Supplementary Information:

Reconciling Experimental Catalytic Data Stemming from Structure Sensitivity

Xue Zong^{1, 2} and Dionisios G. Vlachos^{1, 2*} ¹Department of Chemical and Biomolecular Engineering, 150 Academy St., University of Delaware, Newark, Delaware 19716, United States ²Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, and Delaware Energy Institute (DEI), 221 Academy St., University of Delaware, Newark, Delaware 19716, United States

*Corresponding author: <u>vlachos@udel.edu</u>

Supplementary Notes

S1. Definition of Generalized Coordination Number (GCN)

To estimate the GCN of an atom i with n_i nearest neighbors, those neighbors are counted and weighted by their coordination numbers¹, Eq. (1):

$$GCN = \sum_{j=1}^{n_i} \frac{cn(j)n_j}{cn_{max}}$$
(1)

We chose the top site on Pt(111) as an illustration example. There are six atoms in the first layer and three atoms in the second layer. The coordination number is nine and twelve respectively. cn_{max} equals to 12 for an fcc crystal. So the GCN of the top site is thus $GCN = (9 \times 6 + 12 \times 3)/12 = 7.5$.

Fig. S1. Top site on Pt(111) surface. The blue atom denotes the adsorption site. The numbers on the atoms represent the coordination number of the nearest neighbors.

S2. Predicting Adsorption Energies

The ML model used for predicting adsorption energies was taken from our previous work². Eight features were selected corresponding to the free adsorbate (adsorbate valency of the main element (ME) directly bonded to the metal surface, the number of bonds of the ME in the molecule, the electronegativity of the ME and its nearest neighbor in the molecule, and the molecular weight of the adsorbate) and the adsorption site (GCN, the coordination numbers averaged over the site ensemble, and the number of metal atoms composing the adsorption site). To predict the adsorption energies for each GCN, we first calculated the descriptors related to the free adsorbate. For the adsorption structure descriptors, when a species can adsorb on multiple sites (top, bridge, or hollow), we calculated all adsorption energies and chose the lowest one. For each species, we calculated the errors between the DFT values and the estimates of the ML and the GCN scaling relations. We selected the method with the lowest estimation error for predicting the species energy when varying the structure.

Table S1. Summary of elementary steps, pre-exponential factors (sticking coefficients for adsorptions), temperature exponent, and activation energies in the microkinetic model on Pt(111). In the units of the pre-exponential factor, n is the molecularity of the reaction. The pre-factors used on all other structures were the same.

Elementary Steps	Pre-exponential	Temperature	Activation
	$([cm^{2}/mol]^{n}s^{-1})$ or	Exponent	Energy
	Sticking Coefficient	-	(kcal/mol)
	(unitless)		
$CH_{4}+* \Leftrightarrow CH_{4}*$	0.5	0	0
H ₂ +2*⇔2H*	0.5	0	0
$O_2+2* \Leftrightarrow O_2**$	0.01	0	0
CO+*⇔CO*	0.5	0	0
CO ₂ +*⇔CO ₂ *	0.5	0	0
$H_2O+* \Leftrightarrow H_2O*$	0.5	0	0
O ₂ **⇔2O*	2.084E+10	1	14.54
$CH_4*+* \Leftrightarrow CH_3*+H*$	8.385E+18	1	24.11
$CH_4*+O* \Leftrightarrow CH_3*+OH*$	8.385E+18	1	34.12
$CH_4*+OH* \Leftrightarrow CH_3*+H_2O*$	8.385E+18	1	25.93
$CH_3*+* \Leftrightarrow CH_2*+H*$	8.385E+18	1	22.16
$CH_3*+O* \Leftrightarrow CH_2*+OH*$	8.385E+18	1	32.70
$CH_3*+OH* \Leftrightarrow CH_2*+H_2O*$	8.385E+18	1	22.82
CH ₂ *+*⇔CH*+H*	8.385E+18	1	6.364
CH ₂ *+O*⇔CH*+OH*	8.385E+18	1	27.27
CH ₂ *+OH*⇔CH*+H ₂ O*	8.385E+18	1	12.13
CH*+*⇔C*+H*	8.385E+18	1	29.65
CH*+O*⇔C*+OH*	8.385E+18	1	39.22
$CH^*+OH^* \Leftrightarrow C^*+H_2O^*$	8.385E+18	1	19.88
CHO*+*⇔CH*+O*	8.385E+18	1	59.40
CHO*+ *⇔CO*+H*	8.385E+18	1	8.721
CHO*+O*⇔CO*+OH*	8.385E+18	1	14.33
$CHO*+OH* \Leftrightarrow CO*+H_2O*$	8.385E+18	1	0
COH*+*⇔CO*+H*	8.385E+18	1	19.28
COH*+O*⇔CO*+OH*	8.385E+18	1	10.12
$COH^*+OH^* \Leftrightarrow CO^*+H_2O^*$	8.385E+18	1	0
CO*+*⇔C*+O*	8.385E+18	1	90.53
COH*+*⇔C*+OH*	8.385E+18	1	57.55
$H_2O^*+^* \Leftrightarrow OH^*+H^*$	8.385E+18	1	24.76
OH*+*⇔O*+H*	8.385E+18	1	27.35
$H_2O^*+O^* \Leftrightarrow 2OH^*$	8.385E+18	1	10.40
$CO_2^* + * \Leftrightarrow CO^* + O^*$	8.385E+18	1	43.37
COOH*+*⇔CO*+OH*	8.385E+18	1	15.05
CHOO*⇔CHO*+O*	2.084E+10	1	33.73
$COOH^{*+*} \Leftrightarrow CO_2^{*+}H^{*}$	8.385E+18	1	9.869
COOH*+O*⇔CO ₂ *+OH*	8.385E+18	1	2.792

$COOH^*+OH^* \Leftrightarrow CO_2^*+H_2O^*$	8.385E+18	1	5.078
$CHOO* \Leftrightarrow CO_2* + H*$	2.084E+10	1	16.46
CHOO*+O*⇔CO ₂ *+OH*	8.385E+18	1	25.80
$CHOO^*+OH^* \Leftrightarrow CO_2^*+H_2O^*$	8.385E+18	1	22.92

Table S2. Site occupancy of surface species.

Surface Species	Site Occupancy
CH ₄ *	1
CH ₃ *	1
CH ₂ *	1
CH*	1
C*	1
H*	1
O ₂ **	2
CO*	1
CO ₂ *	1
H ₂ O*	1
0*	1
OH*	1
CHO*	1
COH*	1
COOH*	1
CHOO**	2

Table S3. Lateral interactions (kcal/mol/monolayer) on binding energies. A linear model is used to estimate binding energies. Blanks denote non-accounted interactions.

	O*	H*	C*	CH*	CO*
O*	-31				
H*		-3			
C*			-15	-15	
CH*			-15	-15	
CO*					-15

Ref.	Author	Catalyst	Particle	O ₂ /CH ₄	Pt	TOF	T (K)	CH ₄	O ₂	Eapp
		5	Size		Loading			Order	Order	(kcal/mol)
			(nm)		(wt%)					``´´´
3	Lee &		1.79 ±	0.2-2.5		0.002-0.7 s ⁻¹	553-	-	1.3	19.49
	Vlachos		0.66				673			
4				2	0.1	0.117 s ⁻¹	573-	0.9	0.0	21.3
	Niwa &				0.2	0.067 s ⁻¹	773			20.9
	Murakami				0.5	0.035 s ⁻¹				25.2
					0.75	-				25.0
					1.0	0.033 s ⁻¹				26.6
					2.0	0.027 s ⁻¹				29.3
5	Trimm &	Porous		0.7-2.2	0.4	_	773-	1.0	0.75	44.7
	Lam	1 010 00					853	110	0170	,
		Non-			2.35	-	773-	1.0	1.0	39.8
		porous					853			
6	Yao	Pt wire		1-4		0.13 s ⁻¹	473-	1.0	-0.6	21
						(773 K)	773			
		Pt/Al_2O_3		1-4		0.076	473-	1.2	-0.6	24
						(773 K)	773			
7	Cullis &	Pt/γ-	13 (2-	0.1-10	2.7	0.111	573-	1.0	0	27.2
	Willatt	Al_2O_3	32)	(0.4)		mol/(s [.] g)	673			
8	Ma,	Pt/δ-		0.86-		-	633-	0.95	-0.17	21.1
	Trimm &	Al_2O_3		1.3			733			
	Jiang									
9	Firth &	Pt/Al_2O_3		<2		-	673-	1	0	47.6
	Holland					1	773			
10				2.2		0.001 s ⁻¹	608	1	0	39.3
10	Hicks	Pt/Al_2O_3				0.001 s ⁻¹		1	0	33.6
						0.02 s^{-1}		1	0	33
11						0.1 s ⁻¹		1	0	29
11	Muto	Pt/Al_2O_3		2	0.5	0.075	723	1	0	25.1
				ļ		mmol/(min [·] g)				
					0.2	0.023		1	0	20.8
12						mmol/(min [·] g)				
12	Chin	Pt/Al_2O_3		< 0.08	0.2	-		0	1	3.8

Table S4. Summary of studies of complete methane oxidation over supported Pt catalysts.

Fig. S2. Structures of Pt extended surfaces with GCNs corresponding to the top site. Surfaces with n metal adatoms are denoted as nAD@mkl, where mkl are the Miller indices of the plane.

Fig. S3. Summary of errors in estimating adsorption energies for all species. (a) Parity plot; (b) Histogram of error distributions. Error is defined as the difference between DFT calculated values and estimations from the ML model or GCN scaling relation. See details in Supplementary Estimated_Energy_Errors.xlsx.

Table S5. Errors in estimating adsorption energies. MAE represents the mean absolute error in eV. Detailed information of the data used to calculate errors is summarized in Supplementary Estimated_Energy_Errors.xlsx. For each species, adsorption energies on various facets were calculated.

Species	GCN Relations	ML Prediction
	MAE (eV)	MAE (eV)
CH*	0.068	0.018
C*	0.092	0.139
H ₂ O*	0.052	0.066
O_2^*	0.124	0.031
OH*	0.127	0.057
0*	0.076	0.036
CHOO*	0.113	0.065
CH ₄ *	0.032	0.026
CH ₃ *	0.066	0.019
CH ₂ *	0.130	0.022
H*	0.115	0.059
CO ₂ *	0.039	0.013
CO*	0.141	0.071
COH*	0.146	0.027
CHO*	0.082	0.028
COOH*	0.065	0.020

Fig. S4. GCN scaling relations for transition state energies (eV) of two potential ratedetermining steps. a) CH_4 first dehydrogenation; b) O_2 dissociation. The configurations of transition states are shown as insets. See data in Table S6.

Table S6. Transition state energies for potential rate-determining steps. E_TS (CH₄) represents the CH₄ first dehydrogenation reaction, and E_TS (O₂) represents the O₂ dissociative adsorption. At least two bridge sites are required to stabilize O₂ dissociative products (two O* species), so there is no data for O₂ dissociation on facets with a few adatoms (2AD@111, 2AD@100, and 3AD@111).

Facet	GCN	E_TS (CH ₄)	$E_TS(O_2)$
111	7.5	-23.54	-9.46
100	6.67	-23.87	-9.90

110	5.83	-23.84	-10.53
211	5.5	-23.88	-10.30
221	5.5	-23.81	-10.47
322	5.5	-23.86	-10.39
2AD@111	2.92	-24.00	-
2AD@100	3.58	-23.94	-
3AD@111	3.5	-24.09	-
4AD@100	4.42	-23.92	-10.67

Table S7. Brønsted-Evans-Polanyi (BEP) correlation parameters. The reactions used for developing BEPs were in the cleavage direction. C-H and O-H represent dehydrogenation reactions, while C-C and C-O represent cracking reactions. C-H abstraction by O^* and OH^* are denoted as C-H + O and C-H + OH respectively, with same notation applied to O-H abstraction.

Correlation	Slope	Intercept (kcal/mol)	Reference
C-H	1.02	24.38	13
C-0	0.84	43.01	
С-ОН	0.69	32.89	
O-H	0.86	12.88	
C-H+O	0.94	30.82	14
C-H+OH	0.68	25.3	
O-H + O	0.65	3.68	
O-H + OH	0.02	0.46	

Table S8. Summary of various models and their kinetic results. E_{app} represents the apparent activation energy in kcal/mol. 111-DFT represents the first principles-based MKM on Pt(111). The 111-BEP model replaces the activation barriers of non-RDS reactions of the 111-DFT model with BEP estimated values. The GCN-7.5 model employs the new methodology at GCN=7.5 which corresponds to Pt(111).

Model	TOF	Coverages	Rate-determining step	CH ₄	O ₂	Eapp
	(s^{-1})	(ML)		order	order	(kcal/mol)
111-DFT	1.95	O* (0.48)	CH4*+*=CH3*+H*	1	-0.1	13.9
		* (0.52)				
111-BEP	17.3	O* (0.48)	CH4*+OH*=CH3*+H2O*	1.5	0.2	10.2
		* (0.51)				
GCN-7.5	45.2	O* (0.42)	CH4*+*=CH3*+H*	1.1	0.0	10.8
		* (0.58)				

Fig. S5. Pt nanoparticles with various morphologies. Different colors represent atoms with different coordination environments (see Table S9).

Fig. S6. Pt icosahedron particles of different sizes. Different colors correspond to atoms with different coordination environments (see Table S10).

Table S9. GCN distributions for Pt nanoparticles of different shapes.

GCN	Icosahedron	Decahedron	Octahedron	Cube
3.1667				0.0408
3.3333		0.0284		
3.6667				0.1020
4.25		0.0284	0.0615	
4.3333	0.0331	0.0057		
5.0833		0.0568	0.0615	
5.25			0.1231	
5.3333		0.1136	0.0615	
5.75		0.0284		
5.833				0.2449
6	0.1657	0.0284		
6.3333	0.2486	0.1136		

6.4167		0.0568		
6.5			0.0615	
6.5833		0.1136	0.0615	
6.6667			0.0154	0.6122
6.9167			0.1231	
7		0.0568		
7.1667	0.1657	0.1136	0.1846	
7.3333	0.3315	0.1705		
7.5	0.0552	0.0852	0.2462	

Table S10. GCN distributions for icosahedron nanoparticles of different diameters.

Diameter	1.11 nm	1.66 nm	2.22 nm	2.77 nm	3.33 nm
GCN					
4.33	0.29	0.13	0.07	0.04	0.03
5.67	0.71				
6		0.65	0.37	0.24	0.17
6.33			0.19	0.24	0.25
7		0.22			
7.17			0.37	0.24	0.16
7.33				0.24	0.33
7.5					0.06

*Fig. S7. Probability density function estimated from experimental particle size reported by Lee et al*³*.*

Table S11. Estimated probability for given particle size range from the probability density function. TOF @ size denotes the TOF calculated for icosahedral nanoparticles at given diameters. The results are taken from the manuscript Fig. 5b.

Particle Size Range (nm)	Probability	TOF (s^{-1}) @ size (nm)
1.0-1.2	0.050	3.46 @ 1.11
1.5-1.7	0.193	12.8 @ 1.66
2.1-2.3	0.094	181 @ 2.22
2.6-2.8	0.023	118 @ 2.77
3.2-3.4	0.003	95 @ 3.33

References

- 1 F. Calle-Vallejo, J. I. Martínez, J. M. García-Lastra, P. Sautet and D. Loffreda, *Angew. Chem. Int. Ed.*, 2014, **53**, 8316–8319.
- 2 X. Zong and D. G. Vlachos, J. Chem. Inf. Model., 2022, 62, 4361–4368.
- 3 G. Lee, W. Zheng, K. A. Goulas, I. C. Lee and D. G. Vlachos, *Ind. Eng. Chem. Res.*, 2019, **58**, 17718–17726.
- 4 M. Niwa, K. Awano and Y. Murakami, Appl. Catal., 1983, 7, 317–325.
- 5 D. L. Trimm and C.-W. Lam, Chem. Eng. Sci., 1980, 35, 1405–1413.
- 6 Y.-F. Y. Yao, Ind. Eng. Chem. Prod. Res. Dev. 1980, 19, 293–298.
- 7 C. F. Cullis and B. M. Willatt, J. Catal., 1983, 83, 267–285.
- 8 L. Ma, D. L. Trimm and C. Jiang, Appl. Catal. A: General, 1996, 138, 275–283.
- 9 J. G. Firth and H. B. Holland, Trans. Faraday Soc., 1969, 65, 1121.
- 10R. F. Hicks, H. Qi, M. L. Young and R. G. Lee, J. Catal., 1990, 122, 280-294.
- 11 K. Otto, Langmuir, 1989, 5, 1364–1369.
- 12 Y.-H. Chin, C. Buda, M. Neurock and E. Iglesia, J. Am. Chem. Soc., 2011, 133, 15958– 15978.
- 13J. E. Sutton and D. G. Vlachos, ACS Catal., 2012, 2, 1624–1634.
- 14J. E. Sutton, P. Panagiotopoulou, X. E. Verykios and D. G. Vlachos, *J. Phys. Chem. C*, 2013, **117**, 4691–4706.