SUPPORTING INFORMATION

Siderophore conjugation with cleavable linkers boosts the potency of RNA polymerase inhibitors against multi-drug resistant E. coli

Carsten Peukert, ${ }^{\mathrm{a}, \S}$ Anna C. Vetter, ${ }^{\text {a, } \S}$ Hazel L.S. Fuchs, ${ }^{\mathrm{a}, ~}{ }^{\S}$ Kirsten Harmrolfs, ${ }^{\mathrm{a}}$ Bianka Karge, ${ }^{\mathrm{a}}$ Marc Stadler ${ }^{\text {b, }, \text {,d }}$ and Mark Brönstrup ${ }^{\text {a, }, \text {, e }}$

Affiliations

a Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig
b Department of Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig
c German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany
d Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
e Institute for Organic Chemistry (IOC), Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany

* corresponding author: Mark.Broenstrup@helmholtz-hzi.de

Table of Contents

Chemical methods 3
General chemical remarks 3
Chemistry figures and tables 5
Synthesis procedures 22
Siderophore synthesis 22
Cleavable linker synthesis 32
Gyrase inhibitor constructs 41
RNAP inhibitor (RNAP-I) constructs 55
Rifamycin S intermediates 55
Sorangicin A intermediates 66
Corallopyronin A intermediates 71
Mono and dicatechol rifamycin conjugates 75
DOTAM and DFO RNAP-I conjugates 80
Biological methods 100
Biology figures and tables 100
Enzymatic quinone TML activation 130
MIC assay in iron-depleted medium 131
Measurement of Uptake of siderophore conjugates and payloads into Gram-negative bacteria by LC-MS/MS 135
NMR spectra 141
References 225

Chemical methods

General chemical remarks

All reactions that required anhydrous conditions were performed under an argon atmosphere and with dry, commercial solvents. All reactions were carried out at room temperature (23-25 ${ }^{\circ} \mathrm{C}$) unless stated otherwise. All general reagents, including salts and solvents, were purchased from Sigma-Aldrich, Acros Organics and employed without purification in the respective synthetic procedures. Chemicals and solvents were either p. a. grade or purified by standard techniques. For work up procedures and purifications, HPLC grade or p. a. grade were employed. Glassware was dried at $120^{\circ} \mathrm{C}$ in an oven for minimum 24 h prior to being used for synthesis. Indicated yields are calculated based on substance purity ($\geq 95 \%$) analyzed by NMR spectroscopy and liquid chromatography mass spectrometry (LCMS).

Thin-layer chromatography (TLC)

Reaction progress was controlled by thin layer chromatography (TLC) or Liquid Chromatography-coupled Mass Spectrometry (LCMS). TLC silica gel plates were Merck® 60 F254 and compounds were visualized by irradiation with UV light.

Column chromatography

Preparative normal phase purifications were performed with silica gel Merck® 60 (particle size $0.040-0.063 \mathrm{~mm}$), eluent given in parentheses.

Reverse-phase HPLC (RP-HPLC)

RP-HPLC was performed on a Dionex Ultimate system from Thermo Fisher Scientific® with the HPLC columns indicated below. The eluent is specified in parentheses for the respective synthetic procedure. Two columns (both C18, 250x4.6mm) were used.

- Luna C18, $5 \mu \mathrm{~m}, 100 \AA$ Å, 00G-4252-PO-AX
- Gemini C18, $10 \mu \mathrm{~m}, 110 \AA, 00 \mathrm{G}-4436-\mathrm{PO}$

Characterization of synthetic compounds

All final compounds were characterized by ${ }^{1} \mathrm{H}$-, ${ }^{13} \mathrm{C}$-NMR spectra and mass spectrometry and the spectra are added in the appendix.

NMR spectroscopy

NMR spectra were recorded on a 500 MHz Avance III (UltraShield) spectrometer equipped with a 5 mm Nitrogen cooled Prodigy CryoProbe (BBO) or on a 700 MHz Avance III HD (Ascend) spectrometer equipped with a 5 mm Helium cooled CryoProbe (TCI) by Bruker BioSpin GmbH, at 298 K . Chemical shift values δ of ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra are reported in ppm relative to the residual solvent signal, given as an internal standard and referenced to reported standard values. ${ }^{1}$

Mass spectrometry

High-resolution mass spectrometry (HRMS) was performed via a Dionex Ultimate 3000 HPLC system (Thermo Fisher Scientific, Dreieich, Germany) equipped with a DAD detector and a QTOF mass detector with electrospray ionization (ESI) (Bruker maxis HD, Bremen, Germany). Samples were directly injected via an Ultimate 3000RS autosampler (Thermo Fisher Scientific, Dreieich, Germany). The mass-to-charge ratio m / z is indicated.

Origin of payloads

Sorangicin A was re-purified from stock material available in the compound library of the HZI that was left from previous work at the GBF and had been produced following the paper by Irschik et al. ${ }^{2}$ Corallopyronin A was likewise taken from the stock of the HZI compound library and had been produced as previously described by Schiefer et al. ${ }^{3}$ Rifamycin S was purchased from TCI Germany GmbH (product \#: R0200) and 3-formyl rifamycin SV was purchased from abcam (ab143401). Ciprofloxacin was purchased from SigmaAldrich (product \#: 17850-5G-F).

Chemistry figures and tables

Figure S1. Synthesis of mono- and dicatechol rifamycin S derivatives 2-4. (i) 61, benzoquinone or TEMPO, oxygen gas, iPrOAc, $23{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}$, yield for benzoquinone $/ \mathrm{O}_{2}: 21 \%$ and TEMPO/ $\mathrm{O}_{2}: 50 \%$, (ii) 42, THF, DMSO, pyridine, DIPEA, $25-60^{\circ} \mathrm{C}$, 55%. (iii) 39 a , DIPEA, DMSO, THF, $25-45^{\circ} \mathrm{C}, 30 \%$ over two steps.

Figure S2. Synthesis of 3-formyl rifamycin SV monocatechol derivatives 5-6. (i) 38, isobutylchloroformate, NMM, THF, 0-23 ${ }^{\circ} \mathrm{C}$, (ii) TFA, AcOH, DCM, $0-23^{\circ} \mathrm{C}$, (iii) 20% DIPEA in anhydrous $\mathrm{MeOH}, 87 \%$ over three steps, (iv) 3-formyl rifamycin SV 27, TEA, THF, $0-23{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 90 \%$ crude, (v) $\mathrm{NaBH}(\mathrm{OAc})_{3}, 1 \mathrm{~h}, 0-23^{\circ} \mathrm{C}, 57 \%$ (vi) 38, iso-butylchloroformate, NMM, THF, 0-23 ${ }^{\circ} \mathrm{C}$, (vii) TFA, AcOH, DCM, 0-23 ${ }^{\circ} \mathrm{C}$, (viii) 20% DIPEA in anhydrous $\mathrm{MeOH}, 93 \%$ over three steps, (ix) 3-formyl rifamycin SV 27, TEA, THF, 0-23 ${ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 98 \%$ crude, (x) $\mathrm{NaBH}(\mathrm{OAc})_{3}, 1 \mathrm{~h}, 0-23^{\circ} \mathrm{C}, 79 \%$.

A

B

c

Figure S3. Synthesis of ciprofloxacin quinone trimethyl lock siderophore conjugates 8-13. (A) Trimethyl lock synthesis: (i) $\mathrm{MeSO}_{3} \mathrm{H}, 70^{\circ} \mathrm{C}, 2 \mathrm{~h}, 91 \%$, (ii) $\mathrm{Br}_{2}, \mathrm{AcOH}, 23^{\circ} \mathrm{C}, 56 \%$, (iii) $\mathrm{SOCl}_{2}, \mathrm{MeOH}$, reflux, 50%, (iv) $\mathrm{NaN}_{3}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}$, quant., (v) $\mathrm{PPh}_{3}, \mathrm{DCM}, 23^{\circ} \mathrm{C}$, (vi) $\mathrm{AcOH}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}, 32 \%$ over two steps. (B) Catechol and DOTAM conjugates: (vii) triphosgene, anhydrous toluene, 23-80 ${ }^{\circ} \mathrm{C}$, 4 h , (viii) then N Boc ethylene diamine, TEA, DCM, $0-23^{\circ} \mathrm{C}, 59 \%$ over two steps, (ix) $1 \mathrm{~N} \mathrm{NaOH}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, (x) ciprofloxacin, EDCI*HCI, HOBt, DIPEA, DCM, DMF, 0-23 ${ }^{\circ} \mathrm{C}$, overnight, (xi) 25% TFA in anhydrous DCM, $0-23^{\circ} \mathrm{C}, 2 \mathrm{~h}, 51 \%$ over three steps, (xii) iso-butylchloroformate, NMM, THF, 0-23 ${ }^{\circ} \mathrm{C}, 79 \%$, (xiii) 38, iso-butylchloroformate, NMM, THF, 0-23 ${ }^{\circ} \mathrm{C}, 83 \%$, (xiv) 2,3-dimethoxybenzoic acid, isobutylchloroformate, NMM, THF, 0-23 ${ }^{\circ} \mathrm{C}$, 89%, (C) DFO conjugates: (xv) 51, triphosgene, anhydrous toluene, $80^{\circ} \mathrm{C}$, overnight, then (xvi) DFO, DMF, TEA, 1 h at $0^{\circ} \mathrm{C}$, then 1 h at $25^{\circ} \mathrm{C}, 18 \%$ over two steps, (xvii) 1 N KOH in $\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}$, 3 h , (xviii) ciprofloxacin, EDCI*HCI, HOBt, DIPEA, DCM, DMF, 0 $23{ }^{\circ} \mathrm{C}$, overnight, 35% over two steps, (xix) 1,4-dithiocyanatobenzene, 2-propanol/milliQ $\mathrm{H}_{2} \mathrm{O}(10: 1)$, chloroform, TEA, $0-24^{\circ} \mathrm{C}, \mathrm{DCM}$ wash, 77%, (xx) 46, DMF, TEA, $24^{\circ} \mathrm{C}, 73 \%$.

Figure S4. Synthesis of ciprofloxacin trimethyl lock DOTAM conjugate 11 with methylated catechols. Bromides synthetized as described in C. Peukert, L. Langer et al, ${ }^{4}$ (i) 2,3-dimethoxybenzoic acid, HATU, DIPEA, DCM, DMF, $25^{\circ} \mathrm{C}$, overnight, 73% over three steps, (ii) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}$, quant., (iii) isobutylchloroformate, NMM, THF, 0-23 ${ }^{\circ} \mathrm{C}, 71 \%$.

A

17

Figure S5. Synthesis of ciprofloxacin trimethyl lock analogue siderophore conjugates 14-16. (A) Linker synthesis: (i) dimethoxypropane, $\mathrm{MeOH}, 20 \% \mathrm{HCl}, 23^{\circ} \mathrm{C}, 2 \mathrm{~h}$, (ii) para-nitrobenzyl bromide, potassium carbonate, $\mathrm{ACN}, 23^{\circ} \mathrm{C}, 83 \%$ over two steps, (iii) 1 N NaOH in $\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$, overnight, (iv) ciprofloxacin, EDCI*HCI, HOBt, DIPEA, DCM, DMF, $0-23^{\circ} \mathrm{C}$, (v) 25% TFA in anhydrous DCM, 0-22 ${ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 65 \%$ over three steps. (B) Catechol and DOTAM conjugates: (vi) iso-butylchloroformate, NMM, THF, 0-23 ${ }^{\circ} \mathrm{C}, 87 \%$, (vii) 38, iso-butylchloroformate, NMM, THF, 0-23 ${ }^{\circ} \mathrm{C}, 69 \%$, (viii) 2,3-dimethoxybenzoic acid, iso-butylchloroformate, NMM, THF, 0-23 ${ }^{\circ} \mathrm{C}, 81 \%$, (C) DFO conjugates: (ix) 60, TEA, DMF, 73%.

Figure S6. Synthesis of covalent DFO rifamycin conjugates 18-21. (i) DMSO, TEA, $24{ }^{\circ} \mathrm{C}, 18 \mathrm{~h}, 51 \%$, (ii) 17-azido-3,6,9,12,15-pentaoxaheptadecan-1-amine, TEA, THF, $24^{\circ} \mathrm{C}, 48 \mathrm{~h}$, (iii) 47, ACN, $\mathrm{H}_{2} \mathrm{O}(1: 1)$, $24^{\circ} \mathrm{C}$, overnight, 88% over two steps, (iv) DFO, TEA, DMF, THF, $45^{\circ} \mathrm{C}$, overnight, 84%, (v) GaCl_{3}, NaOAc pH 4.5 , overnight, $23^{\circ} \mathrm{C}$, quant., (vi) 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethan-1-amine, TEA,

THF, $1 \mathrm{~h}, 23^{\circ} \mathrm{C}$, (vii) $\mathrm{NaBH}(\mathrm{OAc})_{3}$, THF, $0-23^{\circ} \mathrm{C}, 98 \%$, (vii) 47 , $\mathrm{ACN}, \mathrm{H}_{2} \mathrm{O}(1: 1), 24^{\circ} \mathrm{C}$, overnight, 57\%.

Figure S7. Synthesis of covalent rifamycin DOTAM conjugate 23. (i) N-Fmoc 1,6-diaminohexane, TEA, THF, overnight, $23^{\circ} \mathrm{C}, 92 \%$, (ii) diethylamine, $\mathrm{ACN}, 23^{\circ} \mathrm{C}, 2 \mathrm{~h}, 92 \%$, (iii) 7, iso-butylchloroformate, NMM, THF, $0-23^{\circ} \mathrm{C}, 79 \%$.

Figure S8. Synthesis of azido TML linkers 53, 56 and 72. (i) triphosgene, toluene, $80^{\circ} \mathrm{C}$, overnight, then reduced pressure, 17 -azido- $3,6,9,12,15$-pentaoxaheptadecan- 1 -amine, TEA, DCM, $0-24{ }^{\circ} \mathrm{C}$, quant. crude, (ii) $1 \mathrm{M} \mathrm{LiOH}, \mathrm{MeOH}, 23^{\circ} \mathrm{C}, 2 \mathrm{~h}, 95 \%$, (iii) 25% TFA, anhydrous DCM, $0-24{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$, (iv) 6-azido hexanoic acid, HATU, DIPEA, $24^{\circ} \mathrm{C}$, 2 h , (v) 1 M LiOH in $\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, 3 \mathrm{~h}, 24^{\circ} \mathrm{C}, 74 \%$ over three steps. (i) triphosgene, toluene, $80^{\circ} \mathrm{C}$, overnight, then reduced pressure, 3-azido-propan-amine, TEA, DCM, 0$24^{\circ} \mathrm{C}$, (ii) $1 \mathrm{M} \mathrm{LiOH}, \mathrm{MeOH}, 23^{\circ} \mathrm{C}, 2 \mathrm{~h}, 48 \%$ over two steps,

Figure S9. Synthesis of cleavable rifamycin DFO and DOTAM conjugates 24-26. (A) Rifamycin linker fragments: (i) iso-butylchloroformate, NMM, THF, $0-23^{\circ} \mathrm{C}, 45 \%$, (ii) iso-butylchloroformate, NMM, THF,
$0-23{ }^{\circ} \mathrm{C}, 39 \%$, (B) DFO conjugate: (iii) $\mathrm{MeOH}, 24^{\circ} \mathrm{C}$, overnight, 81%, (C) DOTAM conjugates: (iv) 7, iso-butylchloroformate, NMM, THF, $0-24^{\circ} \mathrm{C}, 79 \%$ crude, (v) $63, \mathrm{ACN}, \mathrm{H}_{2} \mathrm{O}, 24^{\circ} \mathrm{C}$, overnight, 79%, (vi) $64, \mathrm{ACN}, \mathrm{H}_{2} \mathrm{O}, 24^{\circ} \mathrm{C}$, overnight, 82%.

27

28
(iv)

65

66

Figure S10. Synthesis of rifamycin trimethyl lock linker fragments 65 and 66. (i) N-Fmoc 1,6diaminohexane, TEA, THF, 1 h , (ii) $\mathrm{NaBH}(\mathrm{OAc})_{3}$, THF, 0-23 ${ }^{\circ} \mathrm{C}$, overnight, (iii) 20% diethylamine, ACN , $23^{\circ} \mathrm{C}$, $45 \mathrm{~min}, 67 \%$ over three steps, (iv) 53, iso-butylchloroformate, NMM, THF, 0-23 ${ }^{\circ} \mathrm{C}$, overnight, 73%, (v) 56, iso-butylchloroformate, NMM, THF, $0-23{ }^{\circ} \mathrm{C}$, overnight, 76% (38% yield f . EDCI based coupling, not shown).

30

Figure S11. Synthesis of cleavable rifamycin trimethyl lock DFO conjugates 29 and 30. (i) $\mathrm{ACN}, \mathrm{H}_{2} \mathrm{O}$, (1:1), $24^{\circ} \mathrm{C}, 30 \mathrm{~h}, 64 \%$, (ii) ACN, $\mathrm{H}_{2} \mathrm{O},(1: 1), 24^{\circ} \mathrm{C}, 30 \mathrm{~h}, 88 \%$.

Figure S12. Synthesis of cleavable sorangicin trimethyl lock DFO conjugate 33. (i) N-Fmoc 1,6diaminohexane, DIPEA, DCM, DMF, $23^{\circ} \mathrm{C}$, 2 h , (ii) 20% diethylamine, ACN, $1 \mathrm{~h}, 56 \%$ over two steps, (iii) 56, iso-butylchloroformate, NMM, THF, $0-23{ }^{\circ} \mathrm{C}$, overnight, 84%, (iv) $\mathrm{ACN}, \mathrm{H}_{2} \mathrm{O},(1: 1), 24{ }^{\circ} \mathrm{C}, 30 \mathrm{~h}$, 71\%.

(iv)

Figure S13. Synthesis of cleavable sorangicin trimethyl lock DFO conjugate 34. (i) para-amino benzyl alcohol, iso-butylchloroformate, NMM, THF, $0-23{ }^{\circ} \mathrm{C}$, overnight, 77%, (ii) acetic anhydride, THF, pyridine, $24^{\circ} \mathrm{C}$, quant. crude, (iii) iso-butylchloroformate, NMM, THF, $10 \min 0{ }^{\circ} \mathrm{C}, 45 \min 24^{\circ} \mathrm{C}$, then 57, NMM, THF, $0-24^{\circ} \mathrm{C}$, overnight, 63% over two steps, (iv) ACN, $\mathrm{H}_{2} \mathrm{O}(1: 1), 23^{\circ} \mathrm{C}, 36 \mathrm{~h}, 95 \%$.

Figure S14. Synthesis of cleavable corallopyronin A conjugate 36. (i) 56, iso-butylchloroformate, NMM, THF, $0-24^{\circ} \mathrm{C}$, overnight, 71%, (ii) $\mathrm{ACN}, \mathrm{H}_{2} \mathrm{O}(1: 1), 24^{\circ} \mathrm{C}, 30 \mathrm{~h}, 79 \%$.

Figure S15. Synthesis of cleavable corallopyronin A conjugate 37. (i) 53, iso-butylchloroformate, pyridine, THF, $0-24^{\circ} \mathrm{C}, 48 \mathrm{~h}, 75 \%$, (ii) ACN, $\mathrm{H}_{2} \mathrm{O}(1: 1), 24^{\circ} \mathrm{C}, 30 \mathrm{~h}, 49 \%$.

Figure S16. Synthesis of rifamycin S and 3CHO-rifamycin SV conjugates 73, 24SL and 30SL with a shorter linker between siderophore and cleavable TML. (i) iso-butyl chloroformate, NMM, DCM, 0-23 ${ }^{\circ} \mathrm{C}$, 34%, (ii) EDCI, HOBt, DMAP, DMF, then 22, DIPEA, DMF, $0-23{ }^{\circ} \mathrm{C} 74 \%$, (iii) EDCI, HOBt, DMAP, then 28, DIPEA, DMF, $0-23^{\circ} \mathrm{C}, 47 \%$.

Figure S17. Synthesis of CorA conjugates 74, 37SLa and 37SLb with a shorter linker between siderophore and cleavable linker. (i) EDCI, HOBt, DMAP, DMF, $0-23^{\circ} \mathrm{C}$, then $35, \mathrm{DMF}, 0-23^{\circ} \mathrm{C}, 28 \%$, (ii) iso-butyl chloroformate, NMM, DCM, 0-23 ${ }^{\circ} \mathrm{C}$, then 35 , DCM, $0-23^{\circ} \mathrm{C}, 22 \%$, (iii) DFO, DMF, TEA, $0-23^{\circ} \mathrm{C}, 85 \%$, (iv) $\mathbf{4 7 b}, \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}, 23^{\circ} \mathrm{C}, \mathrm{ON}, 20 \%$.

Figure S18. Isomerization of CorA $\mathbf{3 5}$ to $\mathbf{3 5}$ ‘ under non-neutral conditions.

Figure S19. NMR analysis of $\mathbf{3 5}$ to $\mathbf{3 5}$ ' ratio after re-isolation from synthesis towards $\mathbf{3 7}$ (figure $\mathbf{S 1 7}$).

Figure S20. NMR analysis of NOESY and COSY spectra to corroborate E / Z configuration of reisolated isomers 35 and $3^{〔}$. E configuration in 35 verified via NOESY signal between $18-\mathrm{H}$ signal and $21-\mathrm{Me}$ signal.

Figure S21. NMR analysis of isomeric ratio in 37. Signal overlap in the region of $\mathrm{C}_{19}-\mathrm{C}_{20}$ double bond signals impeded integration of specific signals, even though measurements were conducted in five different deuterated solvents $\left(\mathrm{MeOH}-d_{4}, \mathrm{MeCN}-d_{3}, \mathrm{DMSO}_{6} d_{6}\right.$, THF- d_{8}, Pyridin- d_{5}). Isomeric ratio changes over time (${ }^{1} \mathrm{H}$ NMR spectrum of the same sample after ten hours) and with increasing temperature.

Synthesis procedures

Siderophore synthesis

Compound 38

Compound 38 was synthetized as published in C. Peukert, L. Langer et al. ${ }^{4}$

Compound 39

Acid 38 ($100 \mathrm{mg}, 0.42 \mathrm{mmol}, 1.0 \mathrm{eq}$) and HATU (175.6, $0.46 \mathrm{mmol}, 1.1 \mathrm{eq}$.) were dissolved in $200 \mu \mathrm{~L}$ of a $1: 1$ mixture of DCM/DMF. Then, DIPEA ($298.7 \mu \mathrm{~L}, 1.68 \mathrm{mmol}, 4.0 \mathrm{eq}$) was added, which was followed by the dropwise addition of propagylamine $(23.1 \mathrm{mg}, 0.42 \mathrm{mmol}, 1.0 \mathrm{eq}$, diluted in $100 \mu \mathrm{~L}$ 1:1 DCM/DMF) over 10 minutes at $0^{\circ} \mathrm{C}$. Deacetylation was driven to completion by addition of $\mathrm{MeOH}(200 \mu \mathrm{~L})$ and DIPEA ($50 \mu \mathrm{~L}$). The reaction mixture was concentrated in vacuo to yield 39 as a crude colorless oil ($63.5 \mathrm{mg}, 0.332 \mathrm{mmol}, 79 \%$) that became crystalline at $0^{\circ} \mathrm{C}$.

HRMS (ESI) calculated for $\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}=192.0654 ;$ experimental $=192.0655$

Compound 40

Catechol 38 ($94.38 \mathrm{mg}, 0.396 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in anhydrous THF (15 mL). To the resultant solution, $\mathrm{NMM}(60 \mu \mathrm{~L})$ was added under argon atmosphere at $0^{\circ} \mathrm{C}$. Next, iso-butyl chloroformate ($38.4 \mu \mathrm{l}, 0.396 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added and upon addition, the reaction turned turbid instantly. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 minutes and for 50 minutes at $23^{\circ} \mathrm{C}$. After this time, the mixture was cooled down to $0^{\circ} \mathrm{C}$ again and N -Boc cystamine (100 $\mathrm{mg}, 0.396 \mathrm{mmol}, 1.05 \mathrm{eq}$), suspended in THF (5 ml) was added basified with NMM ($60 \mu \mathrm{l}$) dropwise over 5 minutes. The reaction was stirred for 10 minutes $0^{\circ} \mathrm{C}$ and for 50 minutes at ambient temperature. Then $\mathrm{AcOH}(1 \mathrm{~mL})$ was added and the reaction solvent was removed in vacuo and resultant residue dried under reduced pressure overnight. The next day, the residue was dissolved in DCM (10 mL) and cooled to $0^{\circ} \mathrm{C}$ prior to the addition of a $1: 1$ mixture of TFA/AcOH (10 mL) was added at 0°. The reaction mixture was stirred for two hours at $0{ }^{\circ} \mathrm{C}$ before the solvent was evaporated and the residue dried under reduced pressure. Then 20\% DIPEA in $\mathrm{MeOH}(10 \mathrm{~mL}$) was added and the reaction continued stirring for four hours at ambient temperature. The solvent was removed by rotary evaporation and the residue purified by RP-HPLC ($10-85 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}, 0.1 \% \mathrm{HCOOH}, 220 \mathrm{~nm}$). The product containing fractions were lyophilized to yield amine 40 as beige oil ($99.85 \mathrm{mg}, 0.346 \mathrm{mmol}, 87 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{ACN}-\mathrm{d}_{3}\right): \delta=7.87$ (s, 1H), 7.16 (dd, J=1.45, 8.1), 6.98 (dd, J=1.74, 8.1 $\mathrm{Hz}, 1 \mathrm{H}), 6.75(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{q}, \mathrm{J}=6.46,12.82 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{t}, \mathrm{J}=6.46 \mathrm{~Hz}, 2 \mathrm{H})$, $3.03(\mathrm{t}, \mathrm{J}=6.65 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{t}, \mathrm{J}=6.46 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{bs}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR ($126 \mathrm{MHz}, \mathrm{ACN}-\mathrm{d}_{3}$): $\delta=171.51,161.50,161.24,150.50,146.90,119.48,119.46$, 39.58, 39.38, 37.92, 35.32.

HRMS (ESI) calculated for $\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}=289.0675 ;$ experimental $=289.0683$

Compound 41

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$
Exact Mass: 284,1372
Molecular Weight: 284,3120
Catechol 38 ($95,92 \mathrm{mg}, 0.403 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in anhydrous THF (15 mL), NMM $(60 \mu \mathrm{~L})$ was added under argon atmosphere at $0{ }^{\circ} \mathrm{C}$, followed by addition of iso-butyl chloroformate ($38.4 \mu \mathrm{l}, 0.403 \mathrm{mmol}, 1.0 \mathrm{eq}$). The reaction turned turbid instantly and stirred at $0{ }^{\circ} \mathrm{C}$ for 10 minutes and for 50 minutes at $23{ }^{\circ} \mathrm{C}$. After cooling to $0{ }^{\circ} \mathrm{C}$, mono-boc-cystamin ($100 \mathrm{mg}, 0.403 \mathrm{mmol}, 1.05 \mathrm{eq}$), suspended in THF (5 ml), was added as a suspension, together with NMM ($60 \mu \mathrm{l})$, dropwise over 5 minutes. The reaction stirred for 10 minutes $0^{\circ} \mathrm{C}$ and then for 50 minutes at ambient temperature. Then $\mathrm{AcOH}(1 \mathrm{~mL})$ was added and the reaction was evaporated to dryness. The residue was dried overnight under reduced pressure, then dissolved in DCM (10 mL) and cooled to $0^{\circ} \mathrm{C}$ where a mixture of TFA/AcOH (1:1, 10 mL) was added at $0^{\circ} \mathrm{C}$. The reaction stirred for two hours at $0^{\circ} \mathrm{C}$ before the solvent was evaporated and the residue dried under reduced pressure. Then 20\% DIPEA in $\mathrm{MeOH}(10 \mathrm{~mL}$) was added and the reaction continued stirring for four hours at ambient temperature. The solvent was removed by rotary evaporation and the residue purified by RP-HPLC (C18, 10-85\% ACN/ $\mathrm{H}_{2} \mathrm{O}$, $0.1 \% \mathrm{HCOOH}, 220 \mathrm{~nm}$). The product containing fractions were lyophilized to yield amine 41 a beige oil ($104,8 \mathrm{mg}, 0.369 \mathrm{mmol}, 93 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{ACN}-\mathrm{d}_{3}\right): \delta=7.92$ (m, 1H), 7.19 (dd, J = 1.26, 8.00 Hz, 1H), 6.98 (dd, J = $1.71,7.66 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{t}, \mathrm{J}=7.89 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~m}, 4 \mathrm{H}), 3.59(\mathrm{~s}, 4 \mathrm{H}), 3.53(\mathrm{q}, \mathrm{J}=5.6,11.20$ Hz, 2H), 3.08 (t, J = 5.26 Hz, 2H), 2.60 (bs, 2H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{ACN}-\mathrm{d}_{3}\right)$: $\delta=171.41,150.41,146.93,119.52,119.47,118.29,70.89$, 70.78, 70.07, 67.24, 40.45, 40.10.

HRMS (ESI) calculated for ([M+H]+ $)$: m/z = 285.1445; experimental $=285.1439$

Compound 42

Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{6}$
Exact Mass: 417,1900
Molecular Weight: 417,4620

This compound was previously synthetized by Miller et al. ${ }^{5}$ Catechol 38 ($98.4 \mathrm{mg}, 0.41 \mathrm{mmol}$, 1.2 eq) was dissolved in dry DCM (14 mL) and carbonyldiimidazole ($66.98 \mathrm{mg}, 0.41 \mathrm{mmol}, 1.2$ eq) was added in 3 portions at $0^{\circ} \mathrm{C}$. The mildly orange solution was stirred 1 hour at $0^{\circ} \mathrm{C}$ under argon atmosphere and one more 1 hour at $25^{\circ} \mathrm{C}$. Once again the reaction temperature was decreased to $0{ }^{\circ} \mathrm{C}$ and spermidine ($50 \mathrm{mg}, 0.34 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added as solution in anhydrous DCM (1 mL). Upon addition formation of a precipitate was instantly oberved. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ overnight. Following phase separation, the organic phase was washed with brine/water (1:1, $2 \times 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The residue was dissolved in $\mathrm{MeOH}(8 \mathrm{~mL})$ and DIPEA (2 mL) was added. The deacetylation reached full conversion after 4 hours and the solvent was removed by rotary evaporation, yielding a beige oil that was dried in vacuo to give crude dicatechol 42 (104.5 mg , $0.25 \mathrm{mmol}, 73 \%$) which was used without purification directly in the next step.

Compound 7

Compound 7 was synthetized as previously described by C. Peukert and L. N. B. Langer et al. ${ }^{4}$
${ }^{1} \mathrm{H}-\mathrm{NMR}(700 \mathrm{MHz}$, DMSO-d6+AcOH-d4): $\delta=8.60(\mathrm{~m}, 1 \mathrm{H}), 8.10(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~m}, 3 \mathrm{H}), 7.34$ ($\mathrm{m}, 8 \mathrm{H}$), $7.22(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{~m}, 4 \mathrm{H}), 3.25(\mathrm{~m}, 6 \mathrm{H}), 3.13(\mathrm{~m}, 10 \mathrm{H}), 3.02(\mathrm{~m}, 2 \mathrm{H})$, $2.96(\mathrm{~s}, 2 \mathrm{H}), 2.87(\mathrm{~m}, 4 \mathrm{H}), 2.78(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{~m}, 8 \mathrm{H}), 2.27(\mathrm{~s}, 9 \mathrm{H}), 2.21(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C-NMR (176 MHz , DMSO-d6+AcOH-d4): $\delta=172.03,171.99,170.61,170.52,170.25$, 170.17, 168.57, 168.32, 168.26, 168.13, 167.85, 167.81, 167.67, 166.71, 165.65, 164.62, $164.58,164.54,164.49,142.83,142.58,140.21,140.18,139.17,138.55,131.73,130.71$, 130.66, 130.61, 130.56, 126.72, 126.25, 126.17, 126.10, 125.42, 125.33, 124.89, 124.29, $57.71,57.12,53.11,51.65,50.29,47.80,39.52,38.93,38.81,38.34,38.16,38.08,34.23$, $21.05,20.69,20.58,20.47,20.43,20.38,20.34,20.25,20.13,19.99,1.15$.

HRMS (ESI) calculated for $\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}=1191.4841$; experimental $=1191.4846$

Compound 43

Cyclen ($20 \mathrm{mg}, 0.116 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in $\mathrm{ACN}(75 \mathrm{~mL})$ and $\mathrm{NaOAc}(31.4 \mathrm{mg}$, $0.371 \mathrm{mmol}, 3.2 \mathrm{eq}$) was added. Then tert-butyl (2-(2-bromoacetamido)ethyl)carbamate (67.3 $\mathrm{mg}, 0.371 \mathrm{mmol}, 3.2 \mathrm{eq}$), synthetized according to Peukert and Langer et al, ${ }^{6}$ was added, dissolved in ACN (25 mL) dropwise at $24^{\circ} \mathrm{C}$ over 60 minutes. The reaction was stirred overnight at $24^{\circ} \mathrm{C}$ and then filtered. The reaction was filtered and the flowthrough was concentrated. The resultant transparent oil was dissolved in ACN (75 mL) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (32.1 $\mathrm{mg}, 0.23 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added. Next, benzyl bromoacetate ($31.9 \mathrm{mg}, 0.232 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added as solution in ACN (25 mL) over the course of 10 minutes at $24^{\circ} \mathrm{C}$. The reaction mixture was stirred for two hours at ambient temperature and was then filtered. The filtrate was evaporated to dryness. The residue was taken up in DCM (100 mL) and washed with HCl $(2 \times 100 \mathrm{~mL}), \mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$, water $(2 \times 200 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was
removed in vacuo and the beige solid was dissolved in anhydrous DCM (25 mL). Then, the reaction was cooled to $0{ }^{\circ} \mathrm{C}$ and TFA (25 mL) was added. The reaction continued stirring for 2 hours, was then evaporated to dryness and dried under high vacuum overnight. The next day 2,3-dimethoxybenzoic acid ($84.6 \mathrm{mg}, 0.464 \mathrm{mmol}, 4.0 \mathrm{eq}$) was dissolved under argon atmosphere in dry DCM:DMF ($50: 2 \mathrm{~mL}$). Then HATU ($264.9 \mathrm{mg}, 0.697 \mathrm{mmol}, 6.0 \mathrm{eq}$) was added, followed by DIPEA $(250 \mu \mathrm{~L})$. The slight yellow solution was stirred 5 minutes at $24{ }^{\circ} \mathrm{C}$ before the crude amine 43a in anhydrous DCM:DMF ($50: 3 \mathrm{~mL}$) with DIPEA $(250 \mu \mathrm{~L})$ was added dropwise. Upon addition, the color changed to yellow and the reaction stirred overnight at ambient temperature. Then the solvent was removed in vacuo. The residue was taken up in DCM (100 mL) and washed with $\mathrm{HCl}(2 \times 100 \mathrm{~mL}), \mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$, water $(2 \times 200 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was purified by RP-HPLC ($10-70 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}, 0.1 \% \mathrm{HCOOH}$, 220 nm) and product containing fractions were jointly lyophilized to yield ester 43 (94.46 mg , $0.085 \mathrm{mmol}, 73 \%$ over three steps) as a white powder.
${ }^{1} \mathrm{H}-$ NMR $(500 \mathrm{MHz}$, DMSO-d6): $\delta=8.66(\mathrm{~m}, 1 \mathrm{H}), 8.30(\mathrm{~m}, 4 \mathrm{H}), 8.12(\mathrm{~m}, 1 \mathrm{H}), 7.75(\mathrm{~m}, 3 \mathrm{H})$, $7.35(\mathrm{~m}, 8 \mathrm{H}), 7.15(\mathrm{~m}, 11 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{~m}, 6 \mathrm{H}), 3.82(\mathrm{~s}, 9 \mathrm{H}), 3.74(\mathrm{~s}, 9 \mathrm{H}), 3.49(\mathrm{~m}$, $4 \mathrm{H}), 3.39(\mathrm{~m}, 15 \mathrm{H}), 3.14(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13}$ C-NMR (176 MHz , DMSO-d6): $\delta=165.85$, 165.69, 152.52, 152.49, 146.36, 146.31, 135.59, 129.56, 129.46, 128.43, 128.38, 128.31, 128.22, 128.13, 128.05, 123.97, 120.75, 120.66, 114.87, 114.78, 66.50, 65.85, 60.95, 60.91, 55.95, 55.93, 54.68, 52.33, 50.86, 48.19, 47.73, 38.54, 38.47, 38.05.

HRMS (ESI) calculated for $\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}=1113.5615$; experimental $=1113.5618$

Compound 44

Under argon atmosphere, benzyl ester 43 ($253 \mathrm{mg}, 0.227 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in $\mathrm{MeOH}(30 \mathrm{~mL})$ andPd/C ($25 \mathrm{mg}, 0.1 \mathrm{eq}$) was added. The atmosphere was changed to hydrogen and the reaction was stirred at $25^{\circ} \mathrm{C}$ overnight. After this, the catalyst was removed by filtration using a syringe filter and the reaction mixture was evaporated to dryness to yield crude pure acid 44 ($232.4 \mathrm{mg}, 0.227 \mathrm{mmol}$, quantitative) as a crude, white solid, which was used directly in the next step.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 MHz, DMSO-d6): $\delta=8.32$ (m, 6H), 8.09 (m, 9H), 7.22 (s, 9H), 7.07 (s, 9H), 3.83 (m, 8H), 3.75-2.57 (m, 28H).

HRMS (ESI) calculated for ([M+H]+ $)$: m/z = 1023.5146; experimental $=1023.5159$

Compound 45

To a solution of acid $7(81 \mathrm{mg}, 0.068 \mathrm{mmol}, 1.0 \mathrm{eq})$ in dry THF (1 mL), NMM ($100 \mu \mathrm{~L}$) was added under argon atmosphere and the resultant mixture was cooled to $0^{\circ} \mathrm{C}$. Then, isobutylchloroformate ($6.59 \mu \mathrm{~L}, 0.068 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added and the reaction mixture went
turbid instantly. Agitation was continued for 15 minutes at $0{ }^{\circ} \mathrm{C}$ and for another hour at $24^{\circ} \mathrm{C}$. Then, BCN amine ($25.37 \mathrm{mg}, 0.078 \mathrm{mmol}, 1.15 \mathrm{eq}$) was added dropwise at $0^{\circ} \mathrm{C}$, dissolved in anhydrous THF (1 mL) and basified with NMM $(100 \mu \mathrm{~L})$ before addition. The reaction continued stirring at $0{ }^{\circ} \mathrm{C}$ for 15 minutes and then for 1 hour at $24^{\circ} \mathrm{C}$. Then the reaction was quenched with $\mathrm{AcOH}(200 \mu \mathrm{~L})$ and the THF was removed in vacuo at $30^{\circ} \mathrm{C}$. The residual solution was diluted 50 times and lyophilized to dryness to yield 45 as a crude white powder (19.06 mg , 0.01 mmol, 79\%).

1H NMR data?

HRMS (ESI) calculated for $\left([M+H]^{+}\right): m / z=1497.6784$; experimental $=1497.6761$, calculated for $\left([M+2 H]^{2+}\right): m / z=749.3428$; experimental $=749.3412$.

Compound 46

Crude 46 was synthetized according to a patent by P. S. Donnely et al. ${ }^{7}$ In particular, desferrioxamine (DFO, $1000 \mathrm{mg}, 1.78 \mathrm{~mol}, 1.0 \mathrm{eq})$ was stirred in $i \operatorname{PrOH} / \mathrm{H}_{2} \mathrm{O}(64: 6 \mathrm{~mL})$, and a solution of 1,4-dithiocyanatobenzene ($1542.11 \mathrm{mg}, 8.02 \mathrm{~mol}, 4.5 \mathrm{eq}$) in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ was added. Triethylamine ($500 \mu \mathrm{~L}$) was added, and the reaction mixture was stirred for 1.5 h at 25 ${ }^{\circ} \mathrm{C} . \mathrm{HCl}(0.1 \mathrm{M}, 100 \mathrm{~mL})$ was added and the organic layer was separated. The solvent was evaporated to give a beige solid which was triturated with CHCl_{3}. The remaining solid was filtered off and dried to give modified DFO 46 as a white powder ($1033.3 \mathrm{mg}, 1.372 \mathrm{~mol}, 89 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, DMSO-d6): $\delta=8.96(\mathrm{~m}, 1 \mathrm{H}), 8.45(\mathrm{~m}, 1 \mathrm{H}), 8.00(\mathrm{~m}, 7 \mathrm{H}), 7.74(\mathrm{~m}, 1 \mathrm{H})$, $7.38(\mathrm{~s}, 4 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{~m}, 5 \mathrm{H}), 3.37(\mathrm{~m}, 6 \mathrm{H}), 3.29(\mathrm{~m}, 2 \mathrm{H})$, 3.12 (m, 4H), 3.01 (m, 2H), 2.92 (m, 6H), 2.08 (s, 2H), 1.91 (s, 1H).
${ }^{13} \mathrm{C}-$ NMR (126 MHz, DMSO-d6): $\delta=171.89,171.36,170.08,139.91,125.99,122.01,47.05$, $46.75,43.34,38.40,30.02,28.78,28.00,27.72,26.02,23.59,23.52,20.43$.

HRMS (ESI) calculated for $\left([M+H]^{+}\right): m / z=753.3423$; $\operatorname{experimental~}=753.3525$.

Compound 47

46 ($209 \mathrm{mg}, 0.278 \mathrm{mmol}, 1.0 \mathrm{eq}$) was suspended in DMSO (5 mL) and the mixture was stirred until complete dissolution (5 min) was observed. Then, N-[(1R,8S,9s)-bicyclo[6.1.0]non-4-in-9-ylmethyloxycarbonyl]-1,8-diamino-3,6-dioxaoctan (Sigma aldrich, $100.86 \mathrm{mg}, 0.311 \mathrm{mmol}$, 1.12 eq) was dissolved in DMSO (5 mL), added dropwise and following this, TEA ($300 \mu \mathrm{~L}$) was added. The slightly turbid solution cleared after 10 minutes and was stirred for 18 h at ambient temperature. The next morning, the reaction was filtered and purified by RP-HPLC (5$75 \% \mathrm{H}_{2} \mathrm{O} / \mathrm{ACN}, 0.1 \% \mathrm{HCOOH}, 220 \mathrm{~nm}$). The product containing fractions were identified by LCMS and lyophilized to dryness to yield strained alkyne 47 as a white powder (153.1 mg , 0.142 mmol, 51\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, DMSO-d6): $\delta=9.60(\mathrm{~m}, 3 \mathrm{H}), 9.41(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~m}, 1 \mathrm{H})$, $7.34(\mathrm{~s}, 4 \mathrm{H}), 4.02(\mathrm{~d}, \mathrm{~J}=8.34 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{~m}, 6 \mathrm{H}), 3.45(\mathrm{~m}, 8 \mathrm{H}), 3.40(\mathrm{~m}, 2 \mathrm{H})$, 3.33 ($\mathrm{m}, 1 \mathrm{H}$), 3.11 ($\mathrm{q}, \mathrm{J}=5.64,5.89,2 \mathrm{H}$), 3.00 ($\mathrm{q}, \mathrm{J}=7.11,13.49 \mathrm{~Hz}, 4 \mathrm{H}$), 2.58-2.54 (m, 4H), $2.26(\mathrm{~m}, 4 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~m}, 10 \mathrm{H}), 1.38(\mathrm{q}, \mathrm{J}=7.11,14.96$ $\mathrm{Hz}, 4 \mathrm{H}), 1.24(\mathrm{~m}, 6 \mathrm{H}), 0.85(\mathrm{t}, \mathrm{J}=9.12 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}$ (126 MHz , DMSO-d6): $\delta=180.50,180.28,171.97,171.31,170.13,156.46,123.33$, $99.00,69.54,69.17,68.59,61.38,47.08,46.78,43.76,43.58,40.43,39.52,38.43,29.90$, 28.82, 28.59, 28.22, 27.57, 26.13, 26.03, 23.60, 23.50, 20.86, 20.36, 19.55, 17.66.

HRMS (ESI) calculated for $\left([\mathrm{M}+\mathrm{H}]^{+}\right): m / z=1077.5472$; experimental $=1077.5473$

Compound 47b

DFO mesylate (SigmaAldrich, \# D9533-1G, $225.5 \mathrm{mg}, 0.34 \mathrm{~mol}, 1.0 \mathrm{eq}$) was solubilized in anhydrous DMF (20 mL) by gentle heating with a heat gun. This solution was quickly cooled to $0{ }^{\circ} \mathrm{C}$ and DIPEA ($100 \mu \mathrm{~L}$) was added. Then BCN-OSu (SigmaAldrich, \# 744867-100MG, $100 \mathrm{mg}, 0.34 \mathrm{~mol}, 1.0 \mathrm{eq}$) was added dropwise in anhydrous DMF (5 mL) at $0^{\circ} \mathrm{C}$. Caution: Too long cooling to $0^{\circ} \mathrm{C}$ lead to precipitation of the DFO mesylate and stalling of the reaction. The reaction continued stirring at $23^{\circ} \mathrm{C}$ for 2 hours and the base was then removed by rotary evaporation at $30^{\circ} \mathrm{C}$. The residual solution was purified by RP-HPLC (2-50\% ACN/H2O, 0.1% $\mathrm{HCOOH}, 220 \mathrm{~nm}$, collect all), product containing fractions were lyophilized to yield 47b as a white powder ($212.97 \mathrm{mg}, 0.29 \mathrm{~mol}, 85 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}\right): \delta=4.14(\mathrm{~d}, \mathrm{~J}=8.16 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{~m}, 8 \mathrm{H}), 3.17(\mathrm{t}, \mathrm{J}=6.77$ Hz, 4H), 3.09 (t, J = 2.06, 6.47 Hz, 2H), 2.76 (dt, J = 6.47, Hz, 4H), 2.45 (dt, J = 294, 7.21 Hz, 5H), 2.24 (m, 3H), 2.18 (m, 1H), 2.09 (s, 3H), 1.63 (m, 6H), 1.52 (m, 7H), 1.34 (m, 6H), 0.94 (t, $J=8.53 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}\right): \delta=174.93$, 174.49, 173.52, 159.34, 99.52, 63.56, 57.72, 57.60, 57.48, 57.35, 57.24, 41.57, 40.28, 31.48, 30.53, 30.17, 29.98, 28.92, 27.34, 24.91, $24.79,21.94,21.39,20.23,18.98,17.50,17.39,17.28,17.18,17.06$.

DEPT ($176 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}$): $\delta=63.27,41.29,39.99,31.21,30.24,29.89,29.70,29.67,28.64$, 27.06, 24.63, 24.60, 24.51, 21.65, 21.11, 19.94, 18.70.

HRMS (ESI) calculated for $\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}=737.4444$ experimental $=737.4446$, calculated for $\left([\mathrm{M}+\mathrm{Na}]^{+}\right): \mathrm{m} / \mathrm{z}=759.4263$ experimental $=759.4266$

Cleavable linker synthesis

Compound 48

Methanesulfonic acid (100 mL) was filled in a round bottom flask and heated to $70^{\circ} \mathrm{C}$. Then, 2,6-dimethylbenzene-1,4-diol ($5.0 \mathrm{~g}, 36.21 \mathrm{mmol}, 1.0 \mathrm{eq}$) and methyl 3-methylbut-2-enoate $(4.7 \mathrm{~g}, 41.07 \mathrm{mmol}, 1.1 \mathrm{eq})$ were added carefully, each in one portion, to yield a brown solution, which was stirred at $70^{\circ} \mathrm{C}$ for 2 hours. After this time, the reaction was diluted with water (100 $\mathrm{mL})$, extracted with EtOAc ($3 \times 100 \mathrm{~mL}$) and the combined organic extracts were washed with water ($1 \times 75 \mathrm{~mL}$), sat. $\mathrm{NaHCO}_{3}(2 x 75 \mathrm{~mL})$, brine (75 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo yielding lactone 48 as a crude, beige solid ($7.2 \mathrm{~g}, 32.91 \mathrm{mmol}, 91 \%$), which was directly used in the next step without further purification.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.71(\mathrm{~s}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}$, 6 H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.67,149.15,144.77,128.56,122.50,121.96,116.78$, 45.97, 35.35, 27.71, 15.87, 14.39.

Compound 49

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrO}_{4}$
Exact Mass: 328,0310
Molecular Weight: 329,1900
Lactone $48(7.2 \mathrm{~g}, 32.91 \mathrm{mmol}, 1.0 \mathrm{eq})$ was dissolved in $\mathrm{AcOH}(120 \mathrm{~mL}) / \mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and bromine ($1.5 \mathrm{~g}, 96.92 \mathrm{mmol}, 4.0 \mathrm{eq}$) was added in $\mathrm{AcOH}(30 \mathrm{~mL})$ using a dropping funnel over 15 minutes. The resultant brown-orange solution was stirred overnight, protected from light.

The solvent was evaporated by rotary evaporation in a fume hood $\left(\mathrm{HBr} / \mathrm{Br}_{2}\right.$ fumes were quenched with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in the collecting flask) and the residue was partitioned between water and DCM (each 200 mL). The aqueous phase was extracted with DCM ($3 \times 150 \mathrm{~mL}$) and the combined extracts were extracted with sat. NaHCO_{3} solution ($8 \times 250 \mathrm{~mL}$). The NaHCO_{3} extracts were acidified to $\mathrm{pH}<3$ with conc. HCl and extracted with DCM ($3 \times 200 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated in vacuo yielding crude bromo acid 49a ($4254.4,13.5 \mathrm{mmol}, 56 \%$) as a neon-yellow oil. The acid 49a $(4.3 \mathrm{~g}, 13.5 \mathrm{mmol}, 1.0 \mathrm{eq})$ was dissolved directly in anhydrous $\mathrm{MeOH}(100 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. Then $\mathrm{SOCl}_{2}(1.3 \mathrm{~mL}, 17.6 \mathrm{mmol}, 1.3 \mathrm{eq})$ was added dropwise. The reaction was heated to reflux for two hours and then all volatiles were removed in vacuo. The residue was taken up in EtOAc and washed with sat. $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$, brine ($1 \times 20 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to yield ester 49 ($2.5 \mathrm{~g}, 7.5 \mathrm{mmol}, 50 \%$) as a crude brown-yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.59(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{~s}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}$, 6 H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}\right): \delta=186.32,183.68,174.63,153.86,142.19,141.70,141.19$, 52.05, 48.41, 40.04, 29.28, 14.92, 13.65.

Compound 50

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}$ Exact Mass: 291,1219
Molecular Weight: 291,3070

Bromide 49 ($2.5 \mathrm{~g}, 7.5 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in $\mathrm{MeOH}(20 \mathrm{~mL})$ and to this, sodium azide $(1.5 \mathrm{~g}, 22.5 \mathrm{mmol}, 3.0 \mathrm{eq})$ was added in one portion. Then, $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added and the mixture stirred overnight at $25^{\circ} \mathrm{C}$. The organic portion was removed in vacuo and the residual phase was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$) and the combined extracts were washed with brine ($1 \times 200 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and yielded the azide 50 ($2.2 \mathrm{~g}, 7.5 \mathrm{mmol}$, quant.) as an orange-brown oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=3.61$ (s, 3H), 2.99 (s, 2H), $2.15(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.43$ (s, 6 H).

Compound 51

The azide $50(2.2 \mathrm{~g}, 7.63 \mathrm{mmol}, 1.0 \mathrm{eq})$ was dissolved in dry, degassed DCM (100 mL) and $\mathrm{PPh}_{3}(3.6 \mathrm{~g}, 13.74 \mathrm{mmol}, 1.8 \mathrm{eq})$ was added in three portions. The color of the reaction mixture became purple and it was stirred at $24^{\circ} \mathrm{C}$ for 1 hour. Then, the solvent was evaporated by rotary evaporation at $40{ }^{\circ} \mathrm{C}$ and shortly dried under reduced pressure. The residue was dissolved in a mixture of $\mathrm{AcOH} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}\left(1: 1: 3,600 \mathrm{~mL}\right.$) and heated to reflux (ca $100{ }^{\circ} \mathrm{C}$) for 1 hour. The solvent was removed by rotary evaporation and EtOAc and $\mathrm{H}_{2} \mathrm{O}$ (each 100 mL) were added. The organic phase was again washed with sat. $\mathrm{NaHCO}_{3}(3 \times 70 \mathrm{~mL})$. The solution was concentrated and purified by silica gel chromatography (DCM/MeOH $4: 1$ to $2: 1$) yield amino TML 51 ($642.4 \mathrm{mg}, 2.42 \mathrm{mmol}, 32 \%$) as a blood-red oil. Purification by prepTLC (SiO_{2}, DCM, max. $5 \% \mathrm{MeOH}$) was used additionally to remove traces of triphenylphosphine oxide.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.80(\mathrm{~s}, 1 \mathrm{H}), 3.10(\mathrm{~s}, 2 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}), 2.13$ (bs, 2H), 1.99 (s, 6H).
${ }^{13}$ C-NMR (126 MHz, CDCl_{3}): $\delta=168.75,149.28,144.99,128.79,122.58,122.07,116.98$, 77.16, 46.16, 35.55, 27.90, 16.02, 14.55.

HRMS (ESI) calculated for ([M+H]+): m/z=266.1387; experimental = 266.1391.

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{7}$
Exact Mass: 451,2319
Molecular Weight: 451,5200

Amino TML 51 ($200 \mathrm{mg}, 0.754 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in anhydrous toluene (30 mL) and triphosgene ($894.74 \mathrm{mg}, 3.02 \mathrm{mmol}, 4.0 \mathrm{eq}$) was added in one portion under argon atmosphere. The reaction was heated from $23^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ and stirred at that temperature overnight. A prominent color change from red to orange was observed after 2 hours. The next day, the solvent was removed by rotary evaporation at $40^{\circ} \mathrm{C}$ and the residue was dried under reduced pressure for one hour. The carbamate was dissolved in anhydrous DCM $(20 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$ under argon atmosphere. N -Boc ethylene-1,6-diamine ($101 \mathrm{mg}, 0.63 \mathrm{mmol}, 6.0$ eq) was added dropwise over 5 minutes, diluted in anhydrous DCM (20 mL), followed by addition of TEA ($800 \mu \mathrm{~L}, 6.03 \mu \mathrm{~mol}, 8.0 \mathrm{eq}$) at the same temperature. The reaction continued stirring at $0{ }^{\circ} \mathrm{C}$ for 1 hours and for 1 hour at $23^{\circ} \mathrm{C}$ and the color changed from orange to canary yellow. The reaction was diluted with DCM (100 mL) and washed with water ($2 \times 50 \mathrm{~mL}$), 1 M $\mathrm{HCl}(2 \times 75 \mathrm{~mL})$ and brine ($2 \times 75 \mathrm{~mL}$). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness. The yellow oil was purified by multiple RP-HPLCs (10-60\% ACN/H2O, $0.1 \% \mathrm{HCOOH}, 220 \mathrm{~nm})$. Yellow fractions were verified to be pure product by LCMS, combined and lyophilized to yield 52 as a canary yellow oil ($200.6 \mathrm{mg}, 0.44 \mathrm{mmol}, 59 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 MHz, DMSO-d6): $\delta=8.11$ (s, 1H), $6.74(\mathrm{t}, \mathrm{J}=5.36 \mathrm{~Hz}, 1 \mathrm{H}), 6.61$ (t, J = 5.21 Hz , 1 H), 3.49 ($\mathrm{s}, 3 \mathrm{H}$), 3.01 ($\mathrm{q}, \mathrm{J}=6.92,12.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.89(\mathrm{q}, \mathrm{J}=6.92 \mathrm{~Hz}, 2 \mathrm{H}$), 2.08 ($\mathrm{s}, 3 \mathrm{H}$), 1.76 (s, 3H), 1.38 (s, 6H), 1.36 (s, 9H).
${ }^{13}$ C-NMR (126 MHz , DMSO-d6): $\delta=186.76,186.56,171.81,155.59,153.43,149.93,141.18$, 139.20, 124.52, 77.31, 51.14, 46.33, 42.02, 37.97, 29.49, 29.46, 28.68, 28.28, 26.00, 13.95, 11.93.

HRMS (ESI) calculated for $\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}=452.2392$; experimental $=452.2379$.

N-Boc protected amine 52 ($100 \mathrm{mg}, 0.221 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in anhydrous DCM $(750 \mu \mathrm{~L})$ and TFA ($250 \mu \mathrm{~L}$) was added at $0^{\circ} \mathrm{C}$. The reaction was stirred at $24^{\circ} \mathrm{C}$ for 2 hours before the reaction was concentrated to dryness and dried overnight under reduced pressure. Then, 6-azido hexanoic acid ($69.92 \mathrm{mg}, 0.443 \mathrm{mmol}, 2.0 \mathrm{eq}$) was dissolved in DCM:DMF (10:1, $18+2 \mathrm{~mL}$) and HATU ($336.86 \mathrm{mg}, 0.886 \mathrm{mmol}, 4.0 \mathrm{eq}$) was added. The suspension was stirred for 5 minutes, then the crude Boc-deprotected amine and DIPEA ($50 \mu \mathrm{~L}$) were added together in DCM:DMF ($5 \mathrm{~mL}, 10: 1$). The reaction stirred for 2 hours at $24^{\circ} \mathrm{C}$ and was then diluted with DCM (100 mL) and washed with LiCI ($5 \% \mathrm{w} / \mathrm{v}, 1 \mathrm{x} 100 \mathrm{~mL}$), $1 \mathrm{M} \mathrm{HCI}(2 \times 100 \mathrm{~mL})$ and brine ($1 \times 100 \mathrm{~mL}$) before the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by rotary evaporation and the residue was again dissolved in $\mathrm{MeOH}(9 \mathrm{~mL}$) and 1 M $\mathrm{LiOH}(1 \mathrm{~mL})$ was added. The reaction stirred for 3 hours at $24^{\circ} \mathrm{C}$ and was then acidified by dropwise conc. HCl addition. The MeOH was removed by rotary evaporation and the residual aqueous phase (+10 mL water) was extracted with DCM ($3 \times 20 \mathrm{~mL}$). The combined organic extracts were concentrated in vacuo and the residue was purified by RP-HPLC (10-60\% ACN/H2O, $0.1 \% \mathrm{HCOOH}, 220 \mathrm{~nm}$). The product containing fractions were lyophilized to yield a yellow powder as 53 ($78.3 \mathrm{mg}, 0.164 \mathrm{mmol}, 74 \%$ over three steps).
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, DMSO-d6): $\delta=12.01$ (s, 1H), 8.76 (dd, J = 1.34, $4.32 \mathrm{~Hz}, 1 \mathrm{H}$), 8.54 (dd, J $=1.46,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{q}, \mathrm{J}=3.84,8.16 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 1 \mathrm{H}), 3.31(\mathrm{t}, \mathrm{J}=7.28 \mathrm{~Hz}, 4 \mathrm{H}), 3.10$ (m, 1H), 2.69 ($\mathrm{s}, 3 \mathrm{H}$), 2.21 (t, J = $7.44 \mathrm{~Hz}, 3 \mathrm{H}$), 2.08 (m, 2H), 1.77 (s, 1H), 1.51 (m, 9H), 1.38 (s, 2H), 1.32 (m, 4H).
${ }^{13}$ C-NMR (126 MHz, DMSO-d6): $\delta=187.21,186.92,174.83,174.58,172.66,172.23,165.06$, 162.77, 154.16, 151.62, 150.53, 141.63, 140.08, 139.56, 135.11, 129.35, 125.21, 121.21, $51.62,50.98,46.75,46.23,38.71,38.43,36.25,35.73,35.39,33.97,31.23,29.14,28.48$, $28.46,26.32,26.27,26.19,25.20,25.08,24.49,14.38,12.31,9.11$.

HRMS (ESI) calculated for $\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}=477.2456$; experimental $=477.2439$.

Methyl2-((t-butoxycarbonyl)amino)-3-(2,4-dimethyl-6-((4-nitrobenzyl)oxy)phenyl) propanate (chemspace ID: CSC010216371, $500 \mathrm{mg}, 1.62 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and dimethoxy propane ($396 \mu \mathrm{~L}, 3.232 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added, followed by $20 \% \mathrm{HCl}$ (10 $\mu \mathrm{L}$). The reaction was stirred at $23^{\circ} \mathrm{C}$ for 2 hours. before the solvent was removed in vacuo. The resultant residue was dried for two hours under reduced pressure before ACN (10 mL), para-nitro benzyl bromide ($523.7 \mathrm{mg}, 2.42 \mathrm{mmol}, 1.5 \mathrm{eq}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(446.9 \mathrm{mg}, 3.23 \mathrm{mmol}$, $2.0 \mathrm{eq})$ were added. The suspension stirred overnight at $23^{\circ} \mathrm{C}$. Then the reaction was filtered and the filter was washed with DCM (100 mL). The solvent was removed in vacuo and the residue was washed with ice-cold petrolether. The residue was purified by flash chromatography ($\mathrm{C} 18,10-100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}, 220 \mathrm{~nm}$) and product containing fractions were identified by LCMS. The combined fractions were lyophilized to dryness to yield ether 54 ($614.71 \mathrm{mg}, 1.34 \mathrm{mmol}, 83 \%$ over two steps) as a yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right): \delta=8.24(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=1.53 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ (d, $\mathrm{J}=7.84 \mathrm{~Hz}, 1 \mathrm{H}$), $6.66(\mathrm{~d}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{q}, \mathrm{J}=7.84,15.49,1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 2.98$ (m, 2H), 2.22 (s, 3H), 2.19 (s, 3H), 1.33 (s, 9).
${ }^{13}$ C-NMR (126 MHz, DMSO- d_{6}): $\delta=172.80,156.15,155.21,146.86,145.38,137.62,136.43$, 127.73, 123.61, 123.46, 121.07, 110.30, 78.22, 68.17, 53.28, 51.57, 39.52, 28.26, 28.09, 27.65, 21.03, 19.19.

DEPT (126 MHz, DMSO- d_{6}): $\delta=127.47,123.35,123.20,110.04,67.92,53.03,51.31,39.52$, 28.00, 27.83, 27.39, 20.77, 18.93.

HRMS (ESI) calculated for ([M+H]+): m/z=459.2126; experimental = 459.2132.

Compound 55

Chemical Formula: $\mathrm{C}_{27} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{10}$
Exact Mass: 597,3010
Molecular Weight: 597,6660
$51(50 \mathrm{mg}, 0.188 \mathrm{mmol}, 1.0 \mathrm{eq})$ was dissolved in anhydrous toluene (50 mL) and triphosgene $\left(111.85 \mathrm{mg}, 0.377 \mathrm{mmol}, 2.0 \mathrm{eq}\right.$) was added at $23^{\circ} \mathrm{C}$. The reaction was heated to $80^{\circ} \mathrm{C}$ for 18 h and then the solvent was removed by rotary evaporation. The residue was dried under reduced pressure for 2 hours. Anhydrous DCM (15 mL) was added under argon atmosphere and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. Then $\mathrm{N}_{3}-\mathrm{PEG}-\mathrm{NH}_{2}(230.94 \mathrm{mg}, 0.754 \mathrm{mmol}, 4.0 \mathrm{eq}$) dissolved in anhydrous DCM $(10 \mathrm{~mL})$ and TEA $(500 \mu \mathrm{~L})$ were added dropwise together at 0 ${ }^{\circ} \mathrm{C}$. The reaction was equilibrated to $23^{\circ} \mathrm{C}$ and stirred at this temperature for two hours. The reaction progress was monitored by LCMS and after complete conversion the solvent was removed by rotary evaporation and dissolved in ACN (4 mL), filtered and purified by RP-HPLC (C18, 5-75\% ACN/H2O, $0.1 \% \mathrm{HCOOH}, 220 \mathrm{~nm}$,). The product containing fractions were lyophilized to dryness to yield 55 ($285.4 \mathrm{mg}, 0.477 \mathrm{mmol}, 92 \%$) as an orange oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}\right): \delta=3.66(\mathrm{~m}, 18 \mathrm{H}), 3.57(\mathrm{~m}, 5 \mathrm{H}), 3.37(\mathrm{q}, \mathrm{J}=5.08,9.87 \mathrm{~Hz}$, 4 H), 2.94 ($\mathrm{s}, 2 \mathrm{H}$), 2.17 ($\mathrm{s}, 3 \mathrm{H}$), 1.88 ($\mathrm{s}, 3 \mathrm{H}$), 1.46 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}\right): \delta=187.36,186.38,172.86,149.99,140.15,139.91,127.48$, 70.23, 70.22, 70.17, 70.16, 70.12, 69.92, 69.74, 50.50, 50.37, 46.69, 38.31, 28.19, 13.23, 11.12.

Compound 56

The ester 55 ($29 \mathrm{mg}, 0.048 \mathrm{mmol}, 1.0$) was dissolved in $\mathrm{MeOH}(900 \mu \mathrm{~L})$ and $1 \mathrm{M} \mathrm{KOH}(100$ $\mu \mathrm{L}$) was added. The reaction continued stirring at $24^{\circ} \mathrm{C}$. Upon completion ($\sim 1 \mathrm{~h}$), the pH was adjusted to two (color change purple to yellow) by the dropwise addition of concentrated HCl on ice. The MeOH fraction was removed by rotary evaporation at $30^{\circ} \mathrm{C}$, then water (10 mL) and brine $(10 \mathrm{~mL})$ were added. The aqueous phase was extracted with DCM $(3 \times 20 \mathrm{~mL})$ and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo to yield acid 56 ($28.04 \mathrm{mg}, 0.048 \mathrm{mmol}$, quant.) as a crude oil that was directly used in the next step.

HRMS (ESI) calculated for $\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}=584.2926$; experimental $=584.2937$.

Compound 57

The acid 56 ($30 \mathrm{mg}, 0.051 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in anhydrous THF (2.5 mL), NMM (200 $\mu \mathrm{L}$) was added under argon atmosphere and the reaction was cooled to $0^{\circ} \mathrm{C}$, before iso-butyl chloroformate ($4.98 \mu \mathrm{~L}, 0.051 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added and the reaction mixture turned turbid instantly. The mixture was stirred for 15 minutes at $0^{\circ} \mathrm{C}$ and subsequently one hour at $24^{\circ} \mathrm{C}$. Then, para-amino benzyl alcohol ($7.6 \mathrm{mg}, 0.062 \mathrm{mmol}, 1.2 \mathrm{eq}$) was added at $0^{\circ} \mathrm{C}$, dissolved in anhydrous THF (1 mL) and basified with NMM ($200 \mu \mathrm{~L}$) before addition. The reaction continued stirring at $0^{\circ} \mathrm{C}$ for 15 minutes and then for 1 hour at $24^{\circ} \mathrm{C}$. The reaction was diluted with DCM $(100 \mathrm{~mL})$ and washed with $1 \mathrm{M} \mathrm{HCl}(3 \times 100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness to yield crude 57 as a yellow oil ($27.4 \mathrm{mg}, 0.04 \mathrm{mmol}, 77 \%$).

HRMS (ESI) calculated for $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: $\mathrm{m} / \mathrm{z}=689.3505$; experimental $=689.3508$.

Compound 72

$51(400 \mathrm{mg}, 1.5 \mathrm{mmol}, 1.0 \mathrm{eq})$ was dissolved in dry toluene (50 mL) and solid triphosgene ($490.2 \mathrm{mg}, 1.7 \mathrm{mmol}, 1.1 \mathrm{eq}$) was added at $24^{\circ} \mathrm{C}$. The reaction was heated under argon atmosphere to $80^{\circ} \mathrm{C}$ for 18 hours and then evaporated to dryness. The residue was dried under vacuum, dissolved in anhydrous DCM (40 mL) and 3-azido-propane-1-amine (225.7 mg , $2.3 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added as solution in dry DCM $(10 \mathrm{~mL})$ together with DIPEA ($785 \mu \mathrm{~L}$, 3.0 eq) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred 1 hour at $0^{\circ} \mathrm{C}$ and then 1 hour at $24^{\circ} \mathrm{C}$. More DCM $(200 \mathrm{~mL})$ was added and the organic phase was washed with $1 \mathrm{~N} \mathrm{HCl}(2 \times 100 \mathrm{~mL})$, brine ($2 \times 100 \mathrm{~mL}$) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and the residue was dissolved in $\mathrm{MeOH}(40 \mathrm{~mL})$ and $1 \mathrm{~N} \mathrm{LiOH} \mathrm{(} 5 \mathrm{~mL}$) was added. The reaction was stirred for 2 hours at ambient temperature and was then acidified with HCl to pH 2 . The MeOH was removed by rotary evaporation before NaCl and $\mathrm{EA}(200 \mathrm{~mL})$, brine $(200 \mathrm{~mL})$ were added. The aqueous phase was extracted with $\mathrm{EA}(2 \times 100 \mathrm{~mL})$, the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness to yield 72 ($274.6 \mathrm{mg}, 0.73 \mathrm{mmol}, 48 \%$ over two steps) as a crude orange solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO-d ${ }_{6}$): $\delta=12.08$ (s, 1H), 8.17 (s, 1H), 6.78 (t, J = $6.06 \mathrm{~Hz}, 1 \mathrm{H}$), 3.37 (t, J = 7.06 Hz, 2H), 3.34 (s, 1H), 3.10 (q, J = 6.72, $12.68 \mathrm{~Hz}, 2 \mathrm{H}$), 2.80 (s, 2H), 2.09 (s, 3H), 1.76 (s, 3H), 1.66 (m, 2H), 1.37 (s, 6H).

DEPT (126 MHz, DMSO-d d_{6}): $\delta=48.15,46.65,28.65,28.41,13.82,12.02$.
${ }^{13}$ C-NMR (126 MHz , DMSO- d_{6}): $\delta=186.94,186.51,173.21,153.53,150.19,140.73,139.10$, 124.87, 48.39, 46.89, 37.80, 36.79, 28.90, 28.66, 28.38, 14.06, 13.93, 12.27, 11.87.

HRMS (ESI) calculated for $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: $\mathrm{m} / \mathrm{z}=378,1771$; experimental $=378.1772$.

Gyrase inhibitor constructs

Compound 58

This compound was synthetized according to a modified procedure by Miller et al. ${ }^{5}$ Amino TML 51 ($160.5 \mathrm{mg}, 0.61 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in dry toluene (12.5 mL) and triphosgene ($538.5 \mathrm{mg}, 1.82 \mathrm{mmol}, 3.0 \mathrm{eq}$) was added at $25^{\circ} \mathrm{C}$ in one portion under argon atmosphere. Then the reaction mixture was heated to reflux overnight, cooled to $25^{\circ} \mathrm{C}$ and filtered. The solvent was removed in vacuo, the residue was dried under reduced pressure for 30 minutes and then dissolved in anhydrous DMF (1 mL). DFO ($339.2 \mathrm{mg}, 0.61 \mathrm{mmol}, 1 \mathrm{eq}$) was added in DMF (4.5 mL , solubilize w. heat gun) together with TEA ($335 \mu \mathrm{~L}, 4.84 \mathrm{mmol}, 4.0 \mathrm{eq}$) dropwise at $0^{\circ} \mathrm{C}$ over five minutes. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for one hour and at $25^{\circ} \mathrm{C}$ for two hours. The base and solvent were removed under reduced pressure and the residue was dissolved in $\mathrm{MeOH} / \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}$ and purified by RP-HPLC (10-50\% ACN, 0.1% $\mathrm{HCOOH}, 220 \mathrm{~nm}$) to yield 58 as a yellow solid ($87.4 \mathrm{mg}, 0.102 \mathrm{mmol}, 18 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta=9.62(\mathrm{~m}, 2 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{t}, \mathrm{J}=5.09 \mathrm{~Hz}, 2 \mathrm{H}), 6.62$ (t, J = $5.46 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~m}, 8 \mathrm{H}), 3.00(\mathrm{~m}, 6 \mathrm{H}), 2.85(\mathrm{~s}, 2 \mathrm{H}), 2.57(\mathrm{t}, \mathrm{J}=6.31$ $\mathrm{Hz}, 3 \mathrm{H}), 2.27(\mathrm{~m}, 5 \mathrm{H}), 2.11(\mathrm{~s}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})), 1.96(\mathrm{~s}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 2 \mathrm{H}), 1.49$ (m, 6H), 1.38 (m, 10H), 1.21 (m, 6H).
${ }^{13}$ C-NMR (126 MHz, DMSO- d_{6}): $\delta=186.76,186.55,171.98,171.81,171.48,171.34,170.16$, 154.57, 153.44, 149.94, 149.86, 141.18, 139.19, 135.23, 127.78, 126.07, 124.53, 117.66, $106.25,51.14,50.89,47.10,46.80,46.44,46.33,38.43,38.05,37.97,30.24,29.92,29.20$, 28.81, 28.68, 27.57, 26.03, 23.49, 20.34, 15.24, 13.94, 10.99.

Compound 12

This compound was previously synthetized by Miller et al. ${ }^{5}$ Ester 58 ($11.34 \mathrm{mg}, 0.013 \mathrm{mmol}$, 1.0 eq) was dissolved in $\mathrm{MeOH}(1 \mathrm{~mL})$. A 5 N KOH solution was added $(100 \mu \mathrm{~L})$ at $25^{\circ} \mathrm{C}$. The color changed from yellow to a dark red and the reaction stirred 3 h at ambient temperature. After completion, the pH was adjusted to 2 with 3 M HCl and the solution was loaded on a milliQ water equilibrated $\mathrm{C} 18-\mathrm{SiO}_{2}$ pad. The salts were removed with milliQ water (5 mL) while the compound retained and was then eluted with $70 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}$. The yellow solution was frozen in liquid N_{2} and lyophilized to yield crude acid 58a. Acid 58a was dissolved in DMF (5 mL), cooled to $0{ }^{\circ} \mathrm{C}$ before EDCI* $\mathrm{HCl}(14.5 \mathrm{mg}, 0.076 \mathrm{mmol}, 5.7 \mathrm{eq}$) and HOBt (10.25 mg , $0.076 \mathrm{mmol}, 5.7 \mathrm{eq})$ were added. The yellowish solution was stirred at $0^{\circ} \mathrm{C}$ for 5 minutes, before ciprofloxacin ($6.16 \mathrm{mg}, 0.016 \mathrm{mmol}, 1.2 \mathrm{eq}$) and TEA ($7.87 \mu \mathrm{~L}, 0.106 \mathrm{mmol}, 8.0 \mathrm{eq}$), followed by DMAP ($0.33 \mathrm{mg}, 0.003 \mathrm{mmol}, 0.2 \mathrm{eq}$), were added. The mixture was warmed to $25^{\circ} \mathrm{C}$ and stirred for 16 h . The next morning, the solvent was removed under reduced pressure and the residue was taken up in 40% ACN in milliQ $\mathrm{H}_{2} \mathrm{O}$, filtered and injected into the HPLC ($10-70 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}, 0.1 \% \mathrm{HCOOH}, 220 \mathrm{~nm}$). The product containing fractions were identified by LCMS and lyophilized to yield 12 as a yellow powder overnight ($5.4 \mathrm{mg}, 0.005 \mathrm{mmol}, 35 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}\right.$, DMSO-d d_{6}): $\delta=15.20$ (s, 1H), $9.60(\mathrm{~m}, 2 \mathrm{H}), 8.67$ (s, 1H), 8.00 (s, 1H), 7.95 (d, J = $14.55 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}=10.91 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{t}, \mathrm{J}=5.61 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ (m, 1H), $3.70(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~m}, 4 \mathrm{H}), 3.39(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~m}, 3 \mathrm{H})$, $2.99(\mathrm{~m}, 8 \mathrm{H}), 2.57(\mathrm{q}, \mathrm{J}=8.13,15.58 \mathrm{~Hz}, 4 \mathrm{H}), 2.25(\mathrm{~s}, 4 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}$, $3 \mathrm{H}), 1.49(\mathrm{~m}, 4 \mathrm{H}), 1.41(\mathrm{~s}, 6 \mathrm{H}), 1.35(\mathrm{~m}, 8 \mathrm{H}), 1.19(\mathrm{~m}, 5 \mathrm{H}), 1.14(\mathrm{~m}, 1 \mathrm{H})$
${ }^{13}$ C-NMR (176 MHz, DMSO- d_{6}): $\delta=186.94,186.62,176.36,171.93,171.27,169.74,165.91$, 153.37, 152.21, 148.09, 141.09, 139.15, 136.65, 106.75, 50.49, 47.05, 46.75, 45.05, 44.73, $40.56,40.00,38.39,38.09,35.86,33.48,29.86,29.19,28.79,28.70,27.97,27.53,26.00$, $25.69,24.00,23.47,23.33,20.32,13.85,11.98,7.57$.

DEPT (176 MHz, DMSO- d_{6}): $\delta=147.85,110.88,110.75,106.13,50.25,49.22,48.78,46.80$, 46.51, 44.81, 44.49, 40.32, 39.52, 39.13, 38.16, 35.63, 33.24, 29.62, 28.95, 28.55, 28.46, $27.73,27.29,25.76,25.45,23.76,23.23,23.09,20.08,13.61,11.74,7.33,0.15$.
${ }^{19}$ F-NMR (471 MHz, DMSO- d_{6}): $\delta=-121.63$.

HRMS (ESI) calculated for $\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}=1151.5783$; experimental $=1151.5791$.

Compound 59

This compound was synthetized with modified conditions from Miller et al. ${ }^{5}$ Ester $52(20 \mathrm{mg}$, $0.044 \mathrm{mmol}, 1.0 \mathrm{eq})$ was dissolved in $\mathrm{MeOH}(1 \mathrm{~mL})$ and $1 \mathrm{M} \mathrm{NaOH}(1 \mathrm{~mL})$ was added at 23 ${ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for two hours, then acidified with 1 M HCl to pH 2 and quickly extracted with DCM ($2 \times 25 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness to yield acid 52a as a crude, yellow oil. This oil was dried under reduced pressure for 1 hour, before DCM / DMF (10 and 1 mL) were added. This was followed by HOBt ($13.8 \mathrm{mg}, 0.089 \mathrm{mmol}, 2.0 \mathrm{eq}$) and EDCI* $\mathrm{HCl}(12.1 \mathrm{mg}, 0.089 \mathrm{mmol}, 2.0 \mathrm{eq}$) addition at $0^{\circ} \mathrm{C}$ under argon atmosphere. The reaction mixture was stirred five minutes at $0^{\circ} \mathrm{C}$ before ciprofloxacin ($22 \mathrm{mg}, 0.066 \mathrm{mmol}, 1.5 \mathrm{eq}$ in 1 mL DMF) and DIPEA ($30 \mu \mathrm{~L}$) were added at 0 ${ }^{\circ} \mathrm{C}$. The ice bath was removed and the reaction continued stirring overnight at $23^{\circ} \mathrm{C}$. The solvent was removed by rotary evaporation and the residue was dissolved in DCM (100 mL) and was washed with $1 \mathrm{M} \mathrm{HCl} /$ brine ($1: 1,3 \times 50 \mathrm{~mL}$), brine ($3 \times 50 \mathrm{~mL}$). After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ the solvent was removed in vacuo and the residue was purified by RP-HPLC (C18, 10-70\% $\mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}, 0.1 \% \mathrm{HCOOH}, 220 \mathrm{~nm}$). Product containing fractions were identified by LCMS and
lyophilized to yield intermediate 59 ($19.6 \mathrm{mg}, 0.026 \mathrm{mmol}, 59 \%$ over two steps) as a yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ (700 MHz, DMSO-d6): $\delta=15.20$ (s, 1H), 8.67 (s, 1H), 8.09 (s, 1H), 7.93 (d, J = 14.6 $\mathrm{Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=8.73 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{q}, \mathrm{J}$ $=5.22,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~m}, 1 \mathrm{H}), 3.70,3.61(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~m}, 6 \mathrm{H}), 3.16(\mathrm{~d}, \mathrm{~J}=$ $4.95 \mathrm{~Hz}, 4 \mathrm{H}), 3.03(\mathrm{q}, \mathrm{J}=6.02,12.23 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{~s}, 2 \mathrm{H}), 2.91(\mathrm{q}, \mathrm{J}=6.02,11.96 \mathrm{~Hz}, 2 \mathrm{H})$, $2.07(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 6 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (176 MHz, DMSO-d6): $\delta=186.98,186.54,176.37,169.70,165.90,153.60,152.23$, $148.09,144.83,140.97,139.15,136.69,106.76,106.40,77.62,48.57,44.99,44.74,38.13$, $35.86,35.76,28.69,28.17,21.03,13.85,11.96,7.57$.

HRMS (ESI) calculated for $\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}=751,3461$; experimental $=751.3454$.

Compound 8

N-Boc amine 59 ($10 \mathrm{mg}, 0.013 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in anhydrous DCM $(0.75 \mathrm{~mL})$ and TFA (0.25 mL) was added at $0^{\circ} \mathrm{C}$. The yellow solution stirred for 2 hours at $24^{\circ} \mathrm{C}$, and was then concentrated to dryness to yield 59a. The orange residue was dried under reduced pressure for 2 hours. Meanwhile acid $7(23.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 1.5 \mathrm{eq})$ was dissolved in anhydrous THF $(500 \mu \mathrm{~L})$, and NMM $(30 \mu \mathrm{~L})$ was added under argon atmosphere. At $0^{\circ} \mathrm{C}$ isobutyl chloroformate ($1.4 \mu \mathrm{~L}, 0.020 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added and the reaction went turbid instantly. The mixture was stirred ten minutes at $0^{\circ} \mathrm{C}$ and 1 h at $24^{\circ} \mathrm{C}$. Then amine 59 a was added dropwise at $0^{\circ} \mathrm{C}$, in anhydrous THF ($500 \mu \mathrm{~L}$) and together with NMM ($30 \mu \mathrm{~L}$). The reaction continued stirring at $0{ }^{\circ} \mathrm{C}$ for 5 minutes and one hour at $24^{\circ} \mathrm{C}$. Then $\mathrm{AcOH}(200 \mu \mathrm{~L})$ was added, the solvent was removed in vacuo at $30^{\circ} \mathrm{C}$ and the residue was purified by RP-

HPLC (C18, 10-70\% $\mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}, 1 \% \mathrm{AcOH}, 220 \mathrm{~nm}$). Product containing fractions were combined and lyophilized to yield conjugate 8 as a slightly yellow powder ($19.06 \mathrm{mg}, 0.01$ mmol, 79\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}+1 \% \mathrm{AcOH}-\mathrm{d} 4\right): \delta=8.67(\mathrm{~s}, 3 \mathrm{H}), 8.26(\mathrm{~d}, \mathrm{~J}=1.69 \mathrm{~Hz}, 2 \mathrm{H}), 8.12$ (d, J = $13.17 \mathrm{~Hz}, 2 \mathrm{H}$), $7.83(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~m}, 3 \mathrm{H}), 7.58(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~m}, 5 \mathrm{H})$, $3.70(\mathrm{~m}, 7 \mathrm{H}), 3.61(\mathrm{~m}, 6 \mathrm{H}), 3.48(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~m}, 6 \mathrm{H}), 3.27(\mathrm{~m}, 6 \mathrm{H}), 3.18(\mathrm{~m}$, $2 \mathrm{H}), 3.04(\mathrm{~m}, 15 \mathrm{H}), 2.73(\mathrm{~m}, 6 \mathrm{H}), 2.07(\mathrm{~s}, 9 \mathrm{H}), 1.79(\mathrm{~s}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 1.41(\mathrm{~s}$, $6 \mathrm{H}), 1.32(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{~m}, 4 \mathrm{H}), 1.10(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (176 MHz, DMSO-d $\left.{ }_{6}+1 \% \mathrm{AcOH}-\mathrm{d} 4\right)$: $\delta=187.02$, 186.53, 176.37, 169.75, 169.32, 169.23, 165.84, 153.62, 153.49, 152.20, 148.15, 144.89, 140.92, 140.76, 139.15, 138.49, 136.76, 124.76, 118.82, 116.68, 111.14, 111.01, 106.71, 106.44, 49.87, 49.53, 49.02, 44.99, $44.78,40.57,38.80,38.68,38.15,35.87,34.28,28.70,22.58,22.53,21.00,13.89,12.08$, 12.05, 7.59.

HRMS (ESI) calculated for $\left([\mathrm{M}+2 \mathrm{H}]^{2+}\right)$: $\mathrm{m} / \mathrm{z}=953.4101$; experimental $=953.4115$.

Compound 9

2,3-diacethoxy benzoic acid 38 ($2.75 \mathrm{mg}, 0.012 \mathrm{mmol}, 1.5 \mathrm{eq}$) was dissolved in anhydrous THF ($500 \mu \mathrm{~L}$) and anhydrous NMM ($10 \mu \mathrm{~L}$) was added under argon atmosphere at $0^{\circ} \mathrm{C}$. At this temperature iso-butyl chloroformate ($1.9 \mu \mathrm{~L}, 0.012 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added and the mixture was stirred at 0° for five minutes and at $24{ }^{\circ} \mathrm{C}$ for 30 minutes. Then, the amine 59a (preparation see above, $5.0 \mathrm{mg}, 0.008 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added in THF ($500 \mu \mathrm{~L}$) with NMM $(10 \mu \mathrm{~L})$ dropwise at $0^{\circ} \mathrm{C}$. The reaction stirred for 30 minutes at $24^{\circ} \mathrm{C}$ and then $\mathrm{AcOH}(200 \mu \mathrm{~L})$ was added. The reaction was concentrated and the residue taken up in ACN, filtered and purified by RP-HPLC ($5-80 \%$ ACN/H2O, 1\% AcOH, 220 nm). Product containing fractions were lyophilized to yield amide 9 ($5.565 \mathrm{mg}, 0.006 \mathrm{mmol}, 83 \%$) as a yellow powder.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}, ~ D M S O-d 6,1 \%$ AcOH-d4): $\delta=8.67(\mathrm{~m}, 1 \mathrm{H}), 7.92(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{~m}, 1 \mathrm{H})$, $7.44(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~m}, 3 \mathrm{H}), 3.61(\mathrm{~m}, 3 \mathrm{H}), 3.34(\mathrm{~m}, 6 \mathrm{H}), 3.27(\mathrm{~m}$, $3 \mathrm{H}), 3.18(\mathrm{~m}, 3 \mathrm{H}), 3.05(\mathrm{t}, \mathrm{J}=5.76 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~m}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 1 \mathrm{H}), 2.07(\mathrm{~s}$, $3 \mathrm{H}), 1.91(\mathrm{~s}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 6 \mathrm{H}), 1.37(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~m}, 3 \mathrm{H}), 1.23(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~m}$, 3 H), $1.09(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~d}, \mathrm{~J}=7.16 \mathrm{~Hz}, 2 \mathrm{H}), 0.84(\mathrm{~d}, \mathrm{~J}=6.80 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (176 MHz , DMSO-d6+1\% AcOH-d4): $\delta=171.94,168.25,168.18,164.98,164.92$, 164.43, 151.74, 143.04, 142.74, 142.04, 139.96, 129.67, 128.62, 128.46, 128.16, 126.65, $126.28,126.18,126.04,125.41,74.56,74.53,74.49,69.71,69.55,69.52,69.49,68.65,38.79$, $38.08,35.84,28.70,27.27,27.14,18.47,18.37,13.85,7.57$.

HRMS (ESI) calculated for $\left([\mathrm{M}+2 \mathrm{H}]^{2+}\right): \mathrm{m} / \mathrm{z}=845.3152$; experimental $=845.3158$.

Compound 10

2,3-dimethoxy benzoic acid ($2.52 \mathrm{mg}, 0.014 \mathrm{mmol}, 1.5 \mathrm{eq}$) was dissolved in anhydrous THF $(500 \mu \mathrm{~L})$ and anhydrous $\mathrm{NMM}(10 \mu \mathrm{~L})$ was added under argon atmosphere at $0^{\circ} \mathrm{C}$. At this temperature iso-butyl chloroformate ($1.7 \mu \mathrm{~L}, 0.014 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added and the reaction continued stirring at 0° for five minutes. The reaction stirred for 30 minutes at $24^{\circ} \mathrm{C}$. Then the amine 59a ($6.0 \mathrm{mg}, 0.009 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added in THF ($500 \mu \mathrm{~L}$) with NMM ($10 \mu \mathrm{~L}$) dropwise at $0^{\circ} \mathrm{C}$. The reaction stirred for 30 minutes at $24^{\circ} \mathrm{C}$ and was then concentrated in vacuo. The residue was taken up in ACN, filtered and purified by RP-HPLC ($5-80 \%$ ACN/H2O, $1 \% \mathrm{AcOH}, 220 \mathrm{~nm}$). Product containing fractions were lyophilized to yield amide 10 (6.703 mg , $0.008 \mathrm{mmol}, 89 \%$) as a yellow powder.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO-d $\left._{6}\right): \delta=15.20(\mathrm{~s}, 1 \mathrm{H}), 8.64(\mathrm{~m}, 1 \mathrm{H}), 8.17(\mathrm{~m}, 2 \mathrm{H}), 7.91(\mathrm{~d}, \mathrm{~J}=15.78$ $\mathrm{Hz}, 1 \mathrm{H}), 7.53(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~m}, 4 \mathrm{H}), 6.73(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~m}, 3 \mathrm{H}), 3.72(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~m}, 1 \mathrm{H})$, $3.60(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 6 \mathrm{H}), 3.28(\mathrm{~m}, 3 \mathrm{H}), 3.20(\mathrm{~m}, 2 \mathrm{H}), 2.98$ (bs, $1 \mathrm{H}), 2.07(\mathrm{~s}, 2 \mathrm{H}), 1.76(\mathrm{~s}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 6 \mathrm{H}), 1.30(\mathrm{q}, \mathrm{J}=6.58,13.67 \mathrm{~Hz}, 2 \mathrm{H}), 1.23(\mathrm{~m}, 1 \mathrm{H})$, 1.17 (m, 2H).
${ }^{13}$ C-NMR (126 MHz, DMSO- d_{6}): $\delta=186.96,186.53,169.71,165.91,165.43,153.72,152.45$, 152.36, 148.01, 146.35, 141.01, 139.11, 136.58, 129.25, 123.88, 120.71, 114.77, 110.91, $106.74,106.34,60.88,60.85,55.89,45.02,44.74,40.54,38.14,35.83,28.68,13.84,11.90$, 7.56.

HRMS (ESI) calculated for $\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}=789.3254$; experimental $=789.3256$.

Compound 11

44 was dissolved in DCM/DMF ($5 / 0.25 \mathrm{~mL}$) and HATU ($14.87 \mathrm{mg}, 0.039 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added in one portion. After 5 minutes, the amine 59a (preparation see above, $15.26 \mathrm{mg}, 0.023$ $\mathrm{mmol}, 1.2 \mathrm{eq})$ was added in DCM/DMF ($5 / 0.25 \mu \mathrm{~L}$) together with DIPEA ($100 \mu \mathrm{~L}$) and the yellow solution stirred overnight at ambient temperature. The solvent was removed by rotary evaporation and the residue was purified by RP-HPLC (C18, $5-85 \%$ ACN/ $\mathrm{H}_{2} \mathrm{O}, 0.1 \% \mathrm{HCOOH}$, 220 nm) and product containing fractions were lyophilized to yield $11(21.6 \mathrm{mg}, 0.014 \mathrm{mmol}$, 71%) as a yellow solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}(700 \mathrm{MHz}$, DMSO-d6): $\delta=15.20(\mathrm{~s}, 1 \mathrm{H}), 8.66(\mathrm{~m}, 2 \mathrm{H}), 8.21(\mathrm{t}, \mathrm{J}=5.73 \mathrm{~Hz}, 1 \mathrm{H}), 8.12$ ($\mathrm{m}, 1 \mathrm{H}$), 7.91 (d, J = $13.27 \mathrm{~Hz}, 2 \mathrm{H}$), 7.52 ($\mathrm{d}, \mathrm{J}=7.21 \mathrm{~Hz}, 2 \mathrm{H}$), 7.12 ($\mathrm{m}, 4 \mathrm{H}$), 7.07 ($\mathrm{m}, 2 \mathrm{H}$), 6.74 (m, 1H), $3.80(\mathrm{~m}, 9 \mathrm{H}), 3.72(\mathrm{~s}, 5 \mathrm{H}), 3.69(\mathrm{~m}, 4 \mathrm{H}), 3.60(\mathrm{~m}, 4 \mathrm{H}), 3.35(\mathrm{~m}, 20 \mathrm{H}), 3.27(\mathrm{~m}, 8 \mathrm{H})$, 3.20 ($\mathrm{q}, \mathrm{J}=5.57,11.79 \mathrm{~Hz}, 4 \mathrm{H}$), 2.98 (bs, 4H), 2.07 (s, 6H), 1.91 (s, 2H), 1.76 (s, 6H), 1.41 (s, $12 \mathrm{H}), 1.30(\mathrm{q}, \mathrm{J}=7.53,15.23 \mathrm{~Hz}, 4 \mathrm{H}), 1.17(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13}$ C-NMR (176 MHz , DMSO-d6): $\delta=186.97,186.54,176.35,169.72,165.91,165.44,153.73$, 153.59, 152.46, 152.36, 152.18, 148.03, 146.36, 144.82, 141.02, 139.12, 136.60, 129.26, $124.74,123.89,120.72,114.78,111.09,110.96,106.75,106.37,60.85,55.90,49.50,48.99$, 45.02, 44.75, 40.54, 40.02, 39.52, 38.14, 35.83, 28.69, 21.03, 13.85, 11.90, 7.56.

HRMS (ESI) calculated for $\left([\mathrm{M}+2 \mathrm{H}]^{2+}\right): \mathrm{m} / \mathrm{z}=823.8988$; experimental $=823.9001$.

Compound 13

Boc-protected amine 59 ($14.4 \mathrm{mg}, 0.019 \mathrm{mmol}, 1.2 \mathrm{eq}$) was dissolved in DCM (0.75 mL) and TFA (0.25 mL) was added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for two hours at $24^{\circ} \mathrm{C}$ and upon full conversion as per LCMS the solution was concentrated to dryness to yield 59a. After drying for several hours under reduced pressure, the residue was dissolved in anhydrous DMF $(500 \mu \mathrm{~L})$ and isothiocyanate $46(12.0 \mathrm{mg}, 0.016 \mathrm{mmol}, 1.0 \mathrm{eq})$ was added. Then TEA ($50 \mu \mathrm{~L}$) was added and the mixture was stirred at $24^{\circ} \mathrm{C}$ overnight. The base was removed by rotary evaporation, the solution was filtered and purified by RP-HPLC (C18, 10-80\% ACN/ $\mathrm{H}_{2} \mathrm{O}, 0.1 \%$ $\mathrm{HCOOH}, 220 \mathrm{~nm}$). The product containing fractions were identified by LCMS and lyophilized to yield pure title compound 13 as a beige solid ($19.56 \mathrm{mg}, 0.014 \mathrm{mmol}, 73 \%$ over two steps).
${ }^{1}$ H-NMR (700 MHz, DMSO-d6): $\delta=9.62(\mathrm{~m}, 3 \mathrm{H}), 7.90(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}=9.52$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.37 (d, J = $9.18 \mathrm{~Hz}, 2 \mathrm{H}$), 3.47 ($\mathrm{m}, 8 \mathrm{H}$), $3.00(\mathrm{q}, \mathrm{J}=6.85,13.52 \mathrm{H}, 2.57(\mathrm{q}, \mathrm{J}=7.68$, $13.02 \mathrm{~Hz}, 4 \mathrm{H}$), 2.27 ($\mathrm{q}, \mathrm{J}=6.34,12.52 \mathrm{~Hz}, 4 \mathrm{H}$), 1.96 ($\mathrm{s}, 3 \mathrm{H}$), 1.52 ($\mathrm{m}, 4 \mathrm{H}$), 1.49 ($\mathrm{m}, 4 \mathrm{H}$), 1.38 ($\mathrm{m}, 4 \mathrm{H}$), 1.26 ($\mathrm{m}, 2 \mathrm{H}$), 1.21 ($\mathrm{m}, 4 \mathrm{H}$).
${ }^{13}$ C-NMR (176 MHz, DMSO-d6): $\delta=187.01,186.51,176.35,169.73,169.30,169.22,165.82$, 153.60, 153.48, 152.18, 148.13, 144.87, 140.90, 140.74, 139.13, 138.47, 136.74, 124.74, 118.80, 116.67, 111.12, 110.99, 106.69, 106.42, 49.86, 49.51, 49.01, 44.97, 44.76, 40.55, $38.78,38.66,38.14,35.85,34.26,28.68,22.56,22.51,20.98,13.87,12.07,12.03,7.57$.

DEPT (176 MHz, DMSO-d6): $\delta=187.49,187.00,176.83,172.44,170.21,169.78,169.70$, 166.30, 165.56, 154.08, 154.02, 153.96, 152.64, 148.61, 145.29, 141.36, 141.22, 139.61, 137.22, 125.13, 119.30, 111.59, 111.40, 107.19, 106.93, 106.89, 49.99, 49.50, 45.45, 45.25, 41.04, 38.62, 36.33, 34.75, 29.16, 23.04, 22.99, 21.47, 14.35, 12.54, 12.51, 8.05.

HRMS (ESI) calculated for $\left([\mathrm{M}+\mathrm{H}]^{+}\right): m / z=1404.6780 ;$ experimental $=1404.6788$.

Compound 60

Ester 54 ($65 \mathrm{mg}, 0.142 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in $\mathrm{MeOH}(1 \mathrm{~mL})$ and $1 \mathrm{M} \mathrm{NaOH}(1 \mathrm{~mL})$ was added at $23{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 hours at that temperature prior to being acidified with 1 M HCl to pH 2 and then quickly extracted with DCM ($2 \times 25 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness to yield acid 54a as a yellow, crude oil. This oil was dried for one hour under reduced pressure. Then DCM/DMF (10 and 1 mL) were added, followed by HOBt ($38.60 \mathrm{mg}, 0.284 \mathrm{mmol}, 2.0 \mathrm{eq}$) and EDCI* $\mathrm{HCl}(44.01 \mathrm{mg}, 0.284 \mathrm{mmol}, 2.0 \mathrm{eq})$ at $0^{\circ} \mathrm{C}$ under argon atmosphere. The reaction mixture was stirred for five minutes at $0^{\circ} \mathrm{C}$ before ciprofloxacin ($22 \mathrm{mg}, 0.066 \mathrm{mmol}, 1.5 \mathrm{eq}$ in 1 mL DMF) and DIPEA ($30 \mu \mathrm{~L}$) were added. The ice bath was removed and the reaction agitation continued overnight at $23^{\circ} \mathrm{C}$. The solvent was removed by rotary evaporation and the residue was dissolved in DCM (100 mL) and was washed with brine ($3 \times 50 \mathrm{~mL}$). After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ the solvent was removed in vacuo, the residue was purified by RP-HPLC (C18, 10-70\% $\mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}, 220 \mathrm{~nm}$) and product containing fractions were combined to yield pure 60a ($69.9 \mathrm{mg}, 0.092,65 \%$). Then TFA/DCM ($25 \%, 0.25: 0.75 \mathrm{~mL}$) was added at $0^{\circ} \mathrm{C}$ and the reaction continued stirring at $23^{\circ} \mathrm{C}$ for two hours. Then the solvent was removed by rotary evaporation and the residue was purified by RP-HPLC. Product containing fractions were
identified by LCMS and lyophilized to yield amine $\mathbf{6 0}$ ($60.7 \mathrm{mg}, 0.092 \mathrm{mmol}, 65 \%$ over three steps) as a beige solid.

60a

${ }^{1} \mathrm{H}-$ NMR $\left(700 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right): ~ \delta=15.17(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, \mathrm{~J}=11.78$ $\mathrm{Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=6.34 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~m}, 4 \mathrm{H}), 3.35(\mathrm{t}, \mathrm{J}=5.25 \mathrm{~Hz}, 2 \mathrm{H}), 3.30$ $(t, J=5.25 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~m}, 2 \mathrm{H})$), $1.19(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR ($176 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=176.38,165.87,161.01,153.71,152.30,148.12,144.96$, 144.90, 139.10, 119.05, 119.00, 111.09, 110.96, 107.04, 106.78, 50.20, 50.18, 49.09, 49.07, 44.39, 35.89, 7.57.

HRMS (ESI) calculated for $\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}=658.2672$; experimental $=658.2673$.

Compound 14

Acid 7 ($10 \mathrm{mg}, 0.008 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in anhydrous THF (1.0 mL), NMM ($30 \mu \mathrm{~L}$) and iso-butyl chloroformate ($0.81 \mu \mathrm{~L}, 0.008,1.0 \mathrm{eq}$) was added at $0^{\circ} \mathrm{C}$. The solution stirred 0 ${ }^{\circ} \mathrm{C}$ for ten minutes and 50 minutes at $24^{\circ} \mathrm{C}$. The amine $60(6.62 \mathrm{mg}, 0.01 \mathrm{mmol}, 1.2 \mathrm{eq})$ was dissolved in anhydrous THF (1.0 mL), NMM ($30 \mu \mathrm{~L}$) was added under argon atmosphere at 0 ${ }^{\circ} \mathrm{C}$. The reaction stirred ten minutes at $0^{\circ} \mathrm{C}$ and then 1 h at $24^{\circ} \mathrm{C}$. The reaction continued stirring at $0^{\circ} \mathrm{C}$ for five minutes and then for one hour at $24^{\circ} \mathrm{C}$. Then $\mathrm{AcOH}(200 \mu \mathrm{~L})$ was added, the solvent was removed in vacuo at $30^{\circ} \mathrm{C}$ and the residue was purified by RP-HPLC (C18,
$10-70 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}, 1 \% \mathrm{AcOH}, 220 \mathrm{~nm}$). Product containing fractions were combined and lyophilized to yield the conjugate 14 as a slightly yellow powder ($13.4 \mathrm{mg}, 0.007 \mathrm{mmol}, 87 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}(700 \mathrm{MHz}$, DMSO-d6+AcOH-d4): $\delta=8.67$ (s, 3H), $8.10(\mathrm{~d}, \mathrm{~J}=15.45 \mathrm{~Hz}, 2 \mathrm{H}), 7.92$ (d, J = $13.18 \mathrm{~Hz}, 3 \mathrm{H}$), $7.83(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~m}, 3 \mathrm{H}), 7.55(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~m}, 5 \mathrm{H})$, $3.70(\mathrm{~m}, 6 \mathrm{H}), 3.61(\mathrm{~m}, 6 \mathrm{H}), 3.48(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~m}, 6 \mathrm{H}), 3.27(\mathrm{~m}, 6 \mathrm{H}), 3.18(\mathrm{~m}$, $2 \mathrm{H}), 3.04(\mathrm{~m}, 12 \mathrm{H}), 2.99(\mathrm{bs}, 6 \mathrm{H}), 2.07(\mathrm{~s}, 9 \mathrm{H}), 1.91(\mathrm{~s}, 2 \mathrm{H}), 1.77(\mathrm{~s}, 9 \mathrm{H}), 1.75(\mathrm{~s}, 9 \mathrm{H}), 1.41(\mathrm{~s}$, $6 \mathrm{H}), 1.32(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{~m}, 4 \mathrm{H}), 1.10(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (176 MHz , DMSO-d6+AcOH-d4): $\delta=187.02$, 186.53, 176.37, 169.75, 169.32, $169.23,165.84,153.62,153.49,152.20,148.15,144.89,140.92,140.76,139.15,138.49$, $136.76,124.76,118.82,116.68,111.14,111.01,106.71,106.44,49.87,49.53,49.02,44.99$, $44.78,40.57,39.52,38.80,38.68,38.15,35.87,34.28,28.70,22.58,22.53,21.00,13.89$, 12.08, 12.05, 7.59 .

DEPT (176 MHz, DMSO-d6): $\delta=187.03,186.53,176.37,171.97,169.75,169.32,169.23$, 165.83, 165.09, 153.62, 153.55, 153.49, 152.18, 148.15, 144.83, 140.90, 140.76, 139.15, 136.75, 124.67, 118.84, 111.12, 110.94, 106.73, 106.47, 106.42, 49.53, 49.04, 44.99, 44.78, $40.57,38.15,35.87,34.28,28.70,22.58,22.53,21.00,13.89,12.08,12.05,7.58$.

HRMS $(E S I)$ calculated for $\left([M+2 H]^{2+}\right): ~ m / z=915.8703 ;$ experimental $=915.8707$.

Compound 15

Chemical Formula: $\mathrm{C}_{46} \mathrm{H}_{44} \mathrm{FN}_{5} \mathrm{O}_{12}$ Exact Mass: 877,2971
Molecular Weight: 877,8794

Acid 38 ($4.2 \mathrm{mg}, 0.018 \mathrm{mmol}, 2.0 \mathrm{eq}$) was dissolved in anhydrous THF ($500 \mu \mathrm{~L}$) and anhydrous NMM ($30 \mu \mathrm{~L}$) was added under argon atmosphere at $0^{\circ} \mathrm{C}$. At this temperature iso-butyl chloroformate ($3 \mu \mathrm{~L}, 0.018 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added and the reaction continued stirring at 0° for five minutes and for 30 minutes at $24^{\circ} \mathrm{C}$. Then amine $\mathbf{6 0}(5.8 \mathrm{mg}, 0.009 \mathrm{mmol}, 1.0 \mathrm{eq})$ was
added in THF $(500 \mu \mathrm{~L})$ with $\mathrm{NMM}(30 \mu \mathrm{~L})$ dropwise at $0^{\circ} \mathrm{C}$. The reaction stirred for 30 minutes at $24^{\circ} \mathrm{C}$ was then concentrated to dryness. The residue was taken up in ACN and purified by RP-HPLC ($10-80 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}, 1 \% \mathrm{AcOH}, 220 \mathrm{~nm}$) and product containing fractions were lyophilized to yield amide 15 ($4.9 \mathrm{mg}, 0.006 \mathrm{mmol}, 69 \%$) as a beige powder.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{ACN}-\mathrm{d}_{3}\right): \delta=15.11$ (s, 1H), 8.71 (s, 1H), 8.24 (d, J = $8.69 \mathrm{~Hz}, 2 \mathrm{H}$), 7.94 (d, J = $13.11 \mathrm{~Hz}, 1 \mathrm{H}$), 7.81 (d, J = 8-69 Hz, 2H), 7.56 ($\mathrm{q}, \mathrm{J}=2.69,6.32 \mathrm{~Hz}, 1 \mathrm{H}$), 7.51 ($\mathrm{d}, \mathrm{J}=$ $7.90 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=7.27 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~d}, \mathrm{~J}=21.49 \mathrm{~Hz}, 2 \mathrm{H}), 5.43(\mathrm{q}, \mathrm{J}=$ $8.21,15.48 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, \mathrm{~J}=2.69 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~m}, 3 \mathrm{H}), 3.49(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~m}, 6 \mathrm{H}), 2.57$ $(\mathrm{m}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~d}, 6 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 2 \mathrm{H}), 1.33(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~m}, 1 \mathrm{H}), 1.13$ ($m, 1$).
${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(471 \mathrm{MHz}, \mathrm{ACN}-\mathrm{d}_{3}\right): \delta=-123.29$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{ACN}-\mathrm{d}_{3}\right): \delta=178.29,171.32,169.57,169.42,167.52,164.23,158.06$, 155.27, 149.32, 148.64, 146.24, 146.14, 144.29, 141.32, 140.57, 139.85, 138.75, 130.84, $129.31,127.95,127.73,127.25,126.46,125.06,124.63,121.58,112.52,112.39,111.38$, $107.42,69.88,50.46,50.22,49.26,46.02,42.50,36.74,35.10,31.11,30.70,21.51,20.89$, 20.82, 20.00, 8.73, 8.69.

HRMS (ESI) calculated for $\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}=878.3044$; experimental $=878.3049$.

Compound 16

2,3-dimethoxy benzoic acid ($3.3 \mathrm{mg}, 0.018 \mathrm{mmol}, 2.0 \mathrm{eq}$) was dissolved in anhydrous THF $(500 \mu \mathrm{~L})$ and anhydrous $\mathrm{NMM}(30 \mu \mathrm{~L})$ was added under argon atmosphere at $0^{\circ} \mathrm{C}$. At this
temperature iso-butyl chloroformate ($1.8 \mu \mathrm{~L}, 0.018 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added and the reaction was stirred at 0° for five minutes and for 30 minutes at $24^{\circ} \mathrm{C}$. Then amine $60(6.0 \mathrm{mg}, 0.009$ $\mathrm{mmol}, 1.0 \mathrm{eq})$ was added in THF ($500 \mu \mathrm{~L}$) together with NMM $(30 \mu \mathrm{~L})$ dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 30 minutes at $24^{\circ} \mathrm{C}$ and was then concentrated to dryness. The residue was taken up in ACN and purified by RP-HPLC ($10-80 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}, 0.1 \% \mathrm{HCOOH}$, 220 nm) and product containing fractions were lyophilized to yield amide 16 ($6 \mathrm{mg}, 0.007 \mathrm{mmol}$, 81%) as a white powder.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{ACN}-\mathrm{d}_{3}\right): \delta=15.11(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~m}, 2 \mathrm{H}), 7.93(\mathrm{~m}, 1 \mathrm{H}), 7.81$ $(\mathrm{m}, 4 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=8.63 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~m}, 3 \mathrm{H}), 6.69(\mathrm{~m}, 2 \mathrm{H}), 5.88(\mathrm{~d}, \mathrm{~J}=8.63 \mathrm{~Hz}, 1 \mathrm{H}), 5.26$ $(\mathrm{m}, 5 \mathrm{H}), 5.00(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~m}, 4 \mathrm{H}), 3.63(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{~m}, 3 \mathrm{H}), 3.05(\mathrm{~m}, 5 \mathrm{H})$, 2.35 (s, 3H), 2.29 (s, 3H), 2.19 (s, 5H), 1.35 (m, 2H), 1.34 (m, 2H), 1.27 (m, 2H), 1.14 (m, 1H), $1.13(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13}$ C-NMR ($176 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}$): $\delta=185.83,179.59,175.37,173.27,166.09,161.99,156.46$, 154.67, 148.59, 147.62, 137.85, 137.18, 136.51, 133.61, 132.99, 132.90, 130.73, 125.13, 119.83, 77.90, 70.68, 65.50, 49.00, 45.34, 39.25, 30.50, 28.91, 17.11, 17.06.

HRMS (ESI) calculated for $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: $\mathrm{m} / \mathrm{z}=822.3145$; experimental $=822.3122$.

Compound 17

Chemical Formula: $\mathrm{C}_{68} \mathrm{H}_{88} \mathrm{FN}_{13} \mathrm{O}_{15} \mathrm{~S}_{2}$ Exact Mass: 1409,5948 Molecular Weight: 1410,6464

Amine 60 ($20.96 \mathrm{mg}, 0.032 \mathrm{mmol}, 1.2 \mathrm{eq}$) was dissolved in DMF (0.5 mL) and TEA ($50 \mu \mathrm{~L}$) was added. The isothiocyanate $46(20.0 \mathrm{mg}, 0.027 \mathrm{mmol}, 1.0 \mathrm{eq})$ was added and the reaction stirred at $24^{\circ} \mathrm{C}$. The base was removed by rotary evaporation, the residual solution was filtered
and purified by RP-HPLC (C18, 10-90\% $\mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}, 0.1 \% \mathrm{HCOOH}, 220 \mathrm{~nm}$). The product containing fractions were identified by LCMS and lyophilized to yield pure title compound 17 as a beige solid ($27.39 \mathrm{mg}, 0.019 \mathrm{mmol}, 73 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}(700 \mathrm{MHz}$, DMSO-d6) $\delta 9.62(\mathrm{~m}, 3 \mathrm{H}), 9.39(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~m}, 1 \mathrm{H}), 7.36$ (m, 3H), 7.21 (m, 1H), $3.74(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{t}, \mathrm{J}=7.51 \mathrm{~Hz}, 6 \mathrm{H}), 2.99(\mathrm{q}, \mathrm{J}=7.05$, $12.71 \mathrm{~Hz}, 4 \mathrm{H}), 2.57(\mathrm{~m}, 4 \mathrm{H}), 2.26(\mathrm{q}, \mathrm{J}=6.59,12.87 \mathrm{~Hz}, 4 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~m}, 4 \mathrm{H}), 1.49$ $(\mathrm{m}, 4 \mathrm{H}), 1.38(\mathrm{~m}, 4 \mathrm{H}), 1.26(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~m}, 5 \mathrm{H}), 1.01(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13}$ C-NMR (176 MHz, DMSO-d6): $\delta=186.47$, 182.02, 181.84, 179.49, 176.37, 171.94, 171.27, $170.09,168.77,166.94,165.92,163.17,162.07,142.75,142.73,142.28,131.95,126.67$, 123.91, 106.76, 82.16, 78.86, 47.11, 47.05, 46.75, 45.69, 43.72, 38.40, 38.38, 29.86, 28.79, 28.66, 28.19, 27.96, 27.54, 26.86, 26.10, 26.00, 23.57, 23.47, 21.64, 21.04, 20.33, 19.76, 12.70, 12.60, 11.03, 10.93, 7.59.

HRMS (ESI) calculated for $\left([M+H]^{+}\right): m / z=1410.6021$; experimental $=1410.6022$

RNAP inhibitor (RNAP-I) constructs

Rifamycin S intermediates

Compound 61

The title compound $\mathbf{6 1}$ was synthetized according to a patent by Bachmann et al. ${ }^{8}$ 1,3,5-trifluoro-2-nitrobenzene (from TCI, $5000 \mathrm{mg}, 28.24 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in iPrOAc (150 $\mathrm{mL})$. Then benzyl alcohol ($3.23 \mathrm{ml}, 31.06 \mathrm{mmol}, 1.1 \mathrm{eq}$) was mixed with KOtBu $(4752.51 \mathrm{mg}$, $42.35 \mathrm{mmol}, 1.5 \mathrm{eq})$ for 5 minutes in dry $\operatorname{iPrOAc}(20 \mathrm{~mL})$ and then added dropwise over 30 minutes via a dropping funnel. The reaction continued stirring at $0^{\circ} \mathrm{C}$ for 2 hours. The solvent was removed in vacuo and the residue was washed with cold petrolether (bp $60-80^{\circ} \mathrm{C}, 5 \times 200$ mL) over a glass frit to yield crude 61a which was dried for one hour. The residue was dissolved in anhydrous $\mathrm{MeOH} /$ toluene under argon atmosphere, $\mathrm{Pd} / \mathrm{C}(50 \mathrm{mg}, 0.2 \mathrm{eq}$) was added and the atmosphere was changed to hydrogen. The solution stirred overnight at $35^{\circ} \mathrm{C}$ with three balloons. Removal of the solvent by rotary evaporation yielded resorcinol crude 61 as a beige solid, which was washed with ice-cold diethyl ether, petrolether and DCM (each 100 ml) before being dried under reduced pressure ($1.9 \mathrm{~g}, 13.42 \mathrm{mmol}, 48 \%$ over 2 steps).

61a:

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.37(\mathrm{~m}, 10 \mathrm{H}), 6.39-6.37(\mathrm{~d}, \mathrm{~J}=10.42 \mathrm{~Hz}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H})$.

61 :
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.08-6.06(\mathrm{~d}, \mathrm{~J}=9.73 \mathrm{~Hz}), 3.46(\mathrm{bs}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=158.08,156.21,147.05,146.95,117.33,94.76,94.56,49.74$, 49.57, 49.40, 49.23, 49.06, 48.89, 48.72.

HRMS (ESI) calculated for $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: $\mathrm{m} / \mathrm{z}=144.0456$; experimental $=144.0459$.

Compound 2 with benzoquinone (BQ)/oxygen as oxidant

The title compound 2 was synthetized according to a patent by Bachmann et al. ${ }^{8} 61$ (1.0 g , 1.44 mmol, 4.0 eq - 1 eq per cycle, 4 cycles total) and rifamycin S 1 (from TCI, 822.81 mg , $5.75 \mathrm{mmol}, 4 \mathrm{eq}$) were weight in a glass reactor and dissolved in 25 mL iPrOAc (25 mL) under argon atmosphere. The brown-reddish solution continued stirring at ambient temperature for 2 hours and developed a blood red color. Then, the solution was cooled to $0^{\circ} \mathrm{C}$ and the oxidant benzoquinone ($621.45 \mathrm{mg}, 5.75 \mathrm{mmol}$, 4 eq- 1 eq per cycle, 4 cycles in total) was added in iPrOAc (2 mL) over 10 minutes. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 hour. The addition procedure was repeated until all fluoride 61 and benzoquinone had been added and the reaction continued stirring at $25{ }^{\circ} \mathrm{C}$ for 48 h . The reaction was washed with 10% sodium ascorbate ($\mathrm{w} / \mathrm{v}, 200 \mathrm{~mL}$), and water $(2 \times 200 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed by rotary evaporation. The residue was purified by SGC (PE PE/EA 20\%, UV-Vis, 24 g silica column) and product containing fractions were identified by TLC (DCM)/LCMS and combined. Then the solvent was removed by rotary evaporation to yield fluoro rifamycin 2 ($252.0 \mathrm{mg}, 0.31 \mathrm{mmol}, 21 \%$) as a blood red solid.

Compound $\mathbf{2}$ with TEMPO/oxygen as oxidant

The title compound 2 was synthetized according to a patent by Bachmann et al. ${ }^{8} 61$ (1.0 g , 1.44 mmol, 4.0 eq - 1 eq per cycle, 4 cycles total) and rifamycin S 1 (TCI, $822.81 \mathrm{mg}, 5.75$ $\mathrm{mmol}, 4 \mathrm{eq}$) were weight in a glass reactor and dissolved in 25 mL iPrOAc $(25 \mathrm{~mL})$ under argon atmosphere. The brown-reddish solution continued stirring at ambient temperature for 2 hours and developed a blood red color. Then the solution was cooled to $0^{\circ} \mathrm{C}$ and the oxidant TEMPO ($1122.87 \mathrm{mg}, 7.19 \mathrm{mmol}, 5 \mathrm{eq}-\mathrm{-} 1.25$ eq per cycle, 4 cycles in total) was added in iPrOAc (2 mL) over 10 minutes while the atmosphere was changed to oxygen. Then the reaction continued stirring at $25^{\circ} \mathrm{C}$ for 1 hour. Then the flask was charged with argon and the addition procedure was repeated till all fluoride 61 and TEMPO had been added. The reaction continued stirring overnight at $25^{\circ} \mathrm{C}$ for 48 h . The reaction was washed with 10% sodium ascorbate ($\mathrm{w} / \mathrm{v}, 200 \mathrm{~mL}$), and water ($2 \times 200 \mathrm{~mL}$). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed by rotary evaporation. The residue was purified by SGC (PE PE/EA 20%, UV-Vis, 24 g silica column) and product containing fractions were identified by TLC (DCM)/LCMS and combined. Then the solvent was removed by rotary evaporation to yield pure 2 ($589.5 \mathrm{mg}, 0.72 \mathrm{mmol}, 50 \%$) as a blood red solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=14.35(\mathrm{~s}, 1 \mathrm{H}), 10.23(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{bs}, 1 \mathrm{H}), 6.76(\mathrm{dd}, \mathrm{J}=3.22$, $10.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{dd}, \mathrm{J}=2.23,9.29 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~m}, 1 \mathrm{H}), 5.98(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~m}, 1 \mathrm{H}), 4.99$ ($q, ~ J=8.30,12.14 \mathrm{~Hz}, 1 \mathrm{H}$), 3.07 (s, 4H), 2.99 (m, 1H), 2.32 (s, 3H), $2.10(\mathrm{~s}, 4 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H})$, 1.78 (s, 3H), 1.69 (q, J = 8.13, $13.97 \mathrm{~Hz}, 1 \mathrm{H}$), 1.55 (bs, 6H), 1.41 (m, 2H), 1.36 (m, 1H), 1.30 (m, 1H), 0.91 (bs, 3H), 0.76 (bs, 3H), 0.53 (bs, 3H).
${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($176 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=194.38,184.63,174.60,172.52,169.12,168.58,167.12$, $158.14,158.05,145.25,143.43,142.26,142.10,140.93,131.74,126.63,120.47,113.75$, 107.89, 100.13, 99.98, 95.46, 95.29, 73.96, 41.63, 37.30, 32.97, 22.61, 21.27, 21.00, 18.81, 17.69, 11.08, 8.09.

HRMS (ESI) calculated for $\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}=819.3135$; experimental $=819.3135$.

Compound 22

Fluoride 2 ($50 \mathrm{mg}, 0.061 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in anhydrous THF (1 mL) under argon atmosphere. Then N-Fmoc 1,6-diaminohexane ($22.7 \mathrm{mg}, 0.067 \mathrm{mmol}, 1.1 \mathrm{eq}$) and TEA (100 $\mu \mathrm{L}$) were added. The reaction continued stirring overnight and a color change from red to blue, as well as a partial cleavage of the Fmoc group was observed. The reaction was concentrated to dryness and then ACN ($800 \mu \mathrm{~L}$) and diethylamine ($200 \mu \mathrm{~L}$) were added. The reaction continued stirring for one hour at ambient temperature before the solvent was removed and the residue was washed with diethyl ether ($3 \times 50 \mathrm{~mL}$, ice-cold, $4000 \mathrm{~g}, 5 \mathrm{~min}, 0^{\circ} \mathrm{C}$) and dried overnight under reduced pressure to yield 22 as crude, blue solid ($51,42 \mathrm{mg}, 0.056 \mathrm{mmol}$, 92\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}\right): \delta=6.84(\mathrm{~m}, 1 \mathrm{H}), 6.40(\mathrm{~m}, 2 \mathrm{H}), 6.23(\mathrm{~m}, 3 \mathrm{H}), 5.02(\mathrm{~m}, 2 \mathrm{H}), 3.69$ (d, J = $8.61 \mathrm{~Hz}, 1 \mathrm{H}$), $3.59(\mathrm{~m}, 3 \mathrm{H}), 3.19(\mathrm{~m}, 3 \mathrm{H}), 3.11(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{~m}, 5 \mathrm{H}), 2.29(\mathrm{~m}, 4 \mathrm{H}), 2.10$ $(\mathrm{m}, 4 \mathrm{H}), 1.97(\mathrm{~m}, 4 \mathrm{H}), 1.78(\mathrm{~m}, 4 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~m}, 3 \mathrm{H}), 0.93(\mathrm{~m}, 10 \mathrm{H}), 0.78(\mathrm{~m}, 2 \mathrm{H})$, $0.69(\mathrm{~m}, 1 \mathrm{H}), 0.04(\mathrm{~d}, \mathrm{~J}=7.13 \mathrm{~Hz}, 3 \mathrm{H}),-0.30(\mathrm{~d}, \mathrm{~J}=7.87 \mathrm{~Hz}, 3 \mathrm{H})$.

HRMS (ESI) calculated for $\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}=915.4386$; experimental $=915.4392$.

Compound 62

3-formyl rifamycin SV 27 (abcam: ab143401, $50.0 \mathrm{mg}, 0.069 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in anhydrous THF (15 mL) under argon atmosphere. Then the $\mathrm{N}_{3}-\mathrm{PEG}-\mathrm{NH}_{2}(16.5 \mathrm{mg}, 0.076$ $\mathrm{mmol}, 1.1 \mathrm{eq}$) in THF (5 mL) and TEA ($50 \mu \mathrm{~L}$) was added. The solvent was removed in vacuo and the residue was taken up in DCM (100 mL). The organic phase was washed with 1 M HCI $(2 \times 100 \mathrm{~mL})$, water $(1 \times 100 \mathrm{~mL})$, brine $(1 \times 50 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by rotary evaporation and dried under reduced pressure. The residue was dissolved in anhydrous THF (20 mL) under argon atmosphere, cooled to $0^{\circ} \mathrm{C}$ before $\mathrm{NaBH}(\mathrm{OAc})_{3}(21.9$ $\mathrm{mg}, 0.103 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added. The reaction continued stirring overnight at $23^{\circ} \mathrm{C}$, was then concentrated to dryness and taken up in DCM (100 mL). The organic phase was washed water ($1 \times 100 \mathrm{~mL}$), brine ($1 \times 50 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by rotary evaporation and dried under reduced pressure to yield the crude amine 62 ($62.4 \mathrm{mg}, 0.067$ mmol, 98\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=8.75(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{q}, \mathrm{J}=11.16 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, \mathrm{~J}=10.80$ $\mathrm{Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, \mathrm{~J}=12.57 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dd}, \mathrm{J}=5.16,15.96 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, \mathrm{J}=6.13,12.09$ $\mathrm{Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, \mathrm{~J}=10.64 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~m}, 4 \mathrm{H}), 3.63(\mathrm{~m}, 8 \mathrm{H}), 3.61(\mathrm{~m}, 4 \mathrm{H})$, $3.59(\mathrm{~m}, 4 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{t}, \mathrm{J}=5.07 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{t}, \mathrm{J}=4.98 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H})$, $3.02(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H})$, 1.74 (m, 1H), 1.56 (m, 1H), 1.49 (m, 1H), $1.00(\mathrm{~d}, \mathrm{~J}=7.12 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, \mathrm{~J}=7.12 \mathrm{~Hz}, 3 \mathrm{H})$, 0.62 (d, J = 6.94 Hz, 3H), -0.14 (d, J = 7.03 Hz, 3H).

27 (3-formyl rifamycin S)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta=13.11$ (s, 1H), $12.64(\mathrm{~s}, 1 \mathrm{H}), 12.26(\mathrm{~s}, 1 \mathrm{H}), 10.61(\mathrm{~s}, 1 \mathrm{H}), 6.48$ (m, 2H), 6.23 (d, J = $12.80 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{q}, \mathrm{J}=6.77,12.80 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, \mathrm{~J}$ $=10.59 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, \mathrm{~J}=9.85 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, \mathrm{~J}=6.91 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~m}, 4 \mathrm{H})$, 2.37 (m, 1H), 2.25 ($\mathrm{s}, 3 \mathrm{H}$), 2.08 (s, 3H), 2.05 (m, 4H), 1.81 (s, 3H), 1.77 (m, 1H), 1.51 (m, 1H), 1.35 (m,
$1 \mathrm{H}), 1.00(\mathrm{~d}, \mathrm{~J}=7.21 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=6.77 \mathrm{~Hz}, 3 \mathrm{H}), 0.66(\mathrm{~d}, \mathrm{~J}=6.77 \mathrm{~Hz}, 3 \mathrm{H}),-0.33(\mathrm{~d}, \mathrm{~J}$ $=7.21 \mathrm{~Hz}, 3 \mathrm{H}$).

Compound 28

3-formyl rifamycin SV 27 (abcam: ab143401, $100 \mathrm{mg}, 0.138 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in anhydrous THF (15 mL) under argon atmosphere. Then the N -Fmoc-1,6-diaminohexane (93.3 $\mathrm{mg}, 0.276 \mathrm{mmol}, 2.0 \mathrm{eq})$ in THF (5 mL) and TEA ($50 \mu \mathrm{~L}$) was added. The solvent was removed in vacuo and the residue was taken up in DCM (100 mL). The organic phase was washed with $1 \mathrm{M} \mathrm{HCl}(2 \times 100 \mathrm{~mL})$, water ($1 \times 100 \mathrm{~mL}$), brine ($1 \times 50 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by rotary evaporation and dried under reduced pressure. The residue was dissolved in anhydrous THF (20 mL) under argon atmosphere, cooled to $0^{\circ} \mathrm{C}$ before $\mathrm{NaBH}(\mathrm{OAc})_{3}(58.4 \mathrm{mg}, 0.276 \mathrm{mmol}, 2.0 \mathrm{eq})$ was added. The reaction continued stirring overnight at $23^{\circ} \mathrm{C}$, was then concentrated to dryness and taken up in DCM $(100 \mathrm{~mL})$. The organic phase was washed water ($1 \times 100 \mathrm{~mL}$), brine ($1 \times 50 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by rotary evaporation and dried under reduced pressure to yield 28a. The residue was dissolved in ACN (16 mL) and diethylamine (4 mL) were added. The solution continued stirring at $23^{\circ} \mathrm{C}$ for 45 minutes and was then evaporated by rotary evaporation. The residue was washed with ice-cold petrol ether and diethyl-ether ($-20^{\circ} \mathrm{C}$), further drying under reduced pressure gave crude title compound 28 ($76.1 \mathrm{mg}, 0.092 \mathrm{mmol}, 67 \%$ over three steps) as a red solid.

HRMS (ESI) calculated for $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: $\mathrm{m} / \mathrm{z}=826.4485$; experimental $=826.4433$.

Acid 53 ($6 \mathrm{mg}, 0.013 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved under argon atmosphere in anhydrous THF $(1 \mathrm{~mL})$ and $\mathrm{NMM}(20 \mu \mathrm{~L})$ was added. The reaction was cooled to $0^{\circ} \mathrm{C}$ and iso-butyl chloroformate ($1.22 \mu \mathrm{~L}, 0.013 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added. The reaction mixture was stirred for one hour at $0^{\circ} \mathrm{C}$ and during this time, the color of the solution changed from yellow to orange. Following 15 min agitation at $23^{\circ} \mathrm{C}$, amine $22(11.52 \mathrm{mg}, 0.013 \mathrm{mmol}, 1.0 \mathrm{eq})$ diluted in THF $(1 \mathrm{~mL})$ and basified with $\mathrm{NMM}(20 \mu \mathrm{~L})$ was added at $0{ }^{\circ} \mathrm{C}$. The ice-bath was left to thaw overnight. The solvent was removed by rotary evaporation, the residue diluted with DCM (100 $\mathrm{mL})$ and washed with $1 \mathrm{M} \mathrm{HCl}(3 \times 50 \mathrm{~mL})$, brine $(1 \times 50 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and residue was dried under reduced pressure to yield crude 63 as a blue solid ($6.8 \mathrm{mg}, 0.005 \mathrm{mmol}, 39 \%$).

Compound 64

Acid 56 ($13 \mathrm{mg}, 0.029 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved under argon atmosphere in anhydrous THF (1 mL) and NMM ($20 \mu \mathrm{~L}$) was added. The reaction was cooled to $0^{\circ} \mathrm{C}$ and iso-butyl chloroformate ($2.79 \mu \mathrm{~L}, 0.029 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added. The reaction continued to stir for one hour at $0^{\circ} \mathrm{C}$ while the color of the solution changed from yellow to orange. Then the reaction stirred for 15 min at $23^{\circ} \mathrm{C}$, before the amine $22(26.3 \mathrm{mg}, 0.029 \mathrm{mmol}, 1.0 \mathrm{eq})$ diluted in THF $(1 \mathrm{~mL})$ and basified with $\mathrm{NMM}(20 \mu \mathrm{~L})$ was added at $0^{\circ} \mathrm{C}$. The ice-bath was left to thaw
overnight. The solvent was removed by rotary evaporation, the residue diluted with DCM (100 $\mathrm{mL})$ and washed with $1 \mathrm{M} \mathrm{HCl}(3 \times 50 \mathrm{~mL})$, brine $(1 \times 50 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and residue was dried under reduced pressure to yield crude 64 as a blue solid ($19.29 \mathrm{mg}, 0.013 \mathrm{mmol}, 45 \%$).

Compound 65

EDCI/HOBt procedure

Acid $53(10 \mathrm{mg}, 0.021 \mathrm{mmol}, 1.0 \mathrm{eq})$ was dissolved in DCM/DMF ($10: 1-15 \mathrm{~mL}$) and EDCI* HCl ($6.52 \mathrm{mg}, 0.042 \mathrm{mmol}, 2.0 \mathrm{eq}$), HOBt ($5.67 \mathrm{mg}, 0.042 \mathrm{mmol}, 2.0 \mathrm{eq}$) and DMAP ($1.28 \mathrm{mg}, 0.01$ $\mathrm{mmol}, 0.5 \mathrm{eq}$) were added at $0^{\circ} \mathrm{C}$. The mixture stirred 20 minutes at that temperature and equilibrated to room temperature over 20 minutes. Then the amine $28(20.81 \mathrm{mg}, 0.013 \mathrm{mmol}$, $1.2 \mathrm{eq})$ and TEA $(30 \mu \mathrm{~L})$ were added, dissolved in DCM/DMF $(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the ice bath was removed and the reaction continued stirring at ambient temperature for 18 hours. The solvent was removed by rotary evaporation and the residue was purified by RP-HPLC (15\%$100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}, 220 \mathrm{~nm}$, collect all). The product containing fractions were combined and lyophilized to dryness yielding 65 as an orange solid ($12.3 \mathrm{mg}, 0.01 \mathrm{mmol}, 38 \%$).

Mixed anhydride procedure

Compound 65 could also be afforded by mixed anhydride coupling, with the same reaction conditions to the procedure of compound 66 below, with nearly the double yield $(23.6 \mathrm{mg}, 0.02$, 73\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}(700 \mathrm{MHz}$, DMSO-d6): $\delta=12.77$ (s, 1H), $9.30(\mathrm{bs}, 1 \mathrm{H}), 7.72(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~d}, 1 \mathrm{H})$, $6.62(\mathrm{~m}, 1 \mathrm{H}), 6.33(\mathrm{~d}, \mathrm{~J}=10.91 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, \mathrm{~J}=11.31 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{q}, 1 \mathrm{~Hz}), 5.09(\mathrm{~d}, \mathrm{~J}$ $=14.66 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, \mathrm{~J}=3.91 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{q}, \mathrm{J}=8.51,12.89 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, \mathrm{~J}=8.98$
$\mathrm{Hz}, 1 \mathrm{H}), 3.68(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~m}, 5 \mathrm{H}), 3.24(\mathrm{~d}, \mathrm{~J}=8.58 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{~m}, 6 \mathrm{H}), 2.88$ (s, 3H), $2.82(\mathrm{t}, \mathrm{J}=9.81 \mathrm{~Hz}, 2.29(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~m}, 6 \mathrm{H}), 1.97(\mathrm{~m}, 7 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}$, $1 \mathrm{H}), 1.69(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~m}, 8 \mathrm{H}), 1.34(\mathrm{~m}, 5 \mathrm{H}), 1.27(\mathrm{~m}, 8 \mathrm{H}), 1.22(\mathrm{~m}, 6 \mathrm{H}), 0.99$ $(\mathrm{m}, 2 \mathrm{H}), 0.92(\mathrm{~d}, \mathrm{~J}=7.10 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, \mathrm{~J}=6.95 \mathrm{~Hz}, 3 \mathrm{H}), 0.50(\mathrm{~d}, \mathrm{~J}=6.45 \mathrm{~Hz}, 3 \mathrm{H}),-0.33$ (d, J $6.45 \mathrm{~Hz}, 3 \mathrm{H}$).

DEPT (176 MHz, DMSO-d6) $\delta=142.82,138.88,131.31,128.80,126.32,125.66,117.35$, $114.38,76.05,75.51,72.92,72.63,55.38,50.29,50.26,39.52,37.97,37.84,37.59,34.98$, $32.40,31.19,28.64,27.75,25.70,25.55,25.31,24.58,24.48,21.81,20.40,19.60,17.95$, 10.92, 8.71, 8.53, 7.09.

HRMS (ESI) calculated for $\left([M+2 H]^{2+}\right): ~ m / z=642.8417$ experimental $=642.8423$.

Compound 66

Acid 56 ($8 \mathrm{mg}, 0.014 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved under argon atmosphere in anhydrous THF $(500 \mu \mathrm{~L})$ and $\mathrm{NMM}(15 \mu \mathrm{~L})$ was added. The reaction was cooled to $0{ }^{\circ} \mathrm{C}$ and iso-butyl chloroformate ($1.87 \mathrm{mg}, 0.015 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added. The reaction continued to stir for one hour at $0^{\circ} \mathrm{C}$ while the color of the solution changed from yellow to orange. Then the reaction stirred for 15 min at $23^{\circ} \mathrm{C}$, before amine $28(22.6 \mathrm{mg}, 0.027 \mathrm{mmol}, 2.0 \mathrm{eq})$, diluted in THF (500 $\mu \mathrm{L})$ and basified with NMM $(15 \mu \mathrm{~L})$, was added at $0^{\circ} \mathrm{C}$. The ice-bath was left to thaw overnight. The solvent was removed by rotary evaporation and purified by RP-HPLC (10-100\% ACN/ $\mathrm{H}_{2} \mathrm{O}$, $0.1 \% \mathrm{HCOOH}, 220 \mathrm{~nm}$). The product containing fractions were lyophilized to yield the title compound 66 ($13.9 \mathrm{mg}, 0.01 \mathrm{mmol}, 73 \%$) as a yellow-orange solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=8.08(\mathrm{bs}, 1 \mathrm{H}), 6.54(\mathrm{q}, \mathrm{J}=9.77,15.52 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, \mathrm{~J}=$ $10.92 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, \mathrm{J}=7.33,15.66 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, \mathrm{~J}=12.79 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{q}, \mathrm{J}=6.32$,
$12.79 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, \mathrm{~J}=10.06 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, \mathrm{~J}=13.07 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~m}, 18 \mathrm{H}), 3.44(\mathrm{~m}$, 2H), $3.38(\mathrm{~m}, 4 \mathrm{H}), 3.28(\mathrm{bs}, 1 \mathrm{H}), 3.08(\mathrm{~m}, 9 \mathrm{H}), 2.62(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 4 \mathrm{H}), 2.07$ (s, 3H), $2.02(\mathrm{~s}, 6 \mathrm{H}), 1.88(\mathrm{~m}, 3 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~m}, 6 \mathrm{H}), 1.47(\mathrm{~d}, \mathrm{~J}=11.64 \mathrm{~Hz}, 8 \mathrm{H}), 1.42$ (s, 6H), 1.29 (m, 10H), 1.19 (m, 2H), 1.01 (d, J = $7.04 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=6.03 \mathrm{~Hz}, 3 \mathrm{H}), 0.60$ (d, J = $7.61 \mathrm{~Hz}, 3 \mathrm{H}),-0.19(\mathrm{~d}, \mathrm{~J}=6.18 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($176 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=205.59$, 204.73, 204.66, 202.52, 194.46, 193.79, 187.92, 187.72, 187.17, 173.44, 172.69, 172.30, 172.27, 143.42, 138.49, 127.14, 125.42, 125.15, 109.21, 78.58, 77.36, 74.60, 71.07, 70.96, 70.88, 70.79, 70.74, 70.70, 70.60, 70.54, 70.39, $70.38,57.24,54.00,51.80,51.33,51.28,49.75,47.64,39.77,39.16,38.81,38.22,38.00$, 34.00, 32.50, 30.59, 30.26, 29.93, 29.60, 29.51, 21.95, 21.19, 20.52, 18.27, 18.21, 14.83, 14.44, 11.22, 9.57, 9.14, 7.37

HRMS (ESI) calculated for $\left([\mathrm{M}+2 \mathrm{H}]^{2+}\right): \mathrm{m} / \mathrm{z}=696.3653$; experimental $=696.3651$.

Compound 73

Acid 72 ($5.0 \mathrm{mg}, 0.013 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in anhydrous DMF (2.5 mL) and NMM (80 $\mu \mathrm{L}$) and iso-butylchloroformate ($1.71 \mu \mathrm{~L}, 0.031 \mathrm{mmol}, 1.0 \mathrm{eq})$ were added in one portion at 0 ${ }^{\circ} \mathrm{C}$ under argon atmosphere. The reaction stirred 45 minutes at $0{ }^{\circ} \mathrm{C}$ before $22(18.2 \mathrm{mg}, 0.013$ $\mathrm{mmol}, 1.0 \mathrm{eq}$) was added dropwise in anhydrous DMF (2.5 mL) at $0^{\circ} \mathrm{C}$ and the ice bath was left to thaw. Afterwards the reaction stirred 60 minutes more and then the solvent was removed by rotary evaporation at $30^{\circ} \mathrm{C}$ water bath temperature. The residue was taken up in DCM (20 mL), washed with 1 M HCl , sat. NaHCO_{3} and brine (each $2 \times 10 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$.

The solvent was evaporated to dryness to yield 73 as a crude blue powder ($5.9 \mathrm{mg}, 0.004$ mmol, 34\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}\right): \delta=6.92(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~m}, 1 \mathrm{H}), 6.38(\mathrm{~m}, 1 \mathrm{H}), 6.29(\mathrm{~m}, 2 \mathrm{H}), 6.19$ $(\mathrm{m}, 2 \mathrm{H}), 5.00(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{~m}, 4 \mathrm{H}), 3.21(\mathrm{~m}, 6 \mathrm{H}), 3.09(\mathrm{~m}, 4 \mathrm{H}), 2.98(\mathrm{~m}, 5 \mathrm{H}), 2.36(\mathrm{~m}, 1 \mathrm{H})$, $2.26(\mathrm{~m}, 5 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~m}, 4 \mathrm{H}), 1.85(\mathrm{~m}, 6 \mathrm{H})$, $1.78(\mathrm{~m}, 4 \mathrm{H}), 1.73(\mathrm{~m}, 6 \mathrm{H}), 1.64(\mathrm{~m}, 9 \mathrm{H}), 1.46(\mathrm{~m}, 9 \mathrm{H}), 1.40 \mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{~s}, 6 \mathrm{H}), 1.23(\mathrm{~m}, 6 \mathrm{H})$, $1.01(\mathrm{~m}, 6 \mathrm{H}), 0.92(\mathrm{~m}, 12 \mathrm{H}), 0.78(\mathrm{~m}, 2 \mathrm{H}), 0.07(\mathrm{~m}, 3 \mathrm{H}),-0.37(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (176 MHz, MeOH-d $)$: $\delta=163.87,145.37,140.77,134.16,127.39,126.26,121.06$, $78.10,76.36,75.18,74.93,72.01,56.94,50.21,50.14,49.42,49.37,46.11,44.57,41.90$, 41.69, 40.56, 40.09, 39.53, 38.97, 38.63, 34.29, 31.03, 30.47, 30.44, 29.89, 29.73, 29.51, 29.27, 27.74, 27.59, 22.93, 22.35, 21.46, 20.85, 20.48, 19.50, 19.17, 15.27, 14.94, 14.73, 10.99, 10.00, 7.52.

HRMS (ESI) calculated for ([M+H]+: m/z = 1274.5979; experimental = 1274.5972

Sorangicin A intermediates

Compound 32

Sorangicin A 31 ($50 \mathrm{mg}, 0.062 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in anhydrous DCM/DMF (6 mL $1: 10$) and HATU ($47.12 \mathrm{mg}, 0.124 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added. The suspension was stirred at $23^{\circ} \mathrm{C}$ for 10 minutes, before the N -Fmoc 1,6-diaminohexane ($41.84 \mathrm{mg}, 0.124 \mathrm{mmol} 2.0 \mathrm{eq}$) and DIPEA $(50 \mu \mathrm{~L})$ were added. The suspension cleared visibly and the reaction continued stirring 2 hours at $23^{\circ} \mathrm{C}$. Upon completion, the solvent was removed by rotary evaporation. The residue was dissolved in ACN (8 mL) and diethylamine (2 mL) was added. The solution was stirred at $23^{\circ} \mathrm{C}$ for 1 hour and then the solvent was removed in vacuo. The residue was taken up in ACN (4 mL), purified by RP-HPLC (5-85\% ACN/ $\mathrm{H}_{2} \mathrm{O}, 220 \mathrm{~nm}$, collect all) and product containing fractions were lyophilized yielding 32 as a beige solid ($38.5 \mathrm{mg}, 0.044 \mathrm{mmol}$, 56\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta=7.68(\mathrm{t}, \mathrm{J}=5.12 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{bs}, 3 \mathrm{H}), 7.11(\mathrm{t}, \mathrm{J}=11.88$ $\mathrm{Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, \mathrm{J}=11.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, \mathrm{J}=13.42 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{t}, \mathrm{J}=11.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.22$ (dd, J = 3.67, $15.07 \mathrm{~Hz}, 1 \mathrm{H}$), 6.14 (dd, J = $3.09,9.57 \mathrm{~Hz}, 1 \mathrm{H}$), 5.96 ($\mathrm{m}, 1 \mathrm{H}$), 5.62 (d, J = 10.91 $\mathrm{Hz}, 1 \mathrm{H}), 5.53(\mathrm{~m}, 3 \mathrm{H}), 5.45(\mathrm{q}, \mathrm{J}=4.73,8.79 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{~m}, 5 \mathrm{H}), 5.22(\mathrm{~d}, \mathrm{~J}=8.31 \mathrm{~Hz}, 2 \mathrm{H})$, $4.56(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{t}, \mathrm{J}=$ $5.12 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{t}, \mathrm{J}=7.24 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{t}, \mathrm{J}=8.31 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~m}, 1 \mathrm{H})$, $3.29(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~m}, 3 \mathrm{H}), 2.09(\mathrm{~m}, 5 \mathrm{H}), 2.00(\mathrm{~m}, 4 \mathrm{H}), 1.80(\mathrm{~d}, \mathrm{~J}$ $=10.82 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{~m}, 3 \mathrm{H}), 1.36(\mathrm{~m}, 3 \mathrm{H}), 1.27(\mathrm{~m}, 4 \mathrm{H}), 1.13(\mathrm{~m}$, 2 H), 0.78 (d, J = 6.18, 3H), 0.76 (d, J = $7.24 \mathrm{~Hz}, 3 \mathrm{H}), 0.71$ (d, J = $6.18 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C-NMR (176 MHz, DMSO- d_{6}): $\delta=172.11,165.20,137.63,136.82,135.85,135.00,132.22$, $132.08,131.87,130.54,130.32,130.20,129.55,126.68,125.39,124.58,122.36,118.38$, 80.01, 78.85, 78.44, 76.27, 75.13, 72.97, 72.72, 72.46, 72.14, 71.70, 68.44, 64.73, 40.12, $38.81,38.50,38.22,36.82,36.76,35.66,35.58,33.69,32.57,32.11,31.09,28.99,26.94$, $26.58,25.86,25.44,25.37,20.79,14.77,13.48,10.26$.

HRMS (ESI) calculated for $\left([M+H]^{+}\right): m / z=905.5886$; experimental $=905.5855$.

Compound 67

Acid 56 (10 mg, $0.017 \mathrm{mmol}, 1.0 \mathrm{eq})$ was dissolved in dry THF ($500 \mu \mathrm{~L}$) under argon atmosphere, $\mathrm{NMM}(30 \mu \mathrm{~L})$ was added and the flask was cooled to $0{ }^{\circ} \mathrm{C}$. Then isobutylchloroformate $(1.66 \mu \mathrm{~L}, 0.017 \mathrm{mmol}, 1.0 \mathrm{eq})$ was added at $0{ }^{\circ} \mathrm{C}$ and the reaction was stirred at that temperature for one hour. The color changed from yellow to orange and the amine $32(23.3 \mathrm{mg}, 0.026 \mathrm{mmol}, 1.5 \mathrm{eq})$ was added in THF $(500 \mu \mathrm{~L})$ with NMM $(30 \mu \mathrm{~L})$ at 0 ${ }^{\circ} \mathrm{C}$. The reaction continued stirring overnight, while the thawing ice bath equilibrated the reaction steadily to ambient temperature. The next morning the solvent was removed and the reaction was purified by RP-HPLC (10-100\% $\mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}, 0.1 \% \mathrm{HCOOH}, 220 \mathrm{~nm}$). Product containing fractions were identified and lyophilized to yield 67 ($21.1 \mathrm{mg}, 0.14 \mathrm{mmol}, 84 \%$) as a slight yellow powder.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=7.13(\mathrm{t}, \mathrm{J}=11.57 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, \mathrm{J}=12.82 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}$, $J=13.45 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~m}, 1 \mathrm{H}), 6.43(\mathrm{t}, \mathrm{J}=10.94 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~m}, 1 \mathrm{H}), 6.06(\mathrm{~m}, 3 \mathrm{H}), 5.73$ $(\mathrm{m}, 1 \mathrm{H}), 5.57(\mathrm{~m}, 2 \mathrm{H}), 5.53(\mathrm{~m} 2 \mathrm{H}), 5.45(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{~m}, 1 \mathrm{H}), 4.35$ $(\mathrm{m}, 1 \mathrm{H}), 4.24(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{t}, \mathrm{J}=10.01 \mathrm{~Hz}, 1 \mathrm{H}), 3.70$ ($\mathrm{m}, 1 \mathrm{H}$), $3.63(\mathrm{~m}, 22 \mathrm{H}), 3.55(\mathrm{t}, \mathrm{J}=, 5.63 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{t}, \mathrm{J}=5.32 \mathrm{~Hz}, 4 \mathrm{H}), 3.10(\mathrm{~m}, 4 \mathrm{H}), 3.04$ ($\mathrm{m}, 1 \mathrm{H}$), $2.60(\mathrm{dd}, \mathrm{J}=12.51,14.10 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~s}$, $3 \mathrm{H}), 2.10(\mathrm{~m}, 6 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~m}, 2 \mathrm{H}), 1.58$ (m, 5H), 1.48 (s, 6H), 1.39 (m, 2H), 1.32 (m, 4H), 1.26 (s, 2H), 1.19 (m, 7H), 0.94 (d, J = 6.74 $\mathrm{Hz}, 2 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}=6.74,2 \mathrm{H}), 0.85(\mathrm{~d}, \mathrm{~J}=7.41 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~d}, \mathrm{~J}=6.41 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~d}, \mathrm{~J}$ $=6.30 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=187.09,174.46,166.47,137.85,137.13,136.23,134.96$, 133.90, 132.91, 132.79, 132.22, 131.68, 129.42, 129.17, 127.73, 127.12, 126.08, 123.50, $119.33,81.00,80.15,80.06,76.65,76.61,74.91,74.54,74.39,74.35,73.83,73.12,71.10$, 71.07, 71.04, 70.97, 70.92, 70.79, 70.67, 70.59, 70.43, 64.77, 54.00, 51.34, 49.81, 41.35, $40.65,39.75,39.53,39.14,38.28,37.52,37.11,36.33,34.66,33.56,33.09,32.56,31.46$, $30.32,30.28,29.84,29.80,28.39,27.98,26.64,26.56,26.45,21.79,19.36,19.21,15.32$, 14.79, 14.35, 11.72, 10.89.

HRMS (ESI) calculated for $\left([\mathrm{M}+2 \mathrm{H}]^{2+}\right)$: $\mathrm{m} / \mathrm{z}=735.9353$; experimental $=735.9352$.

Compound 68

Chemical Formula: $\mathrm{C}_{58} \mathrm{H}_{88} \mathrm{~N}_{2} \mathrm{O}_{12}$
Exact Mass: 1004,6337

The compound 68 ($4.05 \mathrm{mg}, 0.004 \mathrm{mmol}, 24 \%$) was obtained as a side product during the synthesis of 32 .
${ }^{1} \mathrm{H}$-NMR ($700 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.13(\mathrm{t}, \mathrm{J}=11.98 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, \mathrm{J}=12.11 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~m}$, $1 \mathrm{H}), 6.43(\mathrm{t}, \mathrm{J}=10.94 \mathrm{~Hz}, 1 \mathrm{H}), 6.22$ (dd, J = 4.17, $15.37 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~m}, 2 \mathrm{H}), 5.74(\mathrm{~m}, 2 \mathrm{H})$, $5.58(\mathrm{dt}, \mathrm{J}=1.56,11.59 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~m}, 3 \mathrm{H}), 5.45(\mathrm{~m}, 1 \mathrm{H}), 5.34(\mathrm{~m}, 2 \mathrm{H}), 5.29(\mathrm{dt}, \mathrm{J}=2.21$, $9.77,1 \mathrm{H}), 4.51(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{q}, \mathrm{J}=2.21 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, \mathrm{~J}=5.99 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ ($q, J=5.21,10.61 \mathrm{~Hz}, 1 \mathrm{H}$), $4.11(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~m}$, $1 \mathrm{H}), 3.59(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{q}, \mathrm{J}=5.99,11.72 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{q}, \mathrm{J}=6.77,12.54 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{q}$, $\mathrm{J}=6.38,13.15 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 14 \mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H})$, $1.88(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 1 \mathrm{H}), 1.56(\mathrm{~m}, 9 \mathrm{H}), 1.47(\mathrm{q}, \mathrm{J}=7.16,13.54$ $\mathrm{Hz}, 4 \mathrm{H}), 1.32(\mathrm{~m}, 8 \mathrm{H}), 1.18(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~d}, \mathrm{~J}=6.77 \mathrm{~Hz}, 6 \mathrm{H}), 0.85(\mathrm{~d}, \mathrm{~J}=6.77 \mathrm{~Hz}, 3 \mathrm{H}), 0.81$ (d, J = 6.38 Hz, 3H), 0.77. (d, J = 6.38 Hz, 3H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=206.95,174.20,166.45,157.37,137.85,137.12,136.20$, 134.89, 133.86, 133.04, 132.77, 132.18, 131.78, 129.54, 129.23, 127.76, 127.05, 126.04, $123.48,119.31,81.03,80.14,80.02,76.62,76.46,74.92,74.63,74.39,73.90,73.21,71.30$, $70.56,64.92,41.36,41.11,39.67,39.54,38.15,37.60,37.16,36.33,34.70,33.46,33.04$, $32.45,31.30,31.16,30.40,29.89,28.65,27.87,26.68,26.54,26.38,21.67,19.36,15.31$, 14.70, 10.87.

HRMS (ESI) calculated for $\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}=1005.6410 ;$ experimental $=1005.6415$.

Compound 69

Sorangicin A 31 ($20 \mathrm{mg}, 0.025 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in anhydrous THF (5 mL) and pyridine (5 mL) and acetic anhydride ($25.30 \mathrm{mg}, 0.248 \mathrm{mmol}, 10.0 \mathrm{eq}$) were added at $0^{\circ} \mathrm{C}$. Then the reaction was stirred for 4 hours at $24^{\circ} \mathrm{C}$. The solvent was removed in vacuo and the residue dried under reduced pressure for two hours, before anhydrous THF (2.5 mL) and NMM $(100 \mu \mathrm{~L})$ were added under argon atmosphere. The reaction was cooled to $0^{\circ} \mathrm{C}$ and then isobutyl chloroformate ($2.4 \mu \mathrm{~L}, 0.025 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added and the slightly yellow solution
went turbid instantly. The reaction was stirred 10 minutes at $0^{\circ} \mathrm{C}$ and 45 minutes at $24^{\circ} \mathrm{C}$, before benzyl alcohol 57 ($20.48 \mathrm{mg}, 0.03 \mathrm{mmol}, 1.2 \mathrm{eq}$) was added in anhydrous THF (2.5 mL) together with anhydrous $\mathrm{NMM}(100 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$. The reaction continued stirring for two hours at $24^{\circ} \mathrm{C}$ and was then concentrated to dryness. The residue was purified by RP-HPLC ($5-98 \%$ $\mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}, 0.1 \% \mathrm{AcOH}, 220 \mathrm{~nm}$, collect all). The product containing fractions were lyophilized to yield 59 ($25.2 \mathrm{mg}, 0.016 \mathrm{mmol}, 63 \%$ over two steps) as a beige powder.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right): ~ \delta=11.92(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~m}, 1 \mathrm{H}), 6.45(\mathrm{t}, \mathrm{J}=10.49$ $\mathrm{Hz}, 1 \mathrm{H}), 6.21$ (dd, J = 3.86, $15.28 \mathrm{~Hz}, 1 \mathrm{H}), 6.13$ (dd, J = 3.15, $10.00 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~m}, 1 \mathrm{H})$, $5.62(\mathrm{~m}, 2 \mathrm{H}), 5.43(\mathrm{~m}, 3 \mathrm{H}), 5.34(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{~m}, 3 \mathrm{H}), 4.82(\mathrm{~d}, \mathrm{~J}=5.51 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{dd}, \mathrm{J}=$ $4.33,7.25 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, \mathrm{~J}=2.52 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~m}, 1 \mathrm{H}), 4.36(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{~m}, 2 \mathrm{H}), 4.07$ (m, 1H), 3.75 (m, 1H), 3.65 (m, 3H), $2.30(\mathrm{~m}, 3 \mathrm{H}), 2.10(\mathrm{~m}, 10 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~m}, 3 \mathrm{H})$, 1.78 (d, J = $10.48 \mathrm{~Hz}, 1 \mathrm{H}$), 1.54 (s, 3H), 1.45 (m, 3H), 1.34 (m, 6H), 1.17 (m, 3H), 1.08 (m, 1H), 0.80 (d, J = $6.62 \mathrm{~Hz}, 3 \mathrm{H}$), 0.74 (d, J = $7.25 \mathrm{~Hz}, 3 \mathrm{H}$), 0.70 (d, J = $6.77 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C-NMR (151 MHz, DMSO- d_{6}): $\delta=174.52,169.76,165.15,137.66,136.81,135.87,134.96$, 132.13, 132.09, 132.07, 131.97, 129.85, 129.70, 129.02, 126.84, 125.25, 124.57, 122.31, 118.34, 79.91, 78.84, 78.43, 77.25, 75.10, 72.61, 72.55, 72.12, 70.92, 70.05, 67.93, 64.79, $39.52,38.50,36.80,36.55,35.49,33.80,33.63,32.40,31.94,31.16,29.24,26.52,24.58$, 20.80, 20.77, 14.72, 13.41, 10.14.

DEPT (151 MHz, DMSO-d6): $\delta=137.40,136.56,135.62,134.70,131.87,131.83,131.81$, 131.71, 129.59, 128.76, 126.73, 126.59, 124.99, 124.31, 122.05, 118.08, 79.65, 78.59, 78.29, 78.17, 77.00, 74.84, 72.35, 72.29, 71.87, 71.76, 70.67, 69.79, 67.96, 67.68, 64.54, 64.44, $38.25,36.55,36.29,35.24,33.54,33.37,32.14,31.68,30.91,28.98,26.26,26.17,24.33$, $24.22,20.91,20.54,20.52,14.46,13.28,13.15,9.88$.

HRMS (ESI) calculated for $\left([M+2 H]^{2+}\right)$: $m / z=802.4197$; experimental $=802.4199$.

Corallopyronin A intermediates

Compound 70

Acid 56 ($10 \mathrm{mg}, 0.017 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in dry THF ($500 \mu \mathrm{~L}$) under argon atmosphere, $\mathrm{NMM}(15 \mu \mathrm{~L})$ was added and the flask was cooled to $0{ }^{\circ} \mathrm{C}$. Then isobutylchloroformate ($1.66 \mu \mathrm{~L}, 0.017 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added at $0^{\circ} \mathrm{C}$ and the reaction continued stirring at that temperature for one hour. The color changed from yellow to orange and corallopyronin A $35(18.08 \mathrm{mg}, 0.034 \mathrm{mmol}, 2.0 \mathrm{eq})$ was added in $\operatorname{THF}(500 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$. The reaction continued stirring overnight, while the thawing ice bath equilibrated the reaction steadily to ambient temperature. The next morning the solvent was removed and the reaction was purified by RP-HPLC ($10-100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}, 0.1 \% \mathrm{HCOOH}, 220 \mathrm{~nm}$). Product containing fractions were identified and lyophilized to yield 70 ($13.35 \mathrm{mg}, 0.12 \mathrm{mmol}, 71 \%$) as a slight beige powder. The residual, unreacted corallopyronin A 35 was re-isolated and tested for antibiotic activity, as the natural product's double bonds are prone to isomerize under basic conditions. Isomerization at C19/C20 reported and observed (e.g. by NMR), intermediate eluted as isomeric mixture as reported for free CorA 35 in Figure S18-S21.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta=7.46(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{dd}, \mathrm{J}=1.27,11.67 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~m}, 1 \mathrm{H})$, $6.71(\mathrm{~d}, \mathrm{~J}=10.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~m}, 3 \mathrm{H}), 6.28(\mathrm{dd}, \mathrm{J}=1.27,11.45 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~m}, 1 \mathrm{H}), 5.96$ $(\mathrm{m}, 1 \mathrm{H}), 5.42(\mathrm{~m}, 4 \mathrm{H}), 5.29(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{~m}, 2 \mathrm{H}), 4.53(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~d}, \mathrm{~J}=6.62 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ $(\mathrm{m}, 3 \mathrm{H}), 3.63(\mathrm{~m}, 8 \mathrm{H}), 3.61(\mathrm{~s}, 4 \mathrm{H}), 3.56(\mathrm{t}, \mathrm{J}=4.73 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{~m}, 4 \mathrm{H}), 3.02(\mathrm{~m}, 1 \mathrm{H}), 2.75$ $(\mathrm{m}, 2 \mathrm{H}), 2.70(\mathrm{~m}, 4 \mathrm{H}), 2.61(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 2 \mathrm{H}), 1.95(\mathrm{~s}, 2 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.77$ (s, 4H), 1.71 (s, 6H), 1.64 (m, 4H), 1.64 (m, 2H), 1.39 (d, J = $2.00 \mathrm{~Hz}, 6 \mathrm{H}, 1.23$ (m, 6H), 0.94 (d, J = 6.62 Hz, 3H).
${ }^{13}$ C-NMR (176 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=202.39,191.89,187.58,187.02,181.42,176.46,170.65$, 168.91, 161.82, 160.54, 152.98, 152.60, 148.58, 140.92, 140.80, 140.12, 137.76, 137.62, $136.11,134.32,132.85,132.70,130.43,130.39,130.23,130.19,127.41,127.20,126.49$, $126.35,125.85,125.81,124.92,123.32,121.57,120.91,114.70,109.99,109.63,101.51$, $100.24,99.60,74.34,71.09,71.03,70.94,70.86,70.76,70.71,70.43,69.71,69.62,54.00$, $52.82,51.33,47.70,38.77,38.64,38.44,38.38,37.73,37.51,34.90,33.68,33.61,31.02$, 29.71, 29.37, 28.39, 27.74, 24.20, 19.21, 18.31, 18.21, 18.19, 18.16, 18.04, 17.97, 17.71, 17.66, 14.73, 13.79, 12.29, 11.14.

HRMS (ESI) calculated for $\left([M+H+N a]^{2+}\right): m / z=558.2798 ;$ experimental $=558.2801$.

Compound 71

Acid 53 ($10 \mathrm{mg}, 0.021 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in dry THF ($500 \mu \mathrm{~L}$) under argon atmosphere, pyridine ($5 \mu \mathrm{~L}$) was added and the flask was cooled to $0{ }^{\circ} \mathrm{C}$. Then isobutylchloroformate $(2.03 \mu \mathrm{~L}, 0.021 \mathrm{mmol}, 1.0 \mathrm{eq})$ was added at $0^{\circ} \mathrm{C}$ and the reaction continued stirring at that temperature for one hour. The color changed from yellow to orange and corallopyronin A 35 ($22.14 \mathrm{mg}, 0.042 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added in THF ($500 \mu \mathrm{~L}$) at $0^{\circ} \mathrm{C}$. The reaction continued stirring for 48 hours, while the thawing ice bath equilibrated the reaction steadily to ambient temperature. The next morning the solvent was removed and the reaction was purified by RP-HPLC (10-100\% $\mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}, 0.1 \% \mathrm{HCOOH}, 220 \mathrm{~nm}$). Product containing fractions were lyophilized to yield $71(15.358 \mathrm{mg}, 0.16 \mathrm{mmol}, 75 \%)$ as a slight beige powder. The residual, unreacted corallopyronin A 35 was re-isolated and tested for antibiotic activity, as the double bonds are prone to isomerize under basic conditions. Isomerization at C19/C20 reported and observed (e.g. by NMR), intermediate eluted as isomeric mixture as reported for free CorA 35 in Figure S18-S21.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=7.15$ (dd, J=1.89, $\left.11.57 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.45(\mathrm{~m}, 2 \mathrm{H}), 6.33(\mathrm{~m}, 1 \mathrm{H})$, $6.28(\mathrm{~m}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~m}, 1 \mathrm{H}), 5.87(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{~m}, 5 \mathrm{H}), 5.28(\mathrm{t}, \mathrm{J}=6.73 \mathrm{~Hz}, 1 \mathrm{H})$, $5.20(\mathrm{t}, \mathrm{J}=7.16 \mathrm{~Hz}, 1), 4.97(\mathrm{~m}, 2 \mathrm{H}), 4.73(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{t}, \mathrm{J}=6.52 \mathrm{~Hz}, 1), 4.03(\mathrm{~m}, 1 \mathrm{H}), 3.96$ (d, J = 6.10 Hz, 2H), $3.67(\mathrm{~m}, 6 \mathrm{H}), 3.26(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{~m}, 4 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 2.42$ ($\mathrm{t}, \mathrm{J}=7.79 \mathrm{~Hz}, 1 \mathrm{H}$), $2.26(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~m}, 7 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.82$ (s, 3H, 1.70 (s, 6H), $1.65(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~m}, 8 \mathrm{H}), 1.35(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 2 \mathrm{H}), 1.24(\mathrm{~m}, 9 \mathrm{H}), 0.96$ (m, 6H), 0.91 (d, J = 6.73 Hz, 4H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$): $\delta=191.36,190.95,171.32,170.03,168.31,162.90$, 162.77, 161.72, 160.00, 156.64, 154.55, 152.57, 152.42, 151.29, 140.97, 140.13, 140.03, 137.64, 136.74, 135.64, 134.48, 132.69, 131.77, 130.40, 130.32, 130.16, 126.48, 126.46, 126.37, $126.02,125.85,125.82,125.74,125.64,124.99,122.75,122.64,121.59,121.52,114.54$, $114.23,109.68,101.23,100.55,100.24,99.60,98.99,98.47,97.87,97.65,83.59,76.81$, $76.72,76.39,76.10,76.01,69.72,69.68,69.64,54.00,52.80,51.79,51.73,39.07,38.77$, $38.67,38.57,38.53,38.45,38.32,38.22,37.77,37.51,35.14,34.87,34.69,34.34,33.66$, $31.13,31.07,31.01,31.00,30.96,30.26,29.88,28.98,28.35,28.20,27.75,27.55,27.17$, 26.47, 24.81, 24.56, 19.10, 19.04, 18.95, 18.35, 18.30, 18.20, 18.17, 18.04, 17.94, 17.92, 17.69, 14.28, 12.32, 12.19, 11.16.

HRMS (ESI) calculated for $\left([\mathrm{M}+\mathrm{H}+\mathrm{Na}]^{2+}\right): \mathrm{m} / \mathrm{z}=994.4896$; experimental $=994.4899$.

Compound 74

Acid 72 ($11.7 \mathrm{mg}, 0.031 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in anhydrous DCM (2.5 mL) and NMM $(20 \mu \mathrm{~L})$ and iso-butylchloroformate ($4 \mu \mathrm{~L}, 0.031 \mathrm{mmol}, 1.0 \mathrm{eq}$) were added in one portion at 0 ${ }^{\circ} \mathrm{C}$ under argon atmosphere. The reaction mixture was stirred 45 minutes at $0^{\circ} \mathrm{C}$ before CorA $35(18.0 \mathrm{mg}, 0.031 \mathrm{mmol}, 1.0 \mathrm{eq})$ was added dropwise in anhydrous DCM (2.5 mL) at $0^{\circ} \mathrm{C}$ and the ice bath was left to thaw. Afterwards, the reaction stirred 60 minutes more and then the solvent was removed by rotary evaporation at $30^{\circ} \mathrm{C}$ water bath temperature. The residue was taken up in DCM (10 mL) and washed with water and brine ($2 \times 10 \mathrm{~mL}$ each), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated by rotary evaporation to yield 74 as a crude, yellow powder (6.1 mg , $0.007 \mathrm{mmol}, 22 \%$). Isomerization at C19/C20 reported and observed (e.g. by NMR), intermediate eluted as isomeric mixture as reported for free CorA 35 in Figure S18-S21.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}\right): \delta=7.18(\mathrm{~m}, 2 \mathrm{H}), 6.41(\mathrm{~m}, 4 \mathrm{H}), 6.29(\mathrm{t}, \mathrm{J}=11.86 \mathrm{~Hz}, 2 \mathrm{H}), 5.95$ $(\mathrm{m}, 3 \mathrm{H}), 5.41(\mathrm{~m}, 6 \mathrm{H}), 5.23(\mathrm{~m}, 3 \mathrm{H}), 5.03(\mathrm{~m}, 3 \mathrm{H}), 4.51(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~d}, \mathrm{~J}=6.31 \mathrm{~Hz}, 1 \mathrm{H}), 3.92$ $(\mathrm{m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 6 \mathrm{H}), 3.40(\mathrm{~m}, 3 \mathrm{H}), 3.26(\mathrm{~m}, 3 \mathrm{H}), 3.10(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{~m}, 7 \mathrm{H}), 2.19(\mathrm{~m}, 2 \mathrm{H})$, $2.13(\mathrm{~m}, 6 \mathrm{H}), 2.00(\mathrm{~m}, 6 \mathrm{H}), 1.94(\mathrm{~m}, 5 \mathrm{H}), 1.87(\mathrm{~m}, 12 \mathrm{H}), 1.78(\mathrm{~m}, 8 \mathrm{H}), 1.71(\mathrm{~m}, 5 \mathrm{H}), 1.67(\mathrm{~m}$, $3 H), 1.63(\mathrm{~m}, 10 \mathrm{H}), 1.47(\mathrm{~m}, 5 \mathrm{H}), 1.41(\mathrm{~s}, 6 \mathrm{H}), 1.32(\mathrm{~m}, 3 \mathrm{H}), 1.25(\mathrm{~m}, 6 \mathrm{H}), 1.04(\mathrm{~d}, \mathrm{~J}=6.94$ $\mathrm{Hz}, 2 \mathrm{H}), 0.92$ (m, 4H).
${ }^{13}$ C-NMR ($126 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}$): $\delta=188.79$, 187.69, 187.59, 172.23, 171.97, 170.06, 165.47, 156.93, 142.11, 140.96, 138.97, 138.80, 138.66, 138.18, 138.03, 137.37, 137.17, 137.01, 135.34, 131.08, 131.04, 131.01, 130.96, 127.36, 127.21, 126.96, 126.67, 126.60, 126.51, $126.38,126.28,126.24,126.18,126.10,125.64,125.44,125.24,124.94,123.24,123.04$, $122.38,110.75,110.71,110.63,103.02,102.49,100.82,100.42,85.10,84.87,78.06,77.93$,
$77.75,77.61,75.71,74.83,69.67,69.64,69.59,52.82,50.35,50.22,50.19,47.99,43.23$, $40.42,39.72,39.62,39.43,39.31,38.98,38.84,38.67,38.41,38.13,36.07,35.92,35.83$, $34.83,34.34,31.84,31.70,31.66,31.64,31.63,31.35,31.27,31.23,30.53,30.47,30.32$, $30.15,30.00,29.89,29.79,29.66,29.50,29.22,29.11,28.69,28.65,27.66,27.39,25.14$, 19.51, 19.30, 19.23, 18.52, 18.44, 18.37, 18.29, 18.23, 17.87, 17.56, 14.90, 14.79, 14.74, $14.68,14.52,14.38,12.96,12.84,12.72,12.68,12.30,12.10,12.05,11.87,10.96$.

Mono and dicatechol rifamycin conjugates

Compound 4

Alkyne 39 ($11.9 \mathrm{mg}, 0.062 \mathrm{mmol}, 3.0 \mathrm{eq}$) and $\mathrm{N}_{3}-\mathrm{PEG}_{3}-\mathrm{NH}_{2}(15.9 \mathrm{mg}, 0.73 \mathrm{mmol}, 3.5 \mathrm{eq})$ were dissolved in DMSO (200 $\mu \mathrm{L}$). Sodium ascorbate ($4.11 \mathrm{mg}, 0.021 \mathrm{mmol}, 1.0 \mathrm{eq}$), $\mathrm{CuSO}_{4}(3.31$ $\mathrm{mg}, 0.021 \mathrm{mmol}, 1.0 \mathrm{eq})$ and TBTA ($2.20 \mathrm{mg}, 0.004,0.2 \mathrm{eq}$) were premixed in $1 \times \mathrm{PBS}$ (pH 7.4 , $200 \mu \mathrm{~L}$) and added to the reaction mixture. The reaction mixture was stirred 1 hour at $25^{\circ} \mathrm{C}$. Upon complete consumption of the alkyne (LCMS), the mixture was diluted with water (10 mL) and freeze-dried overnight. The residue was dissolved in dry ethyl acetate/ MeOH and filtered through a syringe filter and concentrated in vacuo. The brown solid was taken up in anhydrous DMSO (200 $\mu \mathrm{L}$) and added dropwise to fluoro rifamycin $2(17.0 \mathrm{mg}, 0.021 \mathrm{mmol}, 1.0 \mathrm{eq}) \mathrm{in}$ anhydrous THF (5 mL) under argon atmosphere at $0{ }^{\circ} \mathrm{C}$. The reaction stirred at $0{ }^{\circ} \mathrm{C}$ for 5 minutes and continued stirring at $25^{\circ} \mathrm{C}$ for an hours. The addition of anhydrous DIPEA ($30 \mu \mathrm{~L}$) and warming to maximum $45{ }^{\circ} \mathrm{C}$ drove the reaction to completion. The solvent was removed by rotary evaporation and the residual liquid was purified by RP-HPLC (60-90\% ACN/ $\mathrm{H}_{2} \mathrm{O}, 1 \%$ $\mathrm{AcOH}, 220 \mathrm{~nm}$,). The product containing fractions were identified by LCMS and lyophilized overnight to yield pure title compound 4 as a blue solid $(7.42 \mathrm{mg}, 0.006 \mathrm{mmol}, 30 \%$ over two steps).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}\right.$, Tol-d8, $\left.\mathrm{AcOH}-\mathrm{d} 4, \mathrm{ACN}^{2} \mathrm{~d}_{3}\right): \delta=13.24(\mathrm{~s}, 1 \mathrm{H}), 9.52(\mathrm{~s}, 1 \mathrm{H}), 9.22-9.09(\mathrm{~m}$, $3 \mathrm{H}), 7.91(\mathrm{~m}, 1 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=11.65 \mathrm{~Hz} ; 1 \mathrm{H}), 7.58(\mathrm{~d}, \mathrm{~J}=8.59 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~m}$, $1 \mathrm{H}), 6.67(\mathrm{~m}, 1 \mathrm{H}), 6.33(\mathrm{~m}, 1 \mathrm{H}), 6.27(\mathrm{~d}, \mathrm{~J}=12.06 \mathrm{~Hz}, 2 \mathrm{H}), 6.03(\mathrm{~m}, 1 \mathrm{H}), 5.74(\mathrm{~m}, 2 \mathrm{H}), 5.38$
$(q, J=7.56,13.08 \mathrm{~Hz}, 2 H), 5.21(\mathrm{t}, \mathrm{J}=9.81 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{~m}, 2 \mathrm{H}), 4.61(\mathrm{~m}, 1 \mathrm{H})$, $4.37(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~m}, 3 \mathrm{H}), 3.46(\mathrm{~m}, 6 \mathrm{H}), 3.38(\mathrm{~m}, 5 \mathrm{H}), 3.08(\mathrm{~m}$, $4 \mathrm{H}), 2.95(\mathrm{~m}, 5 \mathrm{H}), 2.91(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 5 \mathrm{H}), 2.22(\mathrm{~m}, 5 \mathrm{H}), 1.94 \mathrm{~m}, 4 \mathrm{H}), 1.78(\mathrm{~m}, 12 \mathrm{H}), 1.61$ $(\mathrm{m}, 5 \mathrm{H}), 1.26(\mathrm{~m}, 4 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=7.15 \mathrm{~Hz}, 4 \mathrm{H}), 0.99(\mathrm{~d}, \mathrm{~J}=7.56 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~m}, 2 \mathrm{H}), 0.73$ $(\mathrm{m}, 3 \mathrm{H}), 0.62(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(176 \mathrm{MHz}\right.$, Toluene- $\left.\mathrm{d}_{8}, \mathrm{AcOH}-\mathrm{d}_{4}, \mathrm{ACN}-\mathrm{d}_{3}\right) \delta=185.23,181.78,172.37,170.72$, 170.20, 166.62, 147.22, 144.14, 142.00, 137.32, 137.26, 137.04, 137.00, 132.80, 131.07, $130.56,128.28,128.26,128.23,127.37,127.36,125.10,124.49,123.88,119.19,118.04$, $116.67,114.91,107.74,76.72,73.03,72.75,70.40,70.29,70.25,69.26,55.85,49.74,37.33$, $35.13,32.95,21.85,20.72,16.81,11.30,9.40,7.43$.

HRMS (ESI) calculated for $\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}=1208.5034 ;$ experimental $=1208.5025$.

Compound 5a and 5

Chemical Formula: $\mathrm{C}_{49} \mathrm{H}_{63} \mathrm{~N}_{3} \mathrm{O}_{15} \mathrm{~S}_{2}$ Exact Mass: 997,3701
Molecular Weight: 998,1690

3-formyl rifamycin 27 ($50 \mathrm{mg}, 0.069 \mathrm{mmol}, 1.0$) was dissolved in anhydrous THF (20 mL) under argon atmosphere and amine $40(19.9 \mathrm{mg}, 0.069 \mathrm{mmol} 1.0 \mathrm{eq})$ was added as a solution in THF $(5 \mathrm{~mL})$ with TEA $(30 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$. The ice bath was removed and the color of the solution changed from red to purple over the course of 1 hour at ambient temperature. The reaction mixture was diluted with DCM $(100 \mathrm{~mL})$ and washed with $1 \mathrm{M} \mathrm{HCl}(1 \times 75 \mathrm{~mL})$, water/brine (1:1, $2 \times 100 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo to yield pure imine 5 a ($61.39 \mathrm{mg}, 0.062 \mathrm{mmol}, 90 \%$) as a red-purple solid. A small fraction of the imine $\mathbf{5 a}$ was directly tested for biological activity in MIC assays and stored under argon in dry DMSO at $-20^{\circ} \mathrm{C}$ in the dark. The rest was dissolved in anhydrous THF and $\mathrm{NaBH}(\mathrm{OAc})_{3}(21.91 \mathrm{mg}, 0.103 \mathrm{~mol}$, $1.5 \mathrm{eq})$ was added in one portion at $0{ }^{\circ} \mathrm{C}$ under argon. The reaction stirred 30 minutes at 30 ${ }^{\circ} \mathrm{C}$ and 30 minutes at ambient temperature. Then the reaction was diluted with DCM (120 mL) and washed with 1 M HCl , water and brine (each $2 \times 100 \mathrm{~mL}$). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo to yield crude amine 5 as a red solid ($38.99 \mathrm{mg}, 0.039 \mathrm{mmol}, 57 \%$ over 2 steps).

5a:

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$: $\delta=12.67$ (s, 1H), 12.23 (s, 1H), 10.57 (s, 1H), 6.54 (dd, J=11.59 $\mathrm{Hz}, 1 \mathrm{H}), 6.47(\mathrm{~m}, 1 \mathrm{H}), 6.32(\mathrm{~d}, \mathrm{~J}=12.35 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{dd}, \mathrm{J}=5.04,15.37 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~m}$, 1H), 5.01 (d, J = $10.08 \mathrm{~Hz}, 1 \mathrm{H}$), 3.74 (d, J = $9.58 \mathrm{~Hz}, 1 \mathrm{H}$), 3.64 (m, 6H), 3.43 (d, J = 8.07 Hz , $1 \mathrm{H}), 3.10(\mathrm{~m} 1 \mathrm{H}), 3.02(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}$, $3 \mathrm{H}), 1.80(\mathrm{~m}, 9 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~d}, \mathrm{~J}=7.31 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}$, $J=7.31 \mathrm{~Hz}, 3 \mathrm{H}), 0.61(\mathrm{~d}, \mathrm{~J}=6.55 \mathrm{~Hz}, 3 \mathrm{H}),-0.39(\mathrm{~d}, \mathrm{~J}=6.55 \mathrm{~Hz}, 3 \mathrm{H})$.

5

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right): ~ \delta=12.79(\mathrm{~m}, 1 \mathrm{H}), 9.37(\mathrm{~m}, 1 \mathrm{H}), 8.61(\mathrm{~m}, 2 \mathrm{H}), 8.47(\mathrm{~m}, 1 \mathrm{H})$, $7.81(\mathrm{~m}, 1 \mathrm{H}), 7.70(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~m}, 2 \mathrm{H}), 6.25(\mathrm{~m}, 1 \mathrm{H}), 6.17(\mathrm{~m}, 1 \mathrm{H}), 6.07(\mathrm{~m}, 1 \mathrm{H}), 5.91(\mathrm{dd}, \mathrm{J}$ = 6.52, $16.76 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{~m}, 1 \mathrm{H})$, $3.09(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{~m}, 4 \mathrm{H}), 2.73(\mathrm{~s}, 1 \mathrm{H}), 2.02(\mathrm{~m}, 3 \mathrm{H}), 1.97(\mathrm{~m}, 5 \mathrm{H}), 1.91(\mathrm{~m}, 3 \mathrm{H}), 1.89(\mathrm{~m}$, $2 \mathrm{H}), 1.64(\mathrm{~s}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 1 \mathrm{H}), 1.23(\mathrm{bs}, 3 \mathrm{H}), 0.93(\mathrm{~m}, 6 \mathrm{H}), 0.85(\mathrm{~d}, \mathrm{~J}=7.45 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~d}$, $J=7.08 \mathrm{~Hz}, 3 \mathrm{H}), 0.27(\mathrm{~m}, 1 \mathrm{H}),-0.03(\mathrm{~m}, 1 \mathrm{H}),-0.34(\mathrm{~d}, \mathrm{~J}=6.89 \mathrm{~Hz}, 1 \mathrm{H})$.

HRMS (ESI) calculated for $\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}=998.3774 ;$ experimental $=998.3782$.

Compound $\mathbf{6 a}$ and $\mathbf{6}$

Chemical Formula: $\mathrm{C}_{51} \mathrm{H}_{65} \mathrm{~N}_{3} \mathrm{O}_{17}$ Exact Mass: 991,4314
Molecular Weight: 992,0850

Chemical Formula: $\mathrm{C}_{51} \mathrm{H}_{67} \mathrm{~N}_{3} \mathrm{O}_{17}$ Exact Mass: 993,4470
Molecular Weight: 994,1010

3-formyl rifamycin 27 ($50 \mathrm{mg}, 0.069 \mathrm{mmol}, 1.0$) was dissolved in anhydrous THF (20 mL) under argon atmosphere and the amine 41 ($19.59 \mathrm{mg}, 0.069 \mathrm{mmol} 1.0 \mathrm{eq}$) was added as a solution in THF (5 mL) with TEA $(30 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$. The ice bath was removed and the color of the solution changed from red to purple over the course of 1 hour at ambient temperature. The reaction was diluted with DCM $(100 \mathrm{~mL})$ and washed with $1 \mathrm{M} \mathrm{HCI}(1 \times 75 \mathrm{~mL})$, water/brine (1:1, 2×100 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo to yield pure imine $\mathbf{6 a}$ (61.39 $\mathrm{mg}, 0.062 \mathrm{mmol}, 90 \%$) as a red-purple solid. A small fraction of the imine $\mathbf{6} \mathbf{a}$ was directly tested
for biological activity in MIC assays and stored under argon in dry DMSO at $-20^{\circ} \mathrm{C}$ in the dark. The rest was dissolved in anhydrous THF and $\mathrm{NaBH}(\mathrm{OAc})_{3}(21.91 \mathrm{mg}, 0.103 \mathrm{~mol}, 1.5 \mathrm{eq})$ was added in one portion at $0^{\circ} \mathrm{C}$ under argon. The reaction stirred 30 minutes at $30^{\circ} \mathrm{C}$ and 30 minutes at ambient temperature. Then the reaction was diluted with DCM (120 mL) and washed with 1 M HCl , water and brine (each $2 \times 100 \mathrm{~mL}$). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo to yield crude title compound 6 as a red solid ($54.2 \mathrm{mg}, 0.055 \mathrm{mmol}, 79 \%$ over 2 steps).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{ACN}-\mathrm{d}_{3}\right)$: $\delta=15.11(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{~s}, 2 \mathrm{H}), 8.25(\mathrm{~m}, 2 \mathrm{H}), 7.94(\mathrm{~m}, 1 \mathrm{H}), 7.81$ ($\mathrm{m}, 2 \mathrm{H}$), 7.47 ($\mathrm{d}, \mathrm{J}=6.82 \mathrm{~Hz}, 1 \mathrm{H}$), $7.41(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{~d}, \mathrm{~J}=9.97$ $\mathrm{Hz}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{~m}, 2 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~d}, \mathrm{~J}=7.61 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 1 \mathrm{H}), 3.72$ (m, 2H), 3.63 (m, 2H), $3.24(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{~m}, 4 \mathrm{H}), 2.98(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~m}, 5 \mathrm{H})$, $2.32(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~m}, 4 \mathrm{H}), 2.19(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~d}, \mathrm{~J}=7.61 \mathrm{~Hz}, 3), 1.27(\mathrm{~d}, \mathrm{~J}=$ $5.72 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}=7.18 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{ACN}-\mathrm{d}_{3}\right): \delta=189.30,178.29,171.84,167.53,158.01,149.32,148.69$, 146.19, 142.56, 140.56, 139.80, 139.55, 138.59, 135.70, 129.64, 129.43, 129.25, 129.12, 128.01, 125.70, 125.05, 124.68, 121.81, 120.81, 120.40, 112.50, 112.37, 111.32, 108.58, 107.41, 71.58, 69.88, 67.35, 50.52, 50.31, 50.22, 45.92, 42.37, 36.73, 31.41, 28.97, 21.48, $21.30,21.23,20.08,19.26,8.73,8.69,1.88$.

HRMS (ESI) calculated for ($\left.[\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}=994.4543$; experimental $=994.4556$.

Compound 3

Chemical Formula: $\mathrm{C}_{64} \mathrm{H}_{73} \mathrm{~N}_{5} \mathrm{O}_{19}$ Exact Mass: 1215,4900 Molecular Weight: 1216,3040

2 ($30 \mathrm{mg}, 0.037 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in dry THF (1 mL) under argon atmosphere and crude dicatechol 42 ($30.6 \mathrm{mg}, 0.073 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added in THF/DMSO (1:1, 1 mL) dropwise at $0^{\circ} \mathrm{C}$ over 10 minutes. Then DIPEA $(100 \mu \mathrm{~L})$ and pyridine $(100 \mu \mathrm{~L})$ were added and the reaction was warmed to $45^{\circ} \mathrm{C}$ and the color changed from red to blue. The reaction continued stirring overnight and the solvent was removed by rotary evaporation. The residue was dried, filtered over a syringe filter and purified by RP-HPLC (60-100\% $\mathrm{H}_{2} \mathrm{O} / \mathrm{ACN}, 0.1 \%$ $\mathrm{AcOH}, 220 \mathrm{~nm}$). Product containing fractions were lyophilized overnight to yield dicatechol rifamycin 3 ($24.6 \mathrm{mg}, 0.02 \mathrm{mmol}, 55 \%$) as a blue solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=9.46(\mathrm{t}, \mathrm{J}=2.89 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=7.56 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, \mathrm{J}$ $=7.65 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=7.65 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, \mathrm{J}=7.96,26.62 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, \mathrm{J}=7.65$ $\mathrm{Hz}, 1 \mathrm{H}), 6.76(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{~d}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 5.00 \mathrm{~m}, 1 \mathrm{H}), 4.10$ $\mathrm{d}, \mathrm{J}=7.21 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~m}, 9 \mathrm{H}), 3.07(\mathrm{~m}, 2 \mathrm{H}), 2.91(\mathrm{~d}, \mathrm{~J}=2.54 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 2.30$ $(\mathrm{m}, 5 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 2 \mathrm{H}), 2.01(\mathrm{bs}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~m}, 4 \mathrm{H}), 1.60(\mathrm{~m}, 3 \mathrm{H}), 1.56$ (s, 8H), $0.89(\mathrm{~m}, 9 \mathrm{H}), 0.83(\mathrm{~m}, 6 \mathrm{H})$.

DEPT (176 MHz, DMSO- d_{6}): $\delta=137.65,136.81,135.86,134.95,132.08,131.96,129.01$, 128.44, 126.84, 124.56, 122.30, 118.33, 78.84, 78.42, 77.24, 75.09, 72.60, 72.54, 72.11, 70.91, 70.04, 67.92, 64.78, 38.49, 36.54, 35.48, 33.80, 31.93, 31.15, 26.51, 24.58, 20.79, 20.26, 14.71, 13.40, 10.26, 10.13.

HRMS (ESI) calculated for $\left([\mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}=1216.4973$; experimental $=1216.4941$.

DOTAM and DFO RNAP-I conjugates

Compound 18

Red fluoro rifamycin $2(7.5 \mathrm{mg}, 0.009 \mathrm{mmol}, 1.0 \mathrm{eq})$ and $\mathrm{N}_{3}-P E G-\mathrm{NH}_{2}(5.5 \mathrm{mg}, 0.018 \mathrm{mmol}$, 2.0 eq) were mixed in anhydrous THF (5 mL) and DIPEA ($20 \mu \mathrm{~L}$) was added. The reaction stirred for four hours at ambient temperature. Then the solvent was removed by rotary evaporation and the residue was dissolved in DCM $(20 \mathrm{~mL})$. The organic phase was washed with $1 \mathrm{M} \mathrm{HCl}(2 \times 10 \mathrm{~mL})$ and the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and the residue was dried under reduced pressure to yield crude azide 18a as a blue solid (quant.). Then azide 18a ($9.6 \mathrm{mg}, 0.009 \mathrm{mmol}, 1.0 \mathrm{eq}$) and strained alkyne 47 ($14.97 \mathrm{mg}, 0.014 \mathrm{mmol}, 1.6 \mathrm{eq}$) were weight in 1.5 mL tubes and then dissolved in degassed mixture of $\mathrm{ACN}: \mathrm{H}_{2} \mathrm{O}$ (1:1, $300 \mu \mathrm{~L}$ each). The compounds were added together under argon atmosphere and continued stirring for 30 hours at $24^{\circ} \mathrm{C}$. The orange solution was filtered and purified by RP-HPLC (15-98-100\% ACN/ $\mathrm{H}_{2} \mathrm{O}, 0.1 \% \mathrm{HCOOH}, 220 \mathrm{~nm}$, collect all.). Product containing fractions were lyophilized to yield 18 ($15.55 \mathrm{mg}, 0.007 \mathrm{mmol}, 82 \%$) as a beige solid. The compound eluted as a diastereomeric mixture in one peak from the HPLC, just one isomer is depicted here.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta=9.62(\mathrm{~m}, 4 \mathrm{H}), 9.16(\mathrm{~m}, 1 \mathrm{H}), 8.41(\mathrm{~m}, 1 \mathrm{H}), 7.78(\mathrm{~m}, 4 \mathrm{H})$, $7.65(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~m}, 4 \mathrm{H}), 6.47(\mathrm{~m}, 2 \mathrm{H}), 6.37(\mathrm{~m}, 2 \mathrm{H}), 6.21(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~m}$, $1 \mathrm{H}), 4.48(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~m}, 4 \mathrm{H}), 4.01(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{t}, \mathrm{J}=5.45 \mathrm{~Hz}, 6 \mathrm{H}), 3.58(\mathrm{~m}$, 10 H), $3.54(\mathrm{~m}, 20 \mathrm{H}), 3.51(\mathrm{~m}, 20 \mathrm{H}), 3.38(\mathrm{t}, \mathrm{J}=5.45 \mathrm{~Hz}, 10 \mathrm{H}), 3.17(\mathrm{~s}, 12 \mathrm{H}), 3.00(\mathrm{q}, \mathrm{J}=5.45$, $12.76 \mathrm{~Hz}, 4 \mathrm{H}), 2.58(\mathrm{~m}, 4 \mathrm{H}), 2.27(\mathrm{~m}, 4 \mathrm{H}), 2.14(\mathrm{~m}, 5 \mathrm{H}), 2.04(\mathrm{~m}, 12 \mathrm{H}), 2.00(\mathrm{~m}, 4 \mathrm{H}), 1.97(\mathrm{~s}$, $3 H), 1.55(\mathrm{~m}, 6 \mathrm{H}), 1.38(\mathrm{~m}, 4 \mathrm{H}), 1.24(\mathrm{~m}, 6 \mathrm{H}), 0.92(\mathrm{~m}, 16 \mathrm{H}), 0.79(\mathrm{~m}, 8 \mathrm{H}), 0.74(\mathrm{~m}, 8 \mathrm{H})$.

[^0]DEPT (151 MHz, DMSO- d_{6}): $\delta=86.51,77.86,73.60,70.29,70.28,70.25,70.22,70.14,70.12$, 69.95, 69.70, 69.69, 69.15, 50.44, 50.41, 49.07, 47.62, 46.33, 43.55, 38.90, 35.36, 31.50, $30.36,29.48,29.29,28.04,26.49,23.97,23.34,21.18,20.82,12.85,7.79,6.84$.

HRMS (ESI) calculated for $\left([\mathrm{M}+3 \mathrm{H}]^{3+}\right): \mathrm{m} / \mathrm{z}=1091.5223$; experimental $=1091.5236$.

Compound 19

2 ($50.0 \mathrm{mg}, 0.061 \mathrm{mmol}, 1.0$) was dissolved in anhydrous THF (35 mL) and TEA (0.5 mL) was added under argon atmosphere. DFO ($68.47 \mathrm{mg}, 0.122 \mathrm{mmol}, 2 \mathrm{eq}$) was added in DMF (20 mL) and dissolved with gentle heating with a heat gun. The clear solution was added quickly to the solution of 2 . The solution was heated to $45^{\circ} \mathrm{C}$ overnight and the color changed from blood red to intense blue. Then the solvent was removed by rotary evaporation. The residue was taken up in MeOH/ACN (5 mL) and purified by RP-HPLC (C18, $220 \mathrm{~nm}, 15-85 \%$ $\mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}$, collect all). Product containing fractions were lyophilized to dryness to yield 19 (69.5, 0.051 mmol, 84%) as a dark blue solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta=16.61$ (s, 1H), 16.41 (s, 1H), 9.63 (m, 4H), 9.14 (m, 1H), $8.61(\mathrm{~m}, 1 \mathrm{H}), 8.34(\mathrm{~m}, 1 \mathrm{H}), 7.77,6.80(\mathrm{~s}, 4 \mathrm{H}), 6.80(\mathrm{~m}, 1 \mathrm{H}), 6.39(\mathrm{~m}, 4 \mathrm{H}), 6.12(\mathrm{~m}, 1 \mathrm{H}), 6.02$ $(\mathrm{m}, 1 \mathrm{H})), 5.78(\mathrm{~m}, 2 \mathrm{H}), 5.18(\mathrm{~m}, 2 \mathrm{H}), 4.97(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{bs}, 1 \mathrm{H}), 3.59(\mathrm{~m}, 1 \mathrm{H})$, $3.47(\mathrm{~m}, 10 \mathrm{H}), 3.19(\mathrm{~m}, 3 \mathrm{H}), 3.02(\mathrm{~m}, 10 \mathrm{H}), 2.86(\mathrm{bs}, 2 \mathrm{H}), 2.59(\mathrm{~m}, 5 \mathrm{H}), 2.28(\mathrm{~m}, 6 \mathrm{H}), 2.21(\mathrm{~m}$, $2 \mathrm{H}), 2.12(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~m}, 12 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~m}, 6 \mathrm{H}), 1.50(\mathrm{~m}, 9 \mathrm{H}), 1.38$ $(m, 6 H), 1.22(m, 6 H), 0.85(m, 8 H), 0.67(m, 3 H),-0.08(m, 2 H),-0.42(m, 2 H)$.
${ }^{13}$ C-NMR (151 MHz, DMSO- d_{6}): $\delta=192.27,181.12,180.78,173.78,172.00,171.96,171.28$, $170.47,170.12,169.86,169.25,168.88,158.02,143.82,143.54,141.57,131.72,130.98$, 129.16, 128.11, 125.84, 120.25, 118.81, 113.27, 112.18, 111.05, 109.71, 108.21, 107.35, 106.15, 104.45, 92.67, 77.94, 77.08, 75.67, 75.58, 72.56, 72.18, 55.78, 54.04, 48.58, 47.06,
46.98, 46.77, 43.00, 41.87, 41.44, 39.52, 38.42, 35.49, 32.23, 30.91, 29.84, 28.81, 27.99, 27.55, 26.02, 23.80, 23.77, 23.49, 22.60, 22.30, 20.94, 20.53, 20.34, 19.92, 18.28, 16.35, $12.13,10.62,8.98,7.52,7.40$.

DEPT (151 MHz, DMSO- d_{6}): $\delta=185.17,185.01,183.56,183.56,182.96,182.88,182.82$, $178.08,176.68,175.41,144.52,144.45,144.38,139.59,139.59,139.59,138.01,138.01$, $136.74,135.98,135.36,135.35,135.35,134.82,133.21,130.56,129.94,129.94,129.88$, 129.87, 129.87, 129.80, 126.44, 126.39, 126.22, 125.52, 100.00, 76.18, 73.77, 73.69, 73.61, $70.33,70.20,70.20,70.13,70.06,70.06,69.45,69.43,69.43,65.25,65.18,64.65,64.64$, 64.64, 63.99, 63.25, 61.98, 61.98, 60.41, 55.55, 55.55, 21.91, 17.13, 16.43.

HRMS (ESI) calculated for $\left([M+2 H]^{2+}\right): m / z=680.3340$; experimental $=680.3349$.

Compound 20

Complex 20 was synthetized according to previously established conditions in Peukert and Langer et al. ${ }^{6} 19$ ($5 \mathrm{mg}, 0.004 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in $\mathrm{ddH}_{2} \mathrm{O} / \mathrm{ACN}$ mixture ($1: 1,200$ $\mu \mathrm{L})$ and $\mathrm{GaCl}_{3}(0.71 \mathrm{mg}, 0.004 \mathrm{mmol}, 1.0 \mathrm{eq})$ was added, dissolved in NaOAc buffer ($200 \mu \mathrm{~L}$, $\mathrm{pH} 4.5)$. The reaction stirred overnight at room temperature, was then acidified with $\mathrm{AcOH}(200$ $\mu \mathrm{L})$, immediately diluted with $\mathrm{ddH}_{2} \mathrm{O}$ and lyophilized to yield a blue solid as 20 ($5.23 \mathrm{mg}, 0.004$ mmol, quant.).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}\right): \delta=6.87(\mathrm{~m}, 1 \mathrm{H}), 6.40(\mathrm{~m}, 2 \mathrm{H}), 6.28(\mathrm{~d}, \mathrm{~J}=11.91 \mathrm{~Hz}, 1 \mathrm{H}), 6.22$ $(\mathrm{m}, 2 \mathrm{H}), 5.01(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 5 \mathrm{H}), 3.90(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~d}, \mathrm{~J}=8.00 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~m}, 5 \mathrm{H}), 3.12$ $(\mathrm{m}, 4 \mathrm{H}), 2.98(\mathrm{~m}, 5 \mathrm{H}), 2.81(\mathrm{~m}, 4 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~m}, 3 \mathrm{H}), 2.27(\mathrm{bs}, 3 \mathrm{H}), 2.16(\mathrm{bs}, 5 \mathrm{H})$, $2.11(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{bs}, 6 \mathrm{H}), 1.78(\mathrm{bs}, 5 \mathrm{H}), 1.72(\mathrm{~m}, 7 \mathrm{H}), 1.62(\mathrm{~m}, 6 \mathrm{H}), 1.50(\mathrm{~m}, 11 \mathrm{H}), 1.32(\mathrm{~m}$, 10), $0.93(\mathrm{~m}, 12 \mathrm{H}), 0.78(\mathrm{~m}, 4 \mathrm{H}), 0.69(\mathrm{~m}, 2 \mathrm{H}), 0.05(\mathrm{~m}, 3 \mathrm{H}),-0.32(\mathrm{~m}, 3 \mathrm{H})$.

HRMS (ESI) calculated for $\left([M+H]^{+}\right): m / z=1425.5610$; experimental $=1425.5630$, calculated for $\left([\mathrm{M}+\mathrm{Na}]^{+}\right): \mathrm{m} / \mathrm{z}=1447.5430$; experimental $=1447.5463$, calculated for $\left([\mathrm{M}+2 \mathrm{H}]^{2+}\right): \mathrm{m} / \mathrm{z}=$ 713.2842; experimental $=713.2859$.

Compound 21

Strained alkyne 47 (20 mg, $0.019 \mathrm{mmol}, 1.0 \mathrm{eq})$ was dissolved in DMSO (1 mL) and the azide 62 ($20.67 \mathrm{mg}, 0.022 \mathrm{mmol}, 1.2 \mathrm{eq}$) was added dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$. The reaction continued stirring for 18 hours at $23{ }^{\circ} \mathrm{C}$. Upon complete consumption of the strained alkyne, DCM was added (30 mL), brine $(20 \mathrm{~mL})$ and the organic phases were separated. The organic phase was washed trice with a brine/ddH2O mixture (1:1), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed by rotary evaporation. The residue was purified by RP-HPLC (15-95\% ACN/ $\mathrm{H}_{2} \mathrm{O}$ $0.1 \% \mathrm{HCOOH}, 220 \mathrm{~nm}$, collect all). The product containing fractions were lyophilized to dryness to yield 21 as a yellow solid ($21.3 \mathrm{mg}, 0.011 \mathrm{mmol}, 57 \%$). The compound eluted as a diastereomeric mixture in one peak from the HPLC, just one isomer is depicted here.
${ }^{1} \mathrm{H}-$ NMR (700 MHz, DMSO-d ${ }_{6}$): $\delta=9.62(\mathrm{~m}, 4 \mathrm{H}), 9.39(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{~m}, 1 \mathrm{H})$, 7.33 (q, J = 8.66, $13.66 \mathrm{~Hz}, 4 \mathrm{H}$), $7.23(\mathrm{~m} 1 \mathrm{H}), 7.08(\mathrm{~m}, 1 \mathrm{H}), 5.85(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~m}, 1 \mathrm{H}), 4.36$ $(\mathrm{m}, 1 \mathrm{H}), 4.03(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{~m}, 6 \mathrm{H}), 3.46(\mathrm{~m}, 10 \mathrm{H}), 3.40(\mathrm{~m}, 2 \mathrm{H})$, $3.30(\mathrm{~m}, 2 \mathrm{H}), 3.12(\mathrm{~m}, 2 \mathrm{H}), 2.99(\mathrm{q}, \mathrm{J}=6-67,12.66 \mathrm{~Hz}, 4 \mathrm{H}), 2.57(\mathrm{q}, \mathrm{J}=9.66,14.66 \mathrm{~Hz}, 4 \mathrm{H})$, 2.27 (q, J = 9.66, $15.33 \mathrm{~Hz}, 4 \mathrm{H}), 2.06(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~m}, 2 \mathrm{H}), 1.65$ $(\mathrm{m}, 1 \mathrm{H}), 1.53(\mathrm{~m}, 6 \mathrm{H}), 1.49(\mathrm{~m}, 6 \mathrm{H}), 1.37(\mathrm{~m}, 5 \mathrm{H}), 1.21(\mathrm{~m}, 10 \mathrm{H}), 0.91(\mathrm{~m}, 4 \mathrm{H}), 0.85(\mathrm{~m}, 2 \mathrm{H})$, 0.71 ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13}$ C-NMR (176 MHz, DMSO-d ${ }_{6}$): $\delta=201.25,197.62,194.57,193.73,193.51,182.45,180.51$, $176.36,173.86,171.30,170.72,170.55,170.13,156.44,155.22,155.06,144.93,143.14$, 133.71, 132.21, 130.46, 126.43, 123.34, 115.52, 75.93, 73.47, 70.77, 69.75, 69.53, 69.16, $68.58,67.02,66.67,66.60,66.20,65.76,61.43,47.15,46.78,43.56,40.34,40.02,39.52$, 38.41, 36.57, 33.96, 29.89, 29.19, 28.81, 28.21, 27.56, 26.02, 25.35, 23.49, 22.22, 21.27, 20.86, 20.35, 19.17, 17.31, 16.44, 10.92, 10.17, 9.83, -15.18.

HRMS (ESI) calculated for $\left([\mathrm{M}+3 \mathrm{H}]^{3+}\right): \mathrm{m} / \mathrm{z}=683.6785$; experimental $=683.6794$.

Compound 23

Chemical Formula: $\mathrm{C}_{104} \mathrm{H}_{130} \mathrm{~N}_{14} \mathrm{O}_{32}$
Exact Mass: 2086,8976
Molecular Weight: 2088,2500

Acid 7 ($10 \mathrm{mg}, 0.008 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in anhydrous THF (1 mL), DMF ($100 \mu \mathrm{~L}$), NMM ($100 \mu \mathrm{~L}$) was added under argon atmosphere and the reaction was cooled to $0^{\circ} \mathrm{C}$, before iso-butyl chloroformate ($0.81 \mu \mathrm{~L}, 0.008 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added and the reaction went turbid instantly. The reaction stirred 5 minutes at $0^{\circ} \mathrm{C}$ and then 30 minutes at $24^{\circ} \mathrm{C}$. Then amine 22 $\left(8.45 \mathrm{mg}, 0.009 \mathrm{mmol}, 1.1 \mathrm{eq}\right.$) was added dropwise at $0^{\circ} \mathrm{C}$, dissolved in anhydrous THF (1 mL) and basified with $\mathrm{NMM}(100 \mu \mathrm{~L})$ before addition. The reaction continued stirring at $0^{\circ} \mathrm{C}$ for 5 minutes and then for 30 minutes at $24^{\circ} \mathrm{C}$. Then the reaction was quenched with AcOH $(200 \mu \mathrm{~L})$ and the THF was removed in vacuo at $30^{\circ} \mathrm{C}$. The residual solution was diluted and purified by RP-HPLC to yield 23 as a blue solid ($13.91 \mathrm{mg}, 0.007 \mathrm{mmol}, 79 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}\right): \delta=7.47(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{~m}, 6 \mathrm{H}), 7.14(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~m}, 1 \mathrm{H}), 6.38$ (d, J = $10.46 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~m}, 1 \mathrm{H}), 6.26(\mathrm{~d}, \mathrm{~J}=12.79 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~m}, 1 \mathrm{H})$, $3.47(\mathrm{~m}, 10 \mathrm{H}), 3.40(\mathrm{~m}, 10 \mathrm{H}), 3.18(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{~m}, 10 \mathrm{H}), 2.86(\mathrm{~m}, 8 \mathrm{H}), 2.28(\mathrm{~s}$, $9 \mathrm{H}), 2.25(\mathrm{~s}, 9 \mathrm{H}), 2.10(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 2 \mathrm{H}), 1.96(\mathrm{~m}, 5 \mathrm{H}), 1.93(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~m}, 3 \mathrm{H}), 1.61$ $(\mathrm{m}, 4 \mathrm{H}), 1.50(\mathrm{~m}, 4 \mathrm{H}), 1.29(\mathrm{~m}, 10 \mathrm{H}), 1.08(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~m}, 3 \mathrm{H}), 0.90(\mathrm{~m}, 6 \mathrm{H})$, $0.82(\mathrm{~m}, 2 \mathrm{H}), 0.78(\mathrm{~m}, 2 \mathrm{H}), 0.03(\mathrm{~d}, \mathrm{~J}=5.81 \mathrm{~Hz}, 3 \mathrm{H}),-0.34(\mathrm{~d}, \mathrm{~J}=5.18 \mathrm{~Hz}, 3 \mathrm{H})$.

HRMS (ESI) calculated for $\left([\mathrm{M}+3 \mathrm{H}]^{3+}\right): \mathrm{m} / \mathrm{z}=1044.4561$; experimental $=1044.4570$, calculated for $\left([\mathrm{M}+4 \mathrm{H}]^{4+}\right): \mathrm{m} / \mathrm{z}=696.9756$; experimental $=696.9752$.

Compound 24

The strained alkyne 47 ($10 \mathrm{mg}, 0.009 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in anhydrous $\mathrm{MeOH}(7 \mathrm{~mL})$ and the azide 63 ($14.67 \mathrm{mg}, 0.011 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added in $\mathrm{MeOH}(8 \mathrm{~mL})$ under argon atmosphere. The blue solution continued stirring overnight and the reaction progress was monitored by LCMS. The solvent was removed by rotary evaporation and was purified by RPHPLC ($15 \%-100 \%$ ACN/ $\mathrm{H}_{2} \mathrm{O} 220 \mathrm{~nm}$, collect all). The product containing fractions were lyophilized to dryness to yield 24 ($18.24 \mathrm{mg}, 0.007 \mathrm{mmol}, 81 \%$) as a blue solid. The compound was obtained as a mixture of $1,4 / 1,5$ isomer that eluted as one peak from the HPLC. The compound eluted as a diastereomeric mixture in one peak from the HPLC, just one isomer is depicted here.
${ }^{1} \mathrm{H}$ NMR (700 MHz , DMSO- d_{6}): $\delta=9.63(\mathrm{~m}, 8 \mathrm{H}), 9.47(\mathrm{~m}, 2 \mathrm{H}), 7.83(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{~m}, 6 \mathrm{H})$, $7.71(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~m}, 12 \mathrm{H}), 7.15(\mathrm{~m}, 5 \mathrm{H}), 4.99(\mathrm{dd}, \mathrm{J}=2.61 \mathrm{~Hz}, 7.45 \mathrm{~Hz}, 1 \mathrm{H})$, 4.94 (dd, J = 3.35, $11.36 \mathrm{~Hz}, 1 \mathrm{H}$), 4.19 (m, 1H), 4.05 (m, 6H), 3.63 (m, 6H), 3.54 (m, 20H), 3.46 ($\mathrm{m}, 24 \mathrm{H}$), 3.40 (t, J = 6.52 Hz, 10H), 3.11 ($\mathrm{q}, \mathrm{J}=4.84,11.73 \mathrm{~Hz}, 8 \mathrm{H}$), 3.00 (q, J = 6.85, $12.85 \mathrm{~Hz}, 12 \mathrm{H}$), 2.58 ($q, J=7.08,12.85 \mathrm{~Hz}, 12 \mathrm{H}$), 2.27 ($\mathrm{q}, \mathrm{J}=5.96,11.36 \mathrm{~Hz}, 12 \mathrm{H}$), 2.13 (s, $4 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~m}, 14 \mathrm{H}), 1.85(\mathrm{~m}, 8 \mathrm{H}), 1.53(\mathrm{~m}, 12 \mathrm{H}), 1.49(\mathrm{~m}, 12 \mathrm{H}), 1.38(\mathrm{~m}, 12 \mathrm{H})$, $1.25(\mathrm{~m}, 6 \mathrm{H}), 1.22(\mathrm{~m}, 10 \mathrm{H}), 1.12(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{~m}, 4 \mathrm{H}), 0.75(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (176 MHz, DMSO- d_{6}): $\delta=212.68,180.50,171.96,171.30,170.58,170.12,156.40$, 123.32, 77.65, 76.30, 69.53, 69.15, 68.58, 61.12, 61.02, 47.07, 46.77, 43.73, 43.57, 43.45, 41.33, 40.06, 40.02, 38.42, 32.67, 32.06, 29.89, 28.81, 28.20, 27.99, 27.57, 26.11, 26.02, $23.58,23.49,20.63,20.34,20.11,19.19,18.88,18.82,18.72,18.15,17.90,17.83,17.13$.

DEPT (176 MHz, DMSO- d_{6}): $\delta=123.06,77.39,76.05,69.27,68.89,68.32,61.19,60.86$, 60.76, 46.87, 46.81, 46.52, 43.49, 43.31, 43.19, 41.07, 38.16, 32.42, 31.81, 29.64, 28.55, $27.95,27.73,27.31,25.85,25.76,23.33,23.23,20.37,20.09,19.85,18.62,18.56,17.89$, 17.65, 17.57, 17.36, 16.87, 16.48.

HRMS (ESI) calculated for $\left([\mathrm{M}+2 \mathrm{H}]^{2+}\right): \mathrm{m} / \mathrm{z}=1181.1117$; experimental $=1181.1126$.

Compound 25

Alkyne 45 ($2 \mathrm{mg}, 0.001 \mathrm{mmol}, 1.0 \mathrm{eq}$) and azide $\mathbf{6 4}(1.98 \mathrm{mg}, 0.001 \mathrm{mmol}, 1.0 \mathrm{eq})$ were weight in 1.5 mL tubes and then dissolved in degassed mixture of $\mathrm{ACN}: \mathrm{H}_{2} \mathrm{O}$ (1:1,500 $\mu \mathrm{L}$ each). The compounds were added together, $\mathrm{AcOH}(10 \mu \mathrm{~L})$ was added, and the reaction continued stirring for 30 hours at $24^{\circ} \mathrm{C}$ under argon atmosphere. The blue solution was filtered and purified by RP-HPLC (15-98-100\% ACN/ $\mathrm{H}_{2} \mathrm{O}, 0.1 \% \mathrm{HCOOH}, 220 \mathrm{~nm}$, collect all.). Product containing fractions were lyophilized to yield 25 ($2.995 \mathrm{mg}, 0.001 \mathrm{mmol}, 82 \%$) as a beige solid. The compound eluted as a diastereomeric mixture in one peak from the HPLC, just one isomer is depicted here.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}\right)$: $\delta=8.83(\mathrm{~m}, 3 \mathrm{H}), 8.68(\mathrm{~m}, 6 \mathrm{H}), 8.23(\mathrm{~m}, 1 \mathrm{H}), 7.73(\mathrm{~m}, 2 \mathrm{H}), 7.63$ (d, J = $12.94 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{t}, \mathrm{J}=6.15 \mathrm{~Hz}, 2 \mathrm{H}), 5.46(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{~d}, \mathrm{~J}=9.97$ $\mathrm{Hz}, 1 \mathrm{H}), 4.88(\mathrm{~m}, 20 \mathrm{H}), 4.72(\mathrm{~m}, 7 \mathrm{H}), 4.59(\mathrm{~m}, 7 \mathrm{H}), 4.44(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{~d}, \mathrm{~J}=11.03 \mathrm{~Hz}, 4 \mathrm{H})$, $4.26(\mathrm{~m}, 9 \mathrm{H}), 4.15(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 9 \mathrm{H}), 3.60(\mathrm{~s}, 9 \mathrm{H}), 3.52(\mathrm{t}, \mathrm{J}=7.43 \mathrm{~Hz}, 4 \mathrm{H})$, 3.47 (bs, 3H), 3.43 (bs, 3H), 3.38 (d, J = $9.12 \mathrm{~Hz}, 1 \mathrm{H}$), $3.34(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{bs}, 2 \mathrm{H}), 3.12(\mathrm{~m}$, $5 H), 2.96(\mathrm{~m}, 9 \mathrm{H}), 2.79(\mathrm{~m}, 10 \mathrm{H}), 2.64(\mathrm{~m}, 30 \mathrm{H}), 2.36(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~d}, \mathrm{~J}=7.43 \mathrm{~Hz}, 3 \mathrm{H}), 2.26$ ($\mathrm{m}, 6 \mathrm{H}$), $2.14(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~d}, \mathrm{~J}=4.88 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, \mathrm{~J}=6.79 \mathrm{~Hz}, 3 \mathrm{H})$.

HRMS (ESI) calculated for $\left([M+2 H]^{2+}\right): ~ m / z=994.4443$; experimental $=994.4454$.
Compound 24SL

Acid 58a ($5.0 \mathrm{mg}, 5 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in anhydrous DMF (1 mL) and HOBt (1.34 $\mathrm{mg}, 10.0 \mathrm{mmol}, 2.0 \mathrm{eq})$, EDCI ($1.43 \mathrm{mg}, 10 . \mathrm{mmol}, 2.0 \mathrm{eq}$) and DMAP ($1.21 \mathrm{mg}, 10.0 \mathrm{mmol}$, 2.0 eq) were added in one portion at $0^{\circ} \mathrm{C}$ under argon atmosphere. The reaction stirred 45 minutes at $0^{\circ} \mathrm{C}$ before $22(6.81 \mathrm{mg}, 7.0 \mathrm{mmol}, 1.5 \mathrm{eq})$ was added, together with DIPEA (8.4 $\mu \mathrm{L}, 0.05 \mathrm{mmol}, 10.0 \mathrm{eq}$) in anhydrous DMF (1 mL) at $0^{\circ} \mathrm{C}$ and the ice bath was left to thaw overnight. The solvent was then blown off with a firm stream of nitrogen and the residue was purified by RP-HPLC (5-85-100\% ACN/ $\mathrm{H}_{2} \mathrm{O}, 0.1 \% \mathrm{HCOOH}, \mathrm{C} 18,220 \mathrm{~nm}$, collect all). The product containing fractions were identified by LCMS and lyophilized to yield 24SL as a blue powder ($6.35 \mathrm{mg}, 4.0 \mathrm{mmol}, 74 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}\right): \delta=8.03(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{dd}, \mathrm{J}=7.31,26.98 \mathrm{~Hz}, 1 \mathrm{H})$), $7.34(\mathrm{dt}, \mathrm{J}$ $=5.80,1 \mathrm{H}), 6.84(\mathrm{q}, \mathrm{J}=10.09,15.98 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, \mathrm{~J}=10.09 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~m}, 4 \mathrm{H}), 5.00$ (m, 2H), $4.64(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~d}, \mathrm{~J}=10.34 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~m}, 5 \mathrm{H}), 3.35(\mathrm{~s}, 2 \mathrm{H}), 3.16(\mathrm{~m}, 6 \mathrm{H}), 3.09$ $(\mathrm{m}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{~m}, 4 \mathrm{H}), 2.45(\mathrm{~m}, 3 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 2.14$ (s, 2H), 2.12 (bs, 3H), 2.09 (s, 3H), 1.97 (bs, 3H), 1.85 (bs, 3H), 1.79 (bs, 3H), 1.63 (m, 6H), $1.51(\mathrm{~m}, 6 \mathrm{H}), 1.46(\mathrm{~s}, 6 \mathrm{H}), 1.33(\mathrm{~m}, 10 \mathrm{H}), 0.95(\mathrm{~d}, \mathrm{~J}=6.70 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~m}, 4 \mathrm{H}), 0.77(\mathrm{~m}$, $2 \mathrm{H}), 0.67(\mathrm{~m}, 1 \mathrm{H}), 0.02(\mathrm{~d}, \mathrm{~J}=6.61 \mathrm{~Hz}, 3 \mathrm{H}),-0.34(\mathrm{~d}, \mathrm{~J}=6.33 \mathrm{~Hz}, 3 \mathrm{H})$.

DEPT (176 MHz, MeOH-d ${ }_{4}$): $\delta=163.46,144.97,140.37,133.72,133.67,129.59,127.92$, 127.23, 121.76, 120.39, 119.99, 107.92, 77.68, 77.56, 75.46, 74.51, 56.53, 49.57, 44.24, $44.18,41.49,40.72,40.08,40.01,39.67,39.11,38.55,38.26,33.89,31.19,30.28,30.06$, 29.70, 29.53, 29.44, 29.32, 28.63, 27.30, 27.19, 27.06, 24.61, 24.51, 22.51, 22.28, 20.45, $20.08,20.04,19.96,14.32,12.14,10.59,10.55,9.57,8.38,7.10$.

HRMS (ESI) calculated for $\left([M+2 H]^{2+}\right): m / z=867.9418$; experimental $=867.9423$.

Compound 26

Alkyne 45 ($5 \mathrm{mg}, 0.003 \mathrm{mmol}, 1.0 \mathrm{eq}$) and azide $63(4.59 \mathrm{mg}, 0.003 \mathrm{mmol}, 1.0 \mathrm{eq})$ were weight in 1.5 mL tubes and then dissolved in degassed mixture of $\mathrm{ACN}: \mathrm{H}_{2} \mathrm{O}(1: 1,500 \mu \mathrm{~L}$ each $)$. The compounds were added together, $\mathrm{AcOH}(10 \mu \mathrm{~L})$ was added, and the reaction continued stirring for 30 hours at $24{ }^{\circ} \mathrm{C}$ under argon atmosphere. The blue solution was filtered and purified by RP-HPLC (15-98-100\% ACN/ $\mathrm{H}_{2} \mathrm{O}, 0.1 \% \mathrm{HCOOH}, 220 \mathrm{~nm}$, collect all.). Product containing fractions were lyophilized to yield $26(7.49 \mathrm{mg}, 0.003 \mathrm{mmol}, 78 \%)$ as a beige solid. The compound eluted as a diastereomeric mixture in one peak from the HPLC, just one isomer is depicted here.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}\right): \delta=7.48(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{~m}, 6 \mathrm{H}), 6.88(\mathrm{~m}, 1 \mathrm{H}), 6.38(\mathrm{~m}, 1 \mathrm{H}), 6.28$ $(\mathrm{m}, 1 \mathrm{H}), 6.21(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~d}, \mathrm{~J}=10.40 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~m}, 27 \mathrm{H})$, $3.39(\mathrm{~m}, 14 \mathrm{H}), 3.15(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{~m}, 13 \mathrm{H}), 2.79(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 9 \mathrm{H}), 2.26(\mathrm{~s}, 9 \mathrm{H}), 2.15(\mathrm{t}, \mathrm{J}$ $=7.24 \mathrm{~Hz}, 3 \mathrm{H}), 2.09(\mathrm{bs}, 3 \mathrm{H}), 1.97(\mathrm{~m}, 16 \mathrm{H}), 1.79(\mathrm{~m}, 4 \mathrm{H}), 1.67(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~m}, 6 \mathrm{H}), 1.49$ $(\mathrm{m}, 2 \mathrm{H}), 1.43(\mathrm{~m}, 3 \mathrm{H}), 1.36(\mathrm{~m}, 3 \mathrm{H}), 1.29(\mathrm{bs}, 10 \mathrm{H}), 1.01(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{~m}, 3 \mathrm{H}), 0.91(\mathrm{~m}, 5 \mathrm{H})$, $0.05(\mathrm{~d}, \mathrm{~J}=5.20 \mathrm{~Hz}, 3 \mathrm{H}),-0.31(\mathrm{~d}, \mathrm{~J}=4.52 \mathrm{~Hz}, 3 \mathrm{H})$.

HRMS (ESI) calculated for ($[\mathrm{M}+2 \mathrm{H}]^{2+}$): $\mathrm{m} / \mathrm{z}=1435.6724$; experimental $=1435.6733$, calculated for $\left([\mathrm{M}+3 \mathrm{H}]^{3+}\right): \mathrm{m} / \mathrm{z}=957.4501$; experimental $=957.4501$.

Compound 29

Azide 65 (12.3, $0.0096 \mathrm{mmol}, 1.0 \mathrm{eq}$) and strained alkyne $47(16.5 \mathrm{mg}, 0.0153 \mathrm{mmol}, 1.6 \mathrm{eq})$ were weight in 1.5 mL tubes and then dissolved in degassed mixture of $\mathrm{ACN}: \mathrm{H}_{2} \mathrm{O}(1: 1,300 \mu \mathrm{~L}$ each). The compounds were added together under argon atmosphere and continued stirring for 30 hours at $24^{\circ} \mathrm{C}$. The orange solution was filtered and purified by RP-HPLC (15-98-100\% $\mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}, 0.1 \% \mathrm{HCOOH}, 220 \mathrm{~nm}$, collect all.). Product containing fractions were lyophilized to yield 29 ($19.85 \mathrm{mg}, 0.008 \mathrm{mmol}, 88 \%$) as a beige solid. The compound eluted as a diastereomeric mixture in one peak from the HPLC, just one isomer is depicted here.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}\right.$, DMSO-d d_{6}): $\delta=9.64$ (m, 5H), 9.44 (bs, 1H), 8.85 (d, J = $11.28 \mathrm{~Hz}, 1 \mathrm{H}$), $8.30(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~m}, 4 \mathrm{H}), 7.68(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{~s}, 4 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=5.77 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~m}, 2 \mathrm{H})$, 6.32 (d, J = $10.47 \mathrm{~Hz}, 1 \mathrm{H}$), 6.25 (d, J = $12.75 \mathrm{~Hz}, 1 \mathrm{H}$), 6.07 (dd, J = $8.19,15.57 \mathrm{~Hz}, 1 \mathrm{H}), 5.07$ ($\mathrm{m}, 2 \mathrm{H}$), $4.90(\mathrm{q}, \mathrm{J}=7.79,12.48 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{t}, \mathrm{J}=6.58 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{~m}, 5 \mathrm{H}), 3.69(\mathrm{~m}, 2 \mathrm{H})$, $3.64(\mathrm{~m}, 7 \mathrm{H}), 3.55(\mathrm{~m}, 15 \mathrm{H}), 3.46(\mathrm{~m}, 13 \mathrm{H}), 3.41(\mathrm{~m}, 7 \mathrm{H}), 3.12(\mathrm{q}, \mathrm{J}=4.97,10.87 \mathrm{~Hz}, 4 \mathrm{H})$, 3.01 ($\mathrm{m}, 10 \mathrm{H}$), $2.89(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~m}, 11 \mathrm{H}), 2.28(\mathrm{~m}, 10 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 9 \mathrm{H}), 1.91(\mathrm{~s}$, $3 \mathrm{H}), 1.69(\mathrm{~m}, 4 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~m}, 10 \mathrm{H}), 1.50(\mathrm{~m}, 9 \mathrm{H}), 1.38(\mathrm{~m}, 10 \mathrm{H}), 1.24(\mathrm{~m}, 20 \mathrm{H})$, $1.15(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{~m}, 6 \mathrm{H}), 0.86(\mathrm{~m}, 4 \mathrm{H}), 0.52(\mathrm{~d}, \mathrm{~J}=6.58 \mathrm{~Hz}, 3 \mathrm{H}),-0.33(\mathrm{~d}, \mathrm{~J}=6.31 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (151 MHz, DMSO- d_{6}): $\delta=180.98,180.76,172.43,172.23,172.11,171.77,170.60$, 169.84, 156.93, 149.46, 143.81, 143.54, 133.17, 126.93, 123.82, 109.19, 99.02, 76.82, 76.27, 73.67, 70.25, 70.00, 69.63, 69.06, 61.92, 56.07, 47.60, 47.55, 47.48, 47.25, 44.22, 44.04, $40.74,35.66,33.11,30.37,29.79,29.48,29.29,29.01,28.68,28.04,27.36,26.59,26.50$,
26.28, 26.09, 25.84, 25.24, 24.07, 23.97, 22.60, 22.36, 21.72, 21.12, 20.82, 20.44, 20.26, 20.01, 19.63, 19.35, 19.05, 18.58, 17.77, 14.31, 14.22, 13.11, 12.81, 11.65, 9.44, 9.29, 7.84, 6.36, -12.68.

DEPT (151 MHz, DMSO- d_{6}): $\delta=76.82,73.67,70.01,69.63,69.06,61.92,56.07,47.60,47.55$, 47.48, 47.25, 44.21, 44.04, 38.90, 38.88, 38.73, 38.52, 38.29, 35.65, 30.37, 29.79, 29.43, 29.29, 28.68, 28.04, 27.36, 26.50, 26.09, 25.84, 25.24, 25.13, 24.06, 23.96, 22.60, 22.35, $21.71,21.12,20.86,20.82,20.26,19.62,19.05,17.77,14.31,11.64,9.44,9.29,7.83$.

HRMS (ESI) calculated for $\left([M+2 H]^{2+}\right): m / z=1181.1117$; experimental $=1181.1126$.

Compound 30

Azide 64 (12.3, $0.0096 \mathrm{mmol}, 1.0 \mathrm{eq})$ and strained alkyne 47 ($16.5 \mathrm{mg}, 0.0153 \mathrm{mmol}, 1.6 \mathrm{eq}$) were weight in 1.5 mL tubes and then dissolved in degassed mixture of $\mathrm{ACN}: \mathrm{H} 2 \mathrm{O}(1: 1,300$ $\mu \mathrm{L}$ each). The compounds were added together under argon atmosphere and continued stirring for 30 hours at $24^{\circ} \mathrm{C}$. The orange solution was filtered and purified by RP-HPLC (15-$98-100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}, 0.1 \% \mathrm{HCOOH}, 220 \mathrm{~nm}$, collect all.). Product containing fractions were lyophilized to yield 30 ($19.85 \mathrm{mg}, 0.008 \mathrm{mmol}, 88 \%$) as a beige solid. The compound eluted as a diastereomeric mixture in one peak from the HPLC, just one isomer is depicted here.
${ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz}, ~ D M S O-d_{6}\right): \delta=9.62(\mathrm{~m}, 4 \mathrm{H}), 7.78(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{q}, \mathrm{J}=9.65$, $12.06 \mathrm{~Hz}, 4 \mathrm{H}), 7.11(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{t}, \mathrm{J}=5.13 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{t}, \mathrm{J}=6.03 \mathrm{~Hz}, 1 \mathrm{H})$, $3.64(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~m}, 30 \mathrm{H}), 3.30(\mathrm{~s}, 4 \mathrm{H}), 3.16(\mathrm{~m}, .4 \mathrm{H}), 3.00(\mathrm{q}, \mathrm{J}=6.94,13.87 \mathrm{~Hz}, 5 \mathrm{H}), 2.93$ $(\mathrm{m}, 2 \mathrm{H}), 2.73(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{~m}, 4 \mathrm{H}), 2.28(\mathrm{~m}, 4 \mathrm{H}), 2.07(\mathrm{n}, 2 \mathrm{H}), 1.97(\mathrm{~m}, 4 \mathrm{H}), 1.53(\mathrm{~m}, 11 \mathrm{H})$, $1.38(\mathrm{~m}, 7 \mathrm{H}), 1.24(\mathrm{~m}, 10 \mathrm{H}), 1.11(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13}$ C-NMR (151 MHz, DMSO- d_{6}): $\delta=187.71,180.98,172.44,171.77,170.60,156.92,143.64$, $134.25,125.76,123.84,70.27,70.23,70.14,70.08,70.01,69.83,69.63,69.06,61.93,47.64$, 47.25, 44.24, 44.04, 42.06, 40.53, 40.41, 40.28, 40.14, 40.00, 39.86, 39.72, 39.58, 38.90, 38.88, 38.41, 30.37, 29.48, 29.29, 28.82, 28.69, 28.04, 26.60, 26.50, 25.83, 24.07, 23.97, $22.70,22.56,22.44,21.76,20.82,19.66,19.09,17.78,14.75,14.47,14.37,13.48,13.18,1.62$.

DEPT ($151 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=123.84,70.27,70.23,70.14,70.08,70.01,69.83,69.63$, 69.06, 61.93, 47.64, 47.55, 47.25, 45.63, 44.23, 44.04, 42.05, 38.90, 30.36, 29.28, 28.81, 28.68, 28.03, 26.59, 26.50, 25.83, 24.07, 23.96, 22.70, 22.44, 21.76, 20.82, 19.66, 19.09, 17.77, 14.47, 13.48, 13.18, 1.62.

HRMS $(E S I)$ calculated for $\left([M+2 H]^{2+}\right): m / z=1234.6352$; experimental $=1234.6359$.

Compound 30SL

Acid 58a ($10.0 \mathrm{mg}, 0.01 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in anhydrous DMF (1 mL) and HOBt (2.7 $\mathrm{mg}, 0.02 \mathrm{mmol}, 2.0 \mathrm{eq}), \mathrm{EDCI}(3.8 \mathrm{mg}, 0.015 \mathrm{mmol}, 1.5 \mathrm{eq})$ and DMAP ($2.42 \mathrm{mg}, 0.02 \mathrm{mmol}$, 2.0 eq) were added in one portion at $0^{\circ} \mathrm{C}$ under argon atmosphere. The reaction stirred 45 minutes at $0{ }^{\circ} \mathrm{C}$ before amine $28(12.3 \mathrm{mg}, 0.0154 \mathrm{mmol}, 1.5 \mathrm{eq})$ was added, together with DIPEA ($8.4 \mu \mathrm{~L}, 0.05 \mathrm{mmol}, 10 \mathrm{eq}$) in anhydrous DMF (1 mL) at $0^{\circ} \mathrm{C}$ and the ice bath was left to thaw overnight. The solvent was then blown off with a firm stream of nitrogen and the residue was purified by RP-HPLC (5-75-100\% ACN/ $\mathrm{H}_{2} \mathrm{O}, 0.1 \% \mathrm{HCOOH}, \mathrm{C} 18,220 \mathrm{~nm}$, collect all). The product containing fractions were identified by LCMS and lyophilized to yield 30SL as a blue powder ($7.6 \mathrm{mg}, 0.005 \mathrm{mmol}, 47 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}\right): \delta=6.18(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 3.80$ ($\mathrm{m}, 1 \mathrm{H}$), $3.59(\mathrm{t}, \mathrm{J}=7.01 \mathrm{~Hz}, 6 \mathrm{H}), 3.16(\mathrm{~m}, 6 \mathrm{H})$), $3.06(\mathrm{~m}, 3 \mathrm{H}), 3.01(\mathrm{~s}, 2 \mathrm{H}), 2.76(\mathrm{~m}, 5 \mathrm{H}), 2.45$ ($\mathrm{m}, 4 \mathrm{H}$), $2.15(\mathrm{~m}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~m}, 6 \mathrm{H}), 1.88(\mathrm{~m}, 3 \mathrm{H}), 1.71(\mathrm{~m}, 4 \mathrm{H}), 1.63(\mathrm{~m}, 6 \mathrm{H})$, $1.52(\mathrm{~m}, 7 \mathrm{H}), 1.45(\mathrm{~m}, 6 \mathrm{H}), 1.32(\mathrm{~d}, \mathrm{~J}=6.61 \mathrm{~Hz}, 1.01(\mathrm{~d}, \mathrm{~J}=8.42 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~m}, 3 \mathrm{H}), 0.67$ $(m, 2 H),-0.22(d, J=6.81 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}\right): \delta=144.74,143.65,141.28,133.37,127.29,119.70,117.99$, 78.67, 78.17, 78.10, 76.09, 75.48, 75.36, 57.46, 56.90, 53.73, 45.13, 41.93, 41.15, 40.44, $40.13,39.56,39.29,38.92,38.84,34.63,31.61,30.71,30.25,30.13,29.92,29.87,29.06$, 28.72, 27.58, 27.49, 27.15, 25.06, 25.04, 24.94, 22.44, 21.89, 20.95, 20.47, 20.39, 18.75, 14.74, 12.48, 11.28, 9.90, 9.78, 9.59, 7.53, 7.38.

Compound 33

Azide 67 ($18.4 \mathrm{mg}, 0.008 \mathrm{mmol}, 1.0 \mathrm{eq}$) and strained alkyne 47 ($26.7 \mathrm{mg}, 0.011 \mathrm{mmol}, 2.0 \mathrm{eq}$) were weighed in 1.5 mL tubes and then dissolved in degassed mixture of $\mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}(1: 1,300$ $\mu \mathrm{L}$ each). The compounds were added together under argon atmosphere and continued stirring for 30 hours at $24^{\circ} \mathrm{C}$. The orange solution was filtered and purified by RP-HPLC (15-$98-100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}, 0.1 \% \mathrm{HCOOH}, 220 \mathrm{~nm}$, collect all.). Product containing fractions were lyophilized to yield 33 ($21.58 \mathrm{mg}, 0.009 \mathrm{mmol}, 71 \%$) as a yellow solid. The compound eluted as a diastereomeric mixture in one peak from the HPLC, just one isomer is depicted here.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\right.$): $\delta=9.60(\mathrm{~m}, 3 \mathrm{H}), 9.39(\mathrm{bs}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{t}, \mathrm{J}=4.51$ $\mathrm{Hz}, 1 \mathrm{H}), 7.78(\mathrm{t}, \mathrm{J}=4.51 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, \mathrm{J}=5.29 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=4.51 \mathrm{~Hz}, 4 \mathrm{H}), 7.11(\mathrm{t}$, $J=10.70 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{t}, \mathrm{J}=11.99 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{t}, \mathrm{J}=5.93 \mathrm{~Hz}, 1 \mathrm{H}), 6.47$ ($10.83 \mathrm{~Hz}, 1 \mathrm{H}$), 6.22 (dd, J = 4.51, $15.34 \mathrm{~Hz}, 1 \mathrm{H}$), 6.14 (dd, J = 2.97, $10.44 \mathrm{~Hz}, 1 \mathrm{H}), 5.96$ (m , $1 \mathrm{H}), 5.64(\mathrm{~d}, \mathrm{~J}=11.86 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~d}, \mathrm{~J}=6.32 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{~m}$, $2 \mathrm{H}), 4.56(\mathrm{~d}, \mathrm{~J}=2.71,1 \mathrm{H}), 4.50(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{t}, \mathrm{J}=5.54 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{t}, \mathrm{J}=5.29 \mathrm{~Hz}, 2 \mathrm{H})$, $4.18(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{t}, \mathrm{J}=5.29 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{~m}, 17 \mathrm{H})$, $3.46(\mathrm{~m}, 15 \mathrm{H}), 3.42(\mathrm{q}, \mathrm{J}=5.54,10.44 \mathrm{~Hz}, 5 \mathrm{H}), 3.19(\mathrm{q}, \mathrm{J}=5.93,11.22$), $3.12(\mathrm{q}, \mathrm{J}=5.29$,
$11.99 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{~m}, 11 \mathrm{H}), 2.73(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{q}, \mathrm{J}=6.70,12.77 \mathrm{~Hz}, 2 \mathrm{H})$, $2.27(\mathrm{~m}, 6 \mathrm{H}), 2.10(\mathrm{~m}, 7 \mathrm{H}), 2.05(\mathrm{~s}, 4 \mathrm{H}), 1.99(\mathrm{~m}, 9 \mathrm{H}), 1.80(\mathrm{~d}, \mathrm{~J}=11.60 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H})$, $1.54(\mathrm{~m}, 12 \mathrm{H}), 1.38(\mathrm{~m}, 5 \mathrm{H}), 1.35(\mathrm{~m}, 12 \mathrm{H}), 1.22(\mathrm{~m}, 14 \mathrm{H}), 1.12(\mathrm{~m}, 5 \mathrm{H}), 0.92(\mathrm{~m}, 2 \mathrm{H}), 0.78$ (d, J = 7.09 Hz, 3H), 0.76 (d, J = $7.09 \mathrm{~Hz}, 3 \mathrm{H}), 0.71(\mathrm{~d}, \mathrm{~J}=6.70 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (151 MHz, DMSO- d_{6}): $\delta=187.49,186.60,180.98,180.77,172.52,172.44,171.77$, 171.21, 170.59, 165.66, 156.92, 154.20, 151.82, 143.64, 141.28, 138.09, 138.05, 137.28, $136.31,135.45,134.24,132.70,132.59,132.34,131.01,130.80,130.68,130.01,127.13$, $125.85,125.72,125.05,123.81,122.84,118.85,80.48,79.32,78.91,76.76,75.60,73.44$, $73.18,72.92,72.63,72.19,70.27,70.23,70.15,70.08,70.01,69.83,69.64,69.06,68.91$, $65.22,61.93,48.05,47.64,47.55,47.25,44.24,44.04,40.61,38.99,38.90,38.88,38.79$, $38.74,37.28,37.23,36.15,36.04,34.18,33.04,32.59,31.56,30.36,30.19,29.60,29.49$, 29.29, 29.05, 28.69, 28.04, 27.15, 27.03, 26.59, 26.50, 25.84, 24.07, 23.97, 22.71, 22.44, $21.76,21.59,21.24,20.82,19.66,19.09,17.78,15.40,15.23,14.37,14.26,13.93,12.78$, 10.74, 10.68, 6.36 .

DEPT (151 MHz, DMSO- $_{6}$): $\delta=138.09,137.28,136.31,135.45,132.70,132.59,132.34$, $131.01,130.80,130.68,127.13,125.85,125.05,123.79,122.84,118.85,80.48,79.32,78.91$, $76.76,75.60,73.43,73.18,72.92,72.63,72.19,70.27,70.23,70.14,70.08,70.01,69.83$, 69.63, 69.06, 68.91, 65.22, 61.93, 48.04, 47.64, 47.55, 47.25, 44.23, 44.04, 38.99, 38.90, $38.88,38.79,38.73,37.28,37.22,36.15,36.04,34.18,33.04,32.59,31.56,30.36,30.19$, 29.60, 29.49, 29.29, 29.05, 28.68, 28.03, 27.03, 26.59, 26.50, 25.83, 24.07, 23.96, 22.71, $22.44,21.76,21.24,20.82,19.66,19.09,17.77,15.23,14.37,13.93,12.78,10.73$.

HRMS $(E S I)$ calculated for $\left([M+3 H]^{3+}\right): m / z=849.8059$; experimental $=849.8066$.

Compound 34

Azide 69 ($14.3 \mathrm{mg}, 0.005 \mathrm{mmol}, 1.0 \mathrm{eq}$) and strained alkyne $47(12.58 \mathrm{mg}, 0.010 \mathrm{mmol}, 2.0$ eq) were weight in 1.5 mL tubes and then dissolved in degassed mixture of $\mathrm{ACN}: \mathrm{H}_{2} \mathrm{O}(1: 1,300$ $\mu \mathrm{L}$ each). The compounds were added together under argon atmosphere and continued stirring for 30 hours at $24^{\circ} \mathrm{C}$. The orange solution was filtered and purified by RP-HPLC (15-$98-100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}, 0.1 \% \mathrm{HCOOH}, 220 \mathrm{~nm}$, collect all.). Product containing fractions were lyophilized to yield 34 ($12.69 \mathrm{mg}, 0.005 \mathrm{mmol}, 95 \%$) as a beige solid. The compound eluted as a diastereomeric mixture in one peak from the HPLC, just one isomer is depicted here.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right): ~ \delta=7.12(\mathrm{t}, \mathrm{J}=11.06,1 \mathrm{H}), 7.03(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~m}, 1 \mathrm{H}), 6.48(\mathrm{t}$, $J=11.06 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~m}, 1 \mathrm{H}), 6.14(\mathrm{dd}, \mathrm{J}=3.43,9.34 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~m}, 1 \mathrm{H}), 5.63(\mathrm{~m}, 2 \mathrm{H})$, $5.52(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{~m}, 3 \mathrm{H}), 5.33(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{~m}, 3 \mathrm{H}), 5.20(\mathrm{~d}, \mathrm{~J}=9.92 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~m}, 1 \mathrm{H})$, $4.35(\mathrm{~m}, 3 \mathrm{H}), 4.19(\mathrm{~m}, 3 \mathrm{H}), 3.67(\mathrm{~m}, 9 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~m}, 4 \mathrm{H}), 2.13(\mathrm{~m}$, $15 \mathrm{H}), 1.96(10 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~m}, 8 \mathrm{H}), 1.41(\mathrm{~m}, 10 \mathrm{H}), 1.27(\mathrm{~m}, 4 \mathrm{H}), 1.17(\mathrm{~m}, 5 \mathrm{H}), 1.07$ $(\mathrm{m}, 2 \mathrm{H}), 0.78(\mathrm{~d}, \mathrm{~J}=6.67 \mathrm{~Hz}, 3 \mathrm{H}), 0.75(\mathrm{~d}, \mathrm{~J}=7.06 \mathrm{~Hz}, 3 \mathrm{H}), 0.71(\mathrm{~d}, \mathrm{~J}=7.25 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (151 MHz, DMSO- d_{6}): $\delta=175.06,175.00,170.25,169.79,165.69,165.64,138.17$, $137.23,136.33,135.59,135.44,135.25,132.58,132.45,132.41,132.36,130.21,130.07$, 129.50, 127.47, 127.33, 125.99, 125.16, 125.05, 124.84, 122.94, 122.79, 118.94, 118.82, 80.46, 80.39, 79.41, 79.33, 79.03, 78.91, 77.73, 75.83, 75.76, 75.58, 73.87, 73.37, 73.27, 73.00, 72.60, 72.49, 71.41, 70.53, 68.69, 68.41, 66.82, 65.28, 65.18, 49.06, 40.91, 38.92, $37.36,37.29,37.03,36.82,35.97,34.29,34.04,33.11,32.88,32.45,31.64,31.46,30.98$, 27.00, 26.91, 25.07, 24.96, 21.65, 21.42, 21.28, 21.26, 15.23, 15.20, 14.43, 14.02, 13.89, 10.69, 10.62.

DEPT (151 MHz, DMSO- d_{6}): $\delta=137.43,136.56,136.50,135.60,134.85,134.71,134.52$, 131.81, 131.71, 131.68, 131.63, 129.59, 129.47, 128.76, 126.73, 126.59, 125.25, 124.99, $124.43,124.31,124.10,122.20,122.05,118.23,118.20,118.08,79.74,79.71,78.69,78.60$, $78.30,77.01,75.10,75.04,73.14,72.65,72.54,72.36,72.30,72.27,71.88,71.77,71.74$, 70.68, 69.80, 67.97, 67.68, 64.55, 64.46, 48.33, 40.17, 38.19, 36.63, 36.55, 36.29, 36.08, $35.23,33.56,33.37,33.31,32.38,32.15,31.71,30.91,30.72,30.25,28.99,26.27,26.18$, $24.33,24.23,20.92,20.69,20.54,20.52,14.49,14.46,13.29,13.16,9.96,9.88$.

HRMS (ESI) calculated for $\left([M+3 H]^{3+}\right): m / z=894.8007$; experimental $=894.8029$.

Compound 36

Azide 70 ($10.60 \mathrm{mg}, 0.004 \mathrm{mmol}, 1.0 \mathrm{eq}$) and strained alkyne $47(9.33 \mathrm{mg}, 0.008 \mathrm{mmol}, 2.0$ eq) were weight in 1.5 mL tubes and then dissolved in degassed mixture of $\mathrm{ACN}: \mathrm{H}_{2} \mathrm{O}(1: 1,300$ $\mu \mathrm{L}$ each). The compounds were added together under argon atmosphere and continued stirring for 30 hours at $24^{\circ} \mathrm{C}$. The orange solution was filtered and purified by RP-HPLC (15-$98-100 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}, 0.1 \% \mathrm{HCOOH}, 220 \mathrm{~nm}$, collect all.). Product containing fractions were lyophilized to yield 36 ($6.54 \mathrm{mg}, 0.003 \mathrm{mmol}, 79 \%$) as a beige solid. The compound eluted as a diastereomeric mixture in one peak from the HPLC, just one isomer is depicted here. Isomerization at C19/C20 reported and observed (e.g. by NMR), intermediate eluted as isomeric mixture as reported for free CorA 35 in Figure S18-S21.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right)$: $\delta=9.62(\mathrm{~m}, 5 \mathrm{H}), 9.39(\mathrm{~m}, 1 \mathrm{H}), 9.21(\mathrm{~d}, \mathrm{~J}=10.47 \mathrm{~Hz}, 1 \mathrm{H}), 7.78$ $(\mathrm{m}, 2 \mathrm{H}), 7.65(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=4.79 \mathrm{~Hz}, 4 \mathrm{H}), 7.11(\mathrm{t}, \mathrm{J}=5.08 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~m}, 1 \mathrm{H}), 6.34$ ($\mathrm{m}, 1 \mathrm{H}$), $5.35(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{t}, \mathrm{J}=7.48 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{t}, \mathrm{J}=5.08 \mathrm{~Hz}, 2 \mathrm{H}), 4.04$ $(\mathrm{m}, 3 \mathrm{H}), 3.73(\mathrm{t}, \mathrm{J}=5.68 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~m}, 3 \mathrm{H}), 3.56(\mathrm{~m}, 21 \mathrm{H}), 3.46(\mathrm{~m}, 25 \mathrm{H}), 3.22(\mathrm{~m}, 3 \mathrm{H})$, 3.13 ($q, J=6.13,11.22 \mathrm{~Hz}, 3 \mathrm{H}$), $3.01(\mathrm{q}, \mathrm{J}=6.58,13.01 \mathrm{~Hz}, 6 \mathrm{H}), 2.71(\mathrm{~m}, 5 \mathrm{H}), 2.59(\mathrm{q}, \mathrm{J}=$ $7.33,12.41 \mathrm{~Hz}, 4 \mathrm{H}$), 2.27 ($\mathrm{q}, \mathrm{J}=6.43,10.77 \mathrm{~Hz}, 4 \mathrm{H}$), $2.05(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.76$ ($\mathrm{s}, 3 \mathrm{H})$, $1.60(\mathrm{~m}, 10 \mathrm{H}), 1.53(\mathrm{~m}, 20 \mathrm{H}), 1.38(\mathrm{~m}, 9 \mathrm{H}), 1.23(\mathrm{~m}, 8 \mathrm{H}), 1.11(\mathrm{~m}, 5 \mathrm{H}), 0.92(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (151 MHz, DMSO-d ${ }_{6}$): $\delta=180.51,180.28,171.96,171.29,170.12,168.70,156.44$, 154.17, 143.16, 133.77, 129.94, 129.88, 129.78, 124.86, 124.65, 124.54, 124.31, 123.34, 108.89, 82.69, 75.71, 69.79, 69.75, 69.67, 69.60, 69.53, 69.36, 69.16, 68.58, 67.18, 61.45, 51.63, 47.17, 47.08, 46.77, 43.76, 43.56, 38.42, 38.40, 38.13, 36.80, 36.62, 36.45, 34.21, 30.02, 29.96, 29.89, 28.81, 28.64, 28.57, 28.21, 27.99, 27.56, 26.89, 26.72, 26.64, 26.12, 26.02, 25.35, 24.14, 23.60, 23.49, 23.11, 22.23, 21.97, 21.28, 20.34, 19.18, 18.78, 18.61, 17.90, 17.69, 17.64, 17.30, 13.75, 13.68, 12.28, 5.88.

DEPT (151 MHz, DMSO- $_{6}$): $\delta=130.42,130.35,130.25,125.34,125.21,125.13,125.02$, 123.82, 109.20, 76.19, 70.27, 70.23, 70.14, 70.08, 70.01, 69.83, 69.63, 69.06, 67.65, 61.93, 52.11, 47.64, 47.55, 47.25, 44.24, 44.04, 40.53, 40.39, 40.25, 40.15, 40.11, 40.01, 39.97, $39.87,39.84,39.72,39.70,39.27,38.90,38.88,38.60,37.10,34.68,33.79,30.36,29.29$, 29.12, 28.69, 28.03, 27.36, 27.12, 26.60, 26.50, 25.83, 24.61, 24.07, 23.96, 22.70, 22.44, $21.76,20.82,19.66,19.09,18.38,18.17,18.12,17.77,14.23,14.15$.

HRMS (ESI) calculated for $\left([M+2 H]^{2+}\right): m / z=1085.5587$; experimental $=1085599$.

Strained alkyne 47 ($10 \mathrm{mg}, 9 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) and azide 71 ($9 \mathrm{mg}, 9 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) were added together and dissolved under Argon atmosphere in a 1:1 mixture of ACN and milliQ water (10 mL in total). The reaction was stirred overnight at $23^{\circ} \mathrm{C}$ and the reaction progress was checked by LCMS. The solution obtained a less intense blue color upon full conversion, possibly due to quenching effects of the quinone moiety. The solvent was removed by rotary evaporation and the residue was dissolved in a mixture of ACN:MeOH:DMSO (5 mL) and purified by RPHPLC ($15-85 \%$ then $100 \%, 220 \mathrm{~nm}$, collect all). The product containing fractions be found by LCMS and the product was lyophilized to dryness to yield 37 ($5.45 \mathrm{mg}, 0.005 \mathrm{mmol}, 49 \%$) as a slightly beige solid. The compound eluted as a diastereomeric mixture in one peak from the HPLC, just one isomer is depicted here. Isomerization at C19/C20 reported and observed (e.g. by NMR), intermediate eluted as isomeric mixture as reported for free CorA 35 in Figure S18S21.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}\right.$, DMSO-d d_{6}): $\delta=9.59$ (m, 4H), 9.35 (m, 1H), $7.84(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{~m}, 2 \mathrm{H})$, 7.67 (m, 2H), 7.34 ($\mathrm{q}, \mathrm{J}=7.94,12.15 \mathrm{~Hz}, 4 \mathrm{H}$), 7.11 ($\mathrm{m}, 1 \mathrm{H}$), 4.18 (t, J = $6.78 \mathrm{~Hz}, 2 \mathrm{H}), 4.04$ (m , 2H), $3.63(\mathrm{~m}, 3 \mathrm{H}), 3.54(\mathrm{~m}, 8 \mathrm{H}), 3.45-3.40(\mathrm{~m}, 12 \mathrm{H}), 3.29(\mathrm{~s}, 2 \mathrm{H}), 3.12(\mathrm{q}, \mathrm{J}=6.09,11.45 \mathrm{~Hz}$, 2H), 3.06 (bs, 2H), 2.99 (q, J = 6.07, $12.15 \mathrm{~Hz}, 6 \mathrm{H}), 2.93(\mathrm{~m}, 5 \mathrm{H}), 2.88(\mathrm{~s}, 1 \mathrm{H}), 2.74(\mathrm{~m}, 1 \mathrm{H})$, $2.67(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{q}, \mathrm{J}=8.18,14.25 \mathrm{~Hz}, 4 \mathrm{H}), 2.27(\mathrm{q}, \mathrm{J}=7.24,12.85 \mathrm{~Hz}, 4 \mathrm{H}), 2.01(\mathrm{~m}, 7 \mathrm{H})$, $1.96(\mathrm{~s}, 4 \mathrm{H}), 1.76(\mathrm{~s}, 1 \mathrm{H}), 1.68(\mathrm{~m}, 3 \mathrm{H}), 1.64(\mathrm{bs}, 1 \mathrm{H}), 1.52(\mathrm{~m}, 15 \mathrm{H}), 1.38(\mathrm{~m}, 5 \mathrm{H}), 1.33(\mathrm{~m}$, 3H), 1.22 (m, 10H), 0.88 (m, 7H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=180.49,171.94,171.28,170.10,156.43,143.32,132.67$, 123.29, 69.51, 69.14, 68.57, 61.42, 55.60, 47.05, 46.97, 46.75, 43.55, 40.00, 38.40, 38.38, $38.24,35.19,29.87,29.30,28.79,28.52,28.19,27.54,26.10,26.00,25.60,25.35,24.74$, 24.64, 23.58, 23.47, 22.11, 22.03, 21.85, 21.20, 20.63, 20.33, 19.13, 18.55, 18.17, 17.27, 13.89, 8.94, 8.75, 7.32.

Compound 37SLa

Acid 58a ($17.0 \mathrm{mg}, 0.02 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in anhydrous DMF (1 mL) and HOBt (2.7 $\mathrm{mg}, 0.041 \mathrm{mg}, 2.0 \mathrm{eq}), \mathrm{EDCI}(3.9 \mathrm{mg}, 0.041 \mathrm{mmol}, 2.0 \mathrm{eq})$ and DMAP ($2.48 \mathrm{mg}, 0.041 \mathrm{mmol}$, $2.0 \mathrm{eq})$ were added in one portion at $0^{\circ} \mathrm{C}$ under argon atmosphere. The reaction stirred 45 minutes at $0^{\circ} \mathrm{C}$ before CorA $35(10.69 \mathrm{mg}, 0.030 \mathrm{mmol}, 1.5 \mathrm{eq})$ was added in anhydrous DMF $(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the ice bath was left to thaw overnight. The solvent was then blown off with a firm stream of nitrogen and the residue was purified by RP-HPLC (5-50-100\% ACN/ $\mathrm{H}_{2} \mathrm{O}$, no acid, C18, 220 nm , collect all). The product containing fractions were identified by LCMS and lyophilized to yield $\mathbf{3 7 S L a}$ as a yellow powder ($7.6 \mathrm{mg}, 0.006 \mathrm{mmol}, 28 \%$). Isomerization at C19/C20 reported and observed (e.g. by NMR), intermediate eluted as isomeric mixture as reported for free CorA 35 in Figure S18-S21.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}\right): \delta=6.13(\mathrm{~m}, 2 \mathrm{H}), 5.42(\mathrm{~m}, 2 \mathrm{H}), 5.18(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~m}, 2 \mathrm{H}), 3.86$ $(\mathrm{m}, 2 \mathrm{H}), 3.60(\mathrm{~m}, 9 \mathrm{H}), 3.16(\mathrm{~m}, 5 \mathrm{H}), 2.92(\mathrm{~m}, 4 \mathrm{H}), 2.84(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~m}, 2 \mathrm{H})$, $2.18(\mathrm{~m}, 4 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~m}, 5 \mathrm{H}), 1.87(\mathrm{~m}, 3 \mathrm{H}), 1.77(\mathrm{~m}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~m}, 5 \mathrm{H})$, 1.53 (m, 9H), 1.33 (m, 7H), 1.24 (m, 2H), 1.15 (m, 3H), $0.90(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (176 MHz, $\mathrm{MeOH}_{-d_{4}}$): $\delta=165.04,152.34,138.67,131.11,129.81,126.67,126.64$, 126.42, 126.24, 125.46, 125.43, 125.39, 118.83, 118.81, 112.56, 112.54, 70.06, 69.61, 57.62, $57.17,57.11,56.96,56.92,56.89,56.64,54.42,52.05,51.83,49.99,49.67,47.36,46.85$, 46.74, 44.23, 44.02, 43.58, 41.93, 41.78, 40.43, 40.28, 37.60, 37.44, 37.10, 31.80, 31.61, $30.89,30.08,29.06,29.01,28.96,28.39,27.97,27.47,27.41,26.44,25.01,24.92,20.37$, $18.25,18.21,17.90,17.87,17.42,17.28,17.20,15.83,15.34,10.12,10.10$.

Compound 37SLb

Strained alkyne $47(10 \mathrm{mg}, 9 \mu \mathrm{~mol}, 1.0 \mathrm{eq})$ and azide $74(8.1 \mathrm{mg}, 9 \mu \mathrm{~mol}, 1.0 \mathrm{eq})$ were added together and dissolved under Argon atmosphere in a $1: 1$ mixture of ACN and milliQ water (10 mL in total). The reaction was stirred overnight at $23^{\circ} \mathrm{C}$ and the reaction progress was checked by LCMS. The solvent was removed by rotary evaporation and the residue was dissolved in a mixture of ACN:MeOH:DMSO (5 mL) and purified by RP-HPLC (20-80\% then 100\%, 220 nm , collect all). The product containing fractions were identified by LCMS and the product was lyophilized to dryness to yield $\mathbf{3 7 S L b}(3.2 \mathrm{mg}, 0.002 \mathrm{mmol}, 20 \%$) as a slightly yellow solid. The compound eluted as a diastereomeric mixture in one peak from the HPLC, just one isomer is depicted here. Isomerization at C19/C20 reported and observed (e.g. by NMR), intermediate eluted as isomeric mixture as reported for free CorA 35 in Figure S18-S21.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): \delta=9.61(\mathrm{~m}, 2 \mathrm{H}), 9.21(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{t}, \mathrm{J}=5.81 \mathrm{~Hz}, 2 \mathrm{H}), 7.08$ $(\mathrm{t}, \mathrm{J}=5.44 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~m}, 1 \mathrm{H}), 5.34(\mathrm{~m}, 2 \mathrm{H}), 5.11(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{t}, \mathrm{J}=6.00$ $\mathrm{Hz}, 2 \mathrm{H}), 4.04(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~m}, 6 \mathrm{H}), 3.05(\mathrm{~s}, 2 \mathrm{H}), 2.99(\mathrm{~m}, 5 \mathrm{H}), 2.94(\mathrm{t}, \mathrm{J}=6.75$ $\mathrm{Hz}, 3 \mathrm{H}), 2.57(\mathrm{t}, \mathrm{J}=7.69 \mathrm{~Hz}, 4 \mathrm{H}), 2.26(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~m}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~m}, 2 \mathrm{H}), 1.76$
(s, 2H), 1.59 (bs, 6H), 1.49 (bs, 6H), 1.38 (bs, 12H), 1.23 (bs, 16H), 1.10 (m, 4H), 0.91 (m, $3 H)$.

Biological methods

Biology figures and tables

Figure S22. Qualitative information on the enzymatic cleavage of DFO TML ciprofloxacin conjugate 12 with QOR2 (left) and Diaphorase (right), relative UV (220 nm) signal intensity, normalized to the highest peak. Analytical HPLC runs from compound $12 \mathrm{at} \mathrm{t}=0,2 \mathrm{~h}$ and 18 h for QOR2 or diaphorase addition. Ciprofloxacin reference injection at the bottom, enzymatic reactions were quenched by $1: 1$ dilution of reaction with HPLC-grade MeOH.

Figure S23. Qualitative information on the enzymatic cleavage of DFO TML rifamycin S conjugate 24SL with Diaphorase, relative UV (220 nm) signal intensity, normalized to the highest peak. Analytical HPLC runs from compound $\mathbf{2 4 S L}$ at $\mathrm{t}=0,2 \mathrm{~h}$ and 24 h for diaphorase addition. Reference injection of free payload 22 at the bottom, enzymatic reactions were quenched by $1: 1$ dilution of reaction with HPLCgrade MeOH .

Table S1. MIC values of published rifamycin derivatives, with a general structure of the rifamycin macrolide core (red = ansa-bridge, blue = aromatic core) above of the table. ${ }^{9,10,11,12}$

Name	R R'	MIC S aureus ($\mu \mathrm{g} / \mathrm{mL}$)	MIC E. coli ($\mu \mathrm{g} / \mathrm{mL}$)
rifamycin SV	OH	0.032	8-32
rifamycin B		$\leq 0.2-0.08$	$\geq 16-32$
rifampicin	$\mathrm{OH} \quad \overbrace{}^{N-N} \square^{\mathrm{N}-}$	$\leq 0.01-0.1$	4-16
rifabutin		≤ 0.05	≥ 25
rifalazil		0.002-0.005	$\geq 8-16$

Table S2. MIC values of published sorangicin A amide derivatives, adapted from Jansen et al., with a general structure of sorangicin A above the table. ${ }^{13}$

Name	\mathbf{R}^{1}	MIC S. aureus $(\boldsymbol{\mu g} / \mathrm{mL})$	MIC E. coli $(\boldsymbol{\mu g} / \mathrm{mL})$
Sorangicin A	OH	$0.016-0.031$	$6-12$
Amide	NH_{2}	0.125	-
\boldsymbol{N}-methylamide	NHMe	0.062	-
\boldsymbol{N}-dimethylamide	$\mathrm{N}(\mathrm{Me})_{2}$	0.016	25
\boldsymbol{N}-isopropylamide	$\mathrm{N}(\mathrm{iPr})_{2}$	0.060	50
\boldsymbol{N}-hexylamide	$\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}$	1	1000
\boldsymbol{N}-benzylamide	NHBn	$0.065-0.125$	-
\boldsymbol{N}-methoxyamide	NHOMe	$0.008-0.016$	25
\boldsymbol{N}-methoxy- \boldsymbol{N} -	$\mathrm{NMe}(\mathrm{OMe})$	0.000125	>200
methylamide			

Figure S24. Antimicrobial activity of rifamycin conjugates 1 to 6 in MDR E. coli in iron-depleted, cationadjusted medium (IDCAM), over 18 hours at $37{ }^{\circ} \mathrm{C}$, error bars correspond to \pm standard error of mean (SEM), n=2.

Figure S25. Antimicrobial activity of rifamycin conjugates 1 to 6 in MDR P. aeruginosa in iron-depleted, cation-adjusted medium (IDCAM), over 18 hours at $37^{\circ} \mathrm{C}$, error bars correspond to \pm standard error of mean (SEM), $\mathrm{n}=2$.

Figure S26. Antimicrobial activity of rifamycin conjugates 1 to 6 in MDR S. aureus in iron-depleted, cation-adjusted medium (IDCAM), over 18 hours at $37^{\circ} \mathrm{C}$, error bars correspond to \pm standard error of mean (SEM), $\mathrm{n}=2$.

Figure S27. Antimicrobial activity of rifamycin conjugates 1 to 6 in MDR A. baumannii (DSM30007) in iron-depleted, cation-adjusted medium (IDCAM), over 18 hours at $37^{\circ} \mathrm{C}$, error bars correspond to \pm standard error of mean (SEM), $n=2$.

Table S3. MIC values ${ }^{\text {a }}$ for 1 to $\mathbf{6}$ in four bacterial strains.

Compound	E. coli	P. aeruginosa	S. aureus	A. baumannii
rifamycin S 1	>32	32	≤ 0.5	2
$\mathbf{2}$	16	16	2	8
$\mathbf{3}$	16	32	2	0.5
$\mathbf{4}$	20	>32	32	16
formyl rif. SV 27	8	16	40.5	-
5a	16	8	>32	16
$\mathbf{5}$	>32	>32	4	>32
$\mathbf{6 a}$	16	16	>32	16
$\mathbf{6}$	>32	0.01	-	-32
cefiderocol	0.01	-	-	0.04
ciprofloxacin	0.5	-	1.25	-
amikacin	-	-		-78
linezolid	-			

a values are given in $[\mu \mathrm{M}]$, controls in [$\mu \mathrm{g} / \mathrm{mL}]$, except cefiderocol $[\mu \mathrm{M}]$.

Figure S28. Antimicrobial activity of cleavable ciprofloxacin conjugates $\mathbf{8}$ to 17 in MDR E. coli. (A) ciprofloxacin TML / para-nitro TA catechol conjugates 8-10, 13-15, (B) ciprofloxacin TML / para-nitro TA DFO conjugates, (C) ciprofloxacin TML DOTAM with methylated catechols 17, TML linker 52 and ciprofloxacin TML intermediate 59, (D) antibiotic controls. Experiments were conducted in iron-depleted, cation-adjusted medium (IDCAM) over 18 hours at $37^{\circ} \mathrm{C}$. Error bars correspond to \pm standard error of mean (SEM), $\mathrm{n}=2-4$.

Figure S29 Antimicrobial activity of cleavable conjugates and control substances in MDR E. coli. (A-C) fluoro rifamycin compounds, (D) formyl rifamycin compounds, (E-F) sorangicin A compounds and (G) corallopyronin A compounds, (H) siderophore 7 and TML linker 53, (I) control antibiotics cefiderocol and ciprofloxacin, in iron-depleted, cation-adjusted medium (IDCAM) over 18 hours at $37^{\circ} \mathrm{C}$, error bars correspond to \pm standard error of mean (SEM), $\mathrm{n}=2$, corallop. $\mathrm{A}=$ corallopyronin A without exposure to basic conditions, corA* $=$ reisolated from basic reaction conditions.

Figure S30. Antimicrobial activity of cleavable conjugates and control substances in siderophoredeficient E. coli $\triangle e n t A(A-B)$ fluoro rifamycin compounds, (C) formyl rifamycin compounds, (D) sorangicin A compounds and (E) corallopyronin A compounds and controls, (F) control antibiotics cefiderocol and ciprofloxacin, in iron-depleted, cation-adjusted medium (IDCAM) over 18 hours at 37 ${ }^{\circ} \mathrm{C}$, error bars correspond to \pm standard error of mean (SEM), $\mathrm{n}=2$ corA $=$ corallopyronin A without exposure to basic conditions.

Table S4. MIC values ${ }^{\text {a }}$ for 18 to 37 and controls in MDR E. coli and E. coli Δ entA.

Compound	Chelator	Effector	E. coli	E. coli $\Delta \mathrm{entA}$
1	-	RifS	>32	-
2	-	RifS	>32	>32
7	DOTAM	-	>32	>32
18	DFO	RifS	16	-
19	DFO	RifS	8	4
20	DFO-Ga	RifS	$>32^{\text {GE }}$	>32
21	DFO	CHO-RifSV	4	4
22	-	RifS	>32	32
23	DOTAM	RifS	$>32^{\text {GE }}$	32
24	DFO	RifS	1	4
25	DOTAM	RifS	>32	>32
26	DOTAM	RifS	>32	>32
27	-	CHO-RifSV	16	-
28	-	CHO-RifSV	>32	>32
29	DFO	CHO-RifSV	1	2
30	DFO	CHO-RifSV	2	8
31	-	SorA	>32	32
32	-	SorA	>32	>32
33	DFO	SorA	16	>32
34	DFO	SorA	>32	>32
35	-	CorA	$>32^{\text {GE }}$	-
35*	-	CorA	>32	>32
36	DFO	CorA	2	2
37	DFO	CorA	16	32
53	-	-	>32	-
65	-	CHO-RifSV	>32	-
67	-	SorA	>32	-
68	-	SorA	>32	-
69	-	SorA	>32	-
70	-	CorA	>32	-
cefiderocol			0.01	0.02
ciprofloxacin			0.538	0.538
amikacin			-	-
linezolid			-	-

a $[\mu \mathrm{M}]$ for test compounds and cefiderocol, $[\mu \mathrm{g} / \mathrm{mL}]$ for ciprofloxacin, amikacin, linezolid, DFO $=$ desferrioxamine, RifSV=rifamycin S, CHO RifSV=3-formyl rifamycin SV, SorA=sorangicin A, CorA=corallopyronin A, * = MIC f. CorA with base exposition, $\mathrm{GE}=$ growth enhancing.

Concentration

Figure S31. Antimicrobial activity of cleavable conjugates and control substances in MDR S. aureus (AC) fluoro rifamycin compounds, (D) formyl rifamycin compounds, (E-F) sorangicin A compounds and (G) corallopyronin A compounds, (H) control linker 53, (I) control antibiotics cefiderocol and ciprofloxacin, in iron-depleted, cation-adjusted medium (IDCAM) over 18 hours at $37^{\circ} \mathrm{C}$, error bars correspond to \pm standard error of mean (SEM), $n=2$, corallop. corA $=$ corallopyronin A without exposure to basic conditions, corA* $=$ corallopyronin A exposure to basic conditions.

Table S5. MIC values ${ }^{\text {a }}$ for 18 to $\mathbf{3 7}$ and controls in MDR S. aureus.

Compound	Chelator	Effector	s. aureus
$\mathbf{1}$	-	RifS	≤ 0.5
$\mathbf{2}$	-	RifS	4
$\mathbf{7}$	DOTAM	-	-
$\mathbf{1 8}$	DFO	RifS	32
$\mathbf{1 9}$	DFO	RifS	1
$\mathbf{2 0}$	DFO-Ga	RifS	1
$\mathbf{2 1}$	DFO	CHO-RifSV	>32
$\mathbf{2 2}$	-	RifS	4
$\mathbf{2 3}$	DOTAM	RifS	1
$\mathbf{2 4}$	DFO	RifS	32
$\mathbf{2 5}$	DOTAM	RifS	1
$\mathbf{2 6}$	DOTAM	RifS	2
$\mathbf{2 7}$	-	CHO-RifSV	≤ 0.5
$\mathbf{2 8}$	-	CHO-RifSV	>32
$\mathbf{2 9}$	DFO	CHO-RifSV	>32
$\mathbf{3 0}$	DFO	CHO-RifSV	>32
$\mathbf{3 1}$	-	SorA	2
$\mathbf{3 2}$	-	SorA	>32 GE
$\mathbf{3 3}$	DFO	SorA	32
$\mathbf{3 4}$	DFO	SorA	16
$\mathbf{3 5 *}$	-	CorA	>32
$\mathbf{3 5}$	-	CorA	2
$\mathbf{3 6}$	DFO	CorA	32
$\mathbf{3 7}$	DFO	CorA	8
$\mathbf{5 3}$	-	-	>32
$\mathbf{6 5}$	-	CHO-RifSV	>32
$\mathbf{6 7}$	-	SorA	>32
$\mathbf{6 8}$	-	SorA	>32
$\mathbf{6 9}$	-	SorA	≥ 32
$\mathbf{7 0}$		CorA	>32
cefiderocol			>0.64
ciprofloxacin			-
linezolid			-

a $[\mu \mathrm{M}]$ for test compounds and cefiderocol, $[\mu \mathrm{g} / \mathrm{mL}]$ for ciprofloxacin, amikacin, linezolid, $\mathrm{DFO}=$ desferrioxamine, RifS=rifamycin S, CHO RifSV=3-formyl rifamycin SV, SorA=sorangicin A, CorA=corallopyronin A, * = MIC f. CorA with base exposition, GE = growth enhancing.

Figure S32. Antimicrobial activity of cleavable conjugates and control substances in MDR A. baumannii (DSM30007). (A-C) fluoro rifamycin compounds, (D) formyl rifamycin compounds, (E-F) sorangicin A compounds and (G) corallopyronin A compounds, (H) control linker 53 and siderophore 7, (I) control antibiotics cefiderocol and ciprofloxacin, in iron-depleted, cation-adjusted medium (IDCAM) over 18 hours at $37^{\circ} \mathrm{C}$, error bars correspond to \pm standard error of mean (SEM), $\mathrm{n}=2$, corallop. $\mathrm{A}=$ corallopyronin A without exposure to basic conditions.

Figure S33. Antimicrobial activity of cleavable conjugates and control substances in MDR A. baumannii (DSM30008). (A-C) fluoro rifamycin compounds, (D) formyl rifamycin compounds, (E-F) sorangicin A compounds and (G) corallopyronin A compounds, (H) control linker 53 and siderophore 7, (I) control antibiotics cefiderocol and ciprofloxacin, in iron-depleted, cation-adjusted medium (IDCAM) over 18 hours at $37{ }^{\circ} \mathrm{C}$, error bars correspond to \pm standard error of mean (SEM), $\mathrm{n}=2$, corallop. $\mathrm{A}=$ corallopyronin A without exposure to basic conditions, corallop. $A^{*}=$ reisolated from basic reaction conditions.

Table S6. MIC values ${ }^{\text {a }}$ for 18 to 37 and controls in MDR A. baumannii DSM3007 and DSM30008.

Compound	Chelator	Effector	DSM30007	DSM30008
2	-	RifS	32	>32
7	DOTAM	-	>32	>32
18	DFO	RifS	>32	>32
19	DFO	RifS	>32	>32
20	DFO-Ga	RifS	>32	>32
21	DFO	CHO-RifSV	$>32 \mathrm{GE}$	>32
22	-	RifS	8	32
23	DOTAM	RifS	>32	>32
24	DFO	RifS	$>32^{\text {GE }}$	>32 ${ }^{\text {GE }}$
25	DOTAM	RifS	>32	>32
26	DOTAM	RifS	>32	>32
28	-	CHO-RifSV	$>32^{\text {GE }}$	>32
29	DFO	CHO-RifSV	>32	>32 ${ }^{\text {EE }}$
30	DFO	CHO-RifSV	>32 ${ }^{\text {GE }}$	>32 ${ }^{\text {GE }}$
31	-	SorA	16	32
32	-	SorA	>32	>32
33	DFO	SorA	>326E	>32 ${ }^{\text {GE }}$
34	DFO	SorA	>32	>32
35*	-	CorA	>32	>32
35	-	CorA	>32	>32
36	DFO	CorA	$>32^{\text {GE }}$	$>32^{\text {GE }}$
37	DFO	CorA	8	32
53	-	-	>32	>32
65	-	CHO-RifSV	>32	>32
67	-	SorA	>32	>32
68	-	SorA	>32	>32
69	-	SorA	≥ 32	>32
70	-	CorA	>32	>32
cefiderocol			0.02	0.64
ciprofloxacin			1.25	5.0
amikacin			-	-
linezolid			-	-

a $[\mu \mathrm{M}]$ for test compounds and cefiderocol, $[\mu \mathrm{g} / \mathrm{mL}]$ for ciprofloxacin, amikacin, linezolid, DFO $=$ desferrioxamine, RifS=rifamycin S, CHO RifSV=3-formyl rifamycin SV, SorA=sorangicin A, CorA=corallopyronin A, * = MIC f. CorA with base exposition, $\mathrm{GE}=$ growth enhancing.

Figure S34. Antimicrobial activity of cleavable conjugates and control substances in MDR P. aeruginosa. (A-C) fluoro rifamycin compounds, (D) formyl rifamycin compounds, (E-F) sorangicin A compounds and (G) corallopyronin A compounds, (H) control linker 53 and siderophore 7, (I) control antibiotics cefiderocol and ciprofloxacin, in iron-depleted, cation-adjusted medium (IDCAM) over 18 hours at $37^{\circ} \mathrm{C}$, error bars correspond to \pm standard error of mean (SEM), $\mathrm{n}=2$, corallop. $\mathrm{A}^{*}=$ corallopyronin A with exposure to basic conditions.

Figure S35. Antimicrobial activity of cleavable conjugates and control substances in siderophoredeficient P. aeruginosa $\Delta p v d p c h(A-B)$ fluoro rifamycin compounds, (C) formyl rifamycin compounds, (D) sorangicin A compounds and (E) corallopyronin A compounds, (F) DOTAM 7 control, (G) control antibiotics cefiderocol and ciprofloxacin, in iron-depleted, cation-adjusted medium (IDCAM) over 18 hours at $37{ }^{\circ} \mathrm{C}$, error bars correspond to \pm standard error of mean (SEM), $\mathrm{n}=2$ corallop. $\mathrm{A}=$ fresh natural product, corallop. $\mathrm{A}^{*}=$ reisolated from reaction.

Table S7. MIC values ${ }^{\text {a }}$ for 18 to 37 and controls in MDR P. aeruginosa and P. aeruginosa $\Delta p v d p c h$.

Compound	Chelator	Effector	P. aeruginosa	PAO1 4 pvdpch
1	-	RifSV	32	-
2	-	RifSV	32	-
7	DOTAM	-	>32	>32
18	DFO	RifSV	>32	≥ 32
19	DFO	RifSV	>32	4
20	DFO-Ga	RifSV	>32	8
21	DFO	CHO-RifSV	$>32^{\text {GE }}$	$>32^{\text {GE }}$
22	-	RifSV	32	16
23	DOTAM	RifSV	>32	>32
24	DFO	RifSV	$>32^{\text {GE }}$	$>32^{\text {GE }}$
25	DOTAM	RifSV	>32	>32
26	DOTAM	RifSV	>32	>32
27	-	CHO-RifSV	32	-
28	-	CHO-RifSV	>32	>32
29	DFO	CHO-RifSV	$>32^{\text {GE }}$	$>32^{\text {GE }}$
30	DFO	CHO-RifSV	$>32^{\text {GE }}$	$>32^{\text {GE }}$
31	-	SorA	≥ 32	>32
32	-	SorA	>32	>32
33	DFO	SorA	$>32^{\text {GE }}$	>32
34	DFO	SorA	>32	>32
35*	-	CorA	>32	-
35	-	CorA	>32	>32
36	DFO	CorA	>32 ${ }^{\text {GE }}$	>32
37	DFO	CorA	≥ 32	32
53	-	-	>32	-
65	-	CHO-RifSV	>32	-
67	-	SorA	>32	-
68	-	SorA	>32	-
69	-	SorA	>32	-
70	-	CorA	>32	-
cefiderocol			0.064	0.08
ciprofloxacin			-	
amikacin			25	12.5
linezolid			-	

a $[\mu \mathrm{M}]$ for test compounds and cefiderocol, $[\mu \mathrm{g} / \mathrm{mL}]$ for ciprofloxacin, amikacin, linezolid, DFO $=$ desferrioxamine, RifS=rifamycin SV, CHO RifSV=3-formyl rifamycin SV, SorA=sorangicin A, CorA=corallopyronin $\mathrm{A}, \mathrm{GE}=$ growth enhancing.

Figure S36. Antimicrobial activity of cleavable conjugates and control substances in MDR E. faecium (A-B) fluoro rifamycin compounds, (C) formyl rifamycin compounds, (D) sorangicin A compounds and (E) corallopyronin A compounds, (F) DOTAM 7 control, (G) control antibiotics cefiderocol and ciprofloxacin, in iron-depleted, cation-adjusted medium (IDCAM) over 18 hours at $37{ }^{\circ} \mathrm{C}$, error bars correspond to \pm standard error of mean (SEM), $\mathrm{n}=2$, corA = corallopyronin A without exposure to basic conditions.

Table S8. MIC values ${ }^{\text {a }}$ for 18 to 37 and controls in MDR E. faecium.

Compound	Chelator	Effector	E. faecium
$\mathbf{7}$	DOTAM	-	>32
$\mathbf{1 8}$	DFO	RifSV	>32
$\mathbf{1 9}$	DFO	RifSV	>32
$\mathbf{2 0}$	DFO-Ga	RifSV	>32
$\mathbf{2 1}$	DFO	CHO-RifSV	>32
$\mathbf{2 2}$	-	RifSV	16
$\mathbf{2 3}$	DOTAM	RifSV	>32
$\mathbf{2 4}$	DFO	RifSV	>32
$\mathbf{2 5}$	DOTAM	RifSV	>32
$\mathbf{2 6}$	DOTAM	RifSV	>32
$\mathbf{2 8}$	-	CHO-RifSV	>32
$\mathbf{2 9}$	DFO	CHO-RifSV	>32
$\mathbf{3 0}$	DFO	CHO-RifSV	>32
$\mathbf{3 1}$	-	SorA	8
$\mathbf{3 2}$	-	SorA	>32
$\mathbf{3 3}$	DFO	SorA	32
$\mathbf{3 4}$	DFO	SorA	32
$\mathbf{3 5}$	-	CorA	32
$\mathbf{3 6}$	DFO	CorA	32^{*}
$\mathbf{3 7}$	DFO	CorA	0.5
$\mathbf{5 3}$	-	-	-
$\mathbf{6 5}$	-	CHO-RifSV	-
$\mathbf{6 7}$	-	SorA	-
$\mathbf{6 8}$		-	SorA
$\mathbf{6 9}$	-	SorA	-
$\mathbf{7 0}$	-	CorA	-
cefiderocol			-
ciprofloxacin			>0.64
amikacin			2.5
linezolid			-
			-

a $[\mu \mathrm{M}]$ for test compounds and cefiderocol, $[\mu \mathrm{g} / \mathrm{mL}]$ for ciprofloxacin, amikacin, linezolid, DFO $=$ desferrioxamine, DOTAM = enterobactin mimic, RifS=rifamycin SV, CHO-RifSV=3-formyl rifamycin SV, SorA=sorangicin A, CorA=corallopyronin A, * = MIC f. CorA with base exposition GE = growth enhancing

Figure S37. Antimicrobial activity of cleavable conjugates with shorter linkers and control substances in E. coli strains (A-B: E. coli MDR DSM1116,C-D: E. coli K12, E-F:E coli $\Delta e n t A$), control antibiotics cefiderocol and rifamycin, in iron-depleted, cation-adjusted medium (IDCAM) over 18 hours at $37^{\circ} \mathrm{C}$, error bars correspond to \pm standard error of mean (SEM), $\mathrm{n}=2$.

Figure S38. Antimicrobial activity of cleavable conjugates with shorter linkers and control substances in MDR A. baumannii strains (DSM30007 and DSM30008), control antibiotics cefiderocol and rifamycin, in iron-depleted, cation-adjusted medium (IDCAM) over 18 hours at $37^{\circ} \mathrm{C}$, error bars correspond to \pm standard error of mean (SEM), $\mathrm{n}=2$.

Figure S39. Antimicrobial activity of cleavable conjugates with shorter linkers and control substances in P. aeruginosa strains, control antibiotics cefiderocol and rifamycin, in iron-depleted, cation-adjusted medium (IDCAM) over 18 hours at $37^{\circ} \mathrm{C}$, error bars correspond to \pm standard error of mean (SEM), n $=2$.

Figure S40. Antimicrobial activity of cleavable conjugates with a shorter linker and control substances in S. aureus and E. faecium, control antibiotics cefiderocol and rifamycin, in iron-depleted, cationadjusted medium (IDCAM) over 18 hours at $37^{\circ} \mathrm{C}$, error bars correspond to \pm standard error of mean (SEM), $\mathrm{n}=2$.

Table S9. MIC values ${ }^{\text {a }}$ for 1, 22, 24SL, 28, 30SL, 37SLa/b and controls in E. coli strains

Compound	Chelator	Effector	E. coli MDR	E. coli K12	E. coli Δ entA
$\mathbf{1}$	-	RifS	64	≥ 64	64
$\mathbf{2 2}$	-	RifS	64	64	64
$\mathbf{2 4 S L}$	DFO	RifS	64	$8-16$	$4-8$
$\mathbf{2 8}$	-	CHO-RifSV	>64	>64	>64
$\mathbf{3 0 S L}$	DFO	CHO-RifSV	8	16	16
$\mathbf{3 5}$	-	CorA	>64	>64	>64
37SLa	DFO	CorA	>64	16	16
37SLb	DFO	CorA	>64	>64	16
cefiderocol					

a $[\mu \mathrm{M}$] for test compounds and cefiderocol, DOTAM = enterobactin mimic, RifS=rifamycin $\mathrm{S}, \mathrm{CHO}-$ RifSV=3-formyl rifamycin SV, CorA=corallopyronin A, GE = growth enhancing

Table S10. MIC values ${ }^{\text {a }}$ for for 1, 22, 24SL, 28, 30SL, 37SLa/b and controls in MDR A. baumannii strains

Compound	Chelator	Effector	A. baumannii DSM30007	A. baumannii DSM30008
$\mathbf{1}$	-	RifS	64	64
$\mathbf{2 2}$	-	RifS	$32-64$	64
$\mathbf{2 4 S L}$	DFO	RifS	$32-64$	16
$\mathbf{2 8}$	-	CHO-RifSV	>64	>64
$\mathbf{3 0 S L}$	DFO	CHO-RifSV	8	64
$\mathbf{3 5}$	-	CorA	>64	>64
37SLa	DFO	CorA	16	16
37SLb	DFO	CorA	>64 GE	>64 GE
cefiderocol				

a $[\mu \mathrm{M}$] for test compounds and cefiderocol, DOTAM = enterobactin mimic, RifS=rifamycin S, CHO-RifSV=3-formyl rifamycin SV, CorA=corallopyronin A, GE = growth enhancing

Table S11. MIC values ${ }^{\text {a }}$ for $1,22,24 \mathrm{SL}, \mathbf{2 8}, \mathbf{3 0 S L}, 37 \mathrm{SLa} / \mathrm{b}$ and controls in P. aeruginosa strains

Compound	Chelator	Effector	MDR P. aeruginosa	P. aeruginosa wildtype PAO1	P. aeruginosa $\boldsymbol{\Delta p v d} \boldsymbol{\Delta p c h}$
$\mathbf{1}$	-	RifS	≥ 64	≥ 64	64
$\mathbf{2 2}$	-	RifS	64	64	64
$\mathbf{2 4 S L}$	DFO	RifS	$32-64$	8	16
$\mathbf{2 8}$	-	CHO-RifSV	≥ 64	≥ 64	≥ 64
$\mathbf{3 0 S L}$	DFO	CHO-RifSV	64	16	16
$\mathbf{3 5}$	-	CorA	>64	≥ 64	≥ 64
37SLa	DFO	CorA	16	16	16
37SLb	DFO	CorA	>64	>64	>64
cefiderocol					

a $[\mu \mathrm{M}]$ for test compounds and cefiderocol, DOTAM = enterobactin mimic, RifS=rifamycin S, CHO-RifSV=3-formyl rifamycin SV, CorA=corallopyronin A, GE = growth enhancing

Table S12. MIC values ${ }^{\text {a }}$ for for $1,22,24 S L, 28,30 S L, 37 S L a / b$ and controls in MDR S. aureus and E. faecium strains

Compound	Chelator	Effector	S. aureus	E. faecium	
$\mathbf{1}$	-	RifS	<1	32	
$\mathbf{2 2}$	-	RifS	4	32	
$\mathbf{2 4 S L}$	DFO	RifS	64	≥ 64	
$\mathbf{2 8}$	-	CHO-RifSV	>64	≥ 64	
$\mathbf{3 0 S L}$	DFO	CHO-RifSV	>64	≥ 64	
$\mathbf{3 5}$	-	CorA	2	16	
$\mathbf{3 7 S L a}$	DFO	CorA	≥ 64	16	
37SLb	DFO	CorA	4	64	
cefiderocol					

a $[\mu \mathrm{M}$] for test compounds and cefiderocol, DOTAM = enterobactin mimic, RifS=rifamycin S, CHO-RifSV=3-formyl rifamycin SV, CorA=corallopyronin A, GE = growth enhancing

Figure S41 Antimicrobial activity of cleavable conjugates and control substances in E. coli $\Delta f e p B(A-B)$ and Δ ton B mutants (C$)-(\mathrm{D})$: (A / C) formyl rifamycin compounds, (B / D) fluoro rifamycin compounds, control antibiotics cefiderocol, in iron-depleted, cation-adjusted medium (IDCAM) over 18 hours at 37 ${ }^{\circ} \mathrm{C}$, error bars correspond to \pm standard error of mean (SEM). CorA $=$ corallopyronin A without base exposition.

Figure S42. Antimicrobial activity of cleavable conjugates and control substances in E. coli $\Delta t o n B$
 and: (A/C) formyl rifamycin compounds, (B/D) fluoro rifamycin compounds, control antibiotics cefiderocol, in iron-depleted, cation-adjusted medium (IDCAM) over 18 hours at $37^{\circ} \mathrm{C}$, error bars correspond to \pm standard error of mean (SEM).

Table S13. MIC values ${ }^{\mathrm{a}}$ for selected conjugates and controls in E. coli mutants $\Delta t o n B$ and $\Delta f e p B$.

Compound	Chelator	Effector	E. coli $\boldsymbol{\Delta t o n B}$	E. coli $\boldsymbol{\Delta f e p B}$
$\mathbf{1}$	-	RifS	≥ 64	>64
$\mathbf{8}$	DOTAM-Ac	CIP	>64	4
$\mathbf{1 1}$	DOTAM-Me	CIP	>64	>64
$\mathbf{1 2}$	DFO	CIP	>64	1
$\mathbf{1 3}$	DFO	CIP	>64	1
$\mathbf{1 9}$	DFO	RifS	>64	8
$\mathbf{2 2}$	-	RifS	64	≥ 64
$\mathbf{2 4 S L}$	DFO	RifS	>64	32
$\mathbf{2 8}$	-	CHO-RifSV	>64	≥ 64
$\mathbf{3 0 S L}$	DFO	CHO-RifSV	64	64
$\mathbf{3 5}$	-	CorA	>64	>64
37SLa	DFO	Cor	>64	>64
cefiderocol				
ciprofloxacin		64	≤ 1	

a $[\mu \mathrm{M}]$ for test compounds and cefiderocol, DOTAM = enterobactin mimic, RifS=rifamycin S, CHO-RifSV=3-formyl rifamycin SV, CorA=corallopyronin A, GE = growth enhancing

Table S14. MIC values ${ }^{\text {a }}$ for $8,11,12,13,19$ in E. coli TBDT mutants $\Delta f i u, \Delta f e p A$ and $\Delta f h u A$.

Compound	Chelator	Effector	E. coli Δ entA $\boldsymbol{\Delta f i u}$	E. coli Δ entA $\boldsymbol{\Delta f e p A}$	E. coli Δ entA $\Delta f h u \boldsymbol{A}$
$\mathbf{8}$	DOTAM-Ac	CIP	8	4	<1
$\mathbf{1 1}$	DOTAM-Me	CIP	>64	>64	>64
$\mathbf{1 2}$	DFO	CIP	≤ 1	2	4
$\mathbf{1 3}$	DFO	CIP	≤ 1	2	2
$\mathbf{1 9}$	DFO	RifS	4	8	32
cefiderocol					
ciprofloxacin		≤ 1	1	≤ 1	

a $[\mu \mathrm{M}]$ for test compounds and cefiderocol, DOTAM = enterobactin mimic, RifS=rifamycin S, CHO-
RifSV=3-formyl rifamycin SV, CorA=corallopyronin A, GE = growth enhancing

Enzymatic quinone TML activation

This procedure was developed based on a publication by Pardeshi et al and our previous work in Peukert et al. ${ }^{14,15}$

The NADH stock of NADH (500 mM in MQ water) was diluted 1:100 in $50 \mathrm{mM} \mathrm{K}_{3} \mathrm{PO}_{4}$ buffer (pH 7.0). The conjugates or control compounds in DMSO were diluted 5 mM NADH in phosphate buffer (final concentration $=150-300 \mu \mathrm{M})$ and the enzyme $(2.5 \mu \mathrm{~g} / \mathrm{mL}$ diaphorase or $1.25 \mu \mathrm{~g} / \mathrm{mL}$ QOR2 final conc.) in buffer was added. The mixtures were incubated at $30^{\circ} \mathrm{C}$ and 600 rpm . A compound preparation without enzyme was used as t_{0} and separated with the sample analytical HPLC program. Samples for analytical HPLC (C18 gemini, $3 \mu \mathrm{~m}$, NX-C18 $110 \mathrm{~A}, 50 \times 2 \mathrm{~mm}, \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}, 0.1 \%$ TFA, DAD detector, $10 \% 3 \mathrm{~min}, 10-100 \%$ ACN 20 min , 100% ACN3 min) were quenched with an excess $\mathrm{MeOH} 1 \% \mathrm{AcOH} .20 \mu \mathrm{~L} /$ sample were injected and the chromatograms were compared to the reference measurements of the intact conjugates or free payloads at for their overlaid absorption at 220, 254 and 280 nm.

MIC assay in iron-depleted medium

The minimal inhibitory concentration was determined in iron-depleted, cation-adjusted medium (IDCAM), as previously described by L. Pinkert, Y. Lai et al and starved for ferric iron* before usage in the MIC assay as previously described by Peukert et al. ${ }^{16,17}$
*Iron starvation: Inoculation of bacteria from glycerol stock in MHB-CHELEX medium overnight at $37^{\circ} \mathrm{C}$ and 180 rpm . Then dilution (1:100) from overnight inoculum in $1 x$ LMR medium without iron (see Peukert et al for medium composition ${ }^{6}$) and starvation for 24 h at $37{ }^{\circ} \mathrm{C} 180 \mathrm{rpm}$. Then dilution (1:10) of overnight culture in 1xLMR medium without iron and growth for 2-3 hours to reach exponential growth phase. Bacteria are then washed with $1 \times \mathrm{PBS}(\mathrm{pH} 7.4)$ and harvested by centrifugation ($4500 \mathrm{rcf}, 4^{\circ} \mathrm{C}$, 5 min). The pellet was resuspended in MHBCHELEX and the OD600nm was adjusted to 0.01 , before the dilution was employed in the MIC assay in a 1:1 dilution with the previously distributed compound dilution.

Due to their linker and/or their payload nearly all conjugates exhibited a high background signal at 600 nm . Thus the background signal $\left(\mathrm{OD}_{600 \mathrm{~nm}}(0 \mathrm{~h})\right)$, after the addition of the bacteria to the compound dilutions, was subtracted from the $\mathrm{OD}_{600 \mathrm{~nm}}$ (18h) measurements. This was necessary to allow the minimal inhibitory concentration (MIC) determination in the presence of these strongly colored compounds. However, due to medium evaporation and alteration of the compound and their absorption over 18 h , this caused negative values at high compound concentrations after the subtraction. In that case we used a tangent to the dose response curve to determine the MIC. In accordance with literature we define the MIC as the lowest concentration of an antibiotic that will inhibit the visible growth of a microorganism after overnight incubation. ${ }^{18}$ For most compounds maximum 2\% DMSO concentration were sufficient to solubilize them (variable DMSO concentration, highest 2\% for highest compound concentration). For 73, 24SL, 30SL, 37Sla/b 10\% DMSO had to be used for compound dissolution for the highest compound concentration during the assay. The same concentration was always also applied for the DMSO control.

The MDR strains used in the MIC assays are shown in the table below. For the siderophore deficient strains (E. coli $\Delta e n t A$ and P. aeruginosa $\Delta p v d \Delta p c h$) see K. Ferreira et al and Peukert et al. ${ }^{4,19}$ For further information on the E. coli TBDT, TonB and PBP knockout mutants please see our previous publication by L. Pinkert, Y-H. Lai et al20:

Table S14. Bacterial strains used in the MIC assay.
$\left.\begin{array}{ccccc}\hline \text { Strain } & \text { DSMZ\# } & \text { Antibiotic Resistance } & \text { Medium } \\ \hline \text { Escherichia coli21 } & \text { DSM1116 } & \text { Penicillin G, Oxacillin, Vancomycin, } & \\ & & \begin{array}{c}\text { Lincomycin, Bacitracin, Clindamycin, } \\ \text { Linezolid, Nystatin, Quinupristin, }\end{array} & \text { MHB } \\ & & \text { Teicoplanin, Piperacillin }\end{array}\right]$

Table S15. Knockout mutants in this study

Strain	Source/Description	Antibiotic Resistance	Medium
E. coli K12 wildtype BW25113 parent	K. Ferreira et al ${ }^{19}$	Kanamycin	MHB
E. coli Δ entA	K. Ferreira et a ${ }^{19}$	Kanamycin	MHB
E. coli \triangle entA \triangle fepB	L. Pinkert, Y. H. Lai et al ${ }^{20}$	Chloramphenicol	MHB
E. coli Δ ton B	L. Pinkert, Y. H. Lai et al ${ }^{20}$	Kanamycin	MHB
E. coli \triangle entA \triangle fiu	L. Pinkert, Y. H. Lai et al20	Chloramphenicol	MHB
E. coli \triangle entA \triangle fepA	L. Pinkert, Y. H. Lai et al ${ }^{20}$	Chloramphenicol	MHB
E. coli \triangle entA \triangle fhuA	L. Pinkert, Y. H. Lai et al ${ }^{20}$	Chloramphenicol	MHB
P. aeruginosa PAO1	DSM $22644{ }^{28}$	-	MHB
P. aeruginosa PAO1	Gasser et a ${ }^{28}$	-	MHB
$\Delta p v d D \quad \Delta p c h E-F$			

Measurement of Uptake of siderophore conjugates and payloads into Gram-negative bacteria by LC-MS/MS

Bacterial strain, cultivation and iron starvation

E. coli K12-BW25113 (wild-type) was obtained from the Coli Genetic Stock Center (CGSC, \# 7636). The multidrug resistant strain (MDR) DSM1116 was used for the uptake of corallopyronin and its conjugate. A bacterial cultivation and iron-depletion workflow was followed to have comparable conditions to the MIC assays (see Figure S43). All cultures were incubated at 37 ${ }^{\circ} \mathrm{C}$ with shaking at 150 rpm . Pre-cultures were prepared in iron-depleted, cation-adjusted medium (MHB-CHELEX). These cultures were used to prepare overnight cultures in LMR with a start $\mathrm{OD}_{600}=0.01$, which were again cultivated overnight. Then the assay culture was prepared in fresh LMR (start $\mathrm{OD}_{600}=0.1$), and incubated until an $\mathrm{OD}_{600}=0.5$ was reached. The required volume of bacterial suspension (V1) was removed and the cells were pelleted by centrifugation at $4500 \mathrm{~g}, 4^{\circ} \mathrm{C}$ and washed twice with an equal volume of LMR. In the meantime, $10 \mu \mathrm{~L}$ compound stock (1 mM in DMSO) was added to 15 mL falcon tubes. The washed cells were concentrated to $\mathrm{OD}_{600}=1.0$ by re-suspending in half of the initial volume ($1 / 2 \mathrm{~V} 1$) MHB-CHELEX and 10 mL of the resultant suspension added to each of the 15 mL falcon tubes and incubated for 10 min at $37^{\circ} \mathrm{C}$, 150 rpm .

Figure S43. Workflow for the cultivation and iron starvation of bacteria foregoing the fractionation assay.

Generation of cell fractions and whole cell samples

The fractionation procedure was performed as previously described. ${ }^{29}$ Post compound treatment, the cells were immediately collected by centrifugation at $4500 \mathrm{~g}, 5 \mathrm{~min}$ at $4^{\circ} \mathrm{C}$. The supernatant was removed and the pelleted cells were re-suspended in 2 mL TBS (50 mM Tris$\mathrm{HCl} \mathrm{pH} 7.0,135 \mathrm{mM} \mathrm{NaCl}, 2.5 \mathrm{mM} \mathrm{KCl}$) and split in equal portions in two 2 mL Eppendorf tubes. Next, the tubes were centrifuged for 5 min at $4500 \mathrm{~g}, 4^{\circ} \mathrm{C}$. The supernatant was removed and washed with $300 \mu \mathrm{l}$ wash buffer (25 mM Tris HCl pH 7.4). After centrifugation as before, the cell pellet was re-suspended in 100μ of the respective wash buffer and then $100 \mu \mathrm{l}$ of a sucrose-EDTA solution ($40 \% \mathrm{w} / \mathrm{w}$ in 25 mM Tris HCl pH 7.4 with 2 mM EDTA) was added, the
solutions were briefly mixed by inversion and treated for 5 min at room temperature. After treatment, the samples were centrifuged for 5 min at $3500 \mathrm{~g}, 4^{\circ} \mathrm{C}$. After centrifugation, $200 \mu \mathrm{l}$ of a mixture of $50 \%(\mathrm{v} / \mathrm{v})$ of the respective wash buffer and the sucrose-EDTA solution was added to the pellets without disturbing them and they were settled by centrifugation at 3500 g , $4^{\circ} \mathrm{C}$ for 1 min , followed by removal of the supernatant. Next, the two tubes were used for different parts of the assay - one tube was used to prepare the whole cell sample, the second tube for the cell fractionation sample. For the whole cell sample, the pellet was re-suspended in $190 \mu \mathrm{l} 10 \mathrm{mM}$ Tris-HCl pH 7.4, and the sample was sonicated using a Bandelin Sonopuls sonifier with a MS2.5 tip twice for 1 kJ , cooling the sample on ice in between. For the fractionation sample, $200 \mu \mathrm{l} 0.5 \mathrm{mM} \mathrm{MgSO} 4$ solution was carefully added to the pellet, and then the sample was incubated on ice horizontally, with the pellet upwards, and the solution touching the pellet for 10 min . After the incubation on ice, the sample was centrifuged again for 10 min at $3500 \mathrm{~g}, 4^{\circ} \mathrm{C}$. Subsequently, the supernatant was collected - this is the periplasmic fraction (PP). Next, the pellet was washed with $200 \mu \mathrm{MgSO} 4$ solution without disturbing it and centrifuged for 1 min at $3500 \mathrm{~g}, 4^{\circ} \mathrm{C}$. After removal of the supernatant, the pellet was treated in the 10 mM Tris-HCI buffer pH 7.4 and sonified as the whole-cell sample. For both samples, $10 \mu \mathrm{l}$ DNA-mix ($60 \mu \mathrm{~g} / \mathrm{ml}$ in $1 \mathrm{M} \mathrm{MgCl}_{2}$) was added and incubated at $37^{\circ} \mathrm{C}, 800 \mathrm{rpm}$ for 15 min to digest the DNA in the samples. The whole-cell sample (WC) was stored until analysis, the fractionation sample was further divided into a cytoplasmic and membrane-containing fraction by centrifugation at $30.000 \mathrm{~g}, 4^{\circ} \mathrm{C}$ for 45 min . After centrifugation, the supernatant was collected, which is the cytoplasmic fraction (CP). The pelleted membranes were washed by addition of $200 \mu \mathrm{l} 10 \mathrm{mM}$ Tris- HCl pH 7.4 without re-suspending the pellet and centrifuged for 1 min at 16.000 g . The final supernatant was removed and the pellet re-suspended in $200 \mu \mathrm{l}$ of 0.5 mM MgSO 4 , this is the membranes fraction (M). Samples mock-treated with DMSO instead of compound were used to generate matrix for compound standard curves. All samples were stored at $-20^{\circ} \mathrm{C}$ until preparation for LC-MS/MS analysis.

LC-MS/MS analysis

Standards were prepared in precipitation solution ($320 \mu \mathrm{l} 37.5 \% \mathrm{MeCN}: 37.5 \% \mathrm{MeOH}: 25 \%$ $\mathrm{H}_{2} \mathrm{O}$ supplemented with 0.5% formic acid (final)) in appropriate concentrations to prepare comparable linear standard curves. These standards were supplemented with $80 \mu \mathrm{l}$ mocktreated matrix in a 96-well deep well plate (Brand, BR701354). $80 \mu \mathrm{l}$ of each sample was combined with $320 \mu \mathrm{l}$ precipitation solution. The plate was sealed immediately and the contents mixed briefly at room temperature prior to centrifugation at 2250 g for 60 min . at $4^{\circ} \mathrm{C}$. After centrifugation, 320μ l were transferred into a MTP with a V-shaped well bottom (Greiner Bio-One, 651201) and dried in a CentriVap fitted with a $-80^{\circ} \mathrm{C}$ cold trap (Labconco, Kansas, MO, USA). The concentrated samples were re-suspended in $50 \mu \mathrm{ACN}: \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$ (3:3:4) containing either 0.1% formic acid and $10 \mathrm{ng} / \mathrm{ml}$ caffeine (internal standard, positive mode) or
$100 \mathrm{ng} / \mathrm{mL}$ glipizide (internal standard, negative mode). The samples were analyzed using a 1290 Infinity II LC System (Agilent Technologies, Santa Clara, CA, USA) with an AB SCIEX QTrap 6500 triple quadrupole mass spectrometer (AB SCIEX Germany GmbH, Darmstadt, Germany) in positive mode. 5μ of each sample was injected on a Gemini® $3 \mu \mathrm{~m}$ NX-C18 110 $\AA 50 \times 2 \mathrm{~mm}$ column (Phenomenex, Torrance, CA, USA) and separated with a gradient of $\mathrm{H}_{2} \mathrm{O}$ and ACN, both supplemented with 0.1% formic acid. In brief, the LC profile consisted of an initial 1 min step at $95 \% \mathrm{H}_{2} \mathrm{O}, 5 \% \mathrm{ACN}$, followed by a gradient from 5% to $95 \% \mathrm{ACN}$ over 4 min with a final step for 1 min at 95% ACN using a constant flow rate of $0.8 \mathrm{~mL} / \mathrm{min}$ while the temperature of the column was stabilized to $25^{\circ} \mathrm{C}$. Compound 22 and caffeine were detected as $[\mathrm{M}+\mathrm{H}]^{+}$, while a fragment of $\mathrm{m} / \mathrm{z}=925.423 \mathrm{Da}$, assumed to be formed via McLafferty rearrangement (Figure S44), served to detect 24SL. Glipizide and CorA 35 were detected in negative mode as the respective $[\mathrm{M}-\mathrm{H}]^{-}$ions. Transitions are listed below in Table S15.

Table S15: MRMs used for MS/MS detection of compounds. * = fragment detected (see below); IS = internal standard.

ID	Mode	Q1 mass [Da]	Q3 mass [Da]	Time [ms]	$\begin{aligned} & \text { DP } \\ & \text { [V] } \end{aligned}$	$\begin{aligned} & \text { EP } \\ & \text { [V] } \end{aligned}$	$\begin{aligned} & \mathrm{CE} \\ & {[\mathrm{~V}]} \end{aligned}$	$\begin{gathered} \text { CXP } \\ {[\mathrm{V}]} \end{gathered}$
Caffeine (IS)	Positive							
Quantifier		195.116	138.1	50	66	10	27	10
Qualifier			110.1	50	66	10	31	6
24SL*								
Quantifier		925.318	533.1	50	1	6	10	47
Qualifier / alternate quantifier			865.3	50	1	6	10	35
Alternate qualifier			390.9	50	1	6	10	95
22								
Quantifier		915.339	883.3	50	1	71	10	27
Qualifier		915.339	491.0	50	1	71	10	65
Glipizide (IS)	Negative							
Quantifier		443.936	319.1	50	-66	-10	-26	-21
Qualifier			170.1	50	-66	-10	-40	-7
CorA								
Quantifier			301.2	50	-85	-10	-32	-17
Qualifier			283.1	50	-85	-10	-34	-13
Alternate qualifier		526.311	163.2	50	-85	-10	-46	-11
Alternate qualifier			123.2	50	-85	-10	-38	-5

Figure S44. In the case of 24SL, it is hypothesized that loss of MeOH and McLafferty rearrangement lead to the fragment at 925.4 Da, which was used for detection and quantification of 24SL.

Uptake and release of corallopyronin A 35

Compound uptake was determined 35 and 36 in MDR E. coli DSM1116 at a concentration of $1 \mu \mathrm{M}$ for both antibiotics. As highlighted earlier, $\mathbf{3 5}$ is prone to isomerisation, readily producing CorA' (35') and ultimately $\operatorname{CorC}\left(\mathbf{3 5}^{*}\right)$ after incubation in slightly acidic aqueous media (Figure S45B). ${ }^{30,}{ }^{31}$ Under the acidic workup conditions, both isomers were detected as additional peaks during the analysis of the samples, with the transitions used to detect 35 corresponding to the [M-H]- ions. Using specific analytical standards, the peaks were identified as CorA' (35') and CorC 35^{*}, respectively (data not shown). During accumulation experiments with 35 , a 50:50 mixture of 35 and 35^{*} was found in the cells, whereas equivalent experiments with conjugate $\mathbf{3 6}$ led to almost exclusively detection of 35^{*}. We conclude that cyclisation must have occurred intracellularly post enzymatic cleavage or during workup. Mechanistically, we interpret that the enhanced formation of $\mathbf{3 5}^{*}$ results from the release of the alcoholate after linker cleavage from 36, followed by Michael addition to form the tetrahydrofurane. Thus the enhanced formation of $\mathbf{3 5}^{*}$ is seen as indirect evidence for intracellular payload release. In previous studies, all three corallopyronin isomers had comparable bioactivites. In light of this, the sum of the three peak areas was used to provide the most reliable quantification of corallopyronin. Accordingly, it was found that solely negligible amounts of the natural product accumulated in the bacteria, while upon incubation with 36 an approx. 300 -fold increase in the amount of corallopyronin internalised was observed in the whole-cell samples (see Figure S45).

Figure S45. A) Uptake or CorA (35) and payload released from 36 into MDR resistant E. coli DSM1116. $1 \mu \mathrm{M}$ compound was incubated with 5 ml cells OD600= 1.0 as described above. The uptake in the different compartments - periplasm (black), cytoplasm (violet), membrane (purple) - and whole cells (amber) is depicted as bar graphs. The sum of the amounts in the fractions periplasm, cytoplasm and membrane is shown in pink. The accumulation was monitored using the MRMs for 35 . Note the log scale of the graph. B) Structures of CorA (35), CorA' (35’) and CorC (35*). ${ }^{30}$

NMR spectra

Compound 40

Compound 41

Compound 7

Compound 43

Compound 44

Compound 46

cpe17_22495Fm
cpe17_22495Fm 3 Peukert
3 CP 416
Cpe17_22495Fm 3 Peukert
Cpe17-22495Fm
3 CP 416

Compound 47

Compound 47b

Compound 48

Compound 49

Compound 50

Compound 51

Compound 52

Compound 53

Compound 54

Compound 55

cpe17_22665Fa
3CP412

Compound 58

Compound 11

Compound 59

Compound 8

Compound 17

Compound 9

Compound 10

Compound 12

Compound 60

Compound 13

Compound 14

																									-4E+06
	40230	220	210	200	190	180	170	160	150	140	130	$\begin{aligned} & 120(110 \\ & { }_{\mathrm{f} 1}(\mathrm{ppm}) \end{aligned}$	100	90	80	70	60	50	40	30	20	10	0	-10	

Compound 15

Compound 16

Compound 61a

Compound 61a

Compound 2

Compound 22

Compound 27
cpe17_20452Sm
cpe1720452Sm 1 Peukert
F Formyl Rifamycin

Compound 62

(

Compound 28

Compound 65

Compound 64

Compound 32

Compound 67

Compound 68

Compound 69

(l)

Compound 70

Compound 71

cpe17-22699Sm
cpe17-22699Sm 1
3 CP 447

Compound 72

Compound 73

Compound 74

Compound 4

Compound 5a

Compound 5
(

Compound 6

Compound 3

Compound 18

Compound 19

Compound 20

Compound 21

Compound 23

Compound 24

Compound 24SL

Compound 26

Compound 30

Compound 30SL
(

Compound 29

Compound 33

Compound 34

Compound 36
(

Compound 37

Compound 37SLa

Compound 37SLb

References

1. H. E. Gottlieb, V. Kotlyar and A. Nudelman, J. Org. Chem., 1997, 62, 7512-7515.
2. H. Irschik, R. Jansen, K. Gerth, G. Hofle and H. Reichenbach, The Journal of antibiotics, 1987, 40, 7-13.
3. A. Schiefer, A. Schmitz, T. F. Schäberle, S. Specht, C. Lämmer, K. L. Johnston, D. G. Vassylyev, G. M. König, A. Hoerauf and K. Pfarr, J. Infect. Dis., 2012, 206, 249-257.
4. C. Peukert, L. N. B. Langer, S. M. Wegener, A. Tutov, J. P. Bankstahl, B. Karge, F. M. Bengel, T. L. Ross and M. Brönstrup, J. Med. Chem., 2021, 64, 12359-12378.
5. C. Ji and M. J. Miller, BioMetals, 2015, 28, 541-551.
6. C. Peukert, L. N. B. Langer, S. M. Wegener, A. Tutov, J. P. Bankstahl, B. Karge, F. M. Bengel, T. L. Ross and M. Brönstrup, J. Med. Chem., 2021, DOI: 10.1021/acs.jmedchem.1c01054.
7. worldwide Pat., 2015.
8. worldwide Pat., 2017.
9. R. A. Adams, G. Leon, N. M. Miller, S. P. Reyes, C. H. Thantrong, A. M. Thokkadam, A. S. Lemma, D. M. Sivaloganathan, X. Wan and M. P. Brynildsen, J. Antibiot., 2021, 74, 786-798.
10. N. Mori, Y. Ishii, K. Tateda, S. Kimura, Y. Kouyama, H. Inoko, S. Mitsunaga, K. Yamaguchi and E. Yoshihara, J. Antimicrob. Chemother., 2012, 67, 2173-2181.
11. B. Lee, J. Yan, A. Ulhaq, S. Miller, W. Seo, P. Lu, R. She, B. Spellberg, B. Luna and P. A. Bradford, mSphere, 2021, 6, e00920-00921.
12. D. M. Rothstein, C. Shalish, C. K. Murphy, A. Sternlicht and L. A. Campbell, Expert Opin. Investig. Drugs, 2006, 15, 603-623.
13. R. Jansen, D. Schummer, H. Irschik and G. Höfle, Liebigs Ann., 1990, 1990, 975-988.
14. K. A. Pardeshi, T. A. Kumar, G. Ravikumar, M. Shukla, G. Kaul, S. Chopra and H. Chakrapani, Bioconj. Chem., 2019, 30, 751-759.
15. C. Peukert, S. Popat Gholap, O. Green, L. Pinkert, J. van den Heuvel, M. van Ham, D. Shabat and M. Brönstrup, Angew. Chem. Int. Ed., 2022, n/a, e202201423.
16. L. Pinkert, Y.-H. Lai, C. Peukert, S.-K. Hotop, B. Karge, L. M. Schulze, J. Grunenberg and M. Brönstrup, J. Med. Chem., 2021, 64, 15440-15460.
17. C. Peukert, S. Popat Gholap, O. Green, L. Pinkert, J. van den Heuvel, M. van Ham, D. Shabat and M. Brönstrup, Angew. Chem. Int. Ed., 2022, 61, e202201423.
18. J. M. Andrews, J. Antimicrob. Chemother., 2001, 48, 5-16.
19. K. Ferreira, H.-Y. Hu, V. Fetz, H. Prochnow, B. Rais, P. P. Müller and M. Brönstrup, Angew. Chem. Int. Ed., 2017, 56, 8272-8276.
20. L. Pinkert, Y.-H. Lai, C. Peukert, S.-K. Hotop, B. Karge, L. M. Schulze, J. Grunenberg and M. Brönstrup, J. Med. Chem., 2021, 64, 15440-15460.
21. BacDive, E. coli W 10.13145/bacdive4428.20211221.6, accessed 17.01.2022, DOI: 10.13145/bacdive4428.20211221.6.
22. BacDive, Staphylococcus aureus DSM 11822, 10.13145/bacdive14461.20211221.6, accessed 17.01.2022, DOI: 10.13145/bacdive14461.20211221.6.
23. K. p. s. p. C. BacDive, Klebsiella pneumoniae subsp. pneumoniae C122, 10.13145/bacdive4955.20211221.6, accessed 17.01.2022, DOI: 10.13145/bacdive4955.20211221.6.
24. BacDive, Acinetobacter baumannii 2208 10.13145/bacdive8093.20211221.6, accessed 17.01.2022, DOI: 10.13145/bacdive8093.20211221.6.
25. BacDive, Acinetobacter baumannii 2197, 10.13145/bacdive8094.20220920.7, accessed 17.01.2022, DOI: 10.13145/bacdive8093.20211221.6.
26. BacDive, Pseudomonas aeruginosa PAO, 10.13145/bacdive12763.20211221.6, accessed 17.01.2022, DOI: 10.13145/bacdive12763.20211221.6.
27. BacDive, Enterococcus faecium DSM 20477 10.13145/bacdive5301.20211221.6, accessed 17.01.2022, DOI: 10.13145/bacdive5301.20211221.6.
28. V. Gasser, E. Baco, O. Cunrath, P. S. August, Q. Perraud, N. Zill, C. Schleberger, A. Schmidt, A. Paulen, D. Bumann, G. L. A. Mislin and I. J. Schalk, Environ. Microbiol., 2016, 18, 819-832.
29. H. Prochnow, V. Fetz, S. K. Hotop, M. A. García-Rivera, A. Heumann and M. Brönstrup, Anal. Chem., 2019, 91, 1863-1872.
30. A. K. Krome, T. Becker, S. Kehraus, A. Schiefer, M. Gütschow, L. Chaverra-Muñoz, S. Hüttel, R. Jansen, M. Stadler, A. Ehrens, D. Pogorevc, R. Müller, M. P. Hübner, T. Hesterkamp, K. Pfarr, A. Hoerauf, K. G. Wagner and G. M. König, Nat. Prod. Rep., 2022, 39, 1705-1720.
31. R. Jansen, G. Höfle, H. Irschik and H. Reichenbach, Liebigs Ann. Chem., 1985, 1985, 822-836.

[^0]: ${ }^{13}$ C-NMR (151 MHz, DMSO- d_{6}): $\delta=202.07,195.55,174.20,171.77,170.38,105.54,104.53$, 86.50, 77.85, 73.59, 70.29, 70.27, 70.24, 70.14, 70.00, 69.70, 69.15, 50.44, 49.06, 47.61, $46.32,43.55,38.88,35.36,31.76,31.50,30.36,29.48,29.29,29.17,28.04,26.49,24.07$, 23.96, 23.34, 22.56, 21.18, 20.82, 16.96, 14.43, 12.85, 7.79, 6.84.

