Lemniscular Carbon Nanohoops with Contiguous Conjugation from Planar Chiral [2.2]Paracyclophane: Influence of the Regioselective Synthesis on Topological Chirality

Jing He,[†] Mo-Han Yu,[‡] Zhe Lian,[†] Yan-Qing Fan,[†] Sheng-Zhu Guo,[†] Xiao-Nan Li,[†] Wen-Guang Wang,[†] Ying Wang,[†] Zhi-Yun Cheng,[§] Hua Jiang^{*,†}.

[†]College of Chemistry, Beijing Normal University, Beijing 100875 (P.R. China)
[‡]College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029 (P.R. China)
[§]School of Mathematical Sciences, Beijing Normal University, Beijing 100875 (P.R. China)

Table of Contents

1. Experimental Procedures
1.1 General Procedures and Materials
1.2 Synthetic Procedures
2. Results and Discussion
2.1 Planar chiral 4,7,12,15-tetrasubstituted [2.2]PCP10
2.2 Topological transformation10
2.3 Comparison of the ¹ H NMR spectra10
2.4 X-ray Crystallography18
2.5 Details of HPLC Experiments
2.6 Photophysical Properties
2.7 Comparison of $ g_{lum} $ of some CPL-active organic molecules24
2.8 Computational details and results25
2.9 ¹ H and ¹³ C NMR Spectra
References

1. Experimental Procedures

1.1 General Procedures and Materials.

All starting chemicals were obtained from commercial sources and used without further purification, unless indicated otherwise. Per-deuterated solvents for NMR spectroscopy were obtained from Cambridge Isotope Laboratories. Anhydrous triethylamine (TEA) was distilled over calcium hydride (CaH₂) under Ar. Anhydrous tetrahydrofuran (THF) was distilled over sodium (Na) and benzophenone under Ar. Compound 1,^{S1}, *bis-po-3*,^{S2} *bis-pm-3*,^{S3} were prepared according to the literatures. Columns for HPLC are specified in the corresponding sections. Column chromatography was carried out on flash grade silica gel, using 0 - 20 psig pressure. Analytical TLC was carried out using tapered silica plates with a preadsorbent zone. NMR spectra were obtained with JEOL Delta (400 MHz and 600 MHz) using chloroform-*d* (CDCl₃) as solvent. The chemical shift references were as follows: (¹H) chloroform-*d*, 7.26 ppm; (¹³C) chloroform-*d*, 77.00 ppm (chloroform-*d*). Mass spectra (ESI, MALDI) were acquired on GCT and FTICR spectrometer (Bruker Daltonics Inc. APEXII, BIFLEX III), respectively. Fluorescence spectra were measured on FS5 and FLS980, and UV-Vis spectra were recorded on Shimadzu UV-3600. CD spectra were gained with Chirascan-CPL, Applied Photophysics.

1.2 Synthetic Procedures

Compound *bis-po-3* (200.00 mg, 0.658 mmol), Compound 1 (1307.9 mg, 2.632 mmol), $Pd_2(dba)_3$ (60.26 mg, 0.066 mmol, 0.1 equiv), PPh₃ (69.27 mg, 0.263 mmol), CuI (25.00 mg, 0.132 mmol) were added to a dried flask. The flask was evacuated and backfilled with Ar three times. After cooling to 0°C, the dried THF (44 mL) and TEA (11 mL) was added to the reaction. The mixture was stirred for 12 h on room temperature. The reaction was quenched with water and extracted with ethyl acetate three times. The combined organic layer was washed with brine, dried with Na₂SO₄, and evaporated under reduce pressure. The crude solid was purified by column chromatography on silica gel (EA/PE, 1/6, v/v) to get *bis-po-4* as a yellow powder (406.1 mg, 35%).

$R_{f} = 0.25$ (EA/PE = 1/3, v/v). M.p. = 76-77 °C.

¹H NMR (400 MHz, CDCl₃, 298 K) δ = 7.53 (d, J = 8.3 Hz, 8H), 7.46 (d, J = 8.5 Hz, 8H), 7.41 (d, J = 8.4 Hz, 8H), 7.29 (d, J = 8.5 Hz, 8H), 7.12 (s, 4H), 6.18-6.06 (m, 16H), 3.56 (s, 4H), 3.44 (d, J = 4.5 Hz, 24H), 3.08 (s, 4H). ¹³C NMR (150 MHz, CDCl₃, 298 K), δ = 143.6, 142.5, 142.1, 134.7, 133.5, 133.4, 133.3, 131.7, 131.7, 131.6, 131.0, 128.9, 127.9, 126.2, 125.2, 123.1, 121.8, 94.5, 89.6, 77.3, 77.1, 76.9, 74.8, 74.6, 65.6, 52.1 32.8. HRMS (MALDI-TOF) calculated for C₁₀₄H₈₅Br₄O₈ [M]⁺: 1778.2967, found 1778.2982.

In a nitrogen-filled glove bag, *bis-po-4* (456 mg, 0.26 mmol), Ni(cod)₂ (352 mg, 1.3 mmol), 2,2'-bipyridyl (200 mg, 1.3 mmol) were added to a 500 mL two-necked flask containing a magnetic stirring bar and equipped with a condenser. The flask was sealed with a septum and transferred out of glove bag. After dry THF (270 mL) was added to the flask via syringe through a septum, the mixture was refluxed for 24 h. The reaction mixture was cooled down to room temperature and filtered through a short pad of silica gel with ethyl acetate/CHCl₃. The solvent was evaporated under reduce pressure to give a crude product, and then was purified by column chromatography on silica gel (PE/ EA, 5/1, v/v) to get a white solid (140.6 mg, 37%).

$R_f = 0.22$ (EA/PE = 1/2, v/v). M.p. = 232-233 °C.

¹H NMR (400 MHz, Chloroform-*d*, 298K) δ = 7.56 (d, *J* = 8.4 Hz, 8H), 7.49 (d, *J* = 8.3 Hz, 8H), 7.43 (d, *J* = 8.4 Hz, 8H), 7.36 (d, *J* = 8.3 Hz, 8H), 7.04 (s, 4H), 6.31 (dd, *J* = 10.3, 2.0 Hz, 4H), 6.18 – 6.09 (m, 12H), 3.69-3.61 (m, 4H), 3.48 (d, *J* = 7.3 Hz, 24H), 3.19-3.07 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*, 298K) δ = 143.2, 142.5, 141.8, 140.2, 135.2, 134.1, 133.0, 132.1, 131.6, 127.1, 126.7, 126.5, 124.6, 123.0, 94.5, 89.2, 77.4, 77.1, 76.8, 75.5, 75.4, 52.3, 52.1, 29.8. HRMS (MALDI-TOF) calculated for C₁₀₄H₈₄O₈ [M]⁺: 1461.6200, found 1461.6221.

A H₂SnCl₄/THF solution was freshly prepared by dissolving anhydrous SnCl₂ (521.5 mg, 2.75 mmol) in 9 ml anhydrous THF under nitrogen atmosphere and then adding concentrated HCl (aq) (0.4 ml) to the solution. The resulting solution was deoxygenated and stirred for 15 minutes before use. *Bis-po-5* (80.2 mg, 0.055 mmol) was dissolved in anhydrous THF (15 ml) under a nitrogen atmosphere and the freshly prepared H₂SnCl₄/THF solution (9.4 ml) was added to this solution. The reaction mixture was stirred at room temperature. The reaction mixture was stirred at room temperature for 36 h before being quenched with NaOH/H₂O solution. The aqueous layer was extracted with dichloromethane and the organic layers were combined and dried with anhydrous Na₂SO₄. The crude mixture was purified by column chromatography (SiO₂, DCM/ petroleum ether, 1/5) to get *bis-po-*CC as a light yellow solid (26.7 mg, 40%).

 $R_f = 0.20 \text{ (DCM/PE} = 1/2, v/v). M.p. > 300 \text{ °C}.$

¹H NMR (600 MHz, Chloroform-*d*, 298K) δ = 7.61 (m, *J* = 8.7 Hz, 4H), 7.53 (m, 20H), 7.45 (d, *J* = 8.7 Hz, 8H), 7.40 (d, *J* = 8.4 Hz, 8H), 7.37 (d, *J* = 8.4 Hz, 8H), 6.98 (s, 4H), 3.56 (m,, 4H), 3.11 – 3.01 (m, 4H). ¹³C NMR (150 MHz, Chloroform-*d*, 298K) δ = 141.6, 140.0, 139.6, 138.9, 138.2, 137.8, 136.7, 131.9, 127.7, 127.0, 123.9, 122.4, 91.9, 89.6, 34.8, 33.7. HRMS (MALDI-TOF) calculated for C₉₆H₆₀ [M]⁺: 1213.4729, found 1213.4770.

A mixture of **bis-pm-3**^{S3}(3.14 g, 4.74 mmol), Pd₂(dba)₃ (869.9 mg, 0.95 mmol), t-Bu₃P·HBF₄ (549.8 mg, 1.89 mmol), CuI (180.5 mg, 0.95 mmol), THF (65 mL) and Et₃N (65 mL) was placed in a round-bottom flask equipped with a magnetic stirring bar. After degassing the reaction mixture several times, (trimethylsilyl)acetylene (9.5 mL 68.77 mmol) was added to the mixture. The reaction was carried out at 50 °C with stirring for 17 h. After the reaction mixture was cooled to room temperature, precipitates were removed by filtration, and the solvent was removed with a rotary evaporator. The residue was purified by column chromatography on SiO₂ (CH₂Cl₂/hexane = 1/100 v/v as an eluent) to afford **bis-pm-4** as a light yellow solid (2.74 g, 83%).

R_f = 0.20 (PE). M.p. = 81-82 °C.

¹H NMR (600 MHz, Chloroform-*d*, 298K) δ = 7.00 (s, 2H), 6.78 (s, 2H), 3.38 (m, 4H), 2.93 (m, 4H), 0.31 (s, 18H).¹³C NMR (150 MHz, Chloroform-d, 298K) δ =147.9, 145.6, 136.9, 132.0, 126.1, 125.0, 121.9, 119.8, 117.7, 115.6, 113.8, 102.5, 101.0, 31.9, 29.7. HRMS (MALDI-TOF) calculated for C₂₈H₃₀F₆O₆S₂Si₂ [M]⁺: 696.0927, found 696.0923.

A mixture of *bis-pm-4* (2.74 g, 3.93 mmol), $Pd_2(dba)_3$ (720.61 mg, 0.79 mmol), dppf (871.5 mg, 1.57 mmol), CuI (149.4 mg, 0.79 mmol), THF (92 mL) and Et₃N (92 mL) was placed in a round-bottom flask equipped with a magnetic stirring bar. After degassing the reaction mixture several times, triisopropylsilylacetylene (9.0 mL, 39.3 mmol) was added to the mixture via syringe. The reaction was carried out at 80 °C for 2 d with stirring. After the reaction mixture was cooled to room temperature, precipitates were removed by filtration, and the solvent was removed with a rotary evaporator. The residue was purified by column chromatography on SiO₂ (hexane as an eluent) to afford *bis-pm-5*.

 K_2CO_3 (3.7 g, 27 mmol) was added to a suspension of *bis-pm-5* (3.93 mmol) in MeOH (1600 mL) and CH₂Cl₂ (160 mL). After the mixture was stirred for 12 h at room temperature, H₂O was added to the reaction mixture. The organic layer was extracted with CHCl₃ and washed with brine. The combined organic layer was dried over Na₂SO₄. Na₂SO₄ was removed by filtration, and the solvent was removed with a rotary evaporator. The residue was purified by column chromatography on SiO₂ (hexane as an eluent) to afford *bis-pm-6* as a white solid (2.3 g, 76% in two steps).

$R_f = 0.30$ (PE). M.p. = 76-77 °C.

¹H NMR (400 MHz, Chloroform-*d*, 298 K) δ = 7.08 (s, 2H), 7.02 (s, 2H), 3.51-3.34 (m, 4H), 3.30 (s, 2H), 3.05-2.90 (m, 4H), 1.18 (s, 42H). ¹³C NMR (100 MHz, Chloroform-*d*, 298 K) δ = 142.5, 142.2, 135.1, 134.9, 126.0, 124.1, 106.3, 96.0, 83.0, 81.9, 32.3, 32.1, 18.9, 11.6. HRMS (MALDI-TOF) calculated for C₄₂H₅₆Si₂ [M]⁺: 616.3921, found 616.3915.

Compound **bis-pm-6** (1.0 g, 1.62 mmol), compound **1** (2.0 g, 4.05 mmol), $Pd_2(dba)_3$ (148.3 mg, 0.16 mmol), PPh₃ (170.6 mg, 0.65 mmol), CuI (61.6 mg, 0.32 mmol) were added to a dried flask. The flask was evacuated and backfilled with Ar three times. After cooling to 0°C, the dried THF (64 mL) and TEA (16 mL) was added to the reaction. The mixture was stirred for 3 h on room temperature. The reaction was quenched with water and extracted with ethyl acetate three times. The combined organic layer was washed with brine, dried with sodium sulfate, and evaporated under reduce pressure. The crude product was purified by column chromatography on silica gel (EA/PE, 1/10, v/v) to get a yellow solid *bis-pm-7* (1.5 g, 68%).

$R_f = 0.23$ (EA/PE = 1/5, v/v). M.p. = 81-82 °C.

¹H NMR (600 MHz, Chloroform-*d*, 298K) δ = 7.51 (d, *J* = 8.3 Hz, 4H), 7.46 (d, *J* = 8.5 Hz, 4H), 7.39 (d, *J* = 8.2 Hz, 4H), 7.29 (d, *J* = 8.5 Hz, 4H), 7.09 (d, *J* = 17.4 Hz, 4H), 6.12 (m, 8H), 3.57-3.46 (m, 5H), 3.45 (d, *J* = 9.2 Hz, 11H), 3.10-2.99 (m, 4H), 1.20 (s, 42H). ¹³C NMR (100 MHz, Chloroform-*d*, 298K) δ = 143.6, 142.6, 142.5, 142.1, 135.3, 134.3, 133.7, 133.6, 133.5, 133.3, 131.8, 131.6, 128.0, 126.2, 125.4, 125.3, 123.1, 121.9, 106.7, 95.8, 94.5, 89.5, 74.6, 52.2, 32.8, 32.5, 19.1, 11.7. HRMS (MALDI-TOF) calculated for C₈₂H₉₀Br₂O₄Si₂ [M]⁺: 1354.4724, found 1354.4701.

In a nitrogen-filled glove bag, *bis-pm-*7 (860 mg, 0.64 mmol), Ni(cod)₂ (440 mg, 1.61 mmol), 2,2'-bipyridyl (249 mg, 1.61 mmol) were added to a 1000 mL two-necked flask containing a magnetic stirring bar and equipped with a condenser. The flask was sealed with a septum and transferred out of glove bag. After dry THF (640 mL) was added to the flask via syringe through a septum, the mixture was refluxed for 24 h. The reaction mixture was cooled down to room temperature and filtered through a short pad of silica gel with ethyl acetate/CHCl₃. The solvent was evaporated under reduce pressure to give a crude product, and then was purified by column chromatography on silica gel (PE/ EA, 5/1, v/v) to get *bis-pm-*8 as a white solid (520.4 mg, 68%).

 $R_f = 0.22$ (EA/PE = 1/5, v/v). M.p. = 166-167 °C.

¹H NMR (400 MHz, Chloroform-*d*, 298K) δ = 7.62 (d, *J* = 8.4 Hz, 4H), 7.50 (d, *J* = 8.4 Hz, 4H), 7.44 (d, *J* = 8.4 Hz, 4H), 7.38 (d, *J* = 8.4 Hz, 4H), 7.06 (s, 2H), 6.99 (s, 2H), 6.27 (m, 2H), 6.19 (m, 2H), 6.12 (m, 4H), 3.49 (d, *J* = 14.1 Hz, 16H), 3.11-2.92 (m, 4H), 1.23 (s, 42H). ¹³C NMR (100 MHz, Chloroform-*d*, 298K) δ = 143.7, 143.4, 142.5, 140.0, 135.7, 134.6, 134.2, 133.3, 132.9, 131.9, 131.3, 127.0, 126.5, 125.2, 123.0, 106.9, 96.5, 96.1, 91.2, 75.6, 75.0, 52.3, 52.1, 33.0, 32.5, 19.1, 11.7. HRMS (MALDI-TOF) calculated for C₈₂H₉₀O₄Si₂ [M]⁺: 1194.6318, found 1194.6368.

Compound *bis-pm-8* (518.4 mg, 0.43 mmol) was dissolved in THF (30 mL), followed by the addition of Bu_4NF (1.0 M THF solution, 4.3 mL). The reaction was carried out at room temperature for 30 min. H₂O was added to the reaction mixture. The organic layer was extracted three times with EA and washed with brine, and dried over Na₂SO₄. Na₂SO₄ was removed by filtration. The solvent was evaporated under reduce pressure to give a crude product. The solvent was evaporated under reduce pressure to give a crude product, and then was purified by column chromatography on silica gel (PE/EA, 5/1, v/v) to get *bis-pm-9* as a yellow solid (338 mg, 89%).

$R_f = 0.19$ (EA/PE = 1/5, v/v). M.p. = 193-194 °C.

¹H NMR (400 MHz, Chloroform-*d*, 298K) δ = 7.61 (d, *J* = 8.3 Hz, 4H), 7.49 (m, 8H), 7.40 (d, *J* = 8.3 Hz, 4H), 7.04 (s, 2H), 6.95 (s, 2H), 6.25 (m, 2H), 6.22 – 6.17 (m, 2H), 6.15 – 6.08 (m, 4H), 3.46 (m, 16H), 3.41 (s, 2H), 3.10 – 2.98 (m, 4H). ¹³C NMR (150 MHz, Chloroform-*d*, 298K) δ = 143.8, 143.7, 143.0, 142.5, 139.7, 135.3, 134.2, 134.0, 133.4, 133.1, 132.0, 131.3, 127.0, 126.9, 126.5, 125.5, 123.7, 122.6, 96.6, 90.6, 83.1, 82.7, 75.5, 74.9, 68.6, 52.2, 52.1, 33.0, 32.3, 27.8, 22.2. HRMS (MALDI-TOF) calculated for C₆₄H₅₀O₄ [M]⁺: 882.3709, found 882.3701.

Compound *bis-pm-9* (338 mg, 0.38 mmol), compound **1** (476 mg, 0.96 mmol), $Pd_2(dba)_3$ (35.1 mg, 0.038 mmol), PPh₃ (40.3 mg, 0.15 mmol), CuI (14.6 mg, 0.08 mmol) were added to a dried flask. The flask was evacuated and backfilled with Ar three times. After cooling to 0°C, the dried THF (16 mL) and TEA (4 mL) was added to the reaction. The mixture was stirred for 3 h on room temperature. The reaction was quenched with water and extracted with ethyl acetate three times. The combined organic layer was washed with brine, dried with sodium sulfate, and evaporated under reduce pressure. The crude product was purified by column chromatography on silica gel (EA/PE, 1/5, v/v) to get a yellow solid *bis-pm-10* (419.1 mg, 68%).

 $R_f = 0.21$ (EA/PE = 1/2, v/v). M.p. = 165-166 °C.

¹H NMR (400 MHz, Chloroform-*d*, 298K) δ = 7.62 (d, *J* = 8.1 Hz, 4H), 7.55 (d, *J* = 7.9 Hz, 4H), 7.53-7.45 (m, 12H), 7.41 (t, *J* = 8.1 Hz, 8H), 7.30 (d, *J* = 8.6 Hz, 4H), 7.06 (s, 2H), 6.98 (s, 2H), 6.25 (m, 2H), 6.22-6.14 (m, 3H), 6.14 – 6.08 (m, 11H), 3.59-3.51 (m, 4H), 3.49 (d, *J* = 0.7 Hz, 6H), 3.47 – 3.44 (m, 12H), 3.43 (s, 6H), 3.15-3.00 (m, 4H). ¹³C NMR (150 MHz, Chloroform-*d*, 298K) δ = 143.9, 143.6, 143.5, 142.6, 142.5, 142.4, 134.8, 134.3, 134.0, 133.6, 133.5, 133.4, 133.4, 133.1, 132.3, 131.7, 131.34, 128.0, 127.0, 127.0, 126.5, 126.3, 125.0, 124.8, 123.0, 122.9, 121.9, 96.5, 126.3, 125.0, 124.8, 123.0, 122.9, 121.9, 96.5, 126.3, 125.0, 124.8, 123.0, 122.9, 121.9, 96.5, 126.3, 125.0, 124.8, 123.0, 122.9, 121.9, 96.5, 126.3, 125.0, 124.8, 123.0, 122.9, 121.9, 96.5, 126.3, 125.0, 124.8, 123.0, 122.9, 121.9, 96.5, 126.3, 125.0, 124.8, 123.0, 122.9, 121.9, 96.5, 126.3, 125.0, 124.8, 123.0, 122.9, 121.9, 96.5, 126.3, 125.0, 124.8, 123.0, 122.9, 121.9, 96.5, 126.3, 125.0, 124.8, 123.0, 124.8, 124.0, 124

94.5, 91.1, 89.6, 75.6, 75.0, 74.8, 74.6, 52.3, 52.2, 52.1, 33.1, 33.0. HRMS (MALDI-TOF) calculated for C₁₀₄H₈₄Br₂O₈ [M]⁺: 1621.4546, found 1621.4411.

In a nitrogen-filled glove bag, *bis-pm-10* (419.1 mg, 0.26 mmol), Ni(cod)₂ (177.6 mg, 0.65 mmol), 2,2'-bipyridyl (101.0 mg, 0.65 mmol) were added to a 500 mL two-necked flask containing a magnetic stirring bar and equipped with a condenser. The flask was sealed with a septum and transferred out of glove bag. After dry THF (260 mL) was added to the flask via syringe through a septum, the mixture was refluxed for 24 h. The reaction mixture was cooled down to room temperature and filtered through a short pad of silica gel with ethyl acetate/CHCl₃. The solvent was evaporated under reduce pressure to give a crude product, and then was purified by column chromatography on silica gel (PE/ EA, 5/1, v/v) to get *bis-pm-11* as a white solid (247.0 mg, 65%).

$R_{\rm f} = 0.20 \; (EA/PE = 1/2, \, v/v). \; M.p. = 240-241 \; ^{\rm o}C.$

¹H NMR (400 MHz, Chloroform-*d*, 298K) δ = 7.63 (d, *J* = 8.4 Hz, 8H), 7.52 (d, *J* = 8.9 Hz, 16H), 7.41 (d, *J* = 8.3 Hz, 8H), 6.96 (s, 4H), 6.26 (m, 4H), 6.21 (m, 4H), 6.13 (m, 8H), 3.51 (s, 12H), 3.48 (s, 12H), 3.51 – 3.42 (m, 4H), 3.16 – 3.04 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*, 298K) δ = 144.0, 143.5, 142.5, 139.0, 134.2, 134.0, 133.4, 133.1, 132.4, 131.4, 127.0, 126.9, 126.4, 124.7, 122.9, 96.4, 91.0, 75.5, 75.0, 52.3, 52.2, 33.2, 29.8. HRMS (MALDI-TOF) calculated for C₁₀₄H₈₄O₈ [M]⁺: 1460.6166, found 1460.6153.

A H₂SnCl₄/THF solution was freshly prepared by dissolving anhydrous SnCl₂ (409 mg, 2.15 mmol) in 9 ml anhydrous THF under nitrogen atmosphere and then adding concentrated HCl (aq) (0.32 ml) to the solution. The resulting solution was deoxygenated and stirred for 15 minutes before use. *Bis-pm-***11** (63 mg, 0.043 mmol) was dissolved in anhydrous THF (8 ml) and toluene (8 ml) under a nitrogen atmosphere and the freshly prepared H₂SnCl₄/THF solution (9.3 ml) was added to this solution. The reaction mixture was stirred at room temperature. The reaction mixture was stirred at room

temperature for 17 h before being quenched with NaOH/H₂O solution. The aqueous layer was extracted with dichloromethane and the organic layers were combined and dried with anhydrous Na₂SO₄. The crude mixture was purified by column chromatography (SiO₂, DCM/ petroleum ether, 1/10) to get *bis-pm*-TC as a light yellow solid (18.8 mg, 36%).

 $R_f = 0.20 \text{ (DCM/PE} = 1/2, v/v). M.p. > 300 \text{ °C}.$

¹H NMR (400 MHz, Chloroform-*d*, 298K) δ = 7.57-7.53 (m, 22H), 7.49 (d, *J* = 8.7 Hz, 10H), 7.43 (s, 16H), 6.84 (s, 4H), 2.90-2.76 (m, 4H), 2.69-2.56 (m, 4H). 13C NMR (100 MHz, Chloroform-*d*, 298K) δ = 144.83, 140.58, 138.9, 138.2, 137.8, 137.3, 131.5, 131.5, 127.7, 127.6, 127.2, 121.9, 96.5, 93.0, 31.51, 30.3. HRMS (MALDI-TOF) calculated for C₉₆H₆₀ [M]⁺: 1213.4729, found 1213.4731.

2. Results and Discussion

2.1 Planar chiral 4,7,12,15-tetrasubstituted [2.2]PCP

Fig. S1 *R*p-and *S*p- describe the planar chirality of 4,7,12,15-tetrasubstituted [2.2]PCP.

2.2 Topological transformation

2.2.1 semi-macrocycles PCP-[n]CPP

Fig. S2 Topological transformation of semi-macrocycles including *bis-pm-8*, *bis-pm-10* and PCP-[n]CPP to be planar molecular graph, which demonstrates it is topologically achiral.

2.2.2 Rp-bis-pm-TC

Fig. S3 Topological transformation of Rp-bis-pm-TC into all topological trivial and nontrivial species.

B1 B2	I	п	ш	IV
I	\bigcirc	\bigcirc	\bigcirc	6
п	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Ш	\bigcirc	\bigcirc	\bigcirc	\bigcirc
IV	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Table S1. All topological trival and nontrival species of *Rp-bis-pm*-TC.

2.2.3 Sp-bis-pm-TC

Topological transformation of Sp-bis-pm-TC taking the transformation to be right-handed trefoil knot as an example.

Fig. S4 Topological transformation of Sp-bis-pm-TC by taking the transformation to a trefoil knot subgraph as an example.

B1 B2	Ι	II	III	IV
I	\bigcirc	\bigcirc	\bigcirc	\bigcirc
п	\bigcirc	\bigcirc	\bigcirc	\mathcal{O}
ш	\bigcirc	\bigcirc	\bigcirc	\bigcirc
IV	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Table S2. All topological trival and nontrival species of Sp-bis-pm-TC.

2.2.4 bis-po-CC

Fig. S5 Topological deformation of *bis-po-*CC.

Table S3. All topological trival and nontrival species of Sp-bis-po-CC.

B1 B2	Ι	Ш	III	IV
I	\bigcirc	\bigcirc	\bigcirc	\bigcirc
II	\bigcirc	\bigcirc	\bigcirc	\bigcirc
ш	\bigcirc	\bigcirc	\bigcirc	\bigcirc
IV	\bigcirc	\bigcirc	\bigcirc	\bigcirc

2.3 Comparison of the ¹H NMR spectra

Fig. S6 Comparison of the ¹H NMR spectra (600 MHz, CDCl₃, 298 K) of (a) bis-po-CC and (b) bis-pm-TC.

Fig. S9 ¹H–¹H COSY spectra of *bis-pm*-TC (600 MHz, CDCl₃, 298 K).

2.4 X-ray Crystallography

Crystals suitable for X-ray analysis were obtained by vapor diffusion of hexane into chloroform solution of *bis-pm*-11 and *bis-pm*-TC, respectively. Single crystal X-ray diffraction data were collected on a Rigaku Super Nova, Dual, Cu at zero, AtlasS2 diffractometer. The crystal was kept at 100.00(10) K during data collection. Using Olex2^{S4}, the structure was solved with the ShelXT^{S5} structure solution program using Direct Methods and refined with the ShelXL^{S6} refinement package using Least Squares minimization. The disordered solvent molecules were removed with the SQUEEZE routine in PLATON^{S7} and the solvent-free model was employed for the final refinement. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were positioned by geometric idealization. Details of the crystal data and a summary of the intensity data collection parametersare listed in Table S4-S5. Crystallographic data were deposited at the Cambridge Crystallographic Data Center (CCDC 2173517 for *bis-pm*-11, 2173519 for *bis-pm*-TC). The data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/structures.

Crystal Structure Data of compound bis-pm-11 (CCDC number: 2173517).

Fig. S11 Crystal structure of *bis-pm-*11 was obtained by slow diffusion of hexane into chloroform solution. (a) Crystal cell (b) ORTEP drawing. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are drawn at the 50% probability level.

	bis-pm-11
CCDC	2173517
Empirical formula	$C_{104}H_{84}O_8$
Formula weight	1461.71
Temperature/K	99.99(10)
Crystal system	triclinic
Space group	P-1
a/Å	13.7107(2)
b/Å	16.2983(3)
c/Å	21.2715(3)
$\alpha/^{\circ}$	94.4940(10)
β/°	95.4560(10)
$\gamma^{/\circ}$	112.361(2)
Volume/Å ³	4342.01(13)

Table S4. Crystal data and structure refinement for compound *bis-pm-*11.

	_
Z	2
$ ho_{calc}g/cm^3$	1.118
μ/mm^{-1}	0.545
F(000)	1544.0
Crystal size/mm ³	0.2 imes 0.05 imes 0.02
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	6.816 to 152.694
Index ranges	$\text{-}17 \le h \le 17, \text{-}20 \le k \le 20, \text{-}26 \le l \le 26$
Reflections collected	55712
Independent reflections	17529 [$R_{int} = 0.0823$, $R_{sigma} = 0.0622$]
Data/restraints/parameters	17529/0/1017
Goodness-of-fit on F ²	1.104
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0913, wR_2 = 0.2200$
Final R indexes [all data]	$R_1 = 0.1037, wR_2 = 0.2275$
Largest diff. peak/hole / e Å ⁻³	0.66/-0.41

Crystal Structure Data of compound bis-pm-TC (CCDC number: 2173519).

Fig. S12 Crystal structure of *bis-pm*-TC was obtained by slow diffusion of hexane into chloroform solution. (a) Crystal cell (b) ORTEP drawing. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are drawn at the 50% probability level.

	bis-pm-TC
CCDC	2173519
Empirical formula	C ₉₉ H ₆₀
Formula weight	1249.47
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	15.8108(10)
b/Å	27.4612(19)

Table S5. Crystal data and structure refinement for compound bis-pm-TC.

c/Å	18.3586(11)
α/°	90
β/°	104.885(7)
$\gamma/^{\circ}$	90
Volume/Å ³	7703.5(9)
Ζ	4
$\rho_{calc}g/cm^3$	1.077
μ/mm^{-1}	0.464
F(000)	2616.0
Crystal size/mm ³	0.1 imes 0.1 imes 0.1
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	6.438 to 154.418
Index ranges	$-20 \le h \le 19, -21 \le k \le 34, -21 \le l \le 23$
Reflections collected	55423
Independent reflections	15468 [$R_{int} = 0.1441$, $R_{sigma} = 0.1322$]
Data/restraints/parameters	15468/0/865
Goodness-of-fit on F ²	0.925
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0874, wR_2 = 0.2233$
Final R indexes [all data]	$R_1 = 0.1494, wR_2 = 0.2625$
Largest diff. peak/hole / e Å ⁻³	0.63/-0.26

2.5 Details of HPLC Experiments

Fig. S13 HPLC charts of the enantiomers of *bis-po-*CC.

Resolution of racemic *bis-po*-CC by HPLC. *Bis-po*-CC (10 mg) was subjected to high-pressure liquid chromatography (HPLC) (Chiralpak IB column, 4.6 mm $\Phi \times 250$ mmL) equipped with a UV-vis detector.

Single injection volume: 10μ L. Sample concentration: 1 mg/mL. Chromatography condition: DCM/Hexane (v/v, 28:72) with a flow rate of 2.0 mL/min.

Peak 1:

Assigned as R_P-bis-po-CC, retention time: 5.2 min, isolated total: 4.7 mg, 47%

Peak 2:

Assigned as S_P-bis-po-CC, retention time: 6.1 min, isolated total: 4.9 mg, 49%

Fig. S14 HPLC charts of the enantiomers of *bis-pm*-TC.

Resolution of racemic compound *bis-pm*-TC by HPLC. *Bis-pm*-TC (10 mg) was subjected to high-pressure liquid chromatography (HPLC) (Chiralpak IB column, 4.6 mm $\Phi \times 250$ mmL) equipped with a UV-vis detector. Single injection volume: 10µL. Sample concentration: 1 mg/mL. Chromatography condition: DCM/MeOH (v/v, 42:58) with a flow rate of 2.0 mL/min.

Peak 1:

Assigned as $R_{\rm P}$ -**bis-pm-TC**, retention time: 4.8 min, isolated total: 4.8 mg, 48% **Peak 2**: Assigned as $S_{\rm P}$ -**bis-pm-TC**, retention time: 5.9 min, isolated total: 4.6 mg, 46%

2.6 Photophysical Properties

Fig. S15 Emission lifetime of *bis-po*-CC and *bis-pm*-TC in CH₂Cl₂ (c = 1.0×10^{-5} M).

2.7 Comparison of $|g_{lum}|$ of some CPL-active organic molecules

Fig. S16. Representative examples of CPL-active organic molecules.

Fable S6. Comparison of the CPI	dissymmetry factors of some	e CPL-active organic molecules.
--	-----------------------------	---------------------------------

Compounds	$g_{ m lum} imes 10^3$	Ref.
1	35	Chem. Phys. Lett. 1967, 1, 129.
2	≈2.4	J. Am. Chem. Soc. 1976, 98, 2210.
3	1.4	Chem. Eur. J. 2016, 22, 2291.
4	11	J. Am. Chem. Soc. 2014, 136, 3350.
5	1.6	ChemEur. J. 2021, 27, 16225.
6	0.47	Chem. Lett. 2015, 44, 1607.
7	1.4	Chem. Asian J. 2012, 7, 2836.
8	1.5	Org. Lett. 2017, 19, 5082.
9	1.0	J. Am. Chem. Soc. 2003, 125, 11808.
10	0.14	J. Chem. Theory Comput. 2016, 12, 2799.
11	1.9	Angew. Chem. Int. Ed. 2020, 59, 7813.
12	3.2	Chem. Sci. 2020, 11, 567.
13	0.85	J. Am. Chem. Soc. 2014, 136, 3346.

_	14	3.4	Angew. Chem. Int. Ed. 2019, 58, 3943.
	15	3.7	J. Am. Chem. Soc. 2019, 141, 7421.
	16	6.5	Net Commun 2022 12 2542
16	19	Nat. Commun. 2022, 15, 5545.	

2.8 Computational details and results

All theoretical calculations were performed by the density functional theory (DFT)^{S8} and time-dependent DFT (TD DFT)^{S9} with B3LYP functional in dichloromethane.^{S10} The geometries of ground state of *bis-po-CC*, *bis-pm-TC*, *po-PCP-[6]CPP*, and *pm-PCP-[6]CPP* were optimized at the B3LYP/6-31G (d, p) level. The UV-vis curves were calculated at TD PBE0(D3BJ)/6-31G (d, p) level. The ECD curves were predicted at the TD B3LYP/6-311G (d, p) level with a key word of IOP (9/40=4). The conductor-like polarizable continuum model (CPCM) with dielectric constant of 8.93 were employed to consider the effect of the polar solvent dichloromethane. Orbital localization analyses were carried out using Multiwfn3.4. LOL- π isosurfaces for the molecules are illustrated at isovalue = 0.30. LOL- π isosurfaces for the molecules are illustrated at isovalue = 0.60. All of these calculations were performed by Gaussian09 program package.^{S11}

2.8.1 Simulated UV-vis spectra

To investigate the absorption behavior, we employed time-dependent (TD) calculations on *bis-po*-CC and *bis-pm*-TC at TD PBE0(D3BJ)/6-31G (d, p) level in dichloromethane.

TD-DFT calculation results reveal that the S₉ and S₁₁ states make the major contribution to the observed peak (λ_{abs} = 334 nm, λ_{TD-DFT} = 328.2 nm, Fig. S18) in the compound *bis-po-CC* (Table S7), which corresponds to the transitions of HOMO-2 \rightarrow LUMO+2 (Table S9). S₃ state makes the major contribution to the observed peak (λ_{abs} = 361 nm, λ_{TD-DFT} = 367 nm, Fig. S18) in the compound *bis-po-CC* (Table S8), which corresponds to the transitions of HOMO-2 \rightarrow LUMO (Table S9).

TD-DFT calculation results reveal that the S₃ and S₆ states make the major contribution to the observed peak (λ_{abs} = 338 nm, λ_{TD-DFT} = 341.2 nm, Fig. S19) in the compound *bis-pm-TC* (Table S10), which corresponds to the transitions of HOMO \rightarrow LUMO and HOMO-2 \rightarrow LUMO+1 (Table S11). The simulated UV-vis spectra depicted in Fig. S18 and Fig. S19 matches well with the experimental ones.

LUMO+2

-1.67

-1.68

-1.89

-1.74

-1.81

-5.62

-5.66

-5.88

bis-po-CC

HOMO-2

-5.68

Fig. S17 The TD B3LYP/6-311+G (d, p) predicted frontier molecular orbital and energies (eV) of bis-po-CC and bis-pm-TC in dichloromethane.

Fig. S18 Simulated UV-vis spectra of bis-po-CC in dichloromethane.

Table S7. Main contribution of individual transition to the peak of *bis-po*-TC (λ =328.2 nm)

Transition	Contribution
S_9	22.4%
S_{11}	22.2%
\mathbf{S}_7	14.6%

Table S8. Main contribution of individual transition to the peak of *bis-po*-TC (λ =367.0 nm)

Transition	Contribution	
S ₃	74.1%	

Table S9. The TD DFT calculated absorption maxima (λ_{max} , nm), oscillator strengths (*f*), and major transition in dichloromethane of *bis-po*-TC.

state	Energy	λ_{\max}	f	Description
S ₃	3.3534	370	2.22	HOMO-2→LUMO(0.488)
				HOMO-1 \rightarrow LUMO(0.34)
				HOMO-1 \rightarrow LUMO+1(0.14)
				HOMO \rightarrow LUMO+2(0.30)
S_7	3.6769	337	0.54	HOMO-3→LUMO(0.17)
				HOMO-2→LUMO+1(0.20)
				HOMO-2→LUMO+3(0.14)
				HOMO-1 \rightarrow LUMO+1(0.12)
				$HOMO \rightarrow LUMO + 1(0.42)$
				HOMO→LUMO+3(0.39)
				HOMO \rightarrow LUMO+4(0.12)

S ₉	3.7749	328	0.66	HOMO-4→LUMO(0.26)
				HOMO-3→LUMO(0.12)
				HOMO-3→LUMO+3(0.11)
				HOMO-2→LUMO+1(0.11)
				HOMO-2→LUMO+2(0.39)
				HOMO-2→LUMO+3(0.14)
				HOMO-1→LUMO+2(0.31)
				HOMO-1→LUMO+4(0.15)
				HOMO \rightarrow LUMO+2(0.15)
				HOMO \rightarrow LUMO+3(0.11)
S ₁₁	3.8132	325	0.67	HOMO-2→LUMO+1(0.22)
				HOMO-2→LUMO+2(0.37)
				HOMO-2→LUMO+3(0.24)
				HOMO-1→LUMO+4(0.36)
				HOMO \rightarrow LUMO+1(0.18)
				HOMO \rightarrow LUMO+3(0.11)

Fig. S19 Simulated UV-vis spectra of bis-pm-TC in dichloromethane.

Transition	Contribution	
S_6	23.2%	
S_3	21.6%	
S_4	15.1%	
S_{14}	12.8%	

Table S10. Main contribution of individual transition to the peak of *bis-pm*-TC (λ =341.2 nm)

_

state	Energy	$\lambda_{ m max}$	f	Description
S_3	3.3566	369	1.64	HOMO-3→LUMO (0.32)
				HOMO-2 \rightarrow LUMO+1(0.11)
				HOMO-1→LUMO+3(0.10)
				HOMO→LUMO(0.60)
S_4	3.4896	355	0.80	HOMO-2→LUMO(0.60)
				HOMO-1→LUMO+2(0.20)
				$HOMO \rightarrow LUMO + 1(0.28)$
S_6	3.6062	344	1.09	HOMO-7→LUMO(0.11)
				HOMO-3→LUMO(0.31)
				HOMO-2→LUMO+1(0.54)
				HOMO-2→LUMO+4(0.21)
S ₁₄	3.9190	316	1.00	HOMO-7→LUMO(0.10)
				HOMO-2→LUMO+1(0.13)
				HOMO-1→LUMO+3(0.55)
				HOMO \rightarrow LUMO+5(0.37)

Table S11. The TD DFT calculated absorption maxima (λ_{max} , nm), oscillator strengths (*f*), and major transition in dichloromethane of *bis-pm*-TC.

2.8.2 Simulated ECD spectra

To confirm the absolute configuration of *bis-po*-CC and *bis-pm*-TC, we calculated the ECD of *R*p- configuration of *bis-po*-CC and *bis-pm*-TC in dichloromethane by TD-DFT at B3LYP/6-311G (d, p) level. The calculated major transitions, related rotatory strengths and oscillator strengths are shown in Table S11 and Table S12. The calculated ECD curves are shown in Fig. S20. For both of them, we found similar orbital shapes and transitions. HOMO and LUMO are delocalized over the two rings, all these transitions are $\pi \rightarrow \pi^*$ transitions. The transition density of S₁ excitation is shown in Fig. S21. For *bis-po*-CC, the calculated positive rotatory strengths at 419 nm (MO318 to MO319) are associated with the experimentally observed positive cotton effect (CE) at 391 *nm*. The negative rotatory strength at 393 *nm* (MO318 to MO321) are associated with the experimentally observed negative CE at 335 *nm*. Therefore, it was considered that the short dashed line was the configuration of *R*_p.

For *bis-pm*-TC, the calculated positive rotatory strengths at 377 nm (MO316 to MO320) are associated with the experimentally observed positive cotton effect (CE) at 337 *nm*. The negative rotatory strength at 412 *nm* (MO317 to MO320) are associated with the experimentally observed negative CE at 384 *nm*. Therefore, it was considered that the short dashed line was the configuration of $R_{\rm P}$.

Fig. S20 The calculated and experimental ECD curves in dichloromethane of (a) bis-po-CC and (b) bis-pm-TC.

Table S12. The TD B3LYP/6-311G (d, p) calculated excitation energy (ΔE , eV), wavelength (λ , nm), oscillator strengths (*f*), rotatory strength in velocity form (R_{vel} , 10⁻⁴ cgs), rotatory strength in length form (R_{len} , 10⁻⁴ cgs) and major transition in of dichloromethane of *bis-po-CC*.

state	major transition	$\Delta E (\mathrm{eV})$	λ (nm)	f	$R_{\rm vel}(10^{-4}{ m cgs})$	$R_{\rm len}(10^{-4}{ m cgs})$
1	318→319(0.63462)	2.82	440	0.36	-481.0	-487.4
2	317→320(0.59744)	2.96	419	0.22	2260.5	2268.7
3	317→319(0.57086)	3.05	407	0.98	-691.2	-698.6
4	318→321(0.45314)	3.15	393	1.35	-504/1	-507.6
14	314→319(0.43813)	3.53	351	0.39	-205.9	-208.0
16	316→322(0.47339)	3.60	344	0.08	179.5	183.7
24	313→321(-0.27736)	3.85	322	0.13	-313.1	-317.3
28	317→324(0.50462)	3.91	317	0.03	182.7	185.8

Table S13. The TD B3LYP/6-311G (d, p) calculated excitation energy (ΔE , eV), wavelength (λ , nm), oscillator strengths (*f*), rotatory strength in velocity form (R_{vel} , 10⁻⁴ cgs), rotatory strength in length form (R_{len} , 10⁻⁴ cgs) and major transition in of dichloromethane of *bis-pm*-TC.

state	major transition	$\Delta E ({ m eV})$	λ (nm)	f	$R_{\rm vel}(10^{-4}{ m cgs})$	$R_{\rm len}(10^{-4}{\rm cgs})$
1	318→320(0.51613)	2.95	420	0.10	1542.5	1546.0
2	317→320(0.51228)	3.00	412	0.11	-4014.8	-4031.4
6	316→320(0.66614)	3.29	377	2.10	607.5	615.3
14	317→322(0.59531)	3.58	346	0.69	244.5	246.8
24	316→323(0.54587)	3.81	325	0.02	47.1	48.7

Fig. S21 Transition dipole moments of *bis-po*-CC and *bis-pm*-TC. For the dipole moments, the EDTM vector is in red, and the MDTM vector is in blue.

2.8.3 LOL- π isosurfaces

Fig. S22 (a) LOL- π isosurfaces (isovalue = 0.30) for (a) *bis-po*-CC, (b) semi-macrocycle *po*-PCP-[6]CPP, (c) *bis-pm*-TC and (d) semi-macrocycle *pm*-PCP-[6]CPP.

Fig. S23 (a) LOL- σ isosurfaces (isovalue = 0.60) for (a) **bis-po-CC**, (b) semi-macrocycle **po-PCP-[6]CPP**, (c) **bis-pm-TC** and (d) semi-macrocycle **pm-PCP-[6]CPP**.

2.8.4 Cartesian coordinates of optimized species.

Optimized S₀ geometry of compound *bis-po-*CC.

Center	Atomic	Atomic	Coordi	nates (Angstroms)	
Number	Number	Туре	Х	Y	Ζ
1	6	0	2.448056	1.638068	1.852517
2	6	0	2.295182	-1.486644	-1.595137
3	6	0	3.502076	2.233815	1.994157
4	6	0	3.316329	-2.121098	-1.796037
5	6	0	-1.191715	0.901957	-1.395110
6	6	0	-1.276672	-0.503655	-1.326646
7	6	0	-0.018564	1.557144	1.580985
8	6	0	-1.168068	0.795342	1.788559
9	6	0	-1.134819	-0.614295	1.849232
10	6	0	0.100128	-1.273935	1.619775

11	6	0	1.226646	0.903512	1.765147	
12	6	0	1.258188	-0.506258	1.744516	
13	6	0	0.162937	-2.658377	1.009543	
14	6	0	-0.258486	-2.673392	-0.535581	
15	6	0	-0.147009	-1.309991	-1.185093	
16	6	0	0.077377	1.513753	-1.238235	
17	6	0	1.197241	0.701990	-1.423469	
18	6	0	1.109541	-0.705287	-1.440241	
19	6	0	-0.112924	2.923240	0.933674	
20	6	0	0.224679	2.894275	-0.632184	
21	6	0	-2.388055	1.675680	-1.498467	
22	1	0	-2.262030	-0.954076	-1.254258	
23	1	0	-2.137764	1.283735	1.770361	
24	6	0	-2.349217	-1.341691	2.011878	
25	1	0	-0.489566	-3.363038	1.533805	
26	1	0	1.186082	-3.034294	1.092070	
27	1	0	-1.293957	-3.016083	-0.608082	
28	1	0	0.369420	-3.414561	-1.039036	
29	1	0	2.184823	1.153437	-1.425795	
30	1	0	0.567965	3.640796	1.401264	
31	1	0	-1.129505	3.304557	1.060349	
32	1	0	1.254819	3.233001	-0.770148	
33	1	0	-0.429078	3.623232	-1.120431	
34	6	0	-3.428638	2.289127	-1.661130	
35	6	0	-3.395978	-1.936887	2.204978	
36	1	0	2.226173	-0.995704	1.692865	
37	6	0	-4.680430	-2.514811	2.427788	
38	6	0	-4.715465	2.889269	-1.825608	
39	6	0	-5.614833	-1.838130	3.239059	
40	6	0	-6.919289	-2.298380	3.350965	
41	6	0	-7.355502	-3.445164	2.658755	
42	6	0	-5.085073	-3.714343	1.806426	
43	6	0	-6.396339	-4.165299	1.921324	
44	6	0	-8.810976	-3.720109	2.566877	
45	6	0	-9.707000	-3.376782	3.597908	
46	6	0	-11.070398	-3.242772	3.352385	
47	6	0	-11.597438	-3.430097	2.059202	
48	6	0	-9.369268	-4.114546	1.338516	
49	6	0	-10.730217	-3.970824	1.090457	
50	6	0	-12.846759	-2.766940	1.600688	
51	6	0	-13.493205	-3.111922	0.396267	
52	6	0	-14.191133	-2.158205	-0.339685	
53	6	0	-14.262414	-0.818603	0.096005	
54	6	0	-13.187970	-1.523639	2.164881	
55	6	0	-13.881483	-0.570152	1.428618	
56	6	0	-5.171989	3.334514	-3.083047	
57	6	0	-6.491936	3.740887	-3.258179	
58	6	0	-7.409835	3.718398	-2.191481	
59	6	0	-5.605205	2.952082	-0.735897	

60	6	0	-6.919700	3.356869	-0.920367
61	6	0	-8.875806	3.860877	-2.377153
62	6	0	-9.507647	3.372401	-3.536541
63	6	0	-10.871434	3.092545	-3.550610
64	6	0	-11.660959	3.265658	-2.396913
65	6	0	-9.710880	4.256753	-1.316545
66	6	0	-11.068970	3.961002	-1.323875
67	6	0	-12.879397	2.452135	-2.139717
68	6	0	-12.971171	1.179238	-2.733562
69	6	0	-13.647396	0.141663	-2.103808
70	6	0	-14.260951	0.329752	-0.850592
71	6	0	-13.749465	2.704284	-1.058643
72	6	0	-14.428155	1.664828	-0.427869
73	6	0	4.792737	2.823270	2.165548
74	6	0	4.571796	-2.757723	-2.043482
75	1	0	-5.318233	-0.922462	3.739963
76	1	0	-7.633478	-1.715362	3.923023
77	1	0	-4.373058	-4.269505	1.204355
78	1	0	-6.686047	-5.076755	1.407284
79	1	0	-9.325952	-3.152641	4.589937
80	1	0	-11.718124	-2.911893	4.158713
81	1	0	-8.718917	-4.408824	0.520829
82	1	0	-11.093096	-4.147021	0.083340
83	1	0	-13 360926	-4 104151	-0.025257
84	1	0	-14 579699	-2.433822	-1 315715
85	1	0	-12 757235	-1 224685	3 114710
86	1	0	-13 958016	0.433316	1 833473
87	1	0	-4 493687	3 323526	-3 930041
88	1	0	-6.818958	4 051802	-4 245717
89	1	0	-5 271152	2 627038	0 243969
90	1	0	-7 598769	3 315338	-0.075848
01	1	0	-8.011816	3.000660	-0.073848
02	1	0	-11 208076	2 635903	-4.402142
92	1	0	-0.281/8/	2.033903	-4.437871
93	1	0	-9.201404	4.161642	0.427048
94	1	0	-11.045510	4.101042	-0.427048
95	1	0	-12.505454	0.939304	-3.399303
90	1	0	-13.332007	-0.8533330	-2.505785
97	1	0	-13.814411	3.701824	-0.034282
98	1	0	-14.990982	1.005511	0.471255
99	0	0	5.139448	-2.740202	-3.334437
100	6	0	6.438421	-3.194545	-3.542675
101	6	0	1.229931	-3.661985	-2.4/6184
102	6	0	6.620544	-3.765274	-1.210599
103	6	0	5.319562	-3.325925	-0.994068
104	6	0	8.699300	-3.831263	-2.601429
105	6	0	9.444148	-4.671355	-1./5140/
106	6	0	10.819429	-4.511075	-1.603843
107	6	0	11.511516	-3.491990	-2.288269
108	6	0	10.796360	-2.796541	-3.281906

109	6	0	9.425044	-2.962481	-3.435496
110	6	0	12.774929	-2.896163	-1.778760
111	6	0	13.007555	-2.898943	-0.390982
112	6	0	13.734943	-1.880647	0.214198
113	6	0	14.284022	-0.987553	-1.941123
114	6	0	13.556326	-2.008408	-2.546814
115	6	0	14.257299	-0.813915	-0.542164
116	6	0	5.435217	2.792038	3.420616
117	6	0	6.760096	3.191857	3.549925
118	6	0	7.503789	3.628277	2.436916
119	6	0	6.824582	3.752896	1.209354
120	6	0	5.497564	3.362275	1.071884
121	6	0	8.983197	3.743744	2.474556
122	6	0	9.724982	2.850645	3.267892
123	6	0	11.078112	2.635115	3.035117
124	6	0	11.758386	3.302367	1.998525
125	6	0	11.064326	4.344680	1.352049
126	6	0	9.706715	4.554838	1.579177
127	6	0	12.967791	2.660960	1.418115
128	6	0	13.758343	1.743919	2.141191
129	6	0	14.412525	0.697822	1.496202
130	6	0	14.300443	0.527136	0.101108
131	6	0	13.776028	1.613568	-0.625160
132	6	0	13.121985	2.657175	0.019405
133	1	0	4.564637	-2.348626	-4.164477
134	1	0	6.855966	-3.147667	-4.543560
135	1	0	7.200820	-4.117157	-0.363945
136	1	0	4.895208	-3.362991	0.003955
137	1	0	8.935661	-5.421138	-1.152352
138	1	0	11.344158	-5.136981	-0.888218
139	1	0	11.285789	-2.010876	-3.847461
140	1	0	8.898317	-2.308232	-4.122668
141	1	0	12.471473	-3.593974	0.246708
142	1	0	13.730201	-1.821748	1.297457
143	1	0	14.777902	-0.252791	-2.570515
144	1	0	13.510104	-2.043860	-3.631302
145	1	0	4.896288	2.417231	4.284639
146	1	0	7.234022	3.131116	4.524605
147	1	0	7.366022	4.082454	0.328641
148	1	0	5.016338	3.414271	0.100684
149	1	0	9.216415	2.217128	3.987408
150	1	0	11.571396	1.834048	3.575184
151	1	0	11.568335	4.950392	0.604867
152	1	0	9.191363	5.321695	1.008265
153	1	0	13.775222	1.779662	3.226475
154	1	0	14.913980	-0.055279	2.097245
155	1	0	13.708561	1.556649	-1.706447
156	1	0	12.577210	3.372453	-0.587765

Optimized S₀ geometry of compound *bis-pm*-TC.

Center	Atomic	Atomic	Coord	inates (Angstroms)	
Number	Number	Туре	Х	Υ	Ζ
1	6	0	-3.777905	-3.838395	-1.950557
2	6	0	-4.241171	-4.759079	-0.990036
3	6	0	-5.565981	-5.188145	-1.003479
4	6	0	-6.478552	-4.716299	-1.966986
5	6	0	-4.649482	-3.478785	-2.999557
6	6	0	-5.968101	-3.910417	-3.003542
7	1	0	-3.575924	-5.085888	-0.197325
8	1	0	-5.907430	-5.857567	-0.219843
9	1	0	-4.302415	-2.793551	-3.765851
10	1	0	-6.637371	-3.531877	-3.768810
11	6	0	-6.477801	4.716279	1.967000
12	6	0	-5.565217	5.187907	1.003398
13	6	0	-5.967422	3.910341	3.003547
14	6	0	-4.648889	3.478445	2.999466
15	6	0	-3.777334	3.837830	1.950372
16	6	0	-4.240497	4.758570	0.989854
17	1	0	-3.575258	5.085195	0.197061
18	1	0	-5.906601	5.857356	0.219757
19	1	0	-6.636701	3.531962	3.768886
20	1	0	-4.301895	2.793169	3.765756
21	6	0	-7.950869	-4.812964	-1.796334
22	6	0	-8.502168	-4.742151	-0.504623
23	6	0	-9.824799	-4.359207	-0.308684
24	6	0	-10.656608	-4.027400	-1.394664
25	6	0	-8.843409	-4.696003	-2.880071
26	6	0	-10.167405	-4.313696	-2.684100
27	6	0	-11.973233	-2.023648	-2.041526
28	6	0	-12.568799	-0.840268	-1.620572
29	6	0	-11.795489	-3.102596	-1.156023
30	6	0	-12.478790	-3.032397	0.073897
31	6	0	-13.082468	-1.849362	0.492141
32	6	0	-13.017964	-0.681870	-0.295894
33	1	0	-7.858943	-4.848130	0.362962
34	1	0	-10.165935	-4.174496	0.704706
35	1	0	-8.482270	-4.837073	-3.894444
36	1	0	-10.803790	-4.159511	-3.550584
37	1	0	-11.496891	-2.042887	-3.016307
38	1	0	-12.530460	0.016264	-2.285134
39	1	0	-12.460590	-3.880457	0.752398
40	1	0	-13.520146	-1.810735	1.485144
41	6	0	-13.082274	1.850335	-0.491652
42	6	0	-12.478419	3.033294	-0.073451

43	6	0	-12.568588	0.841181	1.621028
44	6	0	-11.972849	2.024488	2.041941
45	6	0	-11.795025	3.103410	1.156422
46	6	0	-10.655999	4.028057	1.394974
47	6	0	-9.824215	4.359723	0.308933
48	6	0	-10.166666	4.314300	2.684372
49	6	0	-8.842598	4.696406	2.880248
50	6	0	-7.950112	4.813203	1.796449
51	6	0	-8.501510	4.742460	0.504775
52	1	0	-7.858325	4.848314	-0.362855
53	1	0	-12.460151	3.881348	-0.751959
54	1	0	-12.530310	-0.015355	2.285589
55	1	0	-10.165448	4.175046	-0.704431
56	1	0	-10.803016	4.160226	3.550902
57	1	0	-8.481369	4.837434	3.894594
58	1	0	-11.496438	2.043669	3.016689
59	6	0	-1.654885	2.293650	1.712364
60	6	0	-2.551145	3.115623	1.809057
61	6	0	-1.655081	-2.294707	-1.712736
62	6	0	-2.551531	-3.116480	-1.809349
63	6	0	3.777869	-3.838552	1.950291
64	6	0	4.241204	-4.759285	0.989851
65	6	0	5.566011	-5.188352	1.003414
66	6	0	6.478513	-4.716460	1.966963
67	6	0	4.649367	-3.478899	2.999342
68	6	0	5.967984	-3.910537	3.003448
69	1	0	3.576019	-5.086114	0.197096
70	1	0	5.907518	-5.857804	0.219829
71	1	0	4.302245	-2.793623	3.765574
72	1	0	6.637199	-3.531956	3.768745
73	6	0	6.477847	4.716399	-1.966946
74	6	0	5.565216	5.187963	-1.003357
75	6	0	5.967516	3.910539	-3.003575
76	6	0	4.648982	3.478646	-2.999590
77	6	0	3.777378	3.837951	-1.950510
78	6	0	4.240496	4.758623	-0.989905
79	1	0	3.575221	5.085184	-0.197115
80	1	0	5.906563	5.857356	-0.219652
81	1	0	6.636832	3.532212	-3.768908
82	1	0	4.302025	2.793423	-3.765944
83	6	0	1.654958	2.293712	-1.712654
84	6	0	2.551198	3.115713	-1.809283
85	6	0	0.804085	-1.151745	1.610358
86	6	0	-0.599164	-1.246683	1.569572
87	6	0	1.407212	-0.120261	-1.406352
88	6	0	0.599221	-1.246620	-1.570007
89	6	0	-0.804024	-1.151680	-1.610797
90	6	0	-1.407316	0.119236	-1.406203
91	6	0	0.803901	1.150680	-1.610735

92	6	0	-0.599344	1.245616	-1.569805
93	6	0	-2.772970	0.245474	-0.760228
94	6	0	-2.772875	-0.246601	0.760154
95	6	0	-1.407152	-0.120314	1.405975
96	6	0	1.407378	0.119181	1.405830
97	6	0	0.599405	1.245553	1.569485
98	6	0	-0.803837	1.150616	1.610419
99	6	0	2.772934	-0.246578	-0.760540
100	6	0	2.773030	0.245447	0.759861
101	1	0	-1.049338	-2.234138	1.527172
102	1	0	1.049391	-2.234079	-1.527645
103	1	0	-1.049514	2.233068	-1.527308
104	1	0	-3.536213	-0.332513	-1.289825
105	1	0	-3.077351	1.294684	-0.785027
106	1	0	-3.536073	0.331367	1.289835
107	1	0	-3.077223	-1.295820	0.784993
108	1	0	1.049572	2.233009	1.527008
109	1	0	3.536134	0.331408	-1.290195
110	1	0	3.077281	-1.295798	-0.785413
111	1	0	3.077411	1.294657	0.784692
112	1	0	3.536276	-0.332558	1.289432
113	6	0	1.655147	-2.294775	1.712221
114	6	0	2.551534	-3.116607	1.808917
115	6	0	7.950843	-4.813104	1.796398
116	6	0	8.502208	-4.742299	0.504712
117	6	0	9.824836	-4.359316	0.308834
118	6	0	10.656578	-4.027470	1.394854
119	6	0	8.843324	-4.696102	2.880178
120	6	0	10.167322	-4.313766	2.684268
121	6	0	11.973097	-2.023674	2.041762
122	6	0	12.568653	-0.840278	1.620837
123	6	0	11.795439	-3.102629	1.156256
124	6	0	12.478797	-3.032414	-0.073634
125	6	0	13.082460	-1.849362	-0.491851
126	6	0	13.017886	-0.681873	0.296187
127	1	0	7.859029	-4.848303	-0.362903
128	1	0	10.166024	-4.174609	-0.704540
129	1	0	8.482140	-4.837170	3.894535
130	1	0	10.803660	-4.159546	3.550781
131	1	0	11.496682	-2.042916	3.016509
132	1	0	12.530231	0.016262	2.285385
133	1	0	12.460672	-3.880492	-0.752116
134	1	0	13.520219	-1.810720	-1.484818
135	6	0	13.082193	1.850331	0.491981
136	6	0	12.478358	3.033299	0.073775
137	6	0	13.017797	0.682842	-0.296072
138	6	0	12.568558	0.841200	-1.620726
139	6	0	11.972841	2.024519	-2.041644
140	6	0	11.795007	3.103433	-1.156122

141	6	0	10.656001	4.028099	-1.394708
142	6	0	9.824158	4.359727	-0.308698
143	6	0	10.166748	4.314405	-2.684122
144	6	0	8.842696	4.696541	-2.880058
145	6	0	7.950149	4.813299	-1.796306
146	6	0	8.501469	4.742483	-0.504602
147	1	0	7.858232	4.848300	0.362993
148	1	0	13.519941	1.811736	1.484954
149	1	0	12.460098	3.881361	0.752272
150	1	0	12.530262	-0.015337	-2.285285
151	1	0	10.165335	4.175001	0.704676
152	1	0	10.803148	4.160358	-3.550620
153	1	0	8.481529	4.837621	-3.894419
154	1	0	11.496433	2.043703	-3.016395
155	6	0	-13.017861	0.682836	0.296381
156	1	0	-13.520020	1.811759	-1.484627

2.8.5 Cartesian coordinates of optimized species of LOL- isosurfaces.

Optimized S₀ geometry of compound *bis-po-*CC.

Center	Atomic	Atomic	Coordin	ates (Angstroms)	
Number	Number	Туре	Х	Y	Ζ
1	6	0	2.449218	-1.666704	-1.84380
2	6	0	2.284917	1.492668	1.568694
3	6	0	3.501193	-2.268668	-1.96890
4	6	0	3.302051	2.135974	1.758480
5	6	0	-1.192554	-0.912290	1.378106
6	6	0	-1.282633	0.492413	1.302844
7	6	0	-0.017862	-1.574097	-1.59088
8	6	0	-1.163786	-0.808903	-1.80348
9	6	0	-1.125797	0.600043	-1.86935
10	6	0	0.111405	1.254673	-1.64099
11	6	0	1.230562	-0.927053	-1.77210
12	6	0	1.266835	0.482357	-1.75755
13	6	0	0.175628	2.640605	-1.03324
14	6	0	-0.268493	2.661637	0.504715
15	6	0	-0.155688	1.302194	1.163192
16	6	0	0.079741	-1.518473	1.230058
17	6	0	1.195873	-0.701589	1.413192
18	6	0	1.102940	0.705130	1.422974
19	6	0	-0.117473	-2.936301	-0.93527
20	6	0	0.232196	-2.900383	0.627200
21	6	0	-2.386178	-1.689798	1.47176

22	1	0	-2.270654	0.936339	1.219602
23	1	0	-2.136598	-1.291947	-1.779520
24	6	0	-2.337172	1.332170	-2.027759
25	1	0	-0.462972	3.349973	-1.570378
26	1	0	1.204281	3.007967	-1.099362
27	1	0	-1.309374	2.995006	0.558302
28	1	0	0.345582	3.411790	1.014167
29	1	0	2.186771	-1.146952	1.414361
30	1	0	0.554321	-3.662498	-1.405073
31	1	0	-1.139414	-3.310221	-1.050023
32	1	0	1.267488	-3.230641	0.756200
33	1	0	-0.412296	-3.633564	1.123717
34	6	0	-3.426070	-2.305895	1.624937
35	6	0	-3.380120	1.936143	-2.211337
36	1	0	2.237716	0.966363	-1.698881
37	6	0	-4.662860	2.519683	-2.423806
38	6	0	-4.716139	-2.900776	1.773738
39	6	0	-5.607854	1.848312	-3.226311
40	6	0	-6.911291	2.313483	-3.326498
41	6	0	-7.337445	3.461471	-2.631342
42	6	0	-5.058514	3.720535	-1.800366
43	6	0	-6.368654	4.176747	-1.903274
44	6	0	-8.790661	3.740198	-2.524861
45	6	0	-9.695593	3.428030	-3.557327
46	6	0	-11.058092	3.296455	-3.306308
47	6	0	-11.576319	3.455610	-2.006502
48	6	0	-9.338940	4.104854	-1.283693
49	6	0	-10.698798	3.963695	-1.030567
50	6	0	-12.826691	2.791700	-1.554139
51	6	0	-13.478842	3.131344	-0.351896
52	6	0	-14.179529	2.174933	0.377423
53	6	0	-14.248360	0.837074	-0.062261
54	6	0	-13.162629	1.549666	-2.122035
55	6	0	-13.858698	0.593539	-1.392368
56	6	0	-5.154608	-3.439524	3.000105
57	6	0	-6.475746	-3.845248	3.168925
58	6	0	-7.412144	-3.733036	2.125465
59	6	0	-5.628913	-2.864983	0.702608
60	6	0	-6.943064	-3.272047	0.879547
61	6	0	-8.875843	-3.884607	2.317160
62	6	0	-9.502284	-3.434532	3.493942
63	6	0	-10.865562	-3.153261	3.522171
64	6	0	-11.659758	-3.287792	2.367373
65	6	0	-9.715393	-4.244174	1.248178
66	6	0	-11.072734	-3.947907	1.270577
67	6	0	-12 874078	-2.461777	2.134896
68	6	0	-12 936738	-1.190014	2.732823
69	6	0	-13 609620	-0 141290	2.118989
70	6	0	-14 249282	-0 315833	0.877873
10	0	0		0.010000	0.0,7070

	-	2			1 0 60 1 0 1	_
71	6	0	-13.766588	-2.697478	1.069194	
72	6	0	-14.441745	-1.646675	0.454191	
73	6	0	4.791593	-2.860863	-2.125985	
74	6	0	4.554715	2.779468	1.997875	
75	1	0	-5.316772	0.931066	-3.728853	
76	1	0	-7.636154	1.732341	-3.888525	
77	1	0	-4.337369	4.272279	-1.204814	
78	1	0	-6.652209	5.090685	-1.388329	
79	1	0	-9.319864	3.228849	-4.557601	
80	1	0	-11.715867	2.991084	-4.115823	
81	1	0	-8.678659	4.367753	-0.462286	
82	1	0	-11.054899	4.109145	-0.015442	
83	1	0	-13.349191	4.124345	0.070886	
84	1	0	-14.575375	2.445267	1.353000	
85	1	0	-12.719348	1.253360	-3.067706	
86	1	0	-13.926100	-0.411802	-1.795994	
87	1	0	-4.458200	-3.500860	3.830896	
88	1	0	-6.790325	-4.231801	4.134693	
89	1	0	-5.309155	-2.459662	-0.252430	
90	1	0	-7.642123	-3.152161	0.058127	
91	1	0	-8.898798	-3.188094	4.363200	
92	1	0	-11.291846	-2.723553	4.424546	
93	1	0	-9.285708	-4.677673	0.349357	
94	1	0	-11.654144	-4.112197	0.368640	
95	1	0	-12.302242	-0.962204	3.583252	
96	1	0	-13.467141	0.859499	2.514061	
97	1	0	-13.852480	-3.694720	0.645469	
98	1	0	-15.031729	-1.851806	-0.435482	
99	6	0	5.111086	2.809441	3.292952	
100	6	0	6 408609	3 262774	3 498756	
101	6	0	7 209959	3 697172	2.426617	
102	6	0	6 612359	3 759643	1 153637	
102	6	0	5 313698	3 313415	0.939362	
105	6	0	8 678041	3 868631	2 556674	
104	6	0	0.075803	4 708628	1 710139	
105	6	0	10 801455	4.708028	1.710139	
100	6	0	11 /01510	3 530088	2 253002	
107	6	0	10.772524	2 822520	2.233002	
108	0	0	0.401010	2.033339	3.242003	
109	0	0	9.401019	2.999343	1 749292	
110	0	0	12./34940	2.931733	1.740303	
111	6	0	12.9/3240	2.902941	0.339460	
112	6	0	15.702555	1.8/0943	-0.229489	
113	6	0	14.2/9644	1.038574	1.938469	
114	6	0	13.549943	2.067156	2.52/91/	
115	6	0	14.242007	0.832950	0.544624	
116	6	0	5.429596	-2.871705	-3.383166	
117	6	0	6.755312	-3.271083	-3.503957	
118	6	0	7.504392	-3.668274	-2.380868	
119	6	0	6.830366	-3.752031	-1.147902	

120	6	0	5.503352	-3.359786	-1.018664
121	6	0	8.983538	-3.779202	-2.416943
122	6	0	9.721591	-2.882920	-3.208705
123	6	0	11.073204	-2.661011	-2.974922
124	6	0	11.756547	-3.325250	-1.939491
125	6	0	11.066612	-4.369680	-1.293394
126	6	0	9.710301	-4.585832	-1.521068
127	6	0	12.961128	-2.675719	-1.359846
128	6	0	13.765989	-1.778617	-2.091088
129	6	0	14.417014	-0.722295	-1.460159
130	6	0	14.287807	-0.520214	-0.071262
131	6	0	13.745216	-1.586224	0.670109
132	6	0	13.094485	-2.639899	0.039623
133	1	0	4.525996	2.437502	4.128449
134	1	0	6.819758	3.248505	4.504355
135	1	0	7.204750	4.080293	0.301928
136	1	0	4.898326	3.314672	-0.063810
137	1	0	8.916456	5.459368	1.111551
138	1	0	11.331597	5.175592	0.855015
139	1	0	11.260953	2.042736	3.802605
140	1	0	8.868318	2.340973	4.071045
141	1	0	12.418032	3.575282	-0.287249
142	1	0	13.681614	1.787159	-1.311093
143	1	0	14.787759	0.320955	2.577747
144	1	0	13.513094	2.130009	3.612402
145	1	0	4.883734	-2.527008	-4.256069
146	1	0	7.228365	-3.243099	-4.481649
147	1	0	7.380267	-4.045600	-0.258727
148	1	0	5.025568	-3.375422	-0.043799
149	1	0	9.206339	-2.248470	-3.923796
150	1	0	11.563368	-1.852874	-3.508634
151	1	0	11.576106	-4.973151	-0.546774
152	1	0	9.195256	-5.355395	-0.951898
153	1	0	13.797333	-1.841534	-3.175728
154	1	0	14.933262	0.015931	-2.068694
155	1	0	13.656565	-1.499110	1.748504
156	1	0	12.529350	-3.334951	0.652830

Optimized S₀ geometry of compound *bis-pm*-TC.

Cer	nter	Atomic	Atomic	Coord	linates (Angstroms)	
Nu	mber	Number	Туре	Х	Y	Ζ
1		6	0	-3.772440	3.842476	1.932816

2	6	0	-4.231528	4.771537	0.978970	
3	6	0	-5.556154	5.200833	0.988914	
4	6	0	-6.473855	4.722742	1.943414	
5	6	0	-4.650426	3.475235	2.973263	
6	6	0	-5.968592	3.907348	2.974195	
7	1	0	-3.560015	5.104386	0.193130	
8	1	0	-5.895581	5.878639	0.210317	
9	1	0	-4.305166	2.781928	3.733935	
10	1	0	-6.645402	3.519912	3.729462	
11	6	0	-6.474403	-4.722783	-1.943522	
12	6	0	-5.556823	-5.201032	-0.988983	
13	6	0	-5.968966	-3.907429	-2.974249	
14	6	0	-4.650741	-3.475496	-2.973224	
15	6	0	-3.772866	-3.842892	-1.932739	
16	6	0	-4.232138	-4.771923	-0.978951	
17	1	0	-3.560716	-5.104890	-0.193082	
18	1	0	-5.896387	-5.878817	-0.210428	
19	1	0	-6.645678	-3.519875	-3.729543	
20	1	0	-4.305342	-2.782212	-3.733854	
21	6	0	-7.944964	4.819673	1.767828	
22	6	0	-8.492140	4.724928	0.476720	
23	6	0	-9.814772	4.341932	0.283270	
24	6	0	-10.651759	4.033725	1.371196	
25	6	0	-8.841647	4.724415	2.849608	
26	6	0	-10.165712	4.341875	2.656118	
27	6	0	-11.952051	2.025976	2.027878	
28	6	0	-12.548143	0.841237	1.612914	
29	6	0	-11.790526	3.107074	1.143220	
30	6	0	-12.488366	3.035106	-0.077815	
31	6	0	-13.093144	1.850687	-0.489686	
32	6	0	-13.014989	0.682633	0.295322	
33	1	0	-7.841871	4.807176	-0.389128	
34	1	0	-10.152909	4.131909	-0.726928	
35	1	0	-8.481252	4.885431	3.862200	
36	1	0	-10.808393	4.205689	3.522083	
37	1	0	-11.456362	2.045041	2.993741	
38	1	0	-12.491754	-0.019717	2.271538	
39	1	0	-12.481639	3.886531	-0.753712	
40	1	0	-13.545783	1.809595	-1.476861	
41	6	0	-13.093421	-1.849819	0.489236	
42	6	0	-12.488784	-3.034321	0.077392	
43	6	0	-12.548175	-0.840439	-1.613335	
44	6	0	-11.952223	-2.025258	-2.028270	
45	6	0	-11.790891	-3.106380	-1.143607	
46	6	0	-10.652243	-4.033188	-1.371530	
47	6	0	-9.815360	-4.341529	-0.283561	
48	6	0	-10.166165	-4.341387	-2.656429	
49	6	0	-8.842142	-4.724110	-2.849849	
50	6	0	-7.945535	-4.819513	-1.768019	

51	6	0	-8.492772	-4.724711	-0.476941	
52	1	0	-7.842564	-4.807061	0.388943	
53	1	0	-12.482208	-3.885748	0.753287	
54	1	0	-12.491635	0.020510	-2.271954	
55	1	0	-10.153525	-4.131472	0.726621	
56	1	0	-10.808777	-4.205093	-3.522429	
57	1	0	-8.481713	-4.885157	-3.862423	
58	1	0	-11.456487	-2.044390	-2.994108	
59	6	0	-1.654690	-2.295007	-1.704647	
60	6	0	-2.546403	-3.122085	-1.794062	
61	6	0	-1.654460	2.294296	1.704901	
62	6	0	-2.546068	3.121495	1.794240	
63	6	0	3.772550	3.842215	-1.932992	
64	6	0	4.231706	4.771465	-0.979362	
65	6	0	5.556331	5.200760	-0.989484	
66	6	0	6.473964	4.722487	-1.943959	
67	6	0	4.650462	3.474773	-2.973429	
68	6	0	5.968628	3.906888	-2.974542	
69	1	0	3.560251	5.104462	-0.193535	
70	1	0	5.895814	5.878713	-0.211041	
71	1	0	4.305151	2.781311	-3.733937	
72	1	0	6.645386	3.519297	-3.729776	
73	6	0	6.474322	-4.722546	1.943944	
74	6	0	5.556738	-5.200892	0.989456	
75	6	0	5.968879	-3.907137	2.974624	
76	6	0	4.650637	-3.475253	2.973599	
77	6	0	3.772753	-3.842752	1.933158	
78	6	0	4.232038	-4.771830	0.979422	
79	1	0	3.560603	-5.104894	0.193605	
80	1	0	5.896306	-5.878733	0.210952	
81	1	0	6.645589	-3.519516	3.729886	
82	1	0	4.305224	-2.781944	3.734201	
83	6	0	1.654432	-2.295060	1.705078	
84	6	0	2.546223	-3.122053	1.794501	
85	6	0	0.804292	1.150841	-1.608770	
86	6	0	-0.598757	1.245313	-1.568476	
87	6	0	1.407002	0.119349	1.406624	
88	6	0	0.598772	1.245336	1.568708	
89	6	0	-0.804283	1.150970	1.609012	
90	6	0	-1.407029	-0.120138	1.406674	
91	6	0	0.804262	-1.151738	1.609104	
92	6	0	-0.598794	-1.246108	1.568847	
93	6	0	-2.772911	-0.246353	0.760376	
94	6	0	-2.772925	0.245677	-0.759992	
95	6	0	-1.407072	0.119394	-1.406340	
96	6	0	1.406943	-0.120301	-1.406375	
97	6	0	0.598624	-1.246218	-1.568495	
98	6	0	-0.804426	-1.151747	-1.608757	
99	6	0	2.772868	0.245493	0.760278	

100	(0	2 772010	0.046507	0.7(0075	
100	6	0	2.772818	-0.246587	-0.760075	
101	1	0	-1.04/55/	2.233768	-1.521568	
102	l	0	1.04/645	2.233756	1.521755	
103	l	0	-1.047669	-2.234532	1.522005	
104	l	0	-3.537377	0.331523	1.290204	
105	1	0	-3.077627	-1.296551	0.783124	
106	1	0	-3.537442	-0.332152	-1.289795	
107	1	0	-3.077582	1.295893	-0.782722	
108	1	0	1.047424	-2.234673	-1.521600	
109	1	0	3.537333	-0.332386	1.290104	
110	1	0	3.077617	1.295682	0.782977	
111	1	0	3.077463	-1.296807	-0.782787	
112	1	0	3.537324	0.331218	-1.289922	
113	6	0	1.654550	2.294104	-1.704690	
114	6	0	2.546200	3.121244	-1.794167	
115	6	0	7.945083	4.819440	-1.768481	
116	6	0	8.492333	4.724923	-0.477389	
117	6	0	9.814969	4.341938	-0.283948	
118	6	0	10.651889	4.033524	-1.371867	
119	6	0	8.841701	4.723976	-2.850297	
120	6	0	10.165773	4.341453	-2.656816	
121	6	0	11.952118	2.025659	-2.028299	
122	6	0	12.548188	0.840962	-1.613183	
123	6	0	11.790642	3.106884	-1.143789	
124	6	0	12.488502	3.035068	0.077243	
125	6	0	13.093248	1.850686	0.489270	
126	6	0	13.015045	0.682525	-0.295576	
127	1	0	7.842116	4.807335	0.388482	
128	1	0	10.153162	4.132087	0.726268	
129	1	0	8.481249	4.884811	-3.862897	
130	1	0	10.808400	4.205094	-3.522794	
131	1	ů 0	11 456410	2 044604	-2 994155	
132	1	0 0	12 491764	-0.020082	-2 271687	
132	1	0 0	12.491704	3 886585	0.753023	
134	1	0	13 545901	1 800717	1 476444	
135	6	0	13.093/22	-1 8/10050	-0.489156	
136	6	0	12.488752	-3.03/38/	-0.439150	
127	6	0	12.400752	-5.054584	-0.077100	
137	0	0	13.013089	-0.081802	0.293090	
138	0	0	12.348182	-0.840288	1.015280	
139	0	0	11.952197	-2.023040	2.028302	
140	6	0	11./90845	-3.106270	1.143834	
141	6	0	10.652172	-4.033024	1.371862	
142	6	0	9.815280	-4.341464	0.283927	
143	6	0	10.166094	-4.341083	2.656794	
144	6	0	8.842069	-4.723774	2.850257	
145	6	0	7.945455	-4.819276	1.768441	
146	6	0	8.492687	-4.724608	0.477351	
147	1	0	7.842477	-4.807048	-0.388523	
148	1	0	13.546115	-1.808936	-1.476309	

149	1	0	12.482163	-3.885898	-0.752952	
150	1	0	12.491654	0.020746	2.271788	
151	1	0	10.153445	-4.131520	-0.726278	
152	1	0	10.808713	-4.204719	3.522777	
153	1	0	8.481644	-4.884727	3.862848	
154	1	0	11.456451	-2.044035	2.994197	
155	6	0	-13.015066	-0.681774	-0.295767	
156	1	0	-13.546107	-1.808668	1.476387	

Optimized S₀ geometry of compound *po*-PCP-[6]CPP.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
			5 410197	1 594779	0.002050
1	6	0	5.419187	-1.384//8	-0.902950
2	6	0	-0.801567	-4.403611	-0.104258
3	6	0	5.359094	-0.400/15	-1.666/03
4	l	0	4.3/924/	-0.010832	-1.928844
5	6	0	4.213451	-2.286364	-0.603/36
6	6	0	1.885754	-3.499686	-0.320520
7	6	0	3.171894	-2.892628	-0.422956
8	6	0	-2.267507	-4.574788	0.047579
9	6	0	-0.300488	-3.884055	-1.313209
10	1	0	-0.973407	-3.750980	-2.154884
11	6	0	-2.901811	-4.139959	1.223439
12	1	0	-2.302125	-3.869000	2.087605
13	6	0	6.504299	0.353896	-1.941710
14	6	0	6.665429	-1.987225	-0.360343
15	6	0	1.417322	-4.101650	0.864482
16	1	0	2.085204	-4.188336	1.716351
17	6	0	-4.266664	-3.874624	1.246013
18	1	0	-4.687667	-3.393636	2.123554
19	6	0	1.008992	-3.439909	-1.422948
20	1	0	1.356844	-2.993591	-2.349354
21	6	0	0 100915	-4 541499	0 966405
22	1	0	-0.240171	-4 975837	1 902375
22	6	0	5 358391	0 400970	1.666705
23	1	0	1 378/1/	0.011157	1.000709
24	1	0	7.3/09/1	0.262678	1.926370
25	1	0	2 661110	-0.202070	2 001600
20	1	0	0.001140 5 410744	0.230047	-2.001099
27	6	0	5.418/44	1.383037	0.902988
28	6	U	-5.061980	-4.033995	0.095981
29	6	0	-3.097452	-4.931643	-1.032512
30	1	0	-2.656129	-5.359966	-1.928648

31	6	0	7.811981	-1.407964	-0.912824
32	1	0	8.787983	-1.767541	-0.593853
33	6	0	-7.045568	-2.794036	1.094245
34	1	0	-7.002566	-3.362338	2.019987
35	6	0	-6.298403	-3.218208	-0.022492
36	6	0	-6.520920	-2.526545	-1.226588
37	1	0	-6.000769	-2.835741	-2.127994
38	6	0	-7.201773	-1.315426	-1.241297
39	1	0	-7.180028	-0.727833	-2.153524
40	6	0	-7.692090	-0.742268	-0.053236
41	6	0	-7.733836	-1.584091	1.077419
42	1	0	-8.210049	-1.240230	1.991890
43	6	0	6.400589	1.843207	-2.215345
44	1	0	5.378143	2.077273	-2.528663
45	1	0	7.064753	2.150466	-3.032301
46	6	0	6.503441	-0.353807	1.941861
47	6	0	4.213111	2.286751	0.603609
48	6	0	-7.201892	1.315088	1.241363
49	1	0	-7.180053	0.727492	2.153587
50	6	0	-4.464580	-4.673308	-1.007243
51	1	0	-5.060679	-4.899198	-1.887613
52	6	0	-2.267952	4.574791	-0.047710
53	6	0	6.753166	-2.752066	0.942084
54	1	0	7.772504	-3.134928	1.061598
55	1	0	6.079181	-3.615131	0.954061
56	6	0	-6.521160	2.526275	1.226619
57	1	0	-6.000994	2.835535	2.127995
58	6	0	-7.692193	0.741878	0.053317
59	6	0	-7.734113	1.583710	-1.077326
60	1	0	-8.210350	1.239807	-1.991769
61	6	0	3.171582	2.893031	0.422700
62	6	0	-5.062376	4.033810	-0.096061
63	6	0	-2.902207	4.139770	-1.223519
64	1	0	-2.302484	3.868759	-2.087645
65	6	0	6.399423	-1.843143	2.215338
66	1	0	5.376617	-2.077091	2.527560
67	1	0	7.062678	-2.150556	3.032985
68	6	0	-6.298767	3.217949	0.022501
69	6	0	6.665119	1.987333	0.360562
70	6	0	-4.465031	4.673315	1.007084
71	1	0	-5.061153	4.899278	1.887418
72	6	0	7.811509	1.407896	0.913203
73	1	0	8.787606	1.767337	0.594372
74	6	0	7.740107	0.262619	1.706663
75	1	0	8.660318	-0.236994	2.002214
76	6	0	-7.045986	2.793738	-1.094184
77	1	0	-7.003124	3.362065	-2.019918
78	6	0	-4.267047	3.874355	-1.246077
79	1	0	-4.688009	3.393236	-2.123568

80	6	0	-3.097915	4.931723	1.032339	
81	1	0	-2.656604	5.360154	1.928429	
82	6	0	6.753124	2.752267	-0.941762	
83	1	0	7.772264	3.135804	-1.060778	
84	1	0	6.078544	3.614848	-0.953979	
85	6	0	-0.801995	4.403672	0.104160	
86	6	0	-0.301024	3.883553	1.312923	
87	1	0	-0.974048	3.750021	2.154440	
88	6	0	1.008483	3.439509	1.422606	
89	1	0	1.356290	2.992783	2.348830	
90	6	0	1.885396	3.499961	0.320317	
91	6	0	1.417045	4.102433	-0.864442	
92	1	0	2.085005	4.189599	-1.716200	
93	6	0	0.100586	4.542178	-0.966320	
94	1	0	-0.240433	4.976919	-1.902130	
						_

Optimized S₀ geometry of compound *pm*-PCP-[6]CPP.

Center	Atomic	Atomic	Coordi	inates (Angstroms)	
Number	Number	Туре	X	Υ	Z
1	6	0	-2.135384	-4.319565	0.006016
2	6	0	-4.455768	0.525757	-1.310517
3	6	0	-4.455564	-0.526120	1.310548
4	6	0	-5.079920	-1.761867	0.988934
5	6	0	0.584923	-5.100070	-0.292550
6	6	0	-5.080579	1.761251	-0.988865
7	6	0	-5.255556	0.455645	1.901500
8	1	0	-4.790876	1.377898	2.242079
9	6	0	-4.244902	-2.849584	0.579801
10	6	0	4.776307	-4.279062	-0.070811
11	6	0	-6.485208	-1.822315	0.936429
12	1	0	-6.947700	-2.717386	0.527782
13	6	0	-0.221603	-5.640338	0.727475
14	1	0	0.209995	-6.330277	1.447410
15	6	0	-1.551507	-5.257140	0.880742
16	1	0	-2.128934	-5.632180	1.720344
17	6	0	-5.255397	-0.456296	-1.901499
18	1	0	-4.790367	-1.378356	-2.242123
19	6	0	-4.245991	2.849301	-0.579730
20	6	0	-3.356192	-3.638354	0.306528
21	6	ů 0	-2.136742	4.319613	-0.006032
22	6	ů 0	-7.274349	-0.702547	1.230951
22	6	ů 0	-6 646251	-0 370995	-1 876054

24	1	0	-7.235860	-1.221739	-2.211329
25	6	0	2.068631	-5.155787	-0.271404
26	6	0	-3.084142	0.151980	-0.785490
27	1	0	-2.342883	0.935617	-0.969629
28	1	0	-2.745416	-0.748695	-1.306558
29	6	0	5.894301	-3.309052	0.070537
30	6	0	2.766907	-5.211351	0.949467
31	1	0	2.237366	-5.467451	1.862404
32	6	0	-3.357557	3.638371	-0.306432
33	6	0	-7.274618	0.701131	-1.230916
34	6	0	-3.084081	-0.151848	0.785501
35	1	0	-2.342532	-0.935209	0.969643
36	1	0	-2.745681	0.748955	1.306556
37	6	0	0.583552	5.100191	0.292398
38	6	0	-6.646384	0.369824	1.876066
39	1	0	-7.236305	1.220361	2.211320
40	6	0	5.981190	-2.539461	1.245549
41	1	0	5.431441	-2.840350	2.131135
42	6	0	4.092057	-4.798892	1.044693
43	1	0	4.562080	-4.785951	2.023765
44	6	0	-1.552877	5.257028	-0.880921
45	1	0	-2.130317	5.631940	-1.720573
46	6	0	6.668078	-2.871274	-1.023630
47	1	0	6.730993	-3.480216	-1.921406
48	6	0	-1.377265	-3.896510	-1.103512
49	1	0	-1.816801	-3.199023	-1.810105
50	6	0	-6.485896	1.821184	-0.936370
51	1	0	-6 948718	2 716079	-0 527710
52	6	0	6.582852	-1.287431	1.246151
53	1	0	6 475790	-0.662351	2 127445
54	6	0	7 121937	-0 739142	0.068736
55	6	0	2 833313	-4 880274	-1 419876
56	1	0	2.653349	-4 917300	-2 400801
57	6	0	-0 222973	5 640263	-0 727724
58	1	0	0.2222775	6 330123	-1 447756
59	6	0	4 148416	-4 441624	-1 320921
60	1	0	4 647723	-4 103700	-2 223627
61	6	0	-1 378622	3 896758	1 103587
62	1	0	-1.818182	3 199439	1.810328
63	6	0	-0.049925	_4 273889	-1 241107
64	1	0	0.5310/1	-3 833609	-2.044663
65	6	0	7 264306	-1 613031	-1.026751
66	1	0	7.204300	-1 270775	-1.020751
67	6	0	-0.051293	-1.270775 A 274190	1 241122
68	1	0	0.529665	3 83/131	2 04/806
69	6	0	7 121695	0.740206	-0.068571
70	6	0	2 067262	5 155052	0.2712/7
70	6	0	6 582537	1 288326	-1 246024
72	1	0	6 475720	0.663215	-1.270024
14	1	v	0.7/3/27	0.003213	-2.12/330

73	6	0	4.775060	4.279516	0.070788
74	6	0	5.893272	3.309744	-0.070480
75	6	0	7.263709	1.614139	1.026930
76	1	0	7.766571	1.272051	1.927978
77	6	0	4.147117	4.442122	1.320863
78	1	0	4.646442	4.104381	2.223625
79	6	0	2.831960	4.880631	1.419749
80	1	0	2.366991	4.917722	2.400672
81	6	0	2.765536	5.211413	-0.949631
82	1	0	2.235984	5.467352	-1.862609
83	6	0	-8.646270	-0.522460	0.608273
84	1	0	-9.384203	-0.172862	1.340848
85	1	0	-9.003648	-1.489836	0.238476
86	6	0	4.090737	4.799100	-1.044788
87	1	0	4.560760	4.786104	-2.023855
88	6	0	5.980493	2.540183	-1.245475
89	1	0	5.430739	2.840884	-2.131120
90	6	0	-8.646469	0.520509	-0.608243
91	1	0	-9.384262	0.170629	-1.340823
92	1	0	-9.004225	1.487745	-0.238445
93	6	0	6.667096	2.872194	1.023754
94	1	0	6.729780	3.481156	1.921529

2.9 ¹H and ¹³C NMR Spectra

-

References

- [S1] He, J.; Yu, M.; Pang, M.; Fan, Y.; Lian, Z.; Wang, Y.; Wang, W.; Liu, Y.; Jiang, H. Chem. Eur. J. 2022, 28, e202103832.
- [S2] L. Bondarenko, I. Dix, H. Hinrichs, H. Hopf, Synthesis 2004, 2004, 2751-2759.
- [S3] R. Sawada, M. Gon, J. Nakamura, Y. Morisaki, Y. Chujo, Chirality 2018, 30, 1109–1114.
- [S4] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339-341.
- [S5] G. M. Sheldrick, Acta Cryst. 2015, A71, 3-8.
- [S6] G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.
- [S7] A. L. Spek, Acta Cryst. 2015, C71, 9-18.
- [S8] a) J. P. Perdew, A. Ruzsinszky, J. M. Tao, V. N. Staroverov, G. E. Scuseria, G. I. Csonka, J. Chem. Phys. 2005, 123, 062201. b) A. Dreuw, M. Head-Gordon, Chem. Rev. 2005, 105, 4009-4037.
- [S9] a) R. E. Stratmann, G. E.Scuseria, M. J. Frisch, J. Chem. Phys. 1998, 109, 8218-8224. b) E. Runge, E. K. U. Gross, Phys. Rev. Lett. 1984, 52, 997-1000.
- [S10] a) A. D. Becke, Phys. Rev. A, 1988, 38, 3098-3100. (b) C. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789.
- [S11] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, M. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.