $/ i-\mathrm{PrOH}=$ $90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{t}_{\mathrm{R}}=19.67 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=25.58 \mathrm{~min}$ (minor); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.24(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.54(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.18(\mathrm{~m}, 7 \mathrm{H}), 6.38(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.81-5.71(\mathrm{~m}$, $1 \mathrm{H}), 5.66-5.56(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.02(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.24(\mathrm{~m}, 1 \mathrm{H})$, 2.22-2.01 (m, 1H), 1.89-1.84 (m, 1H), 1.70-1.63 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ $154.2,149.9,144.2,137.0,134.8,133.2,132.6,130.01,129.99,128.3,128.1,127.6,127.5,127.4$, $126.2,125.9,125.6,124.7,124.5,123.0,122.5,117.2,111.1,58.3,39.4,36.4,22.1,21.7,20.7 ;$ HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{32} \mathrm{H}_{2} 7 \mathrm{NO}_{3} \mathrm{SNa}^{+}$528.1604; Found 528.1609.

Synthesis of 4f: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added 4-methyl- N-((2Z,3E)-2-(thiophen-2-ylmethylene)benzofuran$3(2 \mathrm{H})$-ylidene)benzenesulfonamide $2 \mathbf{2 f}(38.1 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathbf{L} 7(5.5 \mathrm{mg}, 0.010 \mathrm{mmol}, 10$ $\mathrm{mol} \%)$. The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) and 1,3-cyclohexadiene $\mathbf{1 a}(19.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . After complete consumption of $\mathbf{2 f}$, the mixture was directly purified by flash chromatography on silica gel $($ EtOAc/petroleum ether $=1 / 50)$ to afford product 4f: $44.4 \mathrm{mg}(0.0962$ mmol), as a white solid, 96% yield; $\mathrm{mp} 169-171^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+216.6\left(c=0.27\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;>19: 1 \mathrm{dr}$; 97% ee, determined by HPLC analysis (Daicel Chiralpak IG, n-Hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate
$=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{t}_{\mathrm{R}}=16.48 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=20.26 \mathrm{~min}($ minor $) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.24-8.13(\mathrm{~m}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{dd}, J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=5.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=$ $3.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.72-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.56(\mathrm{dt}, J=10.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-4.90(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=$ $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.25-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.63(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) 154.2, 148.7, 144.1, 142.0, 134.5, 130.03, 129.97, 128.2, 127.8, 126.6, 126.0, 124.7, 124.6, 124.4, 123.0, 122.7, 116.5, 111.2, 58.1, 36.6, 34.4, 22.6, 21.6, 20.4; HRMS (ESI-TOF) m/z: [M + $\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}_{2} \mathrm{Na}^{+}$484.1012; Found 484.1021.

Synthesis of 4g: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added N-((2Z,3E)-2-(2,2-dimethylpropylidene)benzofuran-3(2H)-ylidene)-4-methylbenzenesulfonamide $\mathbf{2 g}(35.5 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathbf{L} 7(5.5 \mathrm{mg}, 0.010 \mathrm{mmol}, 10$ $\mathrm{mol} \%)$. The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) and 1,3-cyclohexadiene $\mathbf{1 a}(19.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . After complete consumption of $\mathbf{2 g}$, the mixture was directly purified by flash chromatography on silica gel $($ EtOAc/petroleum ether $=1 / 50)$ to afford product $\mathbf{4 g}: 40.0 \mathrm{mg}(0.0918 \mathrm{mmol})$, as a white solid, 92% yield; mp $173-175{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+60\left(c=0.37\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $>19: 1 \mathrm{dr}$; 98% ee, determined by HPLC analysis (Daicel Chiralpak IC, n-Hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{t}_{\mathrm{R}}=$ 8.38 min (major), $\mathrm{t}_{\mathrm{R}}=17.07 \mathrm{~min}($ minor $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.10-7.96(\mathrm{~m}, 1 \mathrm{H})$, 7.79-7.67 (m, 2H), 7.45-7.33 (m, 1H), 7.29-7.21 (m, 4H), 5.66-5.61 (m, 1H), 5.30-5.29 (m, 1H), 4.90-4.70 (m, 1H), $2.62(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.08(\mathrm{~m}, 1 \mathrm{H})$, 2.02-1.79 (m, 3H), $0.74(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 153.72,153.66,143.8,136.6$, $130.8,129.8,128.9,128.0,124.9,123.9,122.8,121.4,115.7,110.9,58.6,42.3,35.0,33.5,28.5,26.4$, 21.5, 20.3; HRMS (ESI-TOF) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{SNa}^{+} 458.1760$; Found 458.1767 .

Synthesis of $\mathbf{4 h}$: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added N -((E)-2-((Z)-benzylidene)-5-methylbenzofuran$3(2 \mathrm{H})$-ylidene)-4-methylbenzenesulfonamide $\mathbf{2 h}(38.9 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathbf{L} 7(5.5 \mathrm{mg}, 0.010$ $\mathrm{mmol}, 10 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with argon for five times. Then
degassed dry toluene (1.0 mL) and 1,3-cyclohexadiene $\mathbf{1 a}(19.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . After complete consumption of $\mathbf{2 h}$, the mixture was directly purified by flash chromatography on silica gel $(E t O A c /$ petroleum ether $=1 / 50)$ to afford product $4 \mathrm{~h}: 46.9 \mathrm{mg}(0.0999 \mathrm{mmol})$, as a white solid, 99% yield; $\mathrm{mp} 193-195^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+259.4\left(c=0.34\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;>19: 1 \mathrm{dr}$; 94% ee, determined by HPLC analysis (Daicel Chiralpak IG, n-Hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}) \mathrm{t}_{\mathrm{R}}=12.04 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=14.18 \mathrm{~min}($ minor $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.97(\mathrm{~s}$, $1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.04(\mathrm{~m}, 5 \mathrm{H}), 6.60-6.43(\mathrm{~m}, 2 \mathrm{H}), 5.78-$ $5.66(\mathrm{~m}, 1 \mathrm{H}), 5.62-5.50(\mathrm{~m}, 1 \mathrm{H}), 5.08-4.98(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}$, $3 \mathrm{H}), 2.30-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.15-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.58(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 152.7,150.2,144.0,139.8,134.8,132.4,129.89,129.86,128.34,128.32,128.2$, 128.1, 127.2, 125.6, 124.7, 122.1, 116.7, 110.6, 58.3, 39.3, 36.6, 22.1, 21.6, 21.5, 20.6; HRMS (ESITOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{SNa}^{+}$492.1604; Found 492.1604.

Synthesis of 4i: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added N -((E)-2-((Z)-benzylidene)-5-chlorobenzofuran-3(2H)-ylidene) -4-methylbenzenesulfonamide $2 \mathbf{i}\left(41.0 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0\right.$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and $\mathbf{L} 7(5.5 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) and 1,3-cyclohexadiene $\mathbf{1 a}(19.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . After complete consumption of $\mathbf{2 i}$, the mixture was directly purified by flash chromatography on silica gel (EtOAc/petroleum ether $=1 / 50)$ to afford product $4 \mathbf{i}: 48.2 \mathrm{mg}(0.0984 \mathrm{mmol})$, as a white solid, 98% yield; $\mathrm{mp} 188-190{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{25}=+258.0\left(c=0.35\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;>19: 1 \mathrm{dr} ; 93 \%$ ee, determined by HPLC analysis (Daicel Chiralpak IG, n-Hexane $/ i$ - $\mathrm{PrOH}=90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{t}_{\mathrm{R}}=14.15 \mathrm{~min}$ (minor), $\mathrm{t}_{\mathrm{R}}=17.53 \mathrm{~min}$ (major); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.18(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.55-6.45(\mathrm{~m}, 2 \mathrm{H})$, $5.80-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.60-5.48(\mathrm{~m}, 1 \mathrm{H}), 5.08-4.97(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$, 2.30-2.17 (m, 1H), 2.15-2.04 (m, 1H), 1.82-1.74 (m, 1H), 1.73-1.59 (m, 2H); ${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 152.6,151.6,144.3,139.3,134.6,130.2,130.0,128.8,128.4,128.12,128.07,127.4$, 126.0, 124.7, 122.1, 116.6, 112.1, 58.3, 39.3, 36.5, 22.0, 21.6, 20.5; HRMS (ESI-TOF) m/z: [M +
$\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{24}{ }^{35} \mathrm{ClNO}_{3} \mathrm{SNa}^{+}$512.1058; Found 512.1060; Calcd for $\mathrm{C}_{28} \mathrm{H}_{24}{ }^{37} \mathrm{ClNO}_{3} \mathrm{SNa}^{+}$ 514.1029; Found 514.1038.

Synthesis of $\mathbf{4 j}$: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added $\mathrm{N}-((E)-2-((Z)$-benzylidene)benzofuran-3(2 H$)$-ylidene)-4methylbenzenesulfonamide $\mathbf{2 j}$ ($30.0 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and $\mathbf{L} 7(5.5 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) and 1,3-cyclohexadiene $\mathbf{1 a}(19.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . After complete consumption of $\mathbf{2 j}$, the mixture was directly purified by flash chromatography on silica gel (EtOAc/petroleum ether $=1 / 50)$ to afford product $\mathbf{4 j}: 33.6 \mathrm{mg}(0.0885 \mathrm{mmol})$, as a white solid, 89% yield; $\mathrm{mp} 89-91{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{25}=+10.9\left(c=0.55\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;>19: 1 \mathrm{dr} ; 97 \%$ ee, determined by HPLC analysis (Daicel Chiralpak IG, n-Hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{t}_{\mathrm{R}}=18.26 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=42.92$ \min (minor); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.08-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.19$ $(\mathrm{m}, 4 \mathrm{H}), 5.87-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.61-5.51(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.94(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~s}$, $3 H), 2.58-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.80(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 154.2,149.1,139.8,130.3,129.0,128.2,128.1,127.6,124.6,124.2,123.0$, 122.0, 117.1, 111.2, 58.0, 39.6, 38.6, 38.4, 22.3, 20.6; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{SNa}^{+}$402.1134; Found 402.1142.

Synthesis of $\mathbf{4 k}$: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added $\mathrm{N}-((E)-2-((Z)$-benzylidene)benzofuran-3(2H)-ylid ene)-4-methylbenzenesulfonamide $\mathbf{2 a}(37.5 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv), 2-butylcyclohexa-1,3-diene 1b ($27.2 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and $\mathbf{L} 7(5.5 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$). Then distilled toluene (1.0 mL) was added via syringe. The tube was evacuated followed by backfilled with argon for five times. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 48 h . After complete consumption of 2a, the mixture was directly purified by flash chromatography on silica gel (EtOAc/petroleum ether $=1 / 100)$ to afford product $4 \mathbf{k}: 25.6 \mathrm{mg}(0.0500 \mathrm{mmol})$, as a white solid, 50% yield; mp 237-239 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+149.2\left(c=0.25\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;>19: 1 \mathrm{dr} ; 90 \%$ ee, determined by HPLC analysis (Daicel Chiralpak IG, n-Hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{t}_{\mathrm{R}}=7.78 \mathrm{~min}$
(major), $\mathrm{t}_{\mathrm{R}}=9.24 \mathrm{~min}($ minor $) ;{ }^{1} \mathrm{H} \operatorname{NMR} \delta(\mathrm{ppm}) 8.20(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, 7.33-7.26 (m, 5H), 7.21-7.16 (m, 1H), 7.14-7.08 (m, 2H), 6.51-6.43 (m, 2H), 5.44 (s, 1H), 5.08 (s, $1 \mathrm{H}), 3.85(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.32-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.74(\mathrm{~m}$, $2 \mathrm{H}), 1.69-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.36-1.22(\mathrm{~m}, 3 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) 154.2, 149.1, 139.8, 130.3, 129.0, 128.2, 128.1, 127.6, 124.6, 124.2, 123.0, 122.0, 117.0, 111.2, 58.0, 39.6, 38.6, 38.4, 22.3, 20.6; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{SNa}^{+}$ 534.2073; Found 534.2075.

4.3 General procedure for asymmetric synthesis of diastereomers 5

General procdure: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added 1azadiene 2 ($0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5 \mathrm{~mol} \%)$ and $\mathbf{L 1 0}$ ($20 \mathrm{~mol} \%$). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) and 1,3cyclohexadiene 1 ($0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . After complete consumption of 2, the mixture was directly purified by flash chromatography on silica gel $(\mathrm{EtOAc} /$ petroleum ether $=1 / 50)$ to afford product 5.

Note: Racemic $\mathbf{5}$ was obtained by using $P d_{2}(d b a)_{3}$ in combination with racemic L10. The dr indicated the diastereomeric purity of the isolated products.

Synthesis of 5a: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added $N-((E)-2-((Z)$-benzylidene)benzofuran-3(2H)-ylidene)-4methylbenzenesulfonamide $\mathbf{2 a}\left(37.5 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0\right.$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and $\mathbf{L 1 0}(6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) and 1,3 -cyclohexadiene $\mathbf{1 a}(19.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}$, 2.0 equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . After complete consumption of 2a, the mixture was directly purified by flash chromatography on silica gel (EtOAc/petroleum ether
$=/ 50)$ to afford product $5 \mathrm{a}: 39.2 \mathrm{mg}(0.0860 \mathrm{mmol})$, as a white solid, 86% yield; $\mathrm{mp} 174-176{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{25}=+207.3\left(c=0.28\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;>19: 1 \mathrm{dr} ; 82 \%$ ee, determined by HPLC analysis (Daicel Chiralpak AD, n-Hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{t}_{\mathrm{R}}=11.75 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=19.31 \mathrm{~min}($ minor $) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.12(\mathrm{~d}, J=7.5,1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.31-7.18(\mathrm{~m}, 8 \mathrm{H}), 6.78-6.67(\mathrm{~m}, 2 \mathrm{H}), 6.42(\mathrm{dt}, J=10.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.99-5.95(\mathrm{~m}, 1 \mathrm{H})$, 4.28-4.11 (m, 1H), $3.53(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.72(\mathrm{~m}, 1 \mathrm{H})$, $1.68-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.21(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 153.9,149.9,144.0$, $138.8,135.8,129.6,129.1,129.0,128.5,128.3,127.4,126.0,125.2,124.4,123.0,122.5,122.0,111.1$, 64.5, 48.3, 38.9, 26.3, 24.3, 21.6; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{SNa}^{+}$ 478.1447; Found 478.1447.

Synthesis of ent-5a: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added N-((E)-2-((Z)-benzylidene)benzofuran-3(2H)-ylidene)-4-methylbenzenesulfonamide $\mathbf{2 a}$ ($37.5 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and ent-L10 ($6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene $(1.0 \mathrm{~mL})$ and 1,3 -cyclohexadiene $1 \mathbf{1 a}(19.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . After complete consumption of 2a, the mixture was directly purified by flash chromatography on silica gel $(E t O A c /$ petroleum ether $=1 / 50)$ to afford product ent-5a: $41.0 \mathrm{mg}(0.0878 \mathrm{mmol})$, as a white solid, 88% yield; $[\alpha]_{\mathrm{D}}{ }^{25}=-219.7\left(c=0.31\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;>19: 1 \mathrm{dr} ; 83 \%$ ee, determined by HPLC analysis (Daicel Chiralpak AD, n -Hexane $/ \mathrm{i}-\mathrm{PrOH}=90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{t}_{\mathrm{R}}=11.78$ $\min ($ minor $), \mathrm{t}_{\mathrm{R}}=19.16 \mathrm{~min}($ major $)$.

Synthesis of 5b: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were add $\mathrm{N}-((E)-2-((Z)$-3-methoxybenzylidene)benzofuran-3(2H)-ylidene)-4methylbenzenesulfonamide 2b ($40.5 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6$ $\mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathbf{L 1 0}(6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) and 1,3-cyclohexadiene $\mathbf{1 a}(19.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 48 h . After complete consumption of $\mathbf{2 b}$, the mixture was directly purified by flash chromatography on silica gel
$($ EtOAc/petroleum ether $=1 / 50)$ to afford product $\mathbf{5 b}: 35.8 \mathrm{mg}(0.0737 \mathrm{mmol})$, as a white solid, 74% yield; mp 198-200 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+173.3\left(c=0.27\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;>19: 1 \mathrm{dr} ; 77 \%$ ee, determined by HPLC analysis (Daicel Chiralpak IG, n-Hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{t}_{\mathrm{R}}=$ 19.62 min (minor), $\mathrm{t}_{\mathrm{R}}=21.05 \mathrm{~min}$ (major); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.11(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.64$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34-7.26 (m, 4H), 7.18-7.07 (m, 1H), 6.80-6.74 (m, 1H), 6.46-6.38 $(\mathrm{m}, 1 \mathrm{H}), 6.36-6.28(\mathrm{~m}, 2 \mathrm{H}), 6.02-5.93(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.12(\mathrm{~m} \mathrm{1H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.51(\mathrm{~m}, 2 \mathrm{H})$, 1.26-1.23 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 159.6, 153.9, 149.8, 144.1, 140.3, 135.6, $129.8,129.2,129.0,128.9,126.0,125.2,124.4,122.9,122.6,122.0,120.9,115.3,111.5,111.1,64.4$, 55.1, 48.3, 38.7, 26.4, 24.2, 21.6; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{SNa}^{+}$ 508.1553; Found 508.1555.

Synthesis of 5c: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added 4-methyl- N-((E)-2-((Z)-4-methylbenzylidene)benzofuran-3(2H)ylidene)benzenesulfonamide $\mathbf{2 c}\left(38.9 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0\right.$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6$ $\mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathbf{L 1 0}(6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) and 1,3-cyclohexadiene $\mathbf{1 a}(19.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 48 h . After complete consumption of $\mathbf{2 c}$, the mixture was directly purified by flash chromatography on silica gel $(E t O A c /$ petroleum ether $=1 / 50)$ to afford product $5 \mathrm{c}: 41.1 \mathrm{mg}(0.0875 \mathrm{mmol})$, as a white solid, 88% yield; mp $187-189{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+193.1\left(c=0.44\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;>19: 1 \mathrm{dr} ; 82 \%$ ee, determined by HPLC analysis (Daicel Chiralpak IG, n-Hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{t}_{\mathrm{R}}=$ 13.20 min (major), $\mathrm{t}_{\mathrm{R}}=21.41 \mathrm{~min}$ (minor); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.16-8.02(\mathrm{~m}, 1 \mathrm{H})$, 7.64 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.27$ (m, 3H), 7.26-7.21 (m, 2H), 7.00 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.61$ (d, J $=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.47-6.34(\mathrm{~m}, 1 \mathrm{H}), 6.03-5.90(\mathrm{~m}, 1 \mathrm{H}), 4.27-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.43(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.08-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.15(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 153.9,150.1,144.0,137.1,135.8,135.7,129.6,129.11$, 129.06, 129.0, 128.3, 126.1, 125.2, 124.3, 122.9, 122.5, 121.9, 111.2, 64.5, 48.0, 38.9, 26.3, 24.3, 21.6, 21.1; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{SNa}^{+} 492.1604$; Found 492.1606 .

Synthesis of 5d: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added N -((E)-2-((Z)-4-fluorobenzylidene)benzofuran-3(2H) -ylidene)-4-methylbenzenesulfonamide $\mathbf{2 d}$ ($39.3 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and $\mathbf{L 1 0}(6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) and 1,3-cyclohexadiene $\mathbf{1 a}(19.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . After complete consumption of $\mathbf{2 d}$, the mixture was directly purified by flash chromatography on silica gel $(\mathrm{EtOAc} / \mathrm{DCM} /$ petroleum ether $=1 / 1 / 50)$ to afford product 5d: $39.3 \mathrm{mg}(0.0830 \mathrm{mmol})$, as a white solid, 83% yield; mp $121-123{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+165.2\left(c=0.62\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;>19: 1 \mathrm{dr} ; 79 \%$ ee, determined by HPLC analysis (Daicel Chiralpak AD, n-Hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{t}_{\mathrm{R}}=13.47 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=19.21 \mathrm{~min}($ minor $) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm) $8.11(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 4 \mathrm{H}), 6.96-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.75-$ $6.54(\mathrm{~m}, 2 \mathrm{H}), 6.40(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.06-5.88(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=10.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.07-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.20(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 162.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{FC}}=247.0 \mathrm{~Hz}\right), 153.9,149.6,144.1,135.8,134.5,129.9$, $129.8,129.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{FC}}=8.0 \mathrm{~Hz}\right), 129.1,129.0,126.0,125.1,124.6,123.1,122.6,122.1,115.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{FC}}\right.$ $=21.3 \mathrm{~Hz}), 111.1,64.5,47.5,39.1,26.3,24.3,21.6 ;{ }^{19} \mathrm{~F}$ NMR ($375 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})-115.0$; HRMS (ESI-TOF) m/z: $\left[\mathrm{M}+\mathrm{Na}^{+}\right.$Calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{FNO}_{3} \mathrm{SNa}^{+}$496.1353; Found 496.1354. Recrystallisation of the above product from petroleum ether (7.0 mL) and EtOAc (1.0 mL) gave a white solid, 20.0 mg (0.0422 mmol), 42% yield, 91% ee.

Synthesis of 5e: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added 4-methyl-N-((2Z,3E)-2-(naphthalen-2-ylmethylene)-benzo furan- $3(2 H)$-ylidene)benzenesulfonamide $\mathbf{2 e}(42.6 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathbf{L 1 0}(6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20$ $\mathrm{mol} \%)$. The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) and 1,3-cyclohexadiene 1a (19.0 $\mu \mathrm{L}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . After complete consumption of 2e, the mixture was directly purified by flash chromatography on silica gel (EtOAc/DCM/petroleum ether $=1 / 25 / 50)$ to afford product $5 \mathbf{e}$:
$42.9 \mathrm{mg}(0.0848 \mathrm{mmol})$, as a white solid, 85% yield; $\mathrm{mp} 198-200^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+371.1(c=0.24$ in CHCl_{3}); >19:1 dr; 88% ee, determined by HPLC analysis (Daicel Chiralpak IG, n-Hexane $/ i-\mathrm{PrOH}=$ $80 / 20$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{t}_{\mathrm{R}}=18.82 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=20.63 \mathrm{~min}($ minor $) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.63(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.70(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.45(\mathrm{dt}, J=10.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.05-5.91(\mathrm{~m}, 1 \mathrm{H}), 4.31-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.43$ $(\mathrm{s}, 3 \mathrm{H}), 2.03-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.37-1.23(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) 154.0, 149.8, 144.1, 136.2, 135.8, 133.2, 132.7, 129.7, 129.1, 128.0, 127.7, 127.6, 127.5, 126.2, 126.0, 125.9, 125.2, 124.5, 123.0, 122.6, 122.2, 111.1, 64.4, 48.5, 38.8, 26.3, 24.2, 21.7; HRMS (ESITOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{SNa}^{+} 528.1604$; Found 528.1605.

Synthesis of 5f: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added 4-methyl- N-((2Z,3E)-2-(thiophen-2-ylmethylene)benzofuran$3(2 \mathrm{H})$-ylidene)benzenesulfonamide $2 \mathbf{2 f}(38.1 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathbf{L 1 0}(6.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 10$ $\mathrm{mol} \%)$. The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) and 1,3-cyclohexadiene $\mathbf{1 a}(19.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . After complete consumption of $\mathbf{2 f}$, the mixture was directly purified by flash chromatography on silica gel $(E t O A c /$ petroleum ether $=1 / 50)$ to afford product 5f: $39.8 \mathrm{mg}(0.0862$ $\mathrm{mmol})$, as a white solid, 86% yield; $\mathrm{mp} 106-108{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+161.3\left(c=0.48\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;>19: 1 \mathrm{dr}$; 83% ee, determined by HPLC analysis (Daicel Chiralpak AD, n-Hexane $/ i$-PrOH $=80 / 20$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{t}_{\mathrm{R}}=8.56 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=10.07 \mathrm{~min}(\operatorname{minor}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}) 8.11(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.13(\mathrm{~m}, 6 \mathrm{H}), 6.96-6.83(\mathrm{~m}, 1 \mathrm{H})$, $6.71-6.58(\mathrm{~m}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.09-5.85(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=$ $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.07-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.15(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 153.9,148.7,144.0,141.3,135.6,129.8,129.3,128.9$, $126.6,126.4,125.7,125.2,124.6,124.5,123.0,122.7,121.6,111.2,64.2,43.1,39.1,26.7,24.3,21.6 ;$ HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}_{2} \mathrm{Na}^{+}$484.1012; Found 484.1012.

Synthesis of $\mathbf{5 g}$: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added N-((E)-2-((Z)-benzylidene)-5-methylbenzofuran-3(2H)-ylidene)-4-methylbenzenesulfonamide $\mathbf{2 h}(38.9 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathbf{L 1 0}(6.4 \mathrm{mg}, 0.020$ $\mathrm{mmol}, 20 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) and 1,3-cyclohexadiene $\mathbf{1 a}(19.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}$, 2.0 equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . After complete consumption of $\mathbf{2 h}$, the mixture was directly purified by flash chromatography on silica gel $($ EtOAc/petroleum ether $=1 / 50)$ to afford product $\mathbf{5 g}$: $40.9 \mathrm{mg}(0.0871$ $\mathrm{mmol})$, as a white solid, 87% yield; $\mathrm{mp} 112-114{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+242.6\left(c=0.39\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;>19: 1 \mathrm{dr}$; 85% ee, determined by HPLC analysis (Daicel Chiralpak IG, n-Hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{t}_{\mathrm{R}}=12.51 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R}}=17.10 \mathrm{~min}($ major $) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.13$ $(\mathrm{m}, 4 \mathrm{H}), 7.06(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.42(\mathrm{dt}, J=10.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.01-5.92$ $(\mathrm{m}, 1 \mathrm{H}), 4.22-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.92(\mathrm{~m}, 1 \mathrm{H})$, $1.85-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.22(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ $152.4,150.1,144.0,138.9,135.8,132.5,129.6,129.1,128.9,128.5,128.3,127.4,126.1,125.7,125.2$, 122.2, 121.8, 110.7, 64.5, 48.4, 38.9, 26.3, 24.3, 21.6, 21.5; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{SNa}^{+}$492.1604; Found 492.1601. Recrystallisation of the above product from petroleum ether (7.0 mL) and EtOAc (1.0 mL) gave a white solid, $20.2 \mathrm{mg}(0.0422 \mathrm{mmol}), 42 \%$ yield, 97\% ee.

Synthesis of 5h: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added $\mathrm{N}-(E)$-2-((Z)-benzylidene)-5-chlorobenzofuran-3(2 H$)$-ylid ene)-4-methylbenzenesulfonamide $\mathbf{2 i}(41.0 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathbf{L 1 0}(6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20$ mol\%). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) and 1,3-cyclohexadiene $1 \mathbf{1 a}(19.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . After complete consumption of $\mathbf{2 i}$, the mixture was directly purified by flash chromatography on silica gel $(E t O A c /$ petroleum ether $=1 / 50)$ to afford product $\mathbf{5 h}: 41.7 \mathrm{mg}(0.0851 \mathrm{mmol})$, as a white
solid, 85% yield; $\mathrm{mp} 108-110^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+226.9\left(c=0.48\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;>19: 1 \mathrm{dr} ; 87 \%$ ee, determined by HPLC analysis (Daicel Chiralpak IA, n-Hexane $/ i-\mathrm{PrOH}=60 / 40$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}) \mathrm{t}_{\mathrm{R}}=5.49 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R}}=7.18 \mathrm{~min}($ major $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.12-8.07$ $(\mathrm{m}, 1 \mathrm{H}), 7.68-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 5 \mathrm{H}), 6.75-6.67(\mathrm{~m}, 2 \mathrm{H}), 6.40(\mathrm{dt}, J$ $=10.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.02-5.90(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$, 2.09-1.93 (m, 1H), 1.89-1.74 (m, 1H), 1.70-1.57 (m, 2H), 1.28-1.22 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 152.3,151.4,144.2,138.4,135.6,129.7,129.2,129.1,128.8,128.42,128.39,127.5$, 126.5, 125.8, 124.7, 122.3, 121.6, 112.1, 64.5, 48.3, 38.9, 26.3, 24.2, 21.6; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{24}{ }^{35} \mathrm{ClNO}_{3} \mathrm{SNa}^{+} 512.1058$; Found 512.1061; Calcd for $\mathrm{C}_{28} \mathrm{H}_{24}{ }^{37} \mathrm{ClNO}_{3} \mathrm{SNa}^{+}$ 514.1028; Found 514.1041. Recrystallisation of the above product from petroleum ether (7.0 mL) and EtOAc (1.0 mL) gave a white solid, $27.2 \mathrm{mg}(0.0555 \mathrm{mmol}), 56 \%$ yield, 98% ee.

Synthesis of 5i: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were add N -((E)-2-((Z)-benzylidene)benzofuran-3(2H)-ylidene)-4-methyl benzenesulfonamide $2 \mathbf{j}$ ($30.0 \mathrm{mg}, 0.100 \mathrm{mmol}$, 1.0 equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}$, $0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and $\mathbf{L 1 0}(6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) and 1,3-cyclohexadiene $\mathbf{1 a}$ ($19.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}$, 2.0 equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . After complete consumption of $\mathbf{2 j}$, the mixture was directly purified by flash chromatography on silica gel $(\mathrm{EtOAc} /$ petroleum ether $=1 / 50)$ to afford product $5 \mathbf{i}: 30.6 \mathrm{mg}(0.0806 \mathrm{mmol})$, as a white solid, 81% yield; $\mathrm{mp} 166-168{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=$ +24.5 ($c=0.22$ in CHCl_{3}); >19:1 dr; 70\% ee, determined by HPLC analysis (Daicel Chiralpak IG, $n-$ Hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{t}_{\mathrm{R}}=20.91 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=42.24 \mathrm{~min}$ (minor); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.75(\mathrm{dd}, J=6.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 3 \mathrm{H})$, 7.21-7.13 (m, 5H), 6.21 (dd, $J=10.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{dt}, J=11.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.13(\mathrm{~m}$, $1 \mathrm{H}), 3.71$ (d, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 2.44-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.89(\mathrm{~m}$, $1 \mathrm{H}), 1.46-1.35(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 153.8,149.1,139.2,130.6,128.9$, $128.5,127.7,124.9,124.8,124.5,122.9,122.1,121.5,111.3,63.7,48.2,42.4,41.6,26.3,24.6$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{SNa}^{+}$402.1134; Found 402.1136.

Synthesis of 5j: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added $N-((E)$-2-((Z)-benzylidene)benzofuran-3(2H)-ylidene)-4methylbenzenesulfonamide 2a ($37.5 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and $\mathbf{L 1 0}(6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). Then degassed dry toluene (1.0 mL) and 2-butylcyclohexa-1,3-diene $\mathbf{1 b}(27.2 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 48 h . After complete consumption of $\mathbf{2 a}$, the mixture was directly purified by flash chromatography on silica gel $(\mathrm{EtOAc} /$ petroleum ether $=1 / 100)$ to afford product $\mathbf{5 j}$: $10.3 \mathrm{mg}(0.0201$ $\mathrm{mmol})$, as a white solid, 20% yield, as a white solid; $\mathrm{mp} 181-183{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+62.9(c=0.39$ in CHCl_{3}); >19:1 dr; 53% ee, determined by HPLC analysis (Daicel Chiralpak IG, n-Hexane $/ i-\mathrm{PrOH}=$ $90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=256 \mathrm{~nm}$) $\mathrm{t}_{\mathrm{R}}=9.90 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=11.98 \mathrm{~min}($ minor $) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.12(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 3 \mathrm{H})$, 7.25-7.17 (m, 3H), 7.15-7.07 (m, 2H), 6.42 (dd, $J=7.1,1.7 \mathrm{~Hz}, 2 \mathrm{H}$), 5.86-5.78 (m, 1H), 4.20-4.09 (m, 1H), $3.60(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.12-1.91$ $(\mathrm{m}, 3 \mathrm{H}), 1.57-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.33(\mathrm{~m}, 3 \mathrm{H}), 1.20-1.08(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 153.9,150.8,143.9,139.0,137.7,136.2,129.6,129.3,128.3,128.2$, $127.3,125.6,124.8,124.4,123.1,123.0,122.1,111.3,68.8,49.6,39.8,34.1,31.3,26.9,24.7,22.6$, 21.6, 14.1; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{SNa}^{+}$534.2073; Found 534.2074.

5. More substrate exploration

5.1 Exploration of more cyclic dienes and polyenes

Synthesis of 7: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added N-((E)-2-((Z)-benzylidene)benzofuran-3(2H)-ylidene)-4methylbenzenesulfonamide $\mathbf{2 a}$ ($37.5 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and $\mathbf{L 1 2}(6.0 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene $(1.0 \mathrm{~mL})$ and 1,3-cycloheptadiene $6(22.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . After complete consumption of $\mathbf{2 a}$, the mixture was directly purified by flash chromatography on silica gel $($ EtOAc/petroleum ether $=1 / 50)$ to afford product 7: $34.0 \mathrm{mg}(0.0724 \mathrm{mmol})$, as a white solid, 72% yield; $\mathrm{mp} 181-183{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+20.0\left(c=0.41\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;>19: 1 \mathrm{dr} ; 94 \%$ ee, determined by HPLC analysis (Daicel Chiralpak IG, n-Hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{t}_{\mathrm{R}}=$ 7.38 min (major), $\mathrm{t}_{\mathrm{R}}=10.04 \mathrm{~min}($ minor $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.25-8.19(\mathrm{~m}, 1 \mathrm{H})$, 7.68-7.56 (m, 2H), 7.30-7.26 (m, 4H), 7.20-7.16 (m, 1H), 7.15-7.09 (m, 2H), 6.56-6.50 (m, 2H), $5.90-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.42-5.38(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.16(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$, 2.31-2.18 (m, 1H), $2.09(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.42(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 154.3,150.0,144.1,143.3,138.9,135.1,132.6,132.3,130.5,129.8,129.6$, $129.0,128.4,128.3,128.3,128.2,127.9,127.2,125.4,124.6,124.5,123.0,122.4,117.9,111.2,62.7$, 40.6, 39.7, 29.4, 28.8, 21.5, 21.0; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{SNa}^{+}$ 492.1604; Found 492.1613.

Note: 7 was obtained in 70 yield and 87% ee by using $P_{2}(d b a)_{3}$ in combination with $\boldsymbol{L} 7$, and the configuration of 7 was assigned by analogy with products 4.

Synthesis of 8: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added N-((E)-2-((Z)-benzylidene)benzofuran-3(2H)-ylidene)-4methylbenzenesulfonamide $\mathbf{2 a}$ ($37.5 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and $\mathbf{L 1 0}(6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene $(1.0 \mathrm{~mL})$ and 1,3-cycloheptadiene $6(22.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $70^{\circ} \mathrm{C}$ for 72 h . After complete consumption of $\mathbf{2 a}$, the mixture was directly purified by flash chromatography on silica gel $(E t O A c /$ petroleum ether $=1 / 50)$ to afford product $8: 37.8 \mathrm{mg}(0.0805 \mathrm{mmol})$, as a white solid, 81%
yield; mp 199-201 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=-16.5\left(c=0.55\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;>19: 1 \mathrm{dr} ; 76 \%$ ee, determined by HPLC analysis (Daicel Chiralpak IG, n-Hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{t}_{\mathrm{R}}=$ 11.72 min (major), $\mathrm{t}_{\mathrm{R}}=14.73 \mathrm{~min}$ (minor); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.03-7.95(\mathrm{~m}, 1 \mathrm{H})$, 7.54-7.48 (m, 2H), 7.37-7.27 (m, 7H), 7.26-7.21 (m, 1H), 6.94-6.83 (m, 2H), 6.09 (ddd, $J=11.3$, $4.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.86-5.76(\mathrm{~m}, 1 \mathrm{H}), 4.58-4.47(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-$ $2.10(\mathrm{~m}, 2 \mathrm{H}), 2.09-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.16-$ $1.07(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 153.8,152.1,144.1,136.4,133.7,130.1,129.5$, $129.1,128.6,127.9,127.6,125.4,123.9,123.2,121.2,117.6,111.4,63.1,50.7,45.9,33.3,27.4,25.0$, 21.6; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{SNa}^{+}$492.1604; Found 492.1604. The configuration of 8 was assigned by analogy with products 5 .

Synthesis of 9: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added N-((E)-2-((Z)-benzylidene)benzofuran-3(2H)-ylidene)-4methylbenzenesulfonamide 2a ($37.5 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and $\mathbf{L 3}(10.8 \mathrm{mg}, 0.0200 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene $(1.0 \mathrm{~mL})$ and 1,3-cycloheptadiene $6(22.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 36 h . After complete consumption of $\mathbf{2 a}$, the mixture was directly purified by flash chromatography on silica gel $($ EtOAc/petroleum ether $=1 / 50)$ to afford product 9: $34.0 \mathrm{mg}(0.0725 \mathrm{mmol})$, as a colorless oil, 73% yield; $[\alpha]_{\mathrm{D}}{ }^{25}=-74.0\left(c=0.34\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;>19: 1 \mathrm{dr} ; 47 \%$ ee, determined by HPLC analysis (Daicel Chiralpak IE, n-Hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{t}_{\mathrm{R}}=8.87 \mathrm{~min}$ (minor), $\mathrm{t}_{\mathrm{R}}=10.0 \mathrm{~min}$ (major); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 7.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 7 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.11-6.01(\mathrm{~m}, 1 \mathrm{H}), 5.93-5.82(\mathrm{~m}, 2 \mathrm{H}), 5.69$ (dd, J $=11.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{dd}, J=11.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.27(\mathrm{~m}, 1 \mathrm{H})$, $2.41(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.45(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}) 156.0,153.3,143.9,138.7,136.8,135.1,134.9,129.7,128.6,128.5,127.6,127.0,126.0$, 125.1, 124.5, 124.2, 123.0, 119.4, 113.1, 111.4, 45.9, 43.7, 29.0, 28.2, 21.6; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{SNa}^{+}$492.1604; Found 492.1612.

Synthesis of 11: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added 4-methyl- N-(($2 Z, 3 E$)-2-(naphthalen-2-ylmethylene)-benzofuran-3(2H)-ylidene)benzenesulfonamide $2 \mathrm{e}(85.0 \mathrm{mg}, 0.200 \mathrm{mmol}$, 1.0 equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(9.2 \mathrm{mg}, 0.010 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathbf{L 1 3}(21.6 \mathrm{mg}$, $0.0400 \mathrm{mmol}, 20 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) and cycloheptatriene 10 ($32.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}$, 2.0 equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $90^{\circ} \mathrm{C}$ for 48 h . After complete consumption of $\mathbf{2 e}$, the mixture was directly purified by flash chromatography on silica gel ($\mathrm{EtOAc} /$ petroleum ether $=1 / 50$) to afford product 11: $52.2 \mathrm{mg}(0.0504 \mathrm{mmol})$, as a white solid, 50% yield; $\mathrm{mp} 241-242{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=$ -179.1 ($c=0.33$ in CHCl_{3}); 5:1 dr; 92% ee, determined by HPLC analysis (Daicel Chiralpak IC, $n-$ Hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{t}_{\mathrm{R}}=10.77 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R}}=19.23 \mathrm{~min}$ (major); Pure 11 for NMR analysis was obtained after recrystallisation. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.27-8.21(\mathrm{~m}, 1 \mathrm{H}), 7.80-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.61(\mathrm{~m}, 3 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-$ 7.42 (m, 2H), 7.35-7.30 (m, 3H), 7.28-7.26 (m, 1H), 7.23-7.21 (m, 1H), 6.47 (dd, $J=8.5,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.96-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.79(\mathrm{ddd}, J=12.1,7.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.71-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=12.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.34-5.26(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.05$ $(\mathrm{m}, 1 \mathrm{H}), 1.99-1.86(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 154.4,150.4,144.3,136.3,134.9$, 133.3, 132.8, 132.7, 130.7, 130.0, 128.1, 128.0, 127.6, 127.51, 127.48, 126.2, 125.9, 125.7, 125.6, 124.6, 124.5, 123.1, 122.4, 117.4, 111.3, 62.7, 41.2, 38.5, 29.0, 21.7; HRMS (ESI-TOF) m/z: [M + $\mathrm{Na}]+$ Calcd for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{SNa}^{+} 540.1604$; Found 540.1602.

Synthesis of 12: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added $\mathrm{N}-((E)-2-((Z)$-benzylidene)benzofuran-3(2H)-ylidene)-4methylbenzenesulfonamide 2a ($37.5 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$
($4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and $\mathbf{L} 14(15.2 \mathrm{mg}, 0.0200 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) and cycloheptatriene 10 ($16.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 48 h . After complete consumption of 2a, the mixture was directly purified by flash chromatography on silica gel ($(\mathrm{EtOAc} /$ petroleum ether $=1 / 50$) to afford 12: $14.0 \mathrm{mg}(0.0299 \mathrm{mmol})$, as a yellow oil, 30% yield; $[\alpha]_{\mathrm{D}}{ }^{25}=-32.2\left(c=0.34\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; 77% ee, determined by HPLC analysis (Daicel Chiralpak IH, n-Hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{t}_{\mathrm{R}}=8.39 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R}}=9.77 \mathrm{~min}($ major $) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}) 7.68-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.05-7.00(\mathrm{~m}$, $1 \mathrm{H}), 6.97-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.77-6.63(\mathrm{~m}, 2 \mathrm{H}), 6.16-6.08(\mathrm{~m}, 2 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=9.8,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=9.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13}{ }^{3}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 156.3,153.2,144.1,139.2,136.6,131.1,130.6,129.8,128.7$, $128.5,127.6,127.1,125.7,125.2,125.1,124.5,124.2,122.9,118.8,113.5,111.5,43.6,42.3,21.6$; HRMS (ESI-ToF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{SNa}^{+} 490.1447$; Found 490.1443 .

Synthesis of 14a: To an oven dried 10 mL Schlenk tube equipped with a stirring
 bar were added $N-((E)-2-((Z)$-benzylidene)benzofuran-3(2H)-ylidene)-4methylbenzenesulfonamide 2a ($37.5 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and $\mathbf{L} 7(5.5 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) and cyclopentadiene $\mathbf{1 3}(16.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . After complete consumption of 2a, the mixture was directly purified by flash chromatography on silica gel (petroleum ether/dichloromethane $=3 / 1)$ to afford product $\mathbf{1 4 a}: 29.8 \mathrm{mg}(0.0675 \mathrm{mmol})$, as a white solid, 68% yield; mp $160-162{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+278.3\left(c=0.46\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 3: 1 \mathrm{dr} ; 91 \%$ ee, determined by HPLC analysis (Daicel Chiralpak ID, n-Hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{t}_{\mathrm{R}}=$ $14.88 \min$ (major), $\mathrm{t}_{\mathrm{R}}=18.36 \mathrm{~min}($ minor $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.22(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.22$ (m, 7H), 7.21-7.16 (m, 1H), 7.13-7.06 (m, 2H), 6.50-6.38
$(\mathrm{m}, 2 \mathrm{H}), 5.93-5.80(\mathrm{~m}, 2 \mathrm{H}), 5.35-5.24(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.43-2.37(\mathrm{~m}$, $1 \mathrm{H}), 2.30(\mathrm{dd}, J=15.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.12(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 153.6$, $150.4,144.1,140.6,134.0,133.7,130.3,129.9,128.4,128.3,128.2,127.9,127.1,124.7,124.5,123.0$, 122.6, 111.1, 66.2, 43.6, 43.5, 38.4, 21.6; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{SNa}^{+}$464.1291; Found 464.1297.

Note: Racemic 14a-14c were obtained by using $P d_{2}(d b a)_{3}$ in combination with racemic $\boldsymbol{L} 7$.

Synthesis of 14b: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added $\mathrm{N}-((E)-2-((Z)-3$-methoxybenzylidene)benzofuran-3(2H)-ylid-ene)-4-methylbenzenesulfonamide $\mathbf{2 b}(40.5 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathbf{L} 7(5.5 \mathrm{mg}, 0.010 \mathrm{mmol}, 10$ $\mathrm{mol} \%$). The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) and cyclopentadiene $\mathbf{1 3}(16.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h. After complete consumption of $\mathbf{2 b}$, the mixture was directly purified by flash chromatography on silica gel (petroleum ether/ dichloromethane $=3 / 1$) to afford product 14b: 31.9 mg , as a white solid $(0.0676 \mathrm{mmol}), 68 \%$ yield; $\mathrm{mp} 151-153{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+257.0\left(c=0.46\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 5: 1 \mathrm{dr} ; 90 \%$ ee, determined by HPLC analysis (Daicel Chiralpak ID, n-Hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{t}_{\mathrm{R}}=13.72 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=15.62 \mathrm{~min}($ minor $) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $(\mathrm{ppm}) 8.31-8.16(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.05-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{ddd}, J=$ 8.3, 2.6, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.21-6.12(\mathrm{~m}, 1 \mathrm{H}), 6.01(\mathrm{dt}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.91-5.79(\mathrm{~m}, 2 \mathrm{H}), 5.37-5.13$ $(\mathrm{m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.46-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=15.6$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.10(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 153.6, 150.2, 144.3, 142.0, $134.0,133.5,130.3,129.9,129.4,128.1,124.7,124.5,122.9,122.6,120.3,117.5,115.0,111.2,111.1$, 66.0, 55.1, 43.4, 43.2, 38.3, 21.6; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{SNa}^{+}$ 494.1397; Found 494.1395.

Synthesis of 14c: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added 4-methyl- N-(($2 Z, 3 E)$-2-(naphthalen-2-ylmethylene)-benzo furan$3(2 H)$-ylidene)benzenesulfonamide $2 \mathrm{e}(42.6 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathbf{L} 7(5.5 \mathrm{mg}, 0.010 \mathrm{mmol}, 10$ $\mathrm{mol} \%)$. The tube was capped, evacuated and back-filled with argon for five times.

Then degassed dry toluene (1.0 mL) and cyclopentadiene $\mathbf{1 3}(16.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . After complete consumption of $\mathbf{2 e}$, the mixture was directly purified by flash chromatography on silica gel (petroleum ether/dichloromethane $=3 / 1)$ to afford product $\mathbf{1 4 c}$: $25.4 \mathrm{mg}(0.0517 \mathrm{mmol})$, as a white solid, 52% yield; $\mathrm{mp} 175-177{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+345.7\left(c=0.21\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 6: 1 \mathrm{dr} ; 87 \%$ ee, determined by HPLC analysis (Daicel Chiralpak ID, n-Hexane $/ i-\operatorname{PrOH}=80 / 20$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{t}_{\mathrm{R}}=14.88 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=18.83 \mathrm{~min}($ minor $) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta$ (ppm) $8.24(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.53-$ $7.49(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 4 \mathrm{H}), 6.27(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.94-5.84(\mathrm{~m}, 2 \mathrm{H}), 5.38-5.29(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 4 \mathrm{H})$, 2.29-2.24 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 153.7,150.3,144.2,137.8,134.0,133.7$, $133.2,132.5,130.4,129.9,128.21,128.17,127.58,127.55,127.0,126.3,125.9,125.3,124.7,124.6$, 123.0, 122.7, 117.7, 111.1, 66.1, 43.6, 43.2, 38.4, 21.6; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{SNa}^{+}$514.1447; Found 514.1443.

5.2 Exploration of linear 1,3-dienes

Synthesis of 16: To an oven-dried 10 mL tube equipped with a septum and a stirring bar were charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and $\mathbf{L 4}(11.4 \mathrm{mg}, 0.0200 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, the tube was evacuated and backfilled with argon for three times, then degassed dry toluene (1.0 mL) was added via syringe. The mixture was stirred for 30 min at room temperature before transferred to another Schlenk tube containing (E)-buta-1,3-dien-1-ylbenzene 15 ($26.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv) and N-((E)-2-((Z)-benzylidene)benzofuran-3(2H)-ylidene)-4-methylbenzenesulfonamide 2a (37.5
$\mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv) under argon atmosphere. The resultant mixture was stirred at $40^{\circ} \mathrm{C}$ for 48 h . After completion, the mixture was purified by flash chromatography on silica gel (petroleum ether/DCM $=3 / 1$) gave the product 16: $48.2 \mathrm{mg}(0.0953 \mathrm{mmol})$, as a white solid, 95% yield; $\mathrm{mp}=$ $255-257{ }^{\circ} \mathrm{C} ;>19: 1 \mathrm{dr} ;[\alpha]_{\mathrm{D}}{ }^{25}=-95.1\left(c=0.23\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 68 \%$ ee, determined by HPLC analysis [Chiralpak column IF n-Hexane $/ i$ - $\mathrm{PrOH}=80 / 20$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=9.81$ $\min , \mathrm{t}_{\mathrm{R}}($ minor $\left.)=13.84 \mathrm{~min}\right] ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 8.29(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-$ 7.57 (m, 2H), 7.38-7.26 (m, 7H), 7.25-7.14 (m, 6H), 6.74-6.57 (m, 3H), 6.10 (dd, $J=15.9,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.20-5.11(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=11.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{ddd}, J=14.1,7.1,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.54-1.47(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 154.0,148.5,144.2,140.1,136.1$, 134.4, 132.1, 129.9, 128.51, 128.49, 128.0, 127.8, 127.6, 127.3, 126.5, 125.9, 124.7, 124.5, 123.1, 122.6, 118.1, 111.2, 58.4, 37.2, 34.5, 21.6; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{SNa}^{+}$528.1609; Found 528.1607.

Synthesis of 17: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added $\mathrm{N}-((E)-2-((Z)$-benzylidene)benzofuran-3(2 H$)$ -ylidene)-4-methylbenzenesulfonamide 2a ($37.5 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathbf{L 1 5}(18.8 \mathrm{mg}$, $0.0200 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) and (E)-buta-1,3-dien-1-ylbenzene 15 ($26.0 \mathrm{mg}, 0.200 \mathrm{mmol}$, 2.0 equiv) were added via syringe sequentially under argon atmosphere. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . After complete consumption of $\mathbf{2 a}$, the mixture was directly purified by flash chromatography on silica gel $(\mathrm{DCM} /$ petroleum ether $=1 / 3)$ to afford product 17: $25.6 \mathrm{mg}(0.0506$ mmol), as a white solid, 51% yield; $\mathrm{mp}=166-169{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=-30.0\left(c=0.40\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;>19: 1 \mathrm{dr}$; 45% ee, determined by HPLC analysis [Chiralpak column IF n-Hexane $i-\operatorname{PrOH}=80 / 20$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=10.68 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=20.86 \mathrm{~min}\right] ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm})(\mathrm{ppm}) 8.33(\mathrm{dd}, J=7.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.27(\mathrm{~m}$, 4H), 7.16-7.08 (m, 6H), 6.93-6.86 (m, 2H), 6.83-6.78 (m, 2H), 6.60 (dd, $J=15.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.51$ (dd, $J=15.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.00(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.97(\mathrm{~m}$, $1 \mathrm{H}), 1.91-1.78(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 153.8,147.1,144.2,141.4,136.3$, $134.8,130.1,129.8,128.41,128.39,128.2,127.7,127.6,127.3,126.53,126.48,124.7,124.5,123.1$, $122.8,118.8,111.2,56.7,36.1,33.2,21.7$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for
$\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{SNa}^{+} 528.1609$; Found 528.1609. Its relative configuration has been determined by X -ray diffraction analysis.

Synthesis of 19: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added N -((E)-2-((Z)-benzylidene)benzofuran-3(2H)-ylidene)-4-methylbenzenesulfonamide $\mathbf{2 a}$ (37.5 mg, 0.100 mmol , 1.0 equiv), ($2 E, 4 E$)-5-phenylpenta-2,4-dien-1-ol $18(32.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathbf{L 1 0}(6.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with argon for five times. Then dry distilled toluene (1.0 mL) was added via syringe under argon atmosphere. The mixture was stirred at room temperature for 48 h . After complete consumption of $\mathbf{2 a}$, the mixture was directly purified by flash chromatography on silica gel (petroleum ether/EA $=50 / 1$) to afford product 19 and $\mathbf{2 0}$ as inseparable regioisomers: 50.9 $\mathrm{mg}(0.0950 \mathrm{mmol}), 95 \%$ yield, as a white solid, $\mathrm{mp}=200-202^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=-206.3\left(c=0.42 \mathrm{in} \mathrm{CHCl}_{3}\right)$; 4:1 rr; 95\% ee, determined by HPLC analysis [Chiralpak column ID n-Hexane $/ i-\operatorname{PrOH}=60 / 40$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=5.59 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=7.61 \mathrm{~min}\right]$.

19: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.26(\mathrm{dd}, J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.37-$ 7.27 (m, 8H), 7.25-7.18 (m, 3H), 7.18-7.11 (m, 2H), $6.82(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-6.51(\mathrm{~m}, 2 \mathrm{H})$, $6.06(\mathrm{dd}, J=15.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.41-5.33(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.34(\mathrm{~m}, 2 \mathrm{H})$, $2.45(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.76(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 154.3, 148.3, 144.2, 138.6, 136.1, 135.0, 134.9, 129.9, 128.6, 128.5, 128.18, 128.16, 128.1, 127.6, 126.8, 124.8, 124.3, 123.1, 122.8, 121.5, 117.8, 111.2, 60.9, 60.8, 44.7, 39.9, 21.6; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{SNa}^{+}$558.1710; Found 558.1720.

Synthesis of 21 and recovery of 20: The above inseparable regioisomers $\mathbf{1 9}$ and $20(4: 1,53.6 \mathrm{mg}$, $0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{I}_{2}(50.6 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv), $\mathrm{KI}(1.7 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and
NaHCO_{3} ($16.8 \mathrm{mg}, 0.200 \mathrm{mmol}$, 2.0 equiv) were added into $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$. The mixture was stirred at $40^{\circ} \mathrm{C}$ for 2 h under argon atmosphere. After complete consumption of $\mathbf{1 9}$, the mixture was directly purified by flash chromatography on silica gel (petroleum ether/EtOAc $=20 / 1$) to afford products 21 and 20.

21: $40.3 \mathrm{mg}(0.0609 \mathrm{mmol})$, as a white solid, 61% yield; $\mathrm{mp}=169-171^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=-360.0(c=0.40$ in CHCl_{3}); 93% ee, determined by HPLC analysis [Chiralpak column AD n-Hexane $/ i-\mathrm{PrOH}=80 / 20$,, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=9.69 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=12.46 \mathrm{~min}\right] ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.22-8.18(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 10 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H})$, 7.19-7.09 (m, 2H), 6.54-6.48 (m, 2H), 4.85 (dd, $J=11.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.31(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.81(\mathrm{dd}, J=12.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J$ $=12.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.84(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 154.5$, $148.0,144.5,139.2,138.3,134.7,130.1,129.0,128.6,128.5,128.4,128.1,127.7,127.6,125.0,124.3$, 123.4, 122.4, 116.7, 111.3, 86.8, 77.3, 77.0, 76.7, 67.6, 64.7, 42.4, 39.1, 32.4, 21.6; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{SNa}^{+}$684.0676; Found 684.0672.

20: 8.7 mg , as a white solid, 16% yield $(0.0162 \mathrm{mmol}) ; \mathrm{mp}=130-132^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+170.7(c=0.23$ in CHCl_{3}); 77\% ee, determined by HPLC analysis [Chiralpak column ID n-Hexane $/ i-\mathrm{PrOH}=60 / 40$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=6.31 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=6.83 \mathrm{~min}\right] ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.30-8.25(\mathrm{~m}, 1 \mathrm{H}), 7.79-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 1 \mathrm{H})$, 7.33-7.31 (m, 2H), 7.24-7.22 (m, 1H), 7.22-7.19 (m, 1H), 7.19-7.13 (m, 1H), 7.09-7.04 (m, 1H), 7.03-6.98 (m, 4H), 6.54-6.48 (m, 2H), 5.65-5.59 (m, 2H), 5.03-4.93 (m, 1H), 4.28 (d, J=11.8 Hz, $1 \mathrm{H}), 4.06-3.97$ (m, 2H), 2.93 (dd, $J=11.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.47(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 154.4,149.0,144.5,138.1,136.8,134.9,134.2,130.0,129.0,128.3,128.2,127.3,127.1$, 124.8, 124.3, 123.2, 122.6, 122.0, 111.4, 64.2, 62.6, 48.5, 41.2, 21.6; HRMS (ESI-TOF) m/z: [M + $\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{SNa}^{+}$558.1710; Found 558.1716.

5.3 Exploration of linear electron-deficient heterodienes

Synthesis of 23: To an oven dried 10 mL Schlenk tube equipped with a stirring bar were added ethyl (Z)-2-(phenyl(tosylimino)methyl) acrylate 22 $(71.4 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.0$ equiv), 1,3-diene $18(48.0 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(9.2 \mathrm{mg}, 0.010 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathbf{L} 7(5.5 \mathrm{mg}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The tube was evacuated and back-filled with argon for five times. Then degassed dry toluene (1.0 mL) was added via syringe under argon atmosphere. The mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 48 h . After complete consumption of $\mathbf{2 2}$, the mixture was purified by flash chromatography on silica gel twice (petroleum ether/ $\mathrm{EtOAc}=10 / 1$, dichloromethane $/ \mathrm{EtOAc}=50: 1)$ to afford product 23: $41.0 \mathrm{mg}(0.0396 \mathrm{mmol})$, as a colorless oil, 40% yield; $[\alpha]_{\mathrm{D}}{ }^{25}=-5.3\left(c=0.57\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 93 \%$ ee, determined by HPLC analysis [Chiralpak column ID n-Hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ minor $)=20.05$ $\min , \mathrm{t}_{\mathrm{R}}($ major $\left.)=22.35 \mathrm{~min}\right] ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.43-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}$, $2 \mathrm{H}), 7.32-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 4 \mathrm{H}), 6.86(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=15.8,8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.44(\mathrm{dd}, J=8.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{dd}, J=11.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}$, $J=11.0,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=18.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.83(\mathrm{~m}$, $1 \mathrm{H}), 0.83(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 168.4,143.4,142.9,137.8,136.3$, $136.2,135.3,129.7,129.3,128.7,128.23,128.21,127.1,127.0,126.7,121.6,117.9,63.9,60.4,57.8$, 39.3, 24.9, 21.5, 13.5; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{SNa}^{+} 540.1815$; Found 540.1811.

15

Synthesis of 25: To an oven dried 10 mL Schlenk tube equipped with with a
 stirring bar were added (E)-2-benzoyl-3-phenylacrylonitrile $24(23.3 \mathrm{mg}, 0.100$ mmol, 1.0 equiv), (E)-buta-1,3-dien-1-ylbenzene $15(26.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.6 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathbf{L 1 6}(10.2 \mathrm{mg}, 0.0200$ $\mathrm{mmol}, 20 \mathrm{~mol} \%)$. The tube was evacuated and back-filled with argon for five times. Then degassed dry toluene $(1.0 \mathrm{~mL})$ was added via syringe under argon atmosphere. The mixture was stirred at rt for 24 h . After complete consumption of $\mathbf{2 4}$, the mixture was directly purified by flash chromatography on silica gel $(\mathrm{DCM} /$ petroleum ether $=1 / 3)$ to afford product 25: $33.4 \mathrm{mg}(0.092 \mathrm{mmol})$, as a white
semi-solid, 92% yield; $\mathrm{mp}=82-84^{\circ} \mathrm{C} ;>19: 1 \mathrm{dr} ;[\alpha]_{\mathrm{D}}{ }^{25}=+15.2\left(c=0.32\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 61 \%$ ee, determined by HPLC analysis [Chiralpak column IB n-Hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate: 1.0 $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ minor $)=16.68 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $\left.)=17.68 \mathrm{~min}\right] ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm) 7.76 (dd, $J=7.7,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.19(\mathrm{~m}, 13 \mathrm{H}), 6.69(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=$ $16.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=11.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=11.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{ddd}, J=14.1$, $6.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.87(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 166.2,141.2,135.8,133.1$, 133.0, 130.9, 129.0, 128.7, 128.38, 128.36, 128.3, 127.63, 127.59, 126.6, 126.3, 119.6, 88.4, 78.5, 41.5, 37.8; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{SNa}^{+} 386.1515$; Found 386.1515 . Its relative configuration has been determined by X-ray diffraction analysis.

5.4 Unsuccessful substrates attempts

To further expand the substrate scope, some differently substituted 1,3-cyclohexadiene were tested under the optimal conditions. Unfortunately, complex reaction profiles were generally observed as outlined above.

Meanwhile, the above outlined electron-deficient dienes were inert to the reaction under the optimized conditions.

6. Mechanism investigation

6.1 Control experiments

a) Investigation of the stability of cis- and trans-adducts

b) Investigation of the ratio of cis-4a/trans-5a over reaction time

, 2 h , only 4a produced, no 3 a and 5 a were detected
$t=48 \mathrm{~h}$, only $4 \mathbf{a}$ produced, no $3 \mathbf{a}$ and $5 \mathbf{a}$ were detected
$t=12 \mathrm{~h}$,
$t=24 \mathrm{~h}$, only 5 a produced, no 3 a and $4 \mathbf{a}$ were detected
c) Investigation of the stability of chiral $\mathbf{4 a}$

Figure S1 Control experiments to elucidate the stability of products
As demonstrated above, products endo-cis-3a, exo-cis-4a and trans-5a were not interconvertible under diverse catalytic conditions, even at high temperature. The ratio of cis-4a/trans-5a was not changed along the reaction process, according to the ${ }^{1} \mathrm{H}$ NMR analysis of the reaction solution in 6 h , $12 \mathrm{~h}, 24 \mathrm{~h}$, and 48 h , respectively. In addition, the enantioselectivity of chiral 4 a kept unchanged when exposed to $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$. These results well demonstrated that the annulations of cyclic 1,3-dienes and 1-azadienes was irreversible, and the diastereoselectivity was controlled by ligand rather than thermodynamics.

Treatment of $\mathbf{8}$ with $\mathrm{Pd}_{2}(\mathrm{dba})_{3} / \mathbf{L} \mathbf{3}$ in toluene at $80^{\circ} \mathrm{C}$ for 48 h did not lead to the formation of $\mathbf{9}$, which indicated that $\mathbf{8}$, although bearing an allylic amine moiety, was stable and would not undergo ring opening under the catalysis of palladium.

No obvious transformations were observed by treatment of enantioenriched $\mathbf{2 3}$ or $\mathbf{2 5}$ with $\mathrm{Pd}_{2}(\mathrm{dba})_{3} / \mathbf{L} 7$. Chiral $\mathbf{2 3}$ and $\mathbf{2 5}$ with unchanged enantioselectivity were recovered quantitatively. The results further indicated that the reaction involving linear 1,3-diene was also irreversible.

6.2 Proposed origin of the divergent diasteroselectivity

The above control experiments confirmed that the formation of both cis-4a and trans-5a was a stepwise cascade vinylogous Michael addition/allylic amination process. According to our previous works (JACS, 2021, 143, 4809; ACIE, 2021, 60, 26762), vinylogous Michael addition of HOMOraised η^{2}-complex I-A of Pd^{0} with 1,3-cyclohexadiene 1a to 1 -azadiene 2a from Si -face in an outer sphere pattern led to the generation of intermediate II-A, as illustrated in Figure S2. Because of the large steric hinderance of L 7 , subsequent intramolecular nucleophilic substitution of allylic $\mathrm{Pd}^{\mathrm{II}}$ complex with $\mathrm{N}-\mathrm{Ts}$ moiety would proceed through an outer-sphere manner to furnish cis-4a. This proposal was further confirmed by utilizing small dimethylamine-substituted ligand $\mathbf{L 2 0}$, which delivered trans-5a predominantly.

b) Control experiment with less-hindered L20

Figure S2 Proposed mechanism for the formation of cis-4a and control experiment

On the other hand, as illustrated in Figure S3, 1,3-cyclohexadiene 1a and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ complexed with two moleclular of $\mathbf{L 1 0}$ to form highly reactive complex I-B, which attacked 1-azadiene 2a from Si-face to form species II-B. In this case, the carbon-carbon bond rotation and ligand exchange of IIB were liable to form more stable electron-neutral IV-B, since the less bulky of L10. Subsequent reductive elimination deliverd trans-5a. In conclusion, the inner sphere allylic amination step caused by small steric hinderance of $\mathbf{L 1 0}$ might be responsible for the observed trans-diastereoselectivity. The necessity of two equivalent of $\mathbf{L 1 0}$ (with regard to palladium) and the effect of less steric hindered ligand were validated by control experiments S3b and S2b, respectively.

b) Screening the loading of L10

Figure S3 Proposed mechanism for the formation of trans-5a and control experiment

6.3 DFT calculations for the reaction of 1 -azadiene 2 a and 1,3-butadiene 15

The mechanism for the reaction of $\mathbf{2 a}$ and $\mathbf{1 5}$ with/without $\mathrm{Pd}_{\left(\mathrm{PPh}_{3}\right)_{4} \text { was calculated for further }}$ elucidating the catalytic process. The assembly of $\mathbf{2 a}$ and $\mathbf{1 5}$ without palladium is a concerted Diels-Alder process. We calculated the diene-endo-TS and diene-exo-TS for the formation of endoproduct 17 and exo-product 16, and found the energy of diene-endo-TS with a value of $27.1 \mathrm{kcal} / \mathrm{mol}$ related to the energy summary of $\mathbf{1 5}$ and $\mathbf{2 a}$, was $4.6 \mathrm{kcal} / \mathrm{mol}$ lower than diene-exo-TS. These results were consistent with the results that $\mathbf{1 7}$ was produced with excellent endo-diastereoselectivity upon heating. On the other hand, the reaction mechanism of $\mathbf{2 a}$ and $\mathbf{1 5}$ in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ is a
stepwise process. Different configurations for the first addition step of the C-C bond formation have been calculated and the energy barriers were similar from $\mathbf{2 a - T S} 1$ and $\mathbf{2 a - T S} \mathbf{1}^{\prime}$, and the lower one with a value of $25.8 \mathrm{kcal} / \mathrm{mol}\left(\mathbf{2 a - T S} 1^{\prime}\right)$. Because 2a-INT1 and 2a-INT1' could isomerize to each other via C-C bond rotation, the diastereoselectivity was determined by the second step. The energy of diene-Pd-exo-TS was $3.8 \mathrm{kcal} / \mathrm{mol}$ lower than that of diene-Pd-endo-TS, suggesting the exoproduct $\mathbf{1 6}$ could be produced preferably, which is consistent with the experimental results.

Comparing the two reaction [with/without $\mathrm{Pd}_{(}\left(\mathrm{PPh}_{3}\right)_{4}$], the reaction of 2a and $\mathbf{1 5}$ in the absence of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ needed higher temperature as the energy barriers was $27.1 \mathrm{kcal} / \mathrm{mol}$, which was 1.3 $\mathrm{kcal} / \mathrm{mol}$ higher than the highest energy barrier of the reaction with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(25.8 \mathrm{kcal} / \mathrm{mol})$. Thanks to the $\mathrm{Pd}^{0}-\pi$-Lewis base activation, INT1 showed significantly raised reactivity than parent $\mathbf{1 5}$. These DFT calculations were consistent with the experimental results.

Figure S4 Computed potential energy surface of the reaction of 2a and $\mathbf{1 5}$ with/without $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ at the B3LYP-D3/6-31(d)/B3LYP-D3/6-311++G(d,p) and SDD for Pd (toluene) level and are given in $\mathrm{kcal} / \mathrm{mol}$.

7. Crystal data and structural refinement

Procedure for the recrystallization of racemic 3a: To a 10 mL tube containing $\mathbf{3 a}(16 \mathrm{mg})$ were added n-hexane (2 mL) and THF (2.5 mL). The mixture was heated until a clear solution was formed, which was kept aside at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the relative configuration of 3a. The data were collected by Bruker APEXII CCD equipped with a Mo radiation source ($\mathrm{K} \alpha=0.71073 \AA$) at 290.0 K. CCDC 2050825 (3a) contains the supplementary crystallographic data for this paper. These data can be obtained free of
charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50\%)

Identification code	3a
Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}$
Formula weight	455.55
Temperature/K	290.0
Crystal system	triclinic
Space group	P-1
a / \AA	11.6139(7)
b/A	13.4764(10)
c / \AA	14.9925(10)
$\alpha /{ }^{\circ}$	92.051(3)
$\beta /{ }^{\circ}$	93.362(3)
γ^{\prime}	94.406(3)
Volume/ \AA^{3}	2333.7(3)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.297
μ / mm^{-1}	0.169
F(000)	960.0
Crystal size/ mm^{3}	$0.3 \times 0.3 \times 0.2$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	3.994 to 55.098
Index ranges	$-15 \leq \mathrm{h} \leq 14,-17 \leq \mathrm{k} \leq 17,-19 \leq 1 \leq 19$
Reflections collected	85300
Independent reflections	$10757\left[\mathrm{R}_{\text {int }}=0.1297, \mathrm{R}_{\text {sigma }}=0.1036\right]$
Data/restraints/parameters	10757/0/597

Goodness-of-fit on F^{2}
1.038

Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
$\mathrm{R}_{1}=0.0603, \mathrm{wR}_{2}=0.1328$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
$\mathrm{R}_{1}=0.1390, \mathrm{wR}_{2}=0.1605$
$0.17 /-0.33$

Procedure for the recrystallization of chiral 4a: To a 10 mL tube containing $\mathbf{4 a}(20 \mathrm{mg})$ were added n-hexane (2 mL) and $i-\mathrm{PrOH}(2.5 \mathrm{~mL})$. The mixture was heated until a clear solution was formed, which was kept aside at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the absolute configuration of $\mathbf{4 a}$. The data were collected by an Agilent Gemini equipped a Cu radiation source $(\mathrm{K} \alpha=1.54184 \AA$) at 292.90 K . CCDC 2050826 (4a) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.299
μ / mm^{-1}	1.475
$\mathrm{~F}(000)$	960.0
Crystal size $/ \mathrm{mm}^{3}$	$0.4 \times 0.2 \times 0.1$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$	9.066 to 142.848
Index ranges	$-13 \leq \mathrm{h} \leq 13,-14 \leq \mathrm{k} \leq 8,-21 \leq 1 \leq 22$
Reflections collected	12665
Independent reflections	$4476\left[\mathrm{R}_{\mathrm{int}}=0.0352, \mathrm{R}_{\mathrm{sigma}}=0.0307\right]$
Data/restraints/parameters	$4476 / 0 / 299$
Goodness-of-fit on F^{2}	1.049
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0564, \mathrm{wR}_{2}=0.1522$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0596, \mathrm{wR}_{2}=0.1590$
Largest diff. peak/hole /e \AA^{-3}	$0.27 /-0.27$
Flack parameter	$0.011(12)$

Procedure for the recrystallization of chiral 5e: To a 10 mL tube containing $\mathbf{5 e}(15 \mathrm{mg})$ were added n-hexane $(1.5 \mathrm{~mL})$ and i - $\operatorname{PrOH}(2.5 \mathrm{~mL})$. The mixture was heated until a clear solution was formed, which was kept aside at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the absolute configuration of 5e. The data were collected by a Bruker APEX-II CCD equipped with a Mo radiation source $(\mathrm{K} \alpha=0.71073 \AA$) at 301.0 K . CCDC 2219802 (5e) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50\%)
Identification code 5e
Empirical formula
$\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}$

Formula weight	505.60
Temperature/K	301.0
Crystal system	orthorhombic
Space group	$\mathrm{P} 2 \mathrm{~F}_{1} 2_{1}$
a/Å	8.7448(3)
b/Å	12.1996(5)
c/Å	23.9382(10)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
γ°	90
Volume/A ${ }^{3}$	2553.80(17)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.315
μ / mm^{-1}	0.162
F(000)	1064.0
Crystal size/mm ${ }^{3}$	$0.36 \times 0.15 \times 0.13$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.768 to 55.018
Index ranges	$-11 \leq \mathrm{h} \leq 11,-15 \leq \mathrm{k} \leq 15,-31 \leq 1 \leq 31$
Reflections collected	38309
Independent reflections	$5866\left[\mathrm{R}_{\text {int }}=0.0960, \mathrm{R}_{\text {sigma }}=0.0518\right]$
Data/restraints/parameters	5866/0/335
Goodness-of-fit on F^{2}	1.008
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0389, \mathrm{wR}_{2}=0.0801$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0727, \mathrm{wR}_{2}=0.0915$
Largest diff. peak/hole / e \AA^{-3}	0.13/-0.25
Flack parameter	-0.01(4)

Procedure for the recrystallization of chiral 11: To a 10 mL tube containing $\mathbf{1 1}(15 \mathrm{mg})$ were added n-hexane (1.5 mL) and EtOAc (2.5 mL). The mixture was heated until a clear solution was formed, which was kept aside at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the absolute configuration of 11. The data were collected by a Bruker APEX-II CCD equipped with a Mo radiation source $(\mathrm{K} \alpha=0.71073 \AA$) at 273.15 K . CCDC 2219803
(11) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50\%)	
Identification code	11
Empirical formula	$\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}$
Formula weight	517.61
Temperature/K	273.15
Crystal system	monoclinic
Space group	P2 ${ }_{1}$
a/Å	$9.7335(10)$
b/Å	12.7669(13)
c/Å	10.7629(11)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90.849(4)
$\gamma{ }^{\circ}$	90
Volume/Å ${ }^{3}$	1337.3(2)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.285
μ / mm^{-1}	0.156
F(000)	544.0
Crystal size/mm ${ }^{3}$	$0.31 \times 0.23 \times 0.11$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	/ ${ }^{\circ} \quad 4.186$ to 55.136
Index ranges	$-12 \leq \mathrm{h} \leq 12,-16 \leq \mathrm{k} \leq 16,-13 \leq 1 \leq 14$
Reflections collected	28070
Independent reflections	$6155\left[\mathrm{R}_{\text {int }}=0.0588, \mathrm{R}_{\text {sigma }}=0.0466\right]$

Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
Flack parameter

6155/1/344
1.027
$\mathrm{R}_{1}=0.0540, \mathrm{wR}_{2}=0.1333$
$\mathrm{R}_{1}=0.0738, \mathrm{wR}_{2}=0.1450$
0.56/-0.22
0.08(3)

Procedure for the recrystallization of chiral 16: To a 10 mL tube containing $\mathbf{1 6}(15 \mathrm{mg})$ were added n-hexane (1.5 mL) and THF (2.5 mL). The mixture was heated until a clear solution was formed, which was kept aside at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the absolute configuration of 16. The data were collected by a Bruker APEX-II CCD equipped with a Mo radiation source ($\mathrm{K} \alpha=0.71073 \AA$) at 300.0 K . CCDC 2219804 (16) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50\%)
Identification code 16
Empirical formula
$\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}$
Formula weight
505.60

Temperature/K
300.0

Crystal system
orthorhombic

Space group	$\mathrm{P} 2_{1} 2_{2} 2_{1}$
a / \AA	$7.9263(6)$
b / \AA	$10.6732(11)$
c / \AA	$31.221(3)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90

Volume/ \AA^{3}
2641.2(4)

Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
$\mathrm{F}(000)$
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})$]
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
Flack parameter

4
1.271
0.157
1064.0
$0.41 \times 0.12 \times 0.11$
$\operatorname{MoK} \alpha(\lambda=0.71073)$
4.032 to 54.916
$-10 \leq \mathrm{h} \leq 10,-13 \leq \mathrm{k} \leq 13,-40 \leq 1 \leq 34$
23184
$6027\left[\mathrm{R}_{\text {int }}=0.0697, \mathrm{R}_{\text {sigma }}=0.0658\right]$
6027/0/335
1.023
$\mathrm{R}_{1}=0.0493, \mathrm{wR}_{2}=0.0937$
$\mathrm{R}_{1}=0.1072, \mathrm{wR}_{2}=0.1168$
$0.32 /-0.23$
$-0.05(6)$

Procedure for the recrystallization of racemic 17: To a 10 mL tube containing $\mathbf{1 7}(15 \mathrm{mg})$ were added n-hexane $(1.5 \mathrm{~mL})$ and $i-\mathrm{PrOH}(2.5 \mathrm{~mL})$. The mixture was heated until a clear solution was formed, which was kept aside at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the relative configuration of 17 . The data were collected by an Agilent Gemini equipped with a Cu radiation source ($\mathrm{K} \alpha=1.54184 \AA$) at 294.93 K. CCDC 2050823 (17) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50\%)
Identification code
17

Empirical formula	$\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}$
Formula weight	505.60
Temperature/K	294.93(10)
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{n}$
a/Å	13.2549(3)
b/Å	11.5853(4)
c/Å	17.1735(4)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	97.293(2)
γ°	90
Volume/Å ${ }^{3}$	2615.86(12)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.284
μ / mm^{-1}	1.368
F(000)	1064.0
Crystal size/mm ${ }^{3}$	$0.5 \times 0.4 \times 0.3$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	7.956 to 143.642
Index ranges	$-16 \leq \mathrm{h} \leq 16,-12 \leq \mathrm{k} \leq 14,-15 \leq 1 \leq 21$
Reflections collected	14291
Independent reflections	$5019\left[\mathrm{R}_{\text {int }}=0.0407, \mathrm{R}_{\text {sigma }}=0.0332\right]$
Data/restraints/parameters	5019/0/335
Goodness-of-fit on F^{2}	1.033
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0607, \mathrm{wR}_{2}=0.1639$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0687, \mathrm{wR}_{2}=0.1763$
Largest diff. peak/hole / e \AA^{-3}	0.26/-0.45

Procedure for the recrystallization of chiral 21: To a 10 mL tube containing $21(15 \mathrm{mg})$ were added n-hexane (1.5 mL) and THF (2.5 mL). The mixture was heated until a clear solution was formed, which was kept aside at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the absolute configuration of 21. The data were collected by a Bruker APEX-II CCD equipped with a Mo radiation source ($\mathrm{K} \alpha=0.71073 \AA$) at 273.15 K. CCDC 2219805
(21) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50\%)

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
γ°
Volume/A ${ }^{3}$
Z
$\rho_{\text {calc }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters

21
$\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{INO}_{4} \mathrm{~S}$
661.52
161.0
orthorhombic
P2 $2_{1} 2_{1}$
11.0840(12)
11.2741(10)
27.234(3)

90
90
90
3403.2(6)

4
1.291
1.035
1336.0
$0.35 \times 0.22 \times 0.09$
$\operatorname{MoK} \alpha(\lambda=0.71073)$
4.738 to 55.044
$-14 \leq \mathrm{h} \leq 14,-13 \leq \mathrm{k} \leq 14,-35 \leq 1 \leq 35$
51913
$7778\left[\mathrm{R}_{\text {int }}=0.0814, \mathrm{R}_{\text {sigma }}=0.0497\right]$
7778/0/362

Goodness-of-fit on F^{2}	1.020
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0286, \mathrm{wR}_{2}=0.0596$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0420, \mathrm{wR}_{2}=0.0633$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.31 /-0.45$
Flack parameter	$0.001(10)$

Procedure for the recrystallization of racemic 25: To a 10 mL tube containing $25(15 \mathrm{mg})$ were added n-hexane $(1.5 \mathrm{~mL})$ and $i-\mathrm{PrOH}(2.5 \mathrm{~mL})$. The mixture was heated until a clear solution was formed, which was kept aside at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the relative configuration of $\mathbf{2 5}$. The data were collected by a Bruker APEX-II CCD equipped with a Mo radiation source ($\mathrm{K} \alpha=0.71073 \AA$) at 273.15 K . CCDC 2219806 (25) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50\%)

Identification code	$\mathbf{2 5}$
Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{NO}$
Formula weight	363.44
Temperature/K	149.0
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$
a/A	$10.7659(11)$
b/A	$13.1580(15)$
c/A	$27.887(3)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$100.454(4)$
$\gamma /{ }^{\circ}$	90
Volume $/ A^{3}$	$3884.8(7)$

Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
$\mathrm{F}(000)$
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})$]
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

8
1.243
0.075
1536.0
$0.45 \times 0.13 \times 0.04$
$\operatorname{MoK} \alpha(\lambda=0.71073)$
4.29 to 55.022
$-13 \leq \mathrm{h} \leq 13,-17 \leq \mathrm{k} \leq 17,-36 \leq 1 \leq 33$
36992
$8881\left[\mathrm{R}_{\text {int }}=0.1161, \mathrm{R}_{\text {sigma }}=0.1068\right]$
8881/0/505
1.021
$\mathrm{R}_{1}=0.0681, \mathrm{wR}_{2}=0.1649$
$\mathrm{R}_{1}=0.1112, \mathrm{wR}_{2}=0.1963$
0.37/-0.32

8. NMR, HRMS spectra and HPLC chromatograms

${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 375 \mathrm{MHz}\right)$

1															
0	-10	-20	-30	-40	-50	-60	-70 $f 1(\mathrm{ppm})$	-80	-90	-100	-110	-120	-130	-140	-150

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\infty}{ल}{ }^{\circ}$ O
べ゚

$\begin{aligned} & \text { N్ } \\ & \infty \\ & \infty \\ & \infty \end{aligned}$

4a
${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

ㅇㅇㅇㅇㅇ
Nべ웅

N N
안융
సi 두

1	1	1	1		1	1	1	1	1	1	1		1	1	1	1	1
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1			1		1	,	1			,								
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4d
${ }^{19} \mathrm{~F}$ NMR $\left(375 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

170	1	15	1	13	1	110	1	1		70		1	1		1	1	
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

	~	$\frac{m}{m}$	
人N゚	∞	ษ	

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR（400 MHz， CDCl_{3} ）

¢0\％ 0	\％	M\％	\％\％
－大年	¢	\％\％	ヘัสえ®

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

デছす。

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1	－	1	1	1	1	＋	－	1	，	1	1	，	，	1	1	
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1	15	1	1	1	110	1	1	1	10	1	1	1	1	1	1
160	150	140	130	120	110	100	90	$\begin{gathered} 80 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\text { ¢ }}{\text { ¢ }}$	\％	へ－	¢	O~N N్ల No
Nぺ	む̇	$\stackrel{\infty}{+}$	$\stackrel{\infty}{\circ}$	¢－
	＋	，	｜	\1／

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

-163.313 -160.857

165	160	155	150	145
		$\mathrm{fl}^{15}(\mathrm{ppm})$		

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR ($375 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

¢\％\％80	N	ํㅜㄷ	${ }^{\circ} \mathrm{me}$
	¢	¢	べむ

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N'
송․

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1	1	1	1	1	1	,	1	1	1	1	1	1	1	1	1	1	1
170	160	150	140	130	120	110	100			70	60	50	40	30	20	10	0

								1	1	10			1				1
170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10	0

5j
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

5j
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

\#	[min]	[min]	mAU	[mAU	\%
1	9.897 W	0.2713	6697.98730	385.17892	76.3581
2	11.981 VB	0.3631	2073.82251	87.74405	23.6419

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5ํัg
べ心

${ }^{\circ}$	\％¢
\％	$\stackrel{\infty}{\sim}$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1	1	1	1	1	,	1	1	1	1	T	1	1	1	1	1	
160	150	140	130	120	110	100	90	80 (ppm)	70	60	50	40	30	20	10	0

 $\stackrel{\stackrel{n}{6}}{\stackrel{\sim}{1}}$

${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	[min]		[min]	[mAU*s]	[mAU]	\%
1	12.853	BB	0.2916	366.40060	19.40357	11.9039
2	13.947	BV	0.3182	369.78287	17.89857	12.0138
3	14.955	VB	0.3605	1160.38916	49.83633	37.6996
4	18.213	BB	0.4510	1181.41772	40.50112	38.3828

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

14b
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1	1	1	1	1	1	1	1	1	1	T	1	1	1	1	1	1	1	1	1
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

$\stackrel{\infty}{\sim})^{\circ}$	\％	す\％${ }_{\circ}^{\circ}$
へべ	8	¢jom

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	13.877	0.973	367474	6454178	3.2612
2	15.260	1.367	4594775	91634990	46.3023
3	16.600	1.380	268922	6026153	3.0450
4	19.160	2.267	3488554	93790732	47.3915

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	13.510	1.543	804048	14009941	12.2753
2	14.877	1.397	4643137	91635596	80.2897
3	16.227	1.530	118213	2872015	2.5164
4	18.830	1.127	227692	5613675	4.9186

16
${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

$\stackrel{\infty}{\infty} \underset{\sim}{\circ} \underset{O}{0}$ へべ
-58.353
$\stackrel{\circ}{\infty}$
$\stackrel{\stackrel{\circ}{\circ}}{\stackrel{\circ}{1}}$

1								1							
150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

17
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

170	160	150	140	130	120	110	100	9080	70	60	50	40	30	20	10	0

20
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1	1	1	T	1	1	1	1	1	- 1	1		1	1	1	1	1	
170	160	150	140	130	120	110	100	90	$\begin{array}{r} 80 \\ (\mathrm{ppm}) \end{array}$	70	60	50	40	30	20	10	0

	1			1			1		1	1		1	1	1			T
170	160	150	140	130	120	110	100			70	60	50	40	30	20	10	0

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	9.803	1.347	1650892	36488077	41.5486
2	13.280	1.120	1735418	51332240	58.4514

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	9.690	1.647	2464746	55543182	96.6446
2	12.460	0.727	102311	1928396	3.3554

23
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

23
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

AREA PERCENT REPORT					
				Area	Area [\%]
Peak No.	Ret Time	Width	Height	Area	
1	19.847	2.647	26140923	997199617	51.5302
2	22.670	2.373	22125655	937976107	48.4698

Peak No.	Ret Time	Width	Height	Area	Area [\%]
1	20.053	1.520	1904713	63455617	3.4477
2	22.353	2.380	40920672	1777076269	96.5523

9. Computational method

All calculations were carried out with the GAUSSIAN 09 packages 8. The conformations of intermediates were generated by SYBYL-X 2.0 GA Conf. search module and initially optimized and screened by SYBYL-X 2.0^{9}. The structures of diene and its Pd-complexes were calculated at M062X ${ }^{10-14} /$ def2-TZVP ${ }^{15}$ level and their molecular orbitals were calculated at M062X/def2-TZVPPD. The other geometries of all intermediates and transition states were optimized using B3LYP-D3 ${ }^{16,17}$ functional together with SDD^{18} basis set for Pd atom and the standard $6-31 \mathrm{G}(\mathrm{d})$ basis set for the others ${ }^{19}$, since these classical methods have been frequently used in the optimization of metalcomplex ${ }^{20-23}$. All the optimized structures were calculated after considering various conformations and confirmed by frequency calculations to be either minima or transition states using the same level of theory. For transition states, intrinsic reaction coordinate analysis (IRC) was done to verify that they connect the right reactants ${ }^{24}$. To take solvent effects into account, solution-phase single-point calculations were performed on the gas-phase geometries. The solution-phase single point energy calculations were done using B3LYP-D3 at LANL2DZ for Pd atom and 6-31++G(d, p) ${ }^{25-27}$ level for the others. Solvent effect was accounted for using self-consistent reaction field (SCRF) method, using SMD model and UAKS radii ${ }^{28,29}$. Toluene was used as the solvent. Solution-phase single-point energies corrected by the gas-phase Gibbs free energy corrections were used to describe all the reaction energetics. The molecular orbitals were calculated at B3LYP/def2-TZVPPD. All these energies correspond to the reference state of $1 \mathrm{~mol} / \mathrm{L}, 298 \mathrm{~K}$. All energetics reported throughout the text are in $\mathrm{kcal} / \mathrm{mol}$, and the bond lengths are in angstroms (\AA). Structures were generated using GaussView 6.0^{30} and CYLview ${ }^{31}$.

8 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. T oyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Montgomery Jr., J. A., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J.

Cioslowski and D. J. Fox, Gaussian 09, Gaussian, Inc.: Wallingford, CT, USA, 2009.
9 Tripos International, Sybyl-X 2.0, Tripos International, St. Louis, MO, USA, 2012.
10 Y. Zhao and D.G. Truhlar, Theor. Chem. Acc., 2008, 120, 215-224.
11 T. Giroday, Comput. Theor. Chem., 2014, 1046, 81-92.
12 B. Yang, Z. Qi, Z. Jing, H. Shuang and H. Zhang, Org. Electron., 2012. 13, 2568-2574.
13 B. Feng, C. Sun, W. Zhao and S. Zhang, Environ. Sci-Proc. Imp., 2020, doi:10.1039/D0EM00112K.

14 M. A. Salvador, F.C.T. Antonio, G.D. da Silva, F. H. Bartoloni, E. Orestes, M. D. Coutinho-Neto and P. Homem-de-Mello, Theor. Chem. Acc., 2020, 139, 118-129.

15 F. Weigend and R. Ahlrichs, Phys Chem Chem Phys., 2005, 7, 3297-3305.
16 A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
17 C. Lee, W. Yang and R. G. Parr, Phys. Rev. B., 1988, 37, 785-789.
18 T. H. Jr and P. J. Hay in Modern Theoretical Chemistry, Ed. H. F. Schaefer III, Vol. 3 (Plenum, New York, 1977) 1-28.

19 V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern and L. A. Curtiss, J. Comp. Chem., 2001, 22, 976-984.
20 D. Shranami, J. Org. Chem., 2018, 83, 13911-13921.
21 E. Sultan and K. Duran, J. Theor. Comput. Chem., 2020, 19, 2050006.
22 W. Huang, S. T. Chang, H. Huang, C. Wang, L. Chen, K. Chen and M. C. Lin, J. Phys. Chem. C., 2020, 124, 4652-4659.

23 X. Hong, B. M. Trost and K. N. Houk, J. Am. Chem. Soc., 2013, 135, 6588-6600.
24 K, Fukui, Acc. Chem. Res., 1981, 14, 363-368.
25 R. C. Binning Jr and L. A. Curtiss, J. Comp. Chem., 1990, 11, 1206-1216.
26 M. P. McGrath and L. Radom, J. Chem. Phys., 1991, 94, 511-516.
27 L. A. Curtiss, M. P. McGrath, J.-P. Blaudeau, N. E. Davis, R. C., Binning Jr and L. Radom, J. Chem. Phys., 1995, 103, 6104-6113.

28 A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-6396.
29 R. F. Ribeiro, A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2011, 115, 14556-14562.

30 R. D. I. I. Dennington, T. A. Keith and J. M. Millam, GaussView, version 6.0, Semichem Inc Shawnee Mission KS, 2016.

31 C. Y. Legault, CYLview, version 1.0b; Universitéde Sherbrooke: Quebec, Canada, 2009; http://www.cylview.org.

diene-exo-TS				C	2.799900	2.812761	-0.330650
Zero-poi	int	correction $=1.067183$		C	2.500055	4.104474	0.126371
(Hartree/Particle)				C	3.332661	5.180267	-0.174836
Thermal correction to Energy=1.134226				C	4.474768	4.982121	-0.951683
Thermal correction to Enthalpy=1.135170				C	4.775898	3.702554	-1.422060
Thermal correction to Gibbs Free Energy=				C	3.946686	2.625197	-1.117408
0.441481				H	3.333086	-4.943494	1.746016
$\mathrm{E}($ Solv $)=-1914.74329543$				H	5.498384	-4.100310	0.896250
C	0.839968	1.454513	-1.614024	H	5.719988	-1.725792	0.122952
H	1.522270	0.840212	-2.195907	H	1.342467	-3.460344	1.855427
C	3.407484	-3.915645	1.404091	H	1.018788	2.020065	0.613791
C	4.638859	-3.437017	0.925132	H	-3.458523	-2.190647	0.427686
C	4.778586	-2.119921	0.490024	H	-4.137588	-3.464099	-1.598044
C	3.644756	-1.323059	0.545742	H	-0.006900	-3.936622	-2.667653
C	2.394102	-1.768360	1.019802	H	0.667353	-2.687355	-0.656929
C	2.282689	-3.098111	1.461839	H	-1.818374	-5.324747	-3.773850
O	3.603684	-0.010070	0.152505	H	-3.521693	-4.969141	-3.432944
C	2.319965	0.433374	0.407863	H	-2.557087	-3.849019	-4.400739
C	1.501224	-0.608547	0.901563	H	1.609562	4.260460	0.730144
C	1.856616	1.707441	-0.004770	H	3.089238	6.171554	0.196784
N	0.194186	-0.338037	1.028605	H	5.125012	5.818839	-1.190377
C	-1.361998	-2.350722	0.006647	H	5.662027	3.541705	-2.029655
C	-2.712954	-2.576329	-0.258457	H	4.190767	1.634740	-1.482290
C	-3.083607	-3.290110	-1.396628	C	-0.433174	0.916853	-1.312725
C	-2.122335	-3.784860	-2.285203	C	-1.512171	1.735963	-0.900533
C	-0.770527	-3.554103	-1.994906	C	-2.705590	1.227171	-0.479837
C	-0.384554	-2.846802	-0.859477	H	-2.810278	0.147997	-0.456009
C	-2.526999	-4.524573	-3.535796	C	-3.841641	1.982174	0.010731
S	-0.937077	-1.437620	1.505515	C	-4.027644	3.351561	-0.265570
O	-2.142550	-0.666180	1.845150	C	-4.798458	1.319672	0.804937
O	-0.421829	-2.399593	2.497679	C	-5.129848	4.031334	0.238681

H	-3.316932	3.873363	-0.899376	C	-0.206796	2.522164	-0.028679
C	-5.895913	2.004999	1.314571	N	-0.936490	-0.063818	0.790256
H	-4.637977	0.274556	1.050678	C	-3.105100	-1.470859	0.522193
C	-6.067403	3.362052	1.031679	C	-4.004773	-0.676320	1.235315
H	-5.265102	5.084694	0.010021	C	-5.317500	-0.573576	0.790333
H	-6.616586	1.483166	1.937471	C	-5.751614	-1.260341	-0.354792
H	-6.927217	3.896741	1.425037	C	-4.831393	-2.055683	-1.044579
H	-1.338960	2.811002	-0.866849	C	-3.509291	-2.167880	-0.611442
H	-0.604458	-0.149074	-1.402747	C	-7.185599	-1.153779	-0.811517
H	0.841822	2.498558	-1.920706	S	-1.414796	-1.605389	1.088548
-------------------------------------1.				O	-1.417348	-1.901309	2.532062
				O	-0.741730	-2.594768	0.209191
	ndo-TS			C	0.091943	3.985527	-0.109316
Zero-point		corre	ction $=0.509294$	C	-0.941193	4.900204	0.133106
(Hartree/Particle)				C	-0.718184	6.273095	0.039267
Thermal correction to Energy $=0.541050$				C	0.545014	6.752263	-0.308153
Thermal correction to Enthalpy $=0.541994$				C	1.579378	5.849107	-0.560837
Thermal correction		to Gibbs	Free Energy=	C	1.356289	4.476874	-0.466912
0.441428				H	3.625120	-2.879474	2.304856
$E($ Solv $)=-1914.75064850$				H	5.334507	-1.122563	1.994162
C	-0.523863	2.014159	-1.749314	H	4.679643	1.172171	1.228376
H	-1.455137	2.540589	-1.951680	H	1.224010	-2.409926	1.896434
C	3.317416	-1.889289	1.984249	H	-1.201028	2.322335	0.369323
C	4.290462	-0.892190	1.803332	H	-3.672151	-0.148326	2.122458
C	3.942738	0.389902	1.375831	H	-6.022119	0.046556	1.339158
C	2.596255	0.617520	1.136380	H	-5.152283	-2.597523	-1.930596
C	1.596072	-0.355702	1.323909	H	-2.794308	-2.791638	-1.136091
C	1.968427	-1.637427	1.753450	H	-7.520135	-0.110424	-0.836739
O	2.064697	1.806659	0.682937	H	-7.319728	-1.577354	-1.811391
C	0.698322	1.618676	0.609267	H	-7.857418	-1.691157	-0.130217
C	0.345441	0.301216	0.960578	H	-1.926407	4.528661	0.404124

H	-1.530400	6.966643	0.237997	$\mathrm{E}($ Solv $)=-4116.08708905$			
H	0.722675	7.821311	-0.382632	C	0.169423	2.582070	3.063625
H	2.565899	6.214761	-0.832008	H	0.188231	2.574899	4.149221
H	2.166515	3.782559	-0.657740	C	6.793082	-2.000134	-1.540711
C	-0.544614	0.598209	-1.946084	C	6.976074	-1.012198	-2.523020
C	0.678799	-0.090774	-1.976496	C	6.402294	0.253586	-2.398933
C	0.802615	-1.455445	-1.906633	C	5.641512	0.482012	-1.262972
H	-0.106384	-2.045432	-1.915865	C	5.431500	-0.488114	-0.267130
C	2.026154	-2.182719	-1.674022	C	6.024578	-1.751090	-0.406916
C	3.303977	-1.589161	-1.756760	O	5.006544	1.663315	-0.992255
C	1.936182	-3.533275	-1.274505	C	4.348959	1.510295	0.220641
C	4.442264	-2.319764	-1.451493	C	4.570779	0.145420	0.732644
H	3.400944	-0.552985	-2.062292	C	3.560395	2.452945	0.774970
C	3.080374	-4.260989	-0.967948	N	3.976005	-0.222111	1.830521
H	0.953704	-3.979687	-1.165729	C	2.371952	-1.711613	3.244641
C	4.336320	-3.658170	-1.056677	C	2.309468	-1.049157	4.473529
H	5.418251	-1.847916	-1.514152	C	1.071361	-0.880768	5.084078
H	2.993051	-5.295895	-0.650519	C	-0.106124	-1.354118	4.479870
H	5.231116	-4.225083	-0.815798	C	-0.006832	-2.042750	3.267627
H	1.576366	0.522864	-1.921197	C	1.228237	-2.231242	2.645784
H	-1.479689	0.047680	-1.963654	C	-1.448082	-1.083191	5.112100
H	0.325470	2.504116	-2.226967	S	3.931125	-1.804193	2.377166
				O	5.015770	-2.014060	3.345410
				O	3.763775	-2.759609	1.264002
com-INT1-2a				C	3.143979	3.737153	0.243339
Zero-point		corre	ection=1.064644	C	2.442959	4.609643	1.100879
(Hartree/Particle)				C	2.005885	5.852484	0.654434
Thermal correction to Energy=1.133604				C	2.249440	6.245942	-0.664526
Thermal correction to Enthalpy $=1.134548$				C	2.917672	5.378601	-1.533897
Thermal correction to Gibbs			Free Energy=	C	3.364031	4.137351	-1.091419
0.953350				H	7.256744	-2.973053	-1.668660

H
H

H

H
H
H
H

H

H
H
H

H

H
H
H

H

C

C
C

H

C

C

C
C

H

C

H

C
H
H
H
$7.577197-1.236139-3.399638$ $6.527540 \quad 1.024808$-3.150279 $\begin{array}{lll}5.866102 & -2.519317 & 0.337378\end{array}$ $3.158790 \quad 2.172216 \quad 1.743454$ $\begin{array}{lll}3.216143 & -0.665610 & 4.928638\end{array}$ $\begin{array}{lll}1.010664 & -0.356266 & 6.034467\end{array}$ $-0.901081 \quad-2.420210 \quad 2.782346$ $\begin{array}{lll}1.296885 & -2.751173 & 1.700273\end{array}$
$-1.660103-0.006621 \quad 5.113806$ $-2.254446-1.5817824 .565688$ $-1.480726-1.422440 \quad 6.154106$ $\begin{array}{lll}2.240348 & 4.291634 & 2.118817\end{array}$ $1.475893 \quad 6.514769 \quad 1.333277$ $\begin{array}{lll}1.914210 & 7.218456 & -1.014783\end{array}$ $3.092552 \quad 5.673172-2.564900$ 3.8703313 .466221 -1.772109 $0.531241 \quad 1.501251 \quad 2.350502$ 0.5486731 .4129160 .896832 $\begin{array}{lll}1.157176 & 0.329657 & 0.240575\end{array}$
$\begin{array}{lll}1.602163 & -0.443562 & 0.853784\end{array}$ $1.618756 \quad 0.360860-1.152066$ $1.294432 \quad 1.403095 \quad-2.043568$ $2.450636-0.673267-1.617937$ $1.782283 \quad 1.400583-3.346036$ $\begin{array}{llll}0.652776 & 2.214479 & -1.720527\end{array}$ $2.934375-0.675260-2.924415$ $2.733863-1.467008 \quad-0.933578$ $2.603502 \quad 0.362214-3.797848$ $\begin{array}{lll}1.514803 & 2.217046 & -4.012140\end{array}$ $3.588523-1.478822-3.251152$ $\begin{array}{llll}2.981665 & 0.364102 & -4.816316\end{array}$

H
H
H
Pd
$\begin{array}{lllll}\mathrm{P} & -2.873107 & 1.402443 & 0.087415\end{array}$
$\begin{array}{lllll}\mathrm{P} & -1.446197 & -2.137176 & -0.706974\end{array}$
$\begin{array}{lllll}\text { C } & -2.332911 & 2.697117 & -1.109863\end{array}$
$\begin{array}{lllll}\text { C } & -2.533798 & 2.547086 & -2.489926\end{array}$
C
$\begin{array}{lllll}\text { C } & -1.901519 & 3.398358 & -3.397235\end{array}$
H
C
H
$\begin{array}{lllll}\text { C } & -1.063725 & 4.417679 & -2.942730\end{array}$
H
$\begin{array}{llll}\mathrm{H} & -0.226063 & 5.378127 & -1.201436\end{array}$
$\begin{array}{lllll}\mathrm{H} & -0.562482 & 5.072848 & -3.649539\end{array}$
$\begin{array}{lllll}\text { C } & -4.495946 & 0.827814 & -0.565983\end{array}$
$\begin{array}{llll}\text { C } & -5.719418 & 1.146668 & 0.037547\end{array}$
C $\quad-4.494049 \quad-0.050743-1.662044$
$\begin{array}{llll}\text { C } & -6.911162 & 0.607424 & -0.450980\end{array}$
H
$\begin{array}{lllll}\text { C } & -5.684399 & -0.572868 & -2.160136\end{array}$
$\begin{array}{lllll}\mathrm{H} & -3.553484 & -0.354109 & -2.108408\end{array}$
$\begin{array}{llll}\text { C } & -6.898539 & -0.248516 & -1.551968\end{array}$
$\begin{array}{lllll}\mathrm{H} & -7.851164 & 0.859372 & 0.032825\end{array}$
$\begin{array}{lllll}\mathrm{H} & -5.657857 & -1.259637 & -3.000455\end{array}$
$\begin{array}{lllll}\mathrm{H} & -7.826628 & -0.670892 & -1.926758\end{array}$
$\begin{array}{llll}\text { C } & -3.323100 & 2.350653 & 1.587913\end{array}$
$\begin{array}{lllll}\text { C } & -3.941284 & 3.610060 & 1.551420\end{array}$
$\begin{array}{lllll}\text { C } & -3.029566 & 1.769554 & 2.828705\end{array}$

C	-4.264583	4.270243	2.735938	C	-0.955767	-4.482691	0.805680
H	-4.164218	4.071649	0.594039	C	0.855276	-3.741735	-0.613831
C	-3.367001	2.424225	4.013930	C	-0.132173	-5.483283	1.324715
H	-2.514121	0.814379	2.853422	H	-1.979608	-4.391400	1.155127
C	-3.981896	3.675460	3.969282	C	1.673781	-4.743096	-0.096085
H	-4.740346	5.246385	2.698600	H	1.245213	-3.058820	-1.359986
H	-3.135049	1.964534	4.970666	C	1.184018	-5.613758	0.880239
H	-4.235833	4.191014	4.891325	H	-0.521556	-6.159934	2.080571
C	-1.151111	-2.112790	-2.521127	H	2.703046	-4.820213	-0.430000
C	-0.969308	-3.273202	-3.289496	H	1.827752	-6.383034	1.296206
C	-1.070099	-0.862593	-3.150746				
C	-0.736994	-3.181421	-4.661170				
H	-0.983715	-4.246663	-2.809052				
C	-0.835772	-0.771228	-4.522151				
H	-1.155108	0.038935	-2.553315			corr	tion=1.065047
C	-0.673473	-1.930325	-5.280734		Particle)		
H	-0.595632	-4.086422	-5.245780		correction	Energy=1	132766
H	-0.755213	0.207339	-4.985606		correction	Enthalpy=	1.133710
H	-0.481939	-1.862088	-6.348107		correction	to Gibbs	Free Energy=
C	-3.174733	-2.748753	-0.508752				
C	-3.894646	-2.286184	0.601616		$=-4116.04$	28734	
C	-3.802032	-3.617904	-1.409797	C	-2.473749	1.383475	-0.650999
C	-5.214676	-2.682395	0.810225	H	-2.776404	2.001787	0.187922
H	-3.419262	-1.578778	1.276120	C	-6.085864	-0.926700	4.305265
C	-5.126283	-4.006753	-1.208078	C	-6.718288	0.327737	4.242295
H	-3.265285	-3.975220	-2.282039	C	-6.647061	1.115450	3.093502
C	-5.835107	-3.539558	-0.099300	C	-5.915219	0.602210	2.031533
H	-5.765706	-2.299362	1.664211	C	-5.273661	-0.652408	2.061435
H	-5.607212	-4.671497	-1.920740	C	-5.365510	-1.431700	3.226525
H	-6.870059	-3.834662	0.049125	O	-5.728276	1.237863	0.834650
C	-0.467695	-3.595476	-0.163925	C	-4.970233	0.377770	0.045031

C	-4.641883	-0.798690	0.751861	H	-4.176117	1.045031	-3.798301
C	-4.361247	0.801953	-1.156531	H	-4.828661	2.954503	-5.228407
N	-3.822068	-1.694698	0.176051	H	-5.828504	4.992872	-4.203373
C	-2.455033	-3.870330	-0.337212	H	-6.151860	5.093172	-1.739144
C	-1.836257	-5.073359	0.008719	H	-5.502351	3.180824	-0.317984
C	-1.274986	-5.867512	-0.987879	C	-1.683354	0.250162	-0.381575
C	-1.322713	-5.481722	-2.333640	C	-0.826671	-0.364361	-1.335679
C	-1.964233	-4.280230	-2.656899	C	-0.051420	-1.504989	-1.006480
C	-2.524925	-3.471234	-1.671852	H	-0.325343	-2.037790	-0.102600
C	-0.667176	-6.312440	-3.407014	C	0.775661	-2.258654	-1.955318
S	-3.090098	-2.878102	1.010977	C	1.128562	-1.766141	-3.226987
O	-3.985700	-3.756278	1.795103	C	1.288222	-3.509627	-1.564167
O	-1.918725	-2.341692	1.759761	C	1.975405	-2.489381	-4.064461
C	-4.804888	1.968368	-1.956946	H	0.756220	-0.799446	-3.552005
C	-4.613402	1.933033	-3.348512	C	2.147077	-4.222405	-2.394877
C	-4.976978	3.009670	-4.153467	H	1.009545	-3.913509	-0.598628
C	-5.536785	4.152959	-3.578945	C	2.499149	-3.717806	-3.650154
C	-5.719537	4.206643	-2.195269	H	2.236493	-2.087703	-5.040059
C	-5.354440	3.130157	-1.388777	H	2.541868	-5.177076	-2.058586
H	-6.167004	-1.517275	5.213012	H	3.170085	-4.274456	-4.298256
H	-7.274566	0.691487	5.101617	H	-0.828059	0.036862	-2.347514
H	-7.130429	2.084068	3.023218	H	-1.727263	-0.209646	0.600818
H	-4.895972	-2.406557	3.265981	H	-2.237462	1.945450	-1.548296
H	-4.043686	-0.046790	-1.754468	Pd	1.125286	0.258267	-0.284435
H	-1.807355	-5.388041	1.046103	P	2.826716	-0.799349	0.909939
H	-0.788362	-6.800937	-0.716689	P	1.417970	2.576017	-0.241040
H	-2.010644	-3.963794	-3.695862	C	2.433567	-2.507924	1.440959
H	-3.014457	-2.538781	-1.917303	C	1.155146	-2.750167	1.966246
H	0.286321	-5.860556	-3.707863	C	3.313691	-3.582172	1.256297
H	-0.460985	-7.329459	-3.058384	C	0.762391	-4.043434	2.305721
H	-1.295664	-6.379503	-4.302024	H	0.440951	-1.941278	2.075942

C	2.914347	-4.878495	1.585385	C	2.020868	4.881668	3.153944
H	4.300018	-3.409937	0.839206	H	2.561250	5.042330	1.078205
C	1.640553	-5.111958	2.108695	C	0.752553	2.919701	3.775337
H	-0.239243	-4.198960	2.690743	H	0.329130	1.535741	2.176314
H	3.599140	-5.707413	1.427504	C	1.374820	4.118456	4.128386
H	1.330706	-6.124066	2.354321	H	2.510297	5.812628	3.427085
C	4.389561	-0.988073	-0.033540	H	0.263887	2.312596	4.531274
C	4.282988	-1.296148	-1.399382	H	1.364489	4.452568	5.162054
C	5.659663	-0.823177	0.534449	C	0.082818	3.517408	-1.078180
C	5.427214	-1.434857	-2.181884	C	-0.838206	4.312662	-0.387065
H	3.304539	-1.417307	-1.849256	C	-0.090421	3.315250	-2.458300
C	6.803970	-0.949296	-0.255612	C	-1.919701	4.886312	-1.061979
H	5.754010	-0.586215	1.588822	H	-0.719246	4.472768	0.679477
C	6.690919	-1.253988	-1.613739	C	-1.163421	3.895997	-3.128925
H	5.325419	-1.678389	-3.235402	H	0.612819	2.686572	-2.999450
H	7.784284	-0.811968	0.192395	C	-2.087957	4.678603	-2.429275
H	7.583561	-1.351705	-2.225458	H	-2.641070	5.483932	-0.512028
C	3.331530	0.056444	2.453384	H	-1.294050	3.724718	-4.193723
C	3.046319	-0.464434	3.721432	H	-2.945876	5.097057	-2.943537
C	3.928243	1.325009	2.357345	C	2.925788	3.252932	-1.040836
C	3.347821	0.271115	4.869784	C	3.022999	4.588936	-1.460322
H	2.587644	-1.442813	3.813979	C	4.014243	2.394083	-1.245648
C	4.242260	2.048194	3.503573	C	4.199879	5.058847	-2.042528
H	4.143640	1.751215	1.383082	H	2.172254	5.253743	-1.344005
C	3.945768	1.526177	4.764934	C	5.192601	2.864985	-1.825870
H	3.116474	-0.143746	5.846977	H	3.931730	1.350946	-0.967202
H	4.693038	3.031250	3.410390	C	5.288410	4.200010	-2.220497
H	4.175610	2.098590	5.659073	H	4.266333	6.094869	-2.363143
C	1.425587	3.248006	1.466062	H	6.023291	2.181118	-1.975216
C	2.045593	4.450441	1.827252	H	6.202307	4.570099	-2.676786
C	0.781954	2.484553	2.452186				

2a-TS1'				C	-5.075125	-2.664156	-0.272054
	oint cor	orrection=	1.065449	C	-5.344544	-3.793792	0.518206
(Hartree/Particle)				C	-5.954703	-4.922439	-0.023995
Thermal correction to Energy=1.133031				C	-6.302977	-4.946598	-1.375668
Thermal correction to Enthalpy $=1.133975$				C	-6.033825	-3.832992	-2.174165
Thermal correction to Gibbs Free Energy=				C	-5.423142	-2.703061	-1.633160
0.955893				H	-4.954368	5.392201	-0.873385
$E($ Solv $)=-4116.04858361$				H	-5.772474	4.397361	-2.986352
C	-2.463182	-2.054054	0.072917	H	-5.870763	1.908734	-3.262707
H	-2.412139	-2.892628	0.760543	H	-4.155764	3.952438	0.985021
C	-4.974707	4.311576	-0.980879	H	-4.318181	-1.576221	1.439205
C	-5.442168	3.747988	-2.180585	H	-2.748182	-0.531549	4.361678
C	-5.498190	2.365288	-2.351785	H	-0.792936	-1.817891	5.193421
C	-5.059660	1.585222	-1.290053	H	1.845447	1.118010	3.507175
C	-4.557074	2.119574	-0.085774	H	-0.107850	2.414836	2.701341
C	-4.532861	3.513946	0.070803	H	2.050055	-2.115207	4.165115
O	-5.068579	0.218263	-1.273382	H	2.770729	-0.659925	4.864636
C	-4.588357	-0.161812	-0.021247	H	1.702607	-1.685052	5.840629
C	-4.204283	0.962869	0.738566	H	-5.071799	-3.777853	1.570588
C	-4.384536	-1.511683	0.355927	H	-6.160698	-5.781400	0.608905
N	-3.607909	0.767014	1.929666	H	-6.779870	-5.824417	-1.802648
C	-1.539679	1.006575	3.466597	H	-6.302375	-3.842870	-3.227173
C	-1.738677	-0.181814	4.175486	H	-5.223199	-1.841795	-2.258303
C	-0.637484	-0.902246	4.627402	C	-1.707852	-0.899865	0.365611
C	0.672649	-0.458510	4.382363	C	-1.531981	0.117349	-0.601215
C	0.843715	0.744158	3.689418	C	-0.994590	1.394971	-0.324991
C	-0.251026	1.480819	3.232653	H	-1.052026	1.753661	0.695387
C	1.861737	-1.268519	4.839935	C	-0.956406	2.447483	-1.352218
SO	-2.953619	1.930497	2.849449	C	-0.486461	2.202210	-2.653923
	-3.812015	2.261389	3.999782	C	-1.391425	3.739912	-1.020077
O	-2.377496	3.073409	2.091440	C	-0.436799	3.226105	-3.595284

H	-0.112501	1.213989	-2.905765	C	6.020438	-3.202755	0.413916
C	-1.367846	4.756768	-1.973135	H	5.294391	-4.642852	1.843662
H	-1.747231	3.925781	-0.013661	H	6.434807	-1.692692	-1.071984
C	-0.881484	4.509231	-3.257992	H	7.067757	-3.397315	0.626504
H	-0.040712	3.028039	-4.587519	C	0.621443	-3.450396	0.530262
H	-1.725050	5.747852	-1.707082	C	0.156805	-4.669372	0.024303
H	-0.846916	5.308052	-3.993703	C	0.309350	-3.090402	1.850288
H	-1.849286	-0.101537	-1.620052	C	-0.608426	-5.517121	0.828255
H	-1.445650	-0.686700	1.395606	H	0.379053	-4.951164	-0.999596
H	-2.527988	-2.348869	-0.972846	C	-0.437957	-3.945565	2.656202
Pd	0.761730	-0.046534	-0.233065	H	0.618636	-2.122484	2.233001
P	1.570482	-2.244183	-0.471058	C	-0.902513	-5.160638	2.144853
P	2.527797	1.452898	-0.162129	H	-0.978319	-6.454200	0.422050
C	1.364028	-2.820611	-2.203776	H	-0.680266	-3.648428	3.671366
C	2.178835	-3.808401	-2.774669	H	-1.501230	-5.819965	2.766738
C	0.347927	-2.240853	-2.978752	C	3.138370	1.790283	-1.860919
C	1.977809	-4.208297	-4.096403	C	3.875544	2.936320	-2.192336
H	2.972709	-4.258014	-2.187035	C	2.842202	0.858931	-2.867859
C	0.145985	-2.644070	-4.298148	C	4.316355	3.137719	-3.500413
H	-0.275125	-1.468486	-2.539202	H	4.083850	3.682626	-1.432423
C	0.962811	-3.627735	-4.859868	C	3.287814	1.057837	-4.173925
H	2.615821	-4.973060	-4.530385	H	2.241952	-0.012852	-2.626792
H	-0.643952	-2.186748	-4.887260	C	4.026424	2.198734	-4.492675
H	0.811016	-3.938902	-5.889486	H	4.881798	4.032301	-3.745726
C	3.316920	-2.684648	-0.120135	H	3.045808	0.327293	-4.940762
C	3.678137	-3.643309	0.833357	H	4.367380	2.361009	-5.511256
C	4.325323	-1.987947	-0.805567	C	3.999937	0.845911	0.758453
C	5.025731	-3.897625	1.099945	C	3.799807	-0.094610	1.777494
H	2.909705	-4.192234	1.366948	C	5.297447	1.304426	0.498141
C	5.666260	-2.248956	-0.544227	C	4.874636	-0.563403	2.530818
H	4.059299	-1.231040	-1.536864	H	2.798069	-0.469054	1.960031

C	6.374291	0.828055	1.245015	C	5.184737	-1.099343	2.453948
H	5.469740	2.024274	-0.295063	C	4.609552	-0.109468	1.666550
C	6.164607	-0.104509	2.263123	C	3.916864	0.995027	2.198037
H	4.706557	-1.304803	3.305436	C	3.812972	1.135449	3.588299
H	7.378233	1.184239	1.031013	O	4.614034	-0.061815	0.300346
H	7.005882	-0.479740	2.838846	C	3.883136	1.074310	-0.054029
C	2.283637	3.118166	0.560790	C	3.446857	1.762764	1.049328
C	2.633018	3.374743	1.895915	C	3.640587	1.318883	-1.507588
C	1.623106	4.113850	-0.174873	N	2.721928	2.948360	0.997611
C	2.308797	4.593788	2.488903	C	0.471286	4.298320	1.011870
H	3.168700	2.624994	2.468185	C	-0.517918	4.973441	1.725461
C	1.309295	5.334700	0.420605	C	-1.387850	5.833102	1.055169
H	1.352648	3.938145	-1.208885	C	-1.280104	6.037347	-0.325808
C	1.641781	5.576067	1.753846	C	-0.249716	5.382799	-1.015109
H	2.579482	4.776147	3.524983	C	0.619967	4.516426	-0.358137
H	0.787640	6.088438	-0.160978	C	-2.264562	6.908603	-1.064809
H	1.383099	6.522957	2.218407	S	1.393208	3.009473	1.856825
				O	1.487112	3.438611	3.276244
				O	0.560430	1.752675	1.697069
2a-INT2				C	4.907818	1.124748	-2.330073
Zero-point	nt	orrection=	1.069180	C	5.948801	2.051356	-2.179279
(Hartree/Particle)				C	7.140360	1.909698	-2.885557
Thermal correction to Energy $=1.136198$				C	7.314233	0.831722	-3.758373
Thermal correction to Enthalpy=1.137142				C	6.286083	-0.096287	-3.912588
Thermal	correction	on to	Gibbs Free	C	5.090833	0.049842	-3.203548
Energy $=0.962215$				H	4.318706	0.240183	5.474642
$\mathrm{E}($ Solv $)=-4116.08309942$				H	5.490119	-1.703179	4.492431
C	2.432504	0.478853	-2.023929	H	5.713065	-1.938383	2.011753
H	2.652920	-0.574565	-1.843757	H	3.279373	1.981924	4.008208
C	4.388436	0.153024	4.393642	H	3.354748	2.376116	-1.570050
C	5.057696	-0.952351	3.837015	H	-0.584861	4.828111	2.797771

$\begin{array}{llll}\mathrm{H} & -2.163939 & 6.352401 & 1.612468\end{array}$

P
C
C
C
C
H
C
H
C

H

H
H
C
C
C $\quad-5.314346 \quad-1.756008 \quad-0.337322$
$\begin{array}{llllll}\text { C } & -5.054161 & -1.088114 & -3.037622\end{array}$
H
C
H

C

H

H
$\begin{array}{lllll}\mathrm{H} & -7.023109 & -1.934450 & -3.275351\end{array}$
$\begin{array}{lllll}\text { C } & -2.759285 & -2.043751 & 1.596283\end{array}$
C
$\begin{array}{lllll}\text { C } & -3.076458 & -3.366280 & 1.252978\end{array}$
$\begin{array}{lllll}\text { C } & -2.280174 & -2.779565 & 3.857695\end{array}$
H

C

H
$\begin{array}{lllll}\text { C } & -2.605666 & -4.091468 & 3.510983\end{array}$

H
$-1.953451-2.544933 \quad 4.865659$
-3.252282 -5.3993351 .920413 $-2.542860 \quad-4.882961 \quad 4.252334$ $\begin{array}{lll}0.608917 & -2.554624 & 1.442923\end{array}$ $\begin{array}{llll}0.575967 & -3.756710 & 2.159684\end{array}$ $0.970638-1.366654 \quad 2.101328$ $\begin{array}{lll}0.921509 & -3.771908 & 3.510339\end{array}$ $\begin{array}{lll}0.256469 & -4.674829 & 1.683966\end{array}$ 1.318341 -1.389691 3.450850 $0.979271-0.411719 \quad 1.585056$ $\begin{array}{lll}1.303969 & -2.593700 & 4.154570\end{array}$ 0.885915 -4.708454 4.060113 $1.612782-0.464258 \quad 3.931176$ $1.584943-2.613276 \quad 5.203834$ 1.944708 -2.794889 -1.092221 $3.131125-2.693073-0.357079$ $2.003233-3.142455-2.452774$ $4.358593-2.942503-0.973808$ $3.105474-2.402072 \quad 0.686515$ $3.229646-3.398653-3.060055$ 1.087112 -3.220020 -3.031428 4.411902 -3.299602 -2.319391 $5.273662-2.831852-0.402289$ $3.264467-3.671686-4.111088$ $5.370474-3.482021-2.795853$ $-0.677062-3.802335-0.990081$ $-0.317273-5.143069-0.783805$ -1.790954 -3.517675 -1.788524 $-1.107779-6.169632-1.297315$ $0.590942-5.385667-0.243103$ $-2.577157-4.543206-2.314814$

H $\quad-2.047673 \quad-2.485185 \quad-1.988049$
$\begin{array}{lllll}\text { C } & -2.246238 & -5.872712 & -2.053110\end{array}$
$\mathrm{H} \quad-0.828503-7.204081 \quad-1.118793$
$\begin{array}{llll}\mathrm{H} & -3.446669 & -4.295749 & -2.917122\end{array}$
$\begin{array}{lllll}\mathrm{H} & -2.858318 & -6.676895 & -2.451387\end{array}$

2a-INT2'

Zero-point correction=1.068496
(Hartree/Particle)
Thermal correction to Energy=1.135904
Thermal correction to Enthalpy $=1.136849$
Thermal correction to Gibbs Free Energy=
0.959122
$E($ Solv $)=-4116.07921471$
$\begin{array}{llll}\text { C } & 2.367280 & 0.213690 & -2.115138\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.216706 & 1.295094 & -2.181399\end{array}$
$\begin{array}{llll}\text { C } & 2.259646 & -5.615619 & 0.430621\end{array}$
C $\quad 2.371158 \quad-5.831221 \quad-0.955931$
C $\quad 2.826935-4.824878 \quad-1.808534$
$\begin{array}{lllll}\text { C } & 3.147170 & -3.608314 & -1.218956\end{array}$
$\begin{array}{llll}\text { C } & 3.049046 & -3.365743 & 0.163315\end{array}$
$\begin{array}{llll}\text { C } & 2.596472 & -4.391912 & 1.005940\end{array}$
$\begin{array}{lllll}\mathrm{O} & 3.562142 & -2.480976 & -1.877043\end{array}$
$\begin{array}{llll}\text { C } & 3.711526 & -1.485944 & -0.904427\end{array}$
$\begin{array}{llll}\text { C } & 3.420120 & -1.967278 & 0.350287\end{array}$
$\begin{array}{lllll}\text { C } & 3.725532 & -0.066161 & -1.372328\end{array}$
N
C
C
C
$3.474944-1.204206 \quad 1.513346$
$2.708087 \quad 0.156617 \quad 3.598082$
$3.970265 \quad 0.742612 \quad 3.562989$
$4.266729 \quad 1.779911 \quad 4.450272$

C	3.320962	2.239685	5.373525	C	0.576965	-1.583600	-1.715874
C	2.059313	1.625240	5.395218	C	-0.236088	-2.266047	-0.773467
C	1.750658	0.588901	4.519780	H	0.139326	-2.307463	0.245571
C	3.651807	3.348898	6.341956	C	-1.169047	-3.334574	-1.162614
S	2.211483	-1.127319	2.451806	C	-2.021479	-3.206840	-2.271676
O	1.844884	-2.321918	3.263039	C	-1.216712	-4.512158	-0.404464
O	0.981620	-0.556129	1.766553	C	-2.902140	-4.230072	-2.611345
C	4.898446	0.413750	-2.202775	H	-2.010233	-2.283759	-2.845763
C	5.185736	1.785590	-2.227561	C	-2.092949	-5.538864	-0.749042
C	6.227257	2.283227	-3.008954	H	-0.559700	-4.614930	0.451685
C	7.001346	1.412179	-3.778916	C	-2.940206	-5.401734	-1.849435
C	6.722541	0.045131	-3.759398	H	-3.565673	-4.111950	-3.463791
C	5.676773	-0.451962	-2.979057	H	-2.120060	-6.443467	-0.148391
H	1.901874	-6.422682	1.064349	H	-3.630568	-6.198911	-2.110993
H	2.091643	-6.794545	-1.372823	H	0.510823	-1.828221	-2.775260
H	2.914476	-4.971366	-2.880300	H	1.443745	-0.362113	-0.222783
H	2.492279	-4.210154	2.069406	H	2.410289	-0.188945	-3.132826
H	3.695723	0.518855	-0.445546	Pd	-0.856345	-0.140029	-0.759819
H	4.688596	0.387460	2.833607	P	-0.839603	2.158337	-1.143172
H	5.251122	2.241071	4.421270	P	-2.717047	-0.461123	0.599849
H	1.312593	1.962652	6.110713	C	-0.924757	2.532240	-2.939019
H	0.773743	0.117075	4.544687	C	-1.369297	3.772947	-3.421343
H	2.820752	4.056647	6.439951	C	-0.509928	1.554086	-3.854034
H	3.856994	2.951111	7.344423	C	-1.385784	4.030615	-4.791779
H	4.537391	3.907279	6.022588	H	-1.709334	4.532382	-2.724805
H	4.587388	2.463700	-1.623220	C	-0.525165	1.814481	-5.224351
H	6.439704	3.349340	-3.011874	H	-0.177668	0.589601	-3.485617
H	7.816741	1.796027	-4.386033	C	-0.962520	3.053276	-5.695389
H	7.322293	-0.640445	-4.352348	H	-1.731069	4.994781	-5.154067
H	5.462382	-1.515037	-2.968105	H	-0.199262	1.048412	-5.922085
C	1.311255	-0.470728	-1.297509	H	-0.977847	3.255804	-6.762426

$-2.168787 \quad 3.220150 \quad-0.464364$
$-1.9277314 .1596770 .543166$
-3.471391 3.067147 -0.964930
$-2.973122 \quad 4.944960 \quad 1.031488$
$-0.928079 \quad 4.2763130 .946596$
$-4.510675 \quad 3.854857-0.477842$
-3.671506
$2.337990-1.742207$
-4.262095
4.8007350 .519771
$\begin{array}{lll}-2.776206 & 5.667754 & 1.817695\end{array}$
$-5.513286 \quad 3.727022-0.876093$
$-5.071937 \quad 5.4159950 .901555$
$\begin{array}{lll}0.716270 & 2.940421 & -0.570293\end{array}$
$1.3077724 .015764-1.248669$
$\begin{array}{lll}1.339747 & 2.415970 & 0.572688\end{array}$
$\begin{array}{llll}2.506678 & 4.559477 & -0.786999\end{array}$
$\begin{array}{llll}0.844826 & 4.417047 & -2.143947\end{array}$
$2.533271 \quad 2.970541 \quad 1.036916$
$0.927942 \quad 1.551892 \quad 1.082387$
$3.118351 \quad 4.040540 \quad 0.357066$
$2.964745 \quad 5.384861 \quad-1.324789$
$3.007282 \quad 2.549591 \quad 1.917139$
$4.054830 \quad 4.462315 \quad 0.711300$
$-4.311161 \quad-0.414164 \quad-0.288234$
$-5.552804-0.5539270 .352411$
-4.280067 -0.240993 -1.679128
-6.736016 -0.495626 -0.383200
$-5.593203-0.7163621 .424673$
$-5.463666-0.185435-2.415290$
$-3.317682-0.146851-2.174860$
$-6.693423-0.307338-1.766863$
$-7.691074 \quad-0.601577 \quad 0.123185$

H $\quad-5.424231 \quad-0.048549 \quad-3.492196$
$\begin{array}{lllll}\mathrm{H} & -7.616723 & -0.263496 & -2.337442\end{array}$
$\begin{array}{lllll}\text { C } & -2.779292 & 0.844041 & 1.897345\end{array}$
$\begin{array}{lllll}\text { C } & -1.585176 & 1.109280 & 2.589893\end{array}$
$\begin{array}{lllll}\text { C } & -3.920465 & 1.598155 & 2.191947\end{array}$
$\begin{array}{llll}\text { C } & -1.549918 & 2.090347 & 3.579256\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.680120 & 0.557916 & 2.355739\end{array}$
$\begin{array}{llll}\text { C } & -3.878521 & 2.576791 & 3.186000\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.836537 & 1.450834 & 1.634277\end{array}$
$\begin{array}{llll}\text { C } & -2.698599 & 2.821226 & 3.887091\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.615283 & 2.284887 & 4.097468\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.770445 & 3.159540 & 3.397400\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.669916 & 3.588253 & 4.656207\end{array}$
$\begin{array}{lllll}\text { C } & -2.709342 & -2.039836 & 1.540238\end{array}$
$\begin{array}{lllll}\text { C } & -1.595271 & -2.302803 & 2.355040\end{array}$
$\begin{array}{lllll}\text { C } & -3.706037 & -3.013847 & 1.407086\end{array}$
$\begin{array}{lllll}\text { C } & -1.499128 & -3.505887 & 3.049860\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.770762 & -1.602120 & 2.415249\end{array}$
$\begin{array}{llll}\text { C } & -3.608348 & -4.214676 & 2.113149\end{array}$
$\begin{array}{lllll}\mathrm{H} & -4.545935 & -2.856635 & 0.740918\end{array}$
$\begin{array}{lllll}\text { C } & -2.513115 & -4.460992 & 2.940648\end{array}$
H $\quad-0.612048$-3.686237 3.649415
$\mathrm{H} \quad-4.386230 \quad-4.964341 \quad 1.997863$
$\begin{array}{lllll}\mathrm{H} & -2.438850 & -5.401376 & 3.479991\end{array}$

diene-Pd-exo-TS

Zero-point correction=1.068229
(Hartree/Particle)
Thermal correction to Energy=1.134899

H	-4.016761	1.429833	-4.408817	C	-1.805366	-1.521086	2.725583
H	-5.349630	3.490084	-0.872830	C	-1.337623	-0.947142	3.915227
H	-5.803469	2.647923	-3.175362	C	-1.603082	-2.894769	2.510987
H	0.178714	1.308059	-2.566600	C	-0.667081	-1.727013	4.859229
H	1.259857	1.100223	0.313714	H	-1.487335	0.109688	4.104367
H	2.405763	0.440468	-2.483190	C	-0.947362	-3.672439	3.460784
Pd	-0.990246	-0.378756	-0.430809	H	-1.946800	-3.358745	1.593513
P	-2.472370	-0.494042	1.357218	C	-0.465965	-3.088464	4.634167
P	-0.068935	-2.494291	-0.856219	H	-0.300712	-1.263742	5.770953
C	-2.933432	1.097148	2.138319	H	-0.787579	-4.729129	3.269299
C	-1.913609	2.017638	2.427718	H	0.065229	-3.690975	5.365213
C	-4.268485	1.469973	2.346635	C	1.044215	-2.985747	0.522057
C	-2.219718	3.288953	2.910784	C	1.470761	-4.298518	0.760248
H	-0.873867	1.769842	2.243531	C	1.489726	-1.961570	1.373201
C	-4.574031	2.743671	2.828073	C	2.341508	-4.573750	1.815963
H	-5.068483	0.774351	2.118389	H	1.115740	-5.108762	0.132010
C	-3.553482	3.655514	3.106903	C	2.362559	-2.233602	2.424833
H	-1.409754	3.987979	3.086996	H	1.129425	-0.949669	1.219845
H	-5.612826	3.024927	2.978531	C	2.792919	-3.543652	2.644382
H	-3.796879	4.650955	3.467786	H	2.665713	-5.595686	1.992788
C	-4.084138	-1.235224	0.902745	H	2.698739	-1.425343	3.067321
C	-4.630490	-0.855506	-0.335665	H	3.470528	-3.763259	3.464502
C	-4.759734	-2.170844	1.695250	C	1.025117	-2.483788	-2.334214
C	-5.832806	-1.408011	-0.770691	C	2.325034	-3.000417	-2.345505
H	-4.105666	-0.137078	-0.958653	C	0.532605	-1.843337	-3.483186
C	-5.956799	-2.734471	1.247670	C	3.129314	-2.861898	-3.479301
H	-4.343849	-2.468884	2.652087	H	2.731070	-3.473328	-1.459200
C	-6.494264	-2.355606	0.016078	C	1.327225	-1.724418	-4.620133
H	-6.246038	-1.105477	-1.728501	H	-0.468749	-1.419444	-3.468855
H	-6.470242	-3.466862	1.864457	C	2.633451	-2.225477	-4.615555
H	-7.425333	-2.796007	-0.329524	H	4.151170	-3.224863	-3.454313

H	-9.824709	-3.767681	-1.805631	C	3.213432	3.945575	2.839540
H	-9.407267	-3.813641	-3.521825	H	4.027644	3.697464	0.861602
H	-3.944070	4.911308	-0.889816	C	1.258312	2.622836	3.359787
H	-3.353758	7.261645	-0.360952	H	0.557975	1.339249	1.783677
H	-1.662140	7.755795	1.397098	C	2.217047	3.563246	3.741494
H	-0.594746	5.873573	2.636783	H	3.961834	4.675928	3.133654
H	-1.205842	3.544708	2.113177	H	0.475943	2.318794	4.049246
C	-1.375851	0.696244	-0.842198	H	2.190049	3.995405	4.737623
C	-1.040919	-0.162368	0.206819	C	4.004162	1.882556	-1.058888
C	-0.768099	-1.541302	0.024110	C	4.401496	2.659424	-2.153149
H	-1.077137	-1.977264	-0.924103	C	4.968742	1.137390	-0.361893
C	-0.713453	-2.463975	1.164146	C	5.740939	2.684445	-2.548333
C	-0.110123	-2.109855	2.383682	H	3.668386	3.246771	-2.695113
C	-1.305728	-3.731344	1.054228	C	6.303043	1.169848	-0.753950
C	-0.090420	-2.998322	3.452124	H	4.674887	0.526355	0.485637
H	0.367483	-1.140837	2.481992	C	6.692423	1.940449	-1.852665
C	-1.302309	-4.616312	2.130948	H	6.037518	3.290789	-3.399677
H	-1.775717	-4.014440	0.117165	H	7.036001	0.579358	-0.212994
C	-0.686515	-4.258097	3.330819	H	7.732845	1.956880	-2.164281
H	0.392165	-2.709802	4.381270	C	1.391098	3.031734	-1.515706
H	-1.774785	-5.589357	2.028838	C	0.996516	4.260730	-0.972655
H	-0.673571	-4.950516	4.167688	C	1.008305	2.706104	-2.826800
H	-1.043727	0.235017	1.217450	C	0.218086	5.144088	-1.722534
H	-1.560369	0.287377	-1.830089	H	1.250939	4.514629	0.049538
H	-0.750690	2.488415	0.045231	C	0.259903	3.603308	-3.585916
Pd	1.109298	-0.340016	-0.488482	H	1.272230	1.735647	-3.240251
P	2.251640	1.746369	-0.533408	C	-0.145310	4.820524	-3.029557
P	2.703521	-2.036905	-0.394639	H	-0.128859	6.066288	-1.267481
C	2.290953	2.453361	1.164576	H	-0.037070	3.338933	-4.596470
C	3.252188	3.395457	1.558017	H	-0.761787	5.502400	-3.607635
C	1.299312	2.071428	2.079480	C	3.424738	-2.161799	1.288999

| 4.112337 | -3.298154 | 1.741555 |
| :--- | :--- | :--- | :--- |
| 3.274165 | -1.071385 | 2.157588 |
| 4.646419 | -3.332369 | 3.029471 |

4.208191 -4.165666 1.096846
$3.811213-1.103600 \quad 3.443866$
$\begin{array}{lll}2.719163 & -0.200660 & 1.828510\end{array}$
4.499538 -2.235650 3.882224
$\begin{array}{llll}5.172677 & -4.219726 & 3.369581\end{array}$
$3.679186-0.2481654 .100279$
4.913099 -2.268532 4.886131
$4.133905-1.779510-1.518873$
$3.932454-1.003917-2.668225$
$5.397779-2.334664-1.281764$
$4.974898-0.786461-3.567815$
$2.958444-0.553145-2.838151$
$6.441677-2.111678$-2.177984
$\begin{array}{llll}5.573218 & -2.927511 & -0.390717\end{array}$
$6.232489-1.337266-3.321116$
$4.810340-0.170290-4.446386$
$7.420906-2.539514-1.981762$
$7.050103-1.157029-4.013081$
$2.202834-3.755989-0.787414$
$2.308100-4.231017-2.104523$
$\begin{array}{lll}1.622608 & -4.576523 & 0.191344\end{array}$
1.850211 -5.505535 -2.432363
$\begin{array}{llll}2.758231 & -3.607631 & -2.870637\end{array}$
$1.173179-5.854424-0.141733$
$\begin{array}{lll}1.522220 & -4.224818 & 1.211206\end{array}$
$1.283996-6.322617-1.450682$
1.941972 -5.862848 -3.454128
0.724031 -6.474535 0.628057
$\begin{array}{lllll}\mathrm{H} & 0.930462 & -7.317278 & -1.706772\end{array}$

exo-Pd-16

Zero-point correction=1.070504
(Hartree/Particle)
Thermal correction to Energy $=1.137113$
Thermal correction to Enthalpy=1.138057
Thermal correction to Gibbs Free Energy= 0.962391
$\mathrm{E}($ Solv $)=-4116.10682805$
$\begin{array}{llll}\text { C } & 2.531249 & -0.733242 & -0.394626\end{array}$
$\begin{array}{lllll}\mathrm{H} & 1.694565 & -1.424962 & -0.352816\end{array}$
$\begin{array}{llll}\text { C } & 6.234651 & 3.387071 & 3.310184\end{array}$
$\begin{array}{llll}\text { C } & 6.931150 & 2.330587 & 3.926159\end{array}$
$\begin{array}{lllll}\text { C } & 6.692266 & 1.002565 & 3.571491\end{array}$
$\begin{array}{lllll}\text { C } & 5.735724 & 0.788553 & 2.588785\end{array}$
$\begin{array}{lllll}\text { C } & 5.026035 & 1.826389 & 1.953846\end{array}$
$\begin{array}{lllll}\text { C } & 5.283529 & 3.152567 & 2.320835\end{array}$
$\begin{array}{llll}\mathrm{O} & 5.335166 & -0.438840 & 2.107563\end{array}$
$\begin{array}{lllll}\text { C } & 4.372721 & -0.186721 & 1.158161\end{array}$
$\begin{array}{lllll}\text { C } & 4.146843 & 1.151329 & 1.020693\end{array}$
$\begin{array}{lllll}\text { C } & 3.702952 & -1.312177 & 0.449515\end{array}$
$\begin{array}{llll}\mathrm{N} & 3.116607 & 1.668573 & 0.194436\end{array}$
$\begin{array}{lllll}\text { C } & 4.156050 & 1.326932 & -2.352924\end{array}$
$\begin{array}{lllll}\text { C } & 3.311581 & 1.036145 & -3.422855\end{array}$
$\begin{array}{lllll}\text { C } & 3.600470 & -0.058408 & -4.235729\end{array}$
$\begin{array}{lllll}\text { C } & 4.713809 & -0.870522 & -3.984604\end{array}$
$\begin{array}{lllll}\text { C } & 5.569711 & -0.528851 & -2.925924\end{array}$
$\begin{array}{lllll}\text { C } & 5.304498 & 0.567419 & -2.111022\end{array}$
$\begin{array}{lllll}\text { C } & 4.984668 & -2.096716 & -4.819323\end{array}$
$3.670482 \quad 2.564965-1.162491$
$4.877073 \quad 3.253971-0.701616$ $2.544868 \quad 3.311036-1.718932$ $3.281237-2.430230 \quad 1.392598$ $\begin{array}{lll}4.038887 & -3.602631 & 1.457765\end{array}$ $3.649677-4.664429 \quad 2.275296$ $2.489763-4.561833 \quad 3.043993$ $\begin{array}{lll}1.733185 & -3.389229 & 2.996523\end{array}$ $\begin{array}{lll}2.128467 & -2.331037 & 2.178983\end{array}$ $6.450900 \quad 4.408567 \quad 3.609371$ $\begin{array}{lll}7.670777 & 2.551364 & 4.690207\end{array}$ $\begin{array}{lll}7.217546 & 0.174528 & 4.035242\end{array}$ $4.767986 \quad 3.9659431 .824888$ $4.425748-1.750803-0.251876$ $2.441577 \quad 1.658917 \quad-3.598507$ $2.947013-0.291179-5.072388$ $6.454942-1.131590-2.739365$ $5.967573 \quad 0.833935-1.296392$ 4.714149 -3.006389 -4.267923 $4.405396-2.086810-5.747630$ $6.045396-2.179222-5.079959$ 4.935647 -3.688028 0.849147 $4.248514-5.570776 \quad 2.306788$ $\begin{array}{lll}2.175946 & -5.387983 & 3.675819\end{array}$ $\begin{array}{llll}0.823134 & -3.306234 & 3.580378\end{array}$ $1.520953-1.431549 \quad 2.136650$
$2.003125 \quad 0.642581 \quad 0.047309$
$0.871417 \quad 1.105745-0.834615$
$\begin{array}{lll}0.056890 & 2.173324 & -0.436834\end{array}$
$\begin{array}{lll}0.223665 & 2.591025 & 0.553318\end{array}$ $-0.686030 \quad 3.054655-1.352747$
$\begin{array}{llll}\text { C } & -2.794841 & 2.591759 & 1.824390\end{array}$

C
C
C $\quad-1.561074$
H
C
H
C
H

H
H
H
H
H
Pd
P
P

C
C
C

C
C
C
C
-0.810700
-2.208627
$2.791953-2.729923$
$4.198456-0.840229$
3.627862 -3.553547
$\begin{array}{llll}-0.325353 & 1.919464 & -3.155486\end{array}$
-2.080443 $5.028809-1.662364$
$\begin{array}{lll}-1.229667 & 4.424007 & 0.217194\end{array}$
4.748077 -3.024414
$-1.641265 \quad 3.403732-4.614265$
$\begin{array}{llll}-2.572370 & 5.898799 & -1.235838\end{array}$
$-2.797225 \quad 5.396747-3.666883$
$\begin{array}{lll}1.001510 & 0.897659 & -1.891767\end{array}$
1.6404410 .5727931 .077961
$2.830492-0.685902-1.441131$
$\begin{array}{llll}\mathrm{Pd} & -1.127849 & 0.290907 & -0.213552\end{array}$
$\begin{array}{lllll}\mathrm{P} & -3.086991 & 1.064706 & 0.844190\end{array}$
$\begin{array}{lllll}\mathrm{P} & -1.354637 & -1.992647 & -0.637211\end{array}$
$\begin{array}{llll}\text { C } & -1.621078 & 2.661184 & 2.591262\end{array}$
$\begin{array}{llll}\text { C } & -3.641958 & 3.705019 & 1.777006\end{array}$
$\begin{array}{lllll}\text { C } & -1.301653 & 3.817929 & 3.299458\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.945665 & 1.809431 & 2.606257\end{array}$
$\begin{array}{lllll}\text { C } & -3.314121 & 4.869779 & 2.473753\end{array}$
$\begin{array}{llll}\text { H } & -4.547199 & 3.669486 & 1.180775\end{array}$
$\begin{array}{lllll}\text { C } & -2.145565 & 4.930383 & 3.234013\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.387121 & 3.858943 & 3.884309\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.971785 & 5.732838 & 2.417132\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.888842 & 5.840364 & 3.768728\end{array}$
$\begin{array}{lllll}\text { C } & -4.462771 & 1.547559 & -0.277735\end{array}$
$\begin{array}{lllll}\text { C } & -4.126832 & 2.051586 & -1.542746\end{array}$
$\begin{array}{llll}\text { C } & -5.815303 & 1.427745 & 0.073321\end{array}$
$\begin{array}{lllll}C & -5.124489 & 2.426852 & -2.441270\end{array}$
$-3.085533 \quad 2.142609-1.826571$
$-6.812131 \quad 1.796041 \quad-0.830988$
-6.088407 1.0390281 .048576
-6.469475 $2.294560-2.090221$
$-4.842350 \quad 2.821179-3.412806$
$-7.8570641 .693797-0.550946$
$-7.248053 \quad 2.579556-2.792600$
-3.936028 $-0.045084 \quad 2.041710$
$\begin{array}{lll}-3.966267 & 0.204414 & 3.418424\end{array}$
-4.514847 -1.229037 1.553450
$-4.560450-0.7122664 .290012$
$-3.531212 \quad 1.116602 \quad 3.812693$
-5.118507 -2.133184 2.420970
-4.489383 -1.445078 0.490276
$-5.138837-1.879909 \quad 3.795125$
$-4.575671-0.505259 \quad 5.356767$
$-5.552233-3.047125 \quad 2.026725$
$\begin{array}{lll}-5.598767 & -2.592449 & 4.474041\end{array}$
$-1.777523-2.942401 \quad 0.882808$
$-2.356584-4.2181070 .867276$
-1.526746 $-2.326291 \quad 2.116422$
-2.671376 $-4.864599 \quad 2.062468$
-2.574485 -4.703333 -0.078354
-1.845048 -2.9689093 .311323
-1.108093 $-1.323858 \quad 2.124510$
$-2.416513-4.241241 \quad 3.286004$
$-3.122640 \quad-5.852810 \quad 2.038354$
-1.671793 -2.4654544 .257652
-2.675951 -4.7404034 .215409
0.060302 -2.935164 -1.341490
$\begin{array}{llll}0.761091 & -3.916091 & -0.631094\end{array}$
$\begin{array}{lllll}\text { C } & 0.531306 & -2.540500 & -2.606010\end{array}$
C $\quad 1.918933-4.484507 \quad-1.170235$
$\begin{array}{llll}\mathrm{H} & 0.427355 & -4.219057 & 0.354561\end{array}$
$\begin{array}{lllll}\text { C } & 1.676153 & -3.116295 & -3.146508\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.004468 & -1.762525 & -3.153056\end{array}$
$\begin{array}{lllll}\text { C } & 2.378843 & -4.087441 & -2.424441\end{array}$
$\begin{array}{lllll}\mathrm{H} & 2.463924 & -5.225295 & -0.594195\end{array}$
$\begin{array}{lllll}\mathrm{H} & 2.030887 & -2.799642 & -4.122865\end{array}$
$\begin{array}{lllll}\mathrm{H} & 3.279961 & -4.530368 & -2.840232\end{array}$
C $\quad-2.686972 \quad-2.433758 \quad-1.832575$
$\begin{array}{lllll}\text { C } & -2.732718 & -3.667038 & -2.500970\end{array}$
$\begin{array}{lllll}\text { C } & -3.692199 & -1.490698 & -2.084420\end{array}$
$\begin{array}{llllll}\text { C } & -3.781385 & -3.957425 & -3.373599\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.937963 & -4.391669 & -2.351936\end{array}$
$\begin{array}{lllll}\text { C } & -4.742679 & -1.780297 & -2.955662\end{array}$
H $\quad-3.641311 \quad-0.520307-1.608154$
$\begin{array}{lllll}\text { C } & -4.791825 & -3.018145 & -3.597956\end{array}$
$\begin{array}{lllll}\mathrm{H} & -3.807061 & -4.916261 & -3.884321\end{array}$
H $\quad-5.508822 \quad-1.030871 \quad-3.133940$
H $\quad-5.605314 \quad-3.248019 \quad-4.280516$

endo-Pd-17

Zero-point correction=1.069223
(Hartree/Particle)
Thermal correction to Energy=1.136377
Thermal correction to Enthalpy=1.137321
Thermal correction to Gibbs Free Energy=
0.957708
$E($ Solv $)=-4116.08424089$

C	-1.669585	2.391514	-1.377746	H	-5.623588	2.221104	3.788899
H	-1.904236	2.636011	-2.416387	H	-4.949601	-1.689516	0.702741
C	-5.838688	-0.973891	2.539889	H	-3.330058	3.754982	-1.126764
C	-6.036612	0.117204	3.405871	H	-3.857216	-2.515837	-2.358537
C	-5.491630	1.372041	3.126838	H	-5.506294	-4.217302	-1.593092
C	-4.757130	1.480162	1.955017	H	-8.425516	-1.119811	-1.007709
C	-4.558006	0.407202	1.060395	H	-6.770720	0.580066	-1.779440
C	-5.103138	-0.845864	1.364783	H	-7.594968	-4.639460	-0.259310
O	-4.103699	2.611672	1.509941	H	-8.837440	-3.379638	-0.133393
C	-3.497564	2.263516	0.327928	H	-8.612287	-4.257009	-1.650949
C	-3.749995	0.967408	0.003379	H	-2.681991	5.900326	-0.762576
C	-2.654470	3.211599	-0.454155	H	-1.378296	7.612775	0.463977
N	-3.110268	0.348193	-1.101206	H	0.156202	6.926730	2.301478
C	-5.236216	-0.881554	-2.111607	H	0.351359	4.519650	2.902386
C	-4.860724	-2.225715	-2.066633	H	-0.964427	2.825812	1.684693
C	-5.788399	-3.168436	-1.636219	C	-1.694529	0.858681	-1.228274
C	-7.082945	-2.785541	-1.249217	C	-0.958002	0.273404	-0.036725
C	-7.430033	-1.431063	-1.312124	C	-0.879010	-1.142744	0.019781
C	-6.514126	-0.472427	-1.742979	H	-1.199818	-1.664812	-0.882290
C	-8.083649	-3.818533	-0.794409	C	-1.076230	-1.940116	1.249150
S	-4.011073	0.336342	-2.552372	C	-0.404484	-1.677886	2.454865
O	-3.112735	-0.218751	-3.573155	C	-1.968493	-3.024387	1.217697
O	-4.697358	1.616065	-2.792835	C	-0.598073	-2.480438	3.576367
C	-1.916984	4.245744	0.375580	H	0.316217	-0.868450	2.490784
C	-2.021881	5.600086	0.047381	C	-2.173286	-3.823634	2.341278
C	-1.282599	6.564594	0.734892	H	-2.497542	-3.240491	0.293402
C	-0.424480	6.180953	1.765550	C	-1.482263	-3.562063	3.525863
C	-0.318857	4.830520	2.107884	H	-0.040938	-2.272582	4.486091
C	-1.060898	3.873348	1.418598	H	-2.868043	-4.658168	2.288728
H	-6.267305	-1.938470	2.796592	H	-1.628446	-4.192269	4.398536
H	-6.618323	-0.018612	4.312861	H	-1.108270	0.804249	0.901403

$\begin{array}{lllll}\mathrm{H} & -1.303599 & 0.415784 & -2.144863 & \mathrm{H}\end{array}$
$\begin{array}{llll}\mathrm{Pd} & 1.099658 & -0.336090 & -0.263789\end{array}$ $-0.654488 \quad 2.734233-1.192431$ $2.452542 \quad 1.569889-0.303305$ $2.463326-2.239193-0.161066$ $2.581764 \quad 2.308740 \quad 1.379106$ 3.5767953 .2368691 .718139 $1.683655 \quad 1.885262 \quad 2.367965$ $3.666150 \quad 3.731445 \quad 3.019179$ $4.287405 \quad 3.561575 \quad 0.964245$ $\begin{array}{lll}1.781829 & 2.365811 & 3.674364\end{array}$ $0.914701 \quad 1.168260 \quad 2.101201$ $\begin{array}{lll}2.774513 & 3.291689 & 4.001576\end{array}$ $4.439468 \quad 4.4520343 .270235$ $1.082265 \quad 2.0204144 .430530$ $\begin{array}{lll}2.855565 & 3.668341 & 5.017387\end{array}$ $4.233675 \quad 1.480633-0.776403$ 4.779913
$2.194957-1.848935$
$5.0613740 .607712-0.052083$
$6.123684 \quad 2.031609-2.195821$
$4.159659 \quad 2.880235-2.415994$ $6.400795 \quad 0.452164-0.393186$ $4.653092 \quad 0.037291 \quad 0.775541$ $6.935907 \quad 1.160560-1.472155$ $6.532680 \quad 2.590847$-3.033102 $7.020994-0.239384 \quad 0.168891$ $7.978468 \quad 1.028820-1.747569$
$2.925142-1.370734$
$1.574069 \quad 4.220672-0.909488$
$1.523254 \quad 2.597860-2.702503$
$1.008454 \quad 5.170615-1.763166$
$\begin{array}{llll}\text { C } & 0.843357 & -4.481516 & 0.346724\end{array}$
$\begin{array}{llll}\text { C } & 1.155454 & -5.582040 & -2.198306\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.495759 & -3.943829 & -2.580855\end{array}$
C $\quad 0.164496 \quad-5.648720 \quad 0.001499$
$\begin{array}{llll}\mathrm{H} & 0.710806 & -4.060160 & 1.336422\end{array}$
C $\quad 0.316358 \quad-6.202643-1.271081$
$\begin{array}{lllll}\mathrm{H} & 1.282968 & -6.007777 & -3.189906\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.491153 & -6.115623 & 0.730771\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.214781 & -7.111958 & -1.538698\end{array}$

[^0]: ${ }^{a}$ Unless noted otherwise, reactions were performed with $\mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{2 a}(0.05 \mathrm{mmol}),[\mathrm{Pd}]$ source ($10 \mathrm{~mol} \%$), $\mathbf{L}(20 \mathrm{~mol} \%)$, acid additive ($20 \mathrm{~mol} \%$) in dry toluene $(0.5 \mathrm{~mL})$ at $60^{\circ} \mathrm{C}$ for 36 h under Ar. ${ }^{b}$ Yield of isolated product. ${ }^{c}$ Determined by HPLC analysis. ${ }^{d}$ The data referred to ee of $\mathbf{5 a}$, determined by HPLC analysis on a chiral stationary phase. ${ }^{e}$ At $50{ }^{\circ} \mathrm{C} . .^{f}$ With L10 (10 mol\%).

