Supplementary Information

Aryl-to-Alkyl Radical Relay Heck Reaction of Amides with Vinyl Arenes

Yu-jia Du⁺,¹ Xia-xin Sheng⁺,¹ Jun-hua Li,¹ Jia-ming Chen,¹ Sen Yang⁺,¹ Ming Chen^{*1}

¹ School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China

⁺These authors contributed equally: Y. D. and X. S.

* = corresponding author. E-mail: <u>chenming0228@cczu.edu.cn</u>

General Information
The Parameters of the Blue LEDs
Syntheses of Amides
Selected Optimization Studies
Optimization for the Radical Relay Heck Reaction ^{<i>a,b</i>}
General Procedure of the Radical Relay Heck Reaction7
Typical procedure for the synthesis of product 27
Reaction of Carboxamide Substrates45
Grams Scale Synthesis
Derivatizations of product 2a47
Derivatizations of product 2k47
Derivatizations of product 2i
Experimental Procedures for the Mechanistic Studies
The Radical Trapping Experiment with TEMPO50
Radical Clock Experiment with amide 1451
Radical Clock Experiment with vinyl arene 1752
Investigation of Enantioselective Radical Relay Heck Reaction (1u to 4r)54
Typical procedure for the enantioselective Radical Relay Heck Reaction55
References

General Information

Unless noted otherwise, all the solvents and commercially available reagents were purchased and used directly. Benzene, 1,4-dioxane and tetrahydrofuran were distilled freshly over sodium, benzotrifluoride was distilled freshly over P2O5, DCM was distilled freshly over CaH₂ and carefully freeze-pump-thawed. Sensitive reagents and solvents were transferred under nitrogen into a nitrogen-filled glovebox with standard techniques. Reactions were monitored with thin layer chromatography (TLC) using silica gel 60 F-254 plates. TLC plates were normally visualized by UV irradiation (254 nm or 365 nm), stained with basic KMnO₄. Flash chromatography was performed using silica gel 60 (200-300 mesh). Vials (15 x 45 mm 1 dram (4 mL) / 17 x 60 mm 3 dram (7.5 mL) with PTFE lined cap attached) were purchased from Qorpak and flame-dried or put in an oven overnight and cooled in a desiccator. Mass (HRMS) analysis was obtained using Agilent 6200 Accurate-Mass TOF LC/MS system with Electrospray Ionization (ESI). Nuclear magnetic resonance spectra (¹H NMR and ¹³C NMR) were recorded with Bruker AVANCE III-300 (300 MHz, ¹H at 300 MHz, ${}^{13}C$ at 75 MHz) or 400 (400 MHz, ${}^{1}H$ at 400 MHz, ${}^{13}C$ at 101 MHz). ${}^{19}F$ NMR spectra were recorded on Bruker AVANCE III-400. Unless otherwise noted, all spectra were acquired in CDCl₃. Chemical shifts are reported in parts per million (ppm, δ), downfield from tetramethylsilane (TMS, δ =0.00 ppm) and are referenced to residual solvent (CDCl₃, δ =7.26 ppm (¹H) and 77.00 ppm (¹³C). Coupling constants were reported in Hertz (Hz). Data for ¹H NMR spectra were reported as follows: chemical shift (ppm, referenced to protium, s = singlet, d = doublet, t = triplet, q =quartet, quin = quintet, dd = doublet of doublets, td = triplet of doublets, ddd = doublet of doublets, m = multiplet, coupling constant (Hz), and integration). All other materials were obtained from Energy Chemical and were used as received.

The Parameters of the Blue LEDs

Test Report of LED Photoelectric Test System

Syntheses of Amides

The amide $\mathbf{1k}^1$ was prepared according to the previously reported literature. The others are known compounds²

The styrene **3d**,³ **3e**,⁴ **3h**,⁵ **3i**,⁶ **3n**,⁷ **3o**,⁸ **3q**,⁹ **3s**¹⁰ and **17**¹¹ were prepared according to the previously reported literature. The others are commercially available and were used as recieved.

Selected Optimization Studies

Optimization for the Radical Relay Heck Reaction^{*a,b*}

^a Each reaction was run on a 0.1 mmol scale in a sealed 4 mL vial for 12 h; ^b yields of **2a** and trans/cis (*E/Z*) ratios were determined by ¹H NMR analysis using dibromomethane as the internal standard. TFA = trifluoroacetate, COD = 1,5-cyclooctadiene, dba = dibenzylideneacetone, Py = pyridine.

General Procedure of the Radical Relay Heck Reaction

Typical procedure for the synthesis of product 2

The Device of Photo-induced Reaction

An oven-dried 4.0 mL vial was charged with amide 1 (0.2 mmol), alkene 3 (0.3 mmol), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol), Xantphos (23.1 mg, 0.04 mmol) and Cs_2CO_3 (130.3 mg, 0.4 mmol). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2.5 mL of degassed benzene (PhH) were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 12 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10 to 2:3) to afford **2/4**.

(*E*)-*N*-methyl-*N*-phenyl-2-styrylhexanamide (2a). Following the typical procedure described above, the reaction was carried out by the mixture of **1a** (66.2 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:10) afforded the title product in 88% isolated yield (54.1 mg) and E/Z = 5:1 as a colorless oil. ¹H NMR (**300** MHz, CDCl₃) δ 7.46 – 7.37 (m, 3H), 7.32 – 7.25 (m, 4H), 7.22 – 7.17 (m, 3H), 6.19 (dd, J = 15.9, 9.0 Hz, 1H), 6.01 (d, J = 15.9 Hz, 1H), 3.27 (s, 3H), 3.08 (q, J = 7.5 Hz, 1H), 1.90 – 1.78 (m, 1H), 1.56 – 1.43 (m, 1H), 1.22 – 1.14 (m, 4H), 0.84 (t, J = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 173.6, 143.7, 136.9, 131.0, 129.5, 129.5, 128.3, 127.8, 127.7, 127.2, 126.1, 47.0, 37.3, 33.0, 29.3, 22.4, 13.8. HRMS (ESI) calcd for C₂₁H₂₅NO [M+H]⁺: 308.2009, found 308.2007.

(*E*)-*N*-(4-methoxyphenyl)-*N*-methyl-2-styrylhexanamide (2b). Following the typical procedure described above, the reaction was carried out by the mixture of 1b (72.2 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), $Pd(OAc)_2$ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs_2CO_3 (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:10) afforded the title

product in 80% isolated yield (54.0 mg) and E/Z = 4:1 as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.18 (m, 4H), 7.14 – 7.10 (m, 1H), 7.02 (d, J = 8.8 Hz, 2H), 6.87 – 6.85 (m, 2H), 6.10 (dd, J = 16.0, 8.8 Hz, 1H), 5.96 (d, J = 16.0 Hz, 1H), 3.78 (s, 3H), 3.16 (s, 3H), 1.79 – 1.70 (m, 1H), 3.01 (q, J = 7.6 Hz, 1H), 1.46 – 1.37 (m, 1H), 1.16 – 1.07 (m, 4H), 0.76 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 158.9, 137.1, 136.6, 131.0, 129.7, 128.8, 128.4, 127.2, 126.1, 114.6, 55.4, 46.9, 37.6, 33.1, 29.4, 22.5, 13.9. HRMS (ESI) calcd for C₂₂H₂₇NO₂ [M+H]⁺: 338.2115, found 338.2112.

(*E*)-*N*-(4-chlorophenyl)-*N*-methyl-2-styrylhexanamide (2c). Following the typical procedure described above, the reaction was carried out by the mixture of 1c (73.1 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 55% isolated yield (37.5 mg) and E/Z = 5:1 as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.40 (m, 2H), 7.32 – 7.27 (m, 4H), 7.24 – 7.19 (m, 1H), 7.14 – 7.12 (m, 2H), 6.17 (dd, *J* = 16.0, 8.8 Hz, 1H), 6.03 (d, *J* = 16.0 Hz, 1H), 3.25 (s, 3H), 3.04 (q, *J* = 8.0 Hz, 1H), 1.87 – 1.78 (m, 1H), 1.55 – 1.46 (m, 1H), 1.24 – 1.14 (m, 4H), 0.84 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 142.4, 136.9, 133.7, 131.3, 129.8, 129.3, 129.2, 128.5, 127.4, 126.2, 47.2, 37.5, 33.2, 29.4, 22.5, 13.9. HRMS (ESI) calcd for C₂₁H₂₄CINO [M+H]⁺: 342.1619, found 342.1626.

(E)-N-methyl-2-styryl-N-(4-(trifluoromethyl)phenyl)hexanamide (2d). Following the typical procedure described above, the reaction was carried out by the mixture of 1d (79.8 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 63% isolated yield (47.3 mg) and E/Z = 5:1 as a colorless oil. ¹H NMR (300 MHz, **CDCl₃**) δ 7.71 (d, J = 8.1 Hz, 2H), 7.35 (s, 1H), 7.32 – 7.29 (m, 5H), 7.25 – 7.21 (m, 1H), 6.19 (dd, J = 15.9, 8.7 Hz, 1H), 6.02 (d, J = 15.9 Hz, 1H), 3.30 (s, 3H), 3.05 (q, J= 7.8 Hz, 1H), 1.89 - 1.78 (m, 1H), 1.56 - 1.49 (m, 1H), 1.26 - 1.16 (m, 4H), 0.85 (t, J = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 173.3, 147.1 (q, J = 1.5 Hz), 136.7, 131.4, 129.1, 128.5, 128.2 (q, J = 0.7 Hz), 128.1, 127.5, 126.8 (q, J = 3.0 Hz), 126.2, 123.7 (q, J = 272.3 Hz), 47.4, 37.4, 33.2, 29.4, 22.5, 13.9. ¹⁹F NMR (376 MHz, **CDCl₃**) δ -62.5. **HRMS (ESI)** calcd for C₂₂H₂₄F₃NO [M+H]⁺: 376.1883, found 376.1882.

Methyl (*E*)-4-(*N*-methyl-2-styrylhexanamido)benzoate (2e). Following the typical procedure described above, the reaction was carried out by the mixture of 1e (77.8 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), $Pd(OAc)_2$ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs_2CO_3 (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere **S10**

under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:10) afforded the title product in 58% isolated yield (42.4 mg) and E/Z = 5:1 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 8.06 – 8.03 (m, 2H), 7.25 – 7.22 (m, 6H), 7.17 – 7.12 (m, 1H), 6.11 (dd, J = 15.9, 8.7 Hz, 1H), 5.96 (d, J = 15.9 Hz, 1H), 3.89 (s, 3H), 3.23 (s, 3H), 3.03 – 2.96 (m, 1H), 1.82 – 1.70 (m, 1H), 1.50 – 1.38 (m, 1H), 1.15 – 1.10 (m, 4H), 0.76 (t, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.4, 166.2, 147.9, 136.8, 131.3, 131.0, 130.7, 129.2, 128.5, 127.6, 127.4, 126.2, 52.4, 47.3, 37.3, 33.2, 29.3, 22.5, 13.9. HRMS (ESI) calcd for C₂₃H₂₇NO₃ [M+H]⁺: 366.2064, found 366.2061.

(*E*)-*N*,*N*-diphenyl-2-styrylhexanamide (2f). Following the typical procedure described above, the reaction was carried out by the mixture of 1f (78.7mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 61% isolated yield (45.0 mg) and E/Z = 4:1 as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.28 (m, 3H), 7.27 – 7.22 (m, 5H), 7.21 – 7.16 (m, 5H), 7.10 – 7.07 (m, 2H), 6.19 (dd, *J* = 16.0, 8.8 Hz, 1H), 6.05 (d, *J* = 16.0 Hz, 1H), 3.18 (q, *J* = 7.6 Hz, 1H), 1.92 – 1.86 (m, 1H), 1.53 – 1.46 (m, 1H), 1.24 – 1.15 (m, 4H), 0.79 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.9, 142.7, 137.0, 131.5, 129.5, 129.4, 129.1, 128.8, 128.5, 128.1, 128.0, 127.4, 126.5, 126.2, 48.0, 33.5, 29.4, 22.5, 13.9. HRMS (ESI) calcd for C₂₆H₂₇NO [M+H]⁺: 370.2165, found 370.2162.

(*E*)-*N*,2-dibenzyl-*N*,4-diphenylbut-3-enamide (2g). Following the typical procedure described above, the reaction was carried out by the mixture of 1g (81.5 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 58% isolated yield (48.5 mg) and E/Z = 13:1 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.34 – 7.28 (m, 4H), 7.28 – 7.21 (m, 7H), 7.19 – 7.14 (m, 5H), 7.11 – 7.07 (m, 2H), 7.02 – 6.95 (m, 2H), 6.31 (dd, *J* = 15.9, 8.7 Hz, 1H), 6.07 (d, *J* = 15.9 Hz, 1H), 5.01 (d, *J* = 14.4 Hz, 1H), 4.54 (d, *J* = 14.4 Hz, 1H), 3.37 – 3.23 (m, 2H), 2.77 – 2.66 (m, 1H). ¹³C NMR (101MHz, CDCl₃) δ 172.3, 141.6, 139.2, 137.1, 136.9, 131.4, 129.4, 129.1, 128.9, 128.8, 128.6, 128.5, 128.2, 128.1, 127.9, 127.4, 127.1, 126.3, 126.2, 52.9, 49.6, 39.9. HRMS (ESI) calcd for C₃₀H₂₇NO [M+H]⁺: 418.2165, found 418.2163.

(*E*)-10-bromo-*N*-methyl-*N*-phenyl-2-styryldecanamide (2h). Following the typical procedure described above, the reaction was carried out by the mixture of 1h (93.2 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:10) afforded the title product in 66% isolated yield (58.2 mg) and E/Z = 6:1 as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.49 –

7.40 (m, 3H), 7.34 – 7.28 (m, 4H), 7.25 – 7.20 (m, 3H), 6.21 (dd, J = 15.9, 8.7 Hz, 1H), 6.04 (d, J = 15.9 Hz, 1H), 3.41 (t, J = 6.9 Hz, 2H), 3.30 (s, 3H), 3.10 (q, J = 7.5 Hz, 1H), 1.89 – 1.80 (m, 2H), 1.55 – 1.36 (m, 4H), 1.31 – 1.20 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 143.7, 136.9, 131.1, 129.5, 129.5, 128.4, 127.8, 127.7, 127.2, 126.1, 47.0, 37.4, 34.0, 33.3, 32.7, 29.2, 29.1, 28.6, 28.0, 27.0. HRMS (ESI) calcd for C₂₅H₃₂BrNO [M+H]⁺: 442.1740, found 442.1737.

(*E*)-2-(cyclohexylmethyl)-*N*-methyl-*N*,4-diphenylbut-3-enamide (2i). Following the typical procedure described above, the reaction was carried out by the mixture of **1i** (74.3 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:10) afforded the title product in 60% isolated yield (41.7 mg) and *E*/*Z* = 2:1 as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.42 (m, 2H), 7.31 – 7.28 (m, 3H), 7.20 – 7.18 (m, 2H), 7.13 – 7.11 (m, 1H), 6.90 – 6.86 (m, 2H), 6.18 (dd, *J* = 16.0, 8.8 Hz, 1H), 6.02 (d, *J* = 16.0 Hz, 1H), 3.27 (s, 3H), 3.21 – 3.19 (m, 1H), 1.79 – 1.69 (m, 2H), 1.60 – 1.57 (m, 3H), 1.42 – 1.33 (m, 2H), 1.17 – 1.08 (m, 4H), 0.79 – 0.67 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.9, 143.8, 137.1, 131.0, 129.8, 129.5, 128.4, 128.0, 127.7, 127.3, 126.2, 44.3, 39.3, 37.5, 34.9, 33.5, 32.9, 26.5, 26.1, 26.1. HRMS (ESI) calcd for C₂₄H₂₉NO [M+H]⁺: 348.2322, found 348.2319.

(*E*)-5-hydroxy-*N*-methyl-*N*-phenyl-2-styrylpentanamide (2j). Following the typical procedure described above, the reaction was carried out by the mixture of 1j (66.6 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 65% isolated yield (39.9 mg) and E/Z = 5:1 as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.39 – 7.30 (m, 3H), 7.22 – 7.19 (m, 4H), 7.16 – 7.10 (m, 3H), 6.08 (dd, J = 15.9, 8.7 Hz, 1H), 5.93 (d, J = 15.9 Hz, 1H), 3.50 – 3.45 (m, 2H), 3.20 (s, 3H), 3.07 – 2.99 (m, 1H), 1.96 (s, 1H), 1.92 – 1.76 (m, 2H), 1.46 – 1.39 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 173.5, 143.6, 136.8, 131.5, 129.6, 129.0, 128.4, 128.0, 127.7, 127.4, 126.2, 62.3, 46.8, 37.5, 30.4, 29.3. HRMS (ESI) calcd for C₂₀H₂₃NO₂ [M+H]⁺: 310.1802, found 310.1801.

(*E*)-*N*-methyl-*N*,4-diphenylbut-3-enamide (2k). Following the typical procedure described above, the reaction was carried out by the mixture of 1k (55.0 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), $Pd(OAc)_2$ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs_2CO_3 (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:3) afforded the title product in 60% isolated S14

yield (30.1 mg) and *E* only as a light yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.49 – 7.35 (m, 3H), 7.35 – 7.26 (m, 4H), 7.25 – 7.16 (m, 3H), 6.34 – 6.15 (m, 2H), 3.29 (s, 3H), 3.05 (d, *J* = 6.3 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 170.9, 143.8, 137.0, 132.5, 129.7, 128.4, 127.9, 127.4, 127.2, 126.1, 123.5, 38.5, 37.4. HRMS (ESI) calcd for C₁₇H₁₇NO [M+H]⁺: 252.1383, found 252.1383.

(*E*)-*N*-methyl-2-phenethyl-*N*,4-diphenylbut-3-enamide (21). Following the typical procedure described above, the reaction was carried out by the mixture of 11 (75.8 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 70% isolated yield (49.7 mg) and E/Z = 7:1 as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.33 (m, 3H), 7.31 – 7.26 (m, 4H), 7.23 – 7.20 (m, 3H), 7.16 – 7.14 (m, 1H), 7.09 – 7.07 (m, 4H), 6.19 (dd, J = 16.0, 8.8 Hz, 1H), 5.99 (d, J = 16.0 Hz, 1H), 3.27 (s, 3H), 3.17 – 3.09 (m, 1H), 2.57 – 2.47 (m, 2H), 2.20 – 2.11 (m, 1H), 1.91 – 1.84 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 143.5, 141.4, 136.9, 131.7, 129.5, 128.9, 128.4, 128.3, 128.2, 127.8, 127.6, 127.3, 126.1, 125.7, 46.3, 37.4, 34.4, 33.1. HRMS (ESI) calcd for C₂₅H₂₅NO [M+H]⁺: 356.2009, found 356.2010.

(E)-2-(4-methoxyphenethyl)-N-methyl-N,4-diphenylbut-3-enamide (2m). Following the typical procedure described above, the reaction was carried out by the mixture of 1m (81.9 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 84% isolated yield (64.7 mg) and E/Z = 7.1 as a yellow oil. ¹H **NMR (300 MHz, CDCl₃)** δ 7.37 – 7.34 (m, 3H), 7.30 – 7.28 (m, 4H), 7.23 – 7.19 (m, 1H), 7.10 - 7.07 (m, 2H), 6.99 (d, J = 8.7 Hz, 2H), 6.76 (d, J = 8.7 Hz, 2H), 6.19 (dd, J = 15.9, 8.7 Hz, 1H), 5.99 (d, J = 15.9 Hz, 1H), 3.77 (s, 3H), 3.27 (s, 3H), 3.16 - 3.08 (m, 1H), 2.50 - 2.42 (m, 2H), 2.18 - 2.06 (m, 1H), 1.89 - 1.77 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) & 173.2, 157.6, 143.5, 136.9, 133.5, 131.6, 129.5, 129.1, 129.0, 128.4, 127.7, 127.6, 127.3, 126.1, 113.6, 55.1, 46.2, 37.4, 34.7, 32.1. HRMS (ESI) calcd for $C_{26}H_{27}NO_2 [M+H]^+$: 386.2115, found 386.2116.

(E)-2-(2-(1H-indol-3-yl)ethyl)-N-methyl-N,4-diphenylbut-3-enamide (2n). Following the typical procedure described above, the reaction was carried out by the mixture of **1n** (83.7 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column

chromatography on silica gel (EtOAc/Petroleum ether = 1:3) afforded the title product in 75% isolated yield (59.3 mg) and E/Z = 10:1 as a yellow oil. ¹H NMR (300 MHz, **CDCl₃**) δ 8.30 (s, 1H), 7.54 (d, J = 8.1 Hz, 1H), 7.34 – 7.24 (m, 8H), 7.19 – 7.07 (m, 3H), 7.02 – 6.99 (m, 2H), 6.79 (d, J = 2.4 Hz, 1H), 6.24 (dd, J = 15.9, 8.7 Hz, 1H), 6.04 (d, J = 15.9 Hz, 1H), 3.26 (s, 3H), 3.23 – 3.17 (m, 1H), 2.74 – 2.59 (m, 2H), 2.34 – 2.24 (m, 1H), 2.00 – 1.95 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 143.4, 136.9, 136.3, 131.6, 129.4, 129.1, 128.4, 127.7, 127.5, 127.3, 127.3, 126.2, 121.7, 121.2, 118.9, 118.8, 115.3, 111.1, 46.5, 37.4, 33.2, 22.5. HRMS (ESI) calcd for C₂₇H₂₆N₂O [M+H]⁺: 395.2118, found 395.2117.

(*E*)-2-benzyl-*N*-methyl-*N*,4-diphenylbut-3-enamide (20). Following the typical procedure described above, the reaction was carried out by the mixture of **1o** (73.0 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 80% isolated yield (54.6 mg) and E/Z = 7:1 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.32 – 7.27 (m, 6H), 7.26 – 7.19 (m, 5H), 7.08 – 7.05 (m, 2H), 6.66 (s, 2H), 6.30 (dd, *J* = 15.9, 8.7 Hz, 1H), 6.07 (d, *J* = 15.9 Hz, 1H), 3.38 – 3.30 (m, 1H), 3.25 – 3.18 (m, 1H), 3.15 (s, 3H), 2.70 (dd, *J* = 12.6, 6.0 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 172.5, 143.3, 139.2, 136.8, 131.3, 129.3, 129.2, 128.9, 128.4, 128.1, 127.7, 127.5, 127.3, 126.2, 126.2, 49.4, 40.0, 37.2. HRMS (ESI) calcd for C₂₄H₂₃NO [M+H]⁺: 342.1852, found 342.1854.

(*E*)-2-(4-methoxybenzyl)-*N*-methyl-*N*,4-diphenylbut-3-enamide (2p). Following the typical procedure described above, the reaction was carried out by the mixture of 1p (79.0 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:10) afforded the title product in 73% isolated yield (54.2 mg) and E/Z = 7:1 as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.31 (m, 7H), δ 7.28 – 7.24 (m, 1H), δ 7.03 – 7.02 (m, 2H), δ 6.87 – 6.78 (m, 4H), 6.34 (dd, *J* = 16.0, 8.8 Hz, 1H), 6.11 (d, *J* = 16.0 Hz, 1H), 3.85 (s, 3H), δ 3.39 – 3.33 (m, 1H), δ 3.23 – 3.15 (m, 4H), δ 2.72 – 2.68 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 172.7, 158.1, 143.4, 136.9, 131.3, 131.3, 130.2, 129.4, 129.0, 128.4, 127.8, 127.6, 127.3, 126.2, 113.5, 55.2, 49.5, 39.1, 37.2. HRMS (ESI) calcd for C₂₅H₂₅NO₂ [M+H]⁺: 372.1958, found 372.1959.

(*E*)-2-(4-fluorobenzyl)-*N*-methyl-*N*,4-diphenylbut-3-enamide (2q). Following the typical procedure described above, the reaction was carried out by the mixture of 1q (76.6 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 88% isolated yield (63.2 mg) and E/Z = 10:1 as a colorless oil. ¹H NMR (300 MHz,

CDCl₃) δ 7.34 – 7.28 (m, 6H), 7.25 (s, 1H), 7.24 – 7.18 (m, 1H), 7.05 – 7.00 (m, 2H), 6.96 – 6.91 (m, 2H), 6.73 – 6.71 (m, 2H), 6.27 (dd, J = 15.9, 8.7 Hz, 1H), 6.05 (d, J = 15.9 Hz, 1H), 3.35 – 3.27 (m, 1H), 3.22 – 3.10 (m, 4H), 2.69 – 2.63 (m, 1H). ¹³**C NMR (101 MHz, CDCl₃)** δ 172.4, 161.5 (d, J = 244.0 Hz), 143.4, 136.8, 135.0 (d, J= 3.2 Hz), 131.6, 130.6 (d, J = 7.9 Hz), 129.4, 128.6, 128.5, 127.9, 127.5, 127.5, 126.2, 114.9 (d, J = 21.0 Hz), 49.5, 39.1, 37.3. ¹⁹**F NMR (376 MHz, CDCl₃)** δ 116.8. **HRMS (ESI)** calcd for C₂₄H₂₂FNO [M+H]⁺: 360.1758, found 360.1758.

(*E*)-2-(4-chlorobenzyl)-*N*-methyl-*N*,4-diphenylbut-3-enamide (2r). Following the typical procedure described above, the reaction was carried out by the mixture of 1r (79.9 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 80% isolated yield (60.0 mg) and E/Z = 9:1 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.34 – 7.28 (m, 6H), 7.25 – 7.20 (m, 4H), 7.01 – 6.98 (m, 2H), 6.75 (s, 2H), 6.26 (dd, *J* = 15.9 Hz, 1H), 6.05 (d, *J* = 15.9 Hz, 1H), 3.35 – 3.27 (m, 1H), 3.21 – 3.10 (m, 4H), 2.66 (dd, *J* = 12.9, 5.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 143.3, 137.7, 136.7, 132.0, 131.7, 130.6, 129.5, 128.5, 128.4, 128.2, 127.9, 127.5, 126.2, 49.3, 39.2, 37.3. HRMS (ESI) calcd for C₂₄H₂₂CINO [M+H]⁺: 376.1463, found 376.1463.

(*E*)-2-(4-bromobenzyl)-*N*-methyl-*N*,4-diphenylbut-3-enamide (2s). Following the typical procedure described above, the reaction was carried out by the mixture of 1s (88.8 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 70% isolated yield (58.7 mg) and *E*/*Z* = 12:1 as a as a white solid. M.p. 101-102 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.39 – 7.38 (m, 1H), 7.36 – 7.35 (m, 1H), 7.34 – 7.32 (m, 3H), 7.31 – 7.29 (m, 3H), 7.27 – 7.19 (m, 2H), 6.95 – 6.93 (m, 2H), 6.75 (s, 2H), 6.26 (dd, *J* = 15.9, 8.7 Hz, 1H), 6.04 (d, *J* = 15.9 Hz, 1H), 3.35 – 7.27 (m, 1H), 3.20 – 3.13 (m, 4H), 2.65 (dd, *J* = 12.9, 5.4 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 172.3, 143.3, 138.3, 136.7, 131.7, 131.2, 131.0, 129.5, 128.5, 128.4, 127.9, 127.6, 127.5, 126.2, 120.1, 49.2, 39.2, 37.3. HRMS (ESI) calcd for C₂₄H₂₂BrNO [M+H]⁺: 420.0958, found 420.0958.

(*E*)-*N*-methyl-*N*,4-diphenyl-2-(4-(trifluoromethyl)benzyl)but-3-enamide (2t). Following the typical procedure described above, the reaction was carried out by the mixture of 1t (86.6 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), $Pd(OAc)_2$ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs_2CO_3 (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column

chromatography on silica gel (EtOAc/Petroleum ether = 1:8) afforded the title product in 77% isolated yield (63.0 mg) and E/Z = 12:1 as a yellow solid. M.p. 104-106 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.43 (d, J = 8.1 Hz, 2H), 7.26 – 7.19 (m, 7H), 7.18 – 7.14 (m, 1H), 7.10 (d, J = 8.1 Hz, 2H), 6.63 (s, 2H), 6.20 (dd, J = 15.9, 8.1 Hz, 1H), 5.99 (d, J = 15.9 Hz, 1H), 3.31 – 3.16 (m, 2H), 3.08 (s, 3H), 2.67 (dd, J = 12.3, 4.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 172.1, 143.5 (q, J = 1.0 Hz), 143.2, 136.6, 131.8, 129.5, 129.5, 129.3 (q, J = 14.1 Hz), 128.5, 128.2, 128.0, 127.6, 127.5, 126.3, 125.1 (q, J = 3.9 Hz), 124.3 (q, J = 272.7 Hz), 49.1, 39.6, 37.3. ¹⁹F NMR (376 MHz, CDCl₃) δ 62.3. HRMS (ESI) calcd for C₂₅H₂₂F₃NO [M+H]⁺: 410.1726, found 410.1724.

(*E*)-2-(4-cyanobenzyl)-*N*-methyl-*N*,4-diphenylbut-3-enamide (2u). Following the typical procedure described above, the reaction was carried out by the mixture of 1u (78.0 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 81% isolated yield (59.3 mg) and *E*/*Z* = 12:1 as a yellow solid. M.p. 103-105 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.55 (d, *J* = 8.1 Hz, 2H), 7.37 – 7.24 (m, 8H), 7.18 (d, *J* = 8.1 Hz, 2H), 6.77 (s, 2H), 6.24 (dd, *J* = 15.9, 8.1 Hz, 1H), 6.03 (d, *J* = 15.9 Hz, 1H), 3.37 – 3.26 (m, 2H), 3.17 (s, 3H), 2.76 (dd, *J* = 12.1, 4.5 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 171.8, 145.0, 143.1, 136.4, 132.1, 132.0, 130.0, 129.6, 128.5, 128.1, 127.8, 127.7, 127.4, 126.2, 118.9, 110.1, 48.9, 39.7, 37.3. HRMS (ESI) calcd for C₂₅H₂₂N₂O [M+H]⁺: 367.1805, found 367.1806.

(*E*)-2-(4-hydroxybenzyl)-*N*-methyl-*N*,4-diphenylbut-3-enamide (2v). Following the typical procedure described above, the reaction was carried out by the mixture of 1v (76.2 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 2:3) afforded the title product in 44% isolated yield (31.4 mg) and E/Z = 6:1 as a light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.29 (m, 4H), 7.27 – 7.18 (m, 3H), 7.13 – 7.06 (m, 2H), 6.94 (d, *J* = 8.4 Hz, 2H), 6.83 (d, *J* = 8.4 Hz, 2H), 6.79 – 6.67 (m, 2H), 6.29 (dd, *J* = 16.0, 8.8 Hz, 1H), 6.09 (d, *J* = 16.0 Hz, 1H), 3.37 – 3.31 (m, 1H), 3.18 – 3.13 (m, 4H), 2.63 (dd, *J* = 13.2, 5.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 173.4, 155.0, 143.2, 136.8, 131.5, 130.5, 130.3, 129.5, 128.7, 128.5, 128.0, 127.6, 127.4, 126.2, 115.3, 49.7, 39.1, 37.5. HRMS (ESI) calcd for C₂₄H₂₃NO₂ [M+H]⁺: 358.1802, found 358.1797.

(*E*)-2-(4-((*tert*-butyldimethylsilyl)oxy)benzyl)-*N*-methyl-*N*,4-diphenylbut-3-enami de (2w). Following the typical procedure described above, the reaction was carried out by the mixture of 1w (99.1 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:7) afforded the title product in 81% isolated yield (76.3 mg) and E/Z = 7:1 as a colorless oil. ¹H **NMR (400 MHz, CDCl₃)** δ 7.37 – 7.34 (m, 5H), 7.34 – 7.30 (m, 2H), 7.28 – 7.24 (m, 1H), 6.98 (d, J = 8.4 Hz, 2H), 6.80 – 6.75 (m, 4H), 6.34 (dd, J = 16.0, 8.8 Hz, 1H), 6.11 (d, J = 16.0 Hz, 1H), 3.38 – 3.32 (m, 1H), 3.24 – 3.18 (m, 4H), 2.69 – 2.64 (m, 1H), 1.04 (s, 9H), 0.25 (s, 6H). ¹³C **NMR (101 MHz, CDCl₃)** δ 172.7, 154.1, 143.5, 136.9, 132.0, 131.2, 130.2, 129.3, 129.0, 128.4, 127.7, 127.6, 127.3, 126.2, 119.8, 49.6, 39.2, 37.2, 25.7, 18.2, -4.5. **HRMS (ESI)** calcd for C₃₀H₃₇NO₂Si [M+H]⁺: 472.2666, found 472.2666.

(E)-2-((1H-indol-3-yl)methyl)-N-methyl-N,4-diphenylbut-3-enamide (2x). Following the typical procedure described above, the reaction was carried out by the mixture of 1x (80.9 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:2) afforded the title product in 65% isolated yield (49.4 mg) and E/Z = 4.1 as a yellow oil. ¹H NMR (400 MHz, **CDCl₃**) δ 8.02 (s, 1H), 7.30 – 7.25 (m, 2H), 7.23 – 7.17 (m, 3H), 7.15 – 7.06 (m, 4H), 6.96 - 6.86 (m, 3H), 6.70 - 6.64 (m, 1H), 6.53 (s, 2H), 6.27 (dd, J = 16.0, 8.8 Hz, 1H), 5.98 (d, J = 16.0 Hz, 1H), 3.49 – 3.43 (m, 1H), 3.31 – 3.26 (m, 1H), 3.08 (s, 3H), 2.85 -2.80 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 143.4, 137.0, 136.1, 131.3, 129.3, 129.3, 128.4, 127.6, 127.5, 127.3, 126.2, 122.7, 121.8, 119.1, 118.8, 113.2, 111.0, 48.0, 37.3, 29.6. **HRMS (ESI)** calcd for $C_{26}H_{24}N_2O [M+H]^+$: 381.1961, found 381.1961.

N-methyl-N-phenyl-2-((E)-styryl)-6-(((R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-tr imethyltridecyl)chroman-6-yl)oxy)hexanamide (2y). Following the typical procedure described above, the reaction was carried out by the mixture of 1y (152.0 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5 mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 55% isolated yield (80.9 mg) and E/Z = 6:1 as a yellow oil. ¹H NMR (300 MHz, **CDCl₃**) δ 7.38 – 7.29 (m, 3H), 7.25 – 7.19 (m, 3H), 7.18 – 7.09 (m, 4H), 6.13 (dd, J =15.9, 8.7 Hz, 1H), 5.96 (d, J = 15.9 Hz, 1H), 3.50 (t, J = 6.6 Hz, 2H), 3.20 (s, 3H), 3.09 - 3.02 (m, 1H), 2.48 (t, J = 6.9 Hz, 2H), 2.06 (s, 3H), 2.01 - 1.99 (m, 6H), 1.78 -1.59 (m, 6H), 1.51 – 1.27 (m, 14H), 1.21 – 1.18 (m, 4H), 1.09 – 0.96 (m, 8H), 0.80 – 0.75 (m, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 148.2, 147.6, 143.7, 136.9, 131.2, 129.6, 129.4, 128.4, 128.4, 127.9, 127.8, 127.7, 127.3, 126.2, 126.2, 125.7, 122.7, 117.4, 74.7, 72.6, 47.1, 40.0, 39.3, 37.5, 37.4, 37.4, 37.2, 33.4, 32.7, 32.6, 31.2, 30.0, 27.9, 24.7, 24.4, 24.0, 23.8, 22.7, 22.6, 21.0, 20.6, 19.7, 19.6, 12.7, 11.8, 11.7. **HRMS (ESI)** calcd for $C_{50}H_{73}NO_3 [M+H]^+$: 736.5663, found 736.5655.

(*E*)-*N*-methyl-6-((1-methyl-2-oxo-1,2,3,4-tetrahydroquinolin-7-yl)oxy)-*N*-phenyl-2-styrylhexanamide (2z). Following the typical procedure described above, the reaction was carried out by the mixture of 1z (101.3 mg, 0.2 mmol, 1.0 equiv), styrene

(31.2 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 78% isolated yield (75.2 mg) and E/Z = 7:1 as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.39 – 7.27 (m, 3H), 7.22 – 7.19 (m, 4H), 7.16 – 7.10 (m, 3H), 6.95 (d, J = 8.1 Hz, 1H), 6.44 – 6.39 (m, 2H), 6.10 (dd, J = 15.9, 8.7 Hz, 1H), 5.93 (d, J = 15.9 Hz, 1H), 3.82 (t, J = 6.6 Hz, 2H), 3.22 (s, 3H), 3.20 (s, 3H), 3.08 – 3.00 (m, 1H), 2.74 (dd, J = 8.7, 5.7 Hz, 2H), 2.54 (dd, J = 8.7, 6.0 Hz, 2H), 1.89 – 1.77 (m, 1H), 1.68 – 1.48 (m, 3H), 1.35 – 1.25 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.3, 170.6, 158.5, 143.6, 141.5, 136.8, 131.4, 129.6, 129.1, 128.4, 128.0, 127.9, 127.7, 127.4, 126.1, 118.2, 107.0, 102.9, 67.8, 47.0, 37.5, 32.9, 32.0, 29.5, 29.0, 24.5, 23.7. HRMS (ESI) calcd for C₃₁H₃₄N₂O₃ [M+H]⁺: 483.2642, found 483.2641.

(*E*)-5-(methyl(phenyl)carbamoyl)-7-phenylhept-6-en-1-yl 5-(2,5-dimethylphenoxy)-2,2-dimethylpenta-noate (2aa). Following the typical procedure described above, the reaction was carried out by the mixture of 1aa (115.9 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 65% isolated yield (72.2 mg) and E/Z = 7:1 as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.42 – 7.30 (m, 3H), 7.25 – 7.21 (m, 4H), 7.19 – 7.12 (m, 3H), 6.95 (d, J = 7.5 Hz, 1H), 6.62 – 6.55 (m, 2H), 6.14 (dd, J = 15.9, 9.0 Hz, 1H), 5.97 (d, J = 15.9 Hz, 1H), 3.98 – 3.92 (m, 2H), 3.86 – 3.82 (m, 2H), 3.23 (s, 3H), 3.08 – 3.00 (m, 1H), 2.26 (s, 3H), 2.12 (s, 3H), 1.67 – 1.64 (m, 5H), 1.54 – 1.44 (m, 3H), 1.27 – 1.21 (m, 2H), 1.14 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 177.7, 173.3, 156.8, 143.6, 136.8, 136.3, 131.4, 130.2, 129.6, 129.1, 128.4, 127.9, 127.7, 127.3, 126.1, 123.4, 120.6, 111.8, 67.8, 64.0, 46.9, 41.9, 37.4, 37.0, 32.8, 28.4, 25.1, 25.1, 23.5, 21.3, 15.7. HRMS (ESI) calcd for C₃₆H₄₅NO₄ [M+H]⁺: 556.3421, found 556.3419.

(3R,5R,8R,9S,10S,13R,14S,17R)-10,13-dimethyl-17-((2R,E)-4-(methyl(phenyl)car bamoyl)-6-phenylhex-5-en-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3yl acetate (2ab). Following the typical procedure described above, the reaction was carried out by the mixture of **1ab** (126.7 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in dioxane (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 60% isolated yield (73.1 mg) and E/Z = 2:1 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.40 – 7.31 (m, 3H), 7.23 – 7.19 (m, 3H), 7.13 - 7.10 (m, 2H), 6.94 - 6.81 (m, 2H), 6.11 (dd, J = 15.9, 8.4 Hz, 1H), 5.97 (d, J =15.9 Hz, 1H), 4.70 – 4.59 (m, 1H), 3.21 (s, 3H), 3.13 – 3.10 (m, 1H), 2.22 – 2.10 (m, 1H), 1.95 (s, 3H), 1.89 – 1.71 (m, 8H), 1.48 – 1.44 (m, 3H), 1.36 – 1.26 (m, 8H), 1.00 -0.94 (m, 6H), 0.86 (s, 3H), 0.59 -0.56 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 173.4, 170.7, 143.8, 137.1, 130.5, 130.4, 129.5, 128.5, 128.0, 127.9, 127.3, 126.1, 74.4, 56.8, 56.5, 44.7, 42.7, 41.9, 40.5, 40.4, 40.2, 37.6, 35.7, 35.0, 34.6, 34.3, 32.2, 28.3, 27.0, 26.6, 26.3, 24.2, 23.3, 21.5, 20.8, 19.0, 12.1. HRMS (ESI) calcd for C₄₁H₅₅NO₃ [M+H]⁺: 610.4255, found 610.4249.

N-methyl-6-(((8*R*,9*S*,13*S*,14*S*)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydrospir o[cyclopenta[a]phenanthrene-17,2'-[1,3]dioxolan]-3-yl)oxy)-N-phenyl-2-((E)-styr yl)hexanamide (2ac). Following the typical procedure described above, the reaction was carried out by the mixture of **1ac** (128.7 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 40% isolated yield (49.5 mg) and E/Z = 5:1 as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.38 – 7.30 (m, 3H), 7.23 – 7.21 (m, 3H), 7.18 (s, 1H), 7.13 - 7.09 (m, 3H), 7.06 - 6.94 (m, 1H), 6.62 - 6.57 (m, 1H), 6.55 -6.51 (m, 1H), 6.10 (dd, J = 15.9, 8.7 Hz, 1H), 5.94 (d, J = 15.9 Hz, 1H), 3.84 – 3.77 (m, 3H), 3.67 (s, 3H), 3.20 (s, 3H), 2.99 (s, 1H), 2.83 - 2.75 (m, 2H), 2.47 - 2.33 (m, 2H), 2.47 - 2.37 (m, 2H), 2.47 - 2.37 (m, 2H), 2.47 (m, 2H), 2.47 (m, 2H), 2.47 (m, 2H)1H), 2.29 – 2.13 (m, 3H), 2.01 – 1.77 (m, 5H), 1.61 – 1.42 (m, 8H), 1.31 – 1.28 (m, 2H), 0.82 (d, J = 8.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 157.0, 143.7, 137.6, 136.9, 131.8, 131.4, 129.6, 129.2, 128.5, 128.0, 127.8, 127.4, 126.2, 119.4, 114.4, 112.1, 67.5, 64.5, 63.7, 50.3, 48.0, 47.1, 43.9, 38.3, 37.5, 35.8, 33.0, 31.5, 29.6, 29.1, 26.5, 25.9, 23.8, 21.5, 13.8. **HRMS (ESI)** calcd for $C_{41}H_{49}NO_4$ [M+H]⁺: 620.3734, found 620.3733.

(E)-5-(methyl(phenyl)carbamoyl)-7-phenylhept-6-en-1-yl (4aS,6aS,6bR,8aR,10S, 12aR,12bR,14bS)-10-((tert-butyldimethylsilyl)oxy)-2,2,6a,6b,9,9,12a-heptamethyl -1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydropicene-4a(2H)-car **boxylate (2ad).** Following the typical procedure described above, the reaction was carried out by the mixture of 1ad (180.0 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 67% isolated yield (117.33 mg) and E/Z = 5:1 as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.44 – 7.32 (m, 3H), 7.26 – 7.23 (m, 4H), 7.17 – 7.14 (m, 2H), 7.10 - 7.01 (m, 1H), 6.13 (dd, J = 15.9, 8.7 Hz, 1H), 5.97 (d, J = 15.9Hz, 1H), 5.24 – 5.16 (m, 1H), 3.96 – 3.86 (m, 2H), 3.24 (s, 3H), 3.17 – 3.12 (m, 1H), 3.08 - 3.00 (m, 1H), 2.82 - 2.76 (m, 1H), 1.82 - 1.74 (m, 3H), 1.62 - 1.42 (m, 15H), 1.26 - 1.07 (m, 11H), 0.86 - 0.83 (m, 23H), 0.70 (s, 3H), 0.64 (s, 3H), 0.00 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 177.6, 177.6, 173.3, 143.7, 136.8, 131.4, 129.6, 128.4, 127.9, 127.7, 127.3, 126.2, 122.4, 122.3, 79.4, 63.8, 55.2, 55.2, 47.6, 47.0, 46.6, 46.6, 45.8, 41.6, 41.6, 41.2, 39.2, 38.4, 37.5, 36.8, 36.8, 33.1, 30.6, 28.5, 27.5, 25.9, 25.8, 23.6, 23.5, 22.9, 18.5, 18.1, 16.9, 16.9, 16.1, 15.3, 15.3, -3.8, -5.0. HRMS (ESI) calcd for C₅₇H₈₅NO₄Si [M+H]⁺: 876.6321, found 876.6322.

(*E*)-4-(4-(*tert*-butyl)phenyl)-2-(4-cyanobenzyl)-*N*-methyl-*N*-phenylbut-3-enamide (4a). Following the typical procedure described above, the reaction was carried out by the mixture of 1u (78.0 mg, 0.2 mmol, 1.0 equiv), 3a (48.1 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 68% isolated yield (57.4 mg) and *E*/*Z* = 20:1 as a yellow solid. M.p. 98-100 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 8.0 Hz, 2H), 7.27 – 7.24 (m, 5H), 7.18 – 7.15 (m, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 6.69 (s, 2H), 6.11 (dd, *J* = 16.0, 8.4 Hz, 1H), 5.92 (d, *J* = 16.0 Hz, 1H), 3.28 – 3.22 (m, 1H), 3.18 (dd, *J* = 12.4, 9.2 Hz, 1H), 3.08 (s, 3H), 2.67 (dd, *J* = 12.4, 4.8 Hz, 1H), 1.23 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 150.8, 145.1, 143.2, 133.7, 132.0, 131.9, 130.0, 129.5, 128.1, 127.5, 127.0, 126.0, 125.4, 118.9, 110.1, 49.0, 39.8, 37.3, 34.5, 31.2. HRMS (ESI) calcd for C₂₉H₃₀N₂O₂ [M+H]⁺: 423.2431, found 423.2427.

(E)-2-(4-cyanobenzyl)-4-(4-methoxyphenyl)-N-methyl-N-phenylbut-3-enamide
(4b). Following the typical procedure described above, the reaction was carried out by the mixture of 1u (78.0 mg, 0.2 mmol, 1.0 equiv), 3b (40.3 mg, 0.3 mmol, 1.5 equiv),

Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:3) afforded the title product in 65% isolated yield (51.5 mg) and E/Z = 13:1 as a yellow solid. M.p. 110-112 °C. ¹**H NMR (400 MHz, CDCl₃)** δ 7.54 (d, J = 8.0 Hz, 2H), 7.35 (t, J = 3.2 Hz, 3H), 7.23 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 6.85 – 6.82 (m, 2H), 6.78 – 6.76 (m, 2H), 6.09 (dd, J = 16.0, 8.0 Hz, 1H), 5.97 (d, J = 16.0 Hz, 1H), 3.80 (s, 3H), 3.32 – 3.29 (m, 1H), 3.25 (dd, J = 12.0, 9.2 Hz, 1H), 3.16 (s, 3H), 2.75 (dd, J = 12.0, 4.8 Hz, 1H). ¹³**C NMR (101 MHz, CDCl₃)** δ 172.0, 159.2, 145.1, 143.1, 131.9, 131.5, 130.0, 129.5, 129.2, 128.0, 127.4, 127.4, 125.5, 118.9, 113.9, 110.0, 55.2, 48.9, 39.8, 37.3. **HRMS (ESI)** calcd for C₂₆H₂₄N₂O₂ [M+H]⁺: 397.1911, found 397.1909.

(*E*)-4-(3-(4-cyanobenzyl)-4-(methyl(phenyl)amino)-4-oxobut-1-en-1-yl)phenyl acetate (4c). Following the typical procedure described above, the reaction was carried out by the mixture of 1u (78.0 mg, 0.2 mmol, 1.0 equiv), 3c (48.7 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 50% isolated yield (50.5 mg contained ca. 15% desaturation side product which could not separated from each other) and *E*/*Z* > 20:1 as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.0 Hz, 2H), 7.29 – 7.26 (m, 3H), 7.22 – 7.20 (m, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 6.94 (d, *J* = 8.0 Hz, 2H), 6.69 (s, 2H), 6.10 (dd, *J* =

16.0, 8.0 Hz, 1H), 5.93 (d, J = 16.0 Hz, 1H), 3.28 – 3.15 (m, 2H), 3.09 (s, 3H), 2.67 (dd, J = 12.0, 4.0 Hz, 1H), 2.21 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 169.4, 150.0, 144.8, 143.0, 134.2, 132.3, 131.9, 131.1, 130.0, 129.5, 128.1, 127.9, 127.1, 121.6, 118.8, 110.1, 48.8, 39.7, 37.3, 21.0. HRMS (ESI) calcd for C₂₇H₂₄N₂O₃ [M+H]⁺: 425.1860, found 425.1858.

(*E*)-2-(4-cyanobenzyl)-*N*-methyl-*N*-phenyl-4-(4-((triisopropylsilyl)oxy)phenyl)but -3-enamide (4d). Following the typical procedure described above, the reaction was carried out by the mixture of 1u (78.0 mg, 0.2 mmol, 1.0 equiv), 3d (83.0 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 67% isolated yield (72.1 mg) and *E* only as a light yellow solid. M.p. 117-119 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.0 Hz, 2H), 7.35 – 7.32 (m, 3H), 7.19 – 7.15 (m, 4H), 6.82 – 6.75 (m, 4H), 6.08 (dd, *J* = 16.0, 8.0 Hz, 1H), 5.98 (d, *J* = 16.0 Hz, 1H), 3.34 – 3.16 (m, 2H), 3.16 (s, 3H), 2.74 (dd, *J* = 12.0, 4.0 Hz, 1H), 31.28 – 1.22 (m, 3H), 1.10 (d, *J* = 8 Hz, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 155.8, 145.1, 143.1, 131.9, 131.6, 130.0, 129.5, 129.5, 128.0, 127.4, 127.3, 125.4, 119.8, 118.9, 110.0, 48.8, 39.9, 37.3, 17.8, 12.6. HRMS (ESI) calcd for C₃₄H₄₂N₂O₂Si [M+H]⁺: 539.3088, found 539.3082.

(*E*)-2-(4-cyanobenzyl)-4-(4-(methoxymethoxy)phenyl)-*N*-methyl-*N*-phenylbut-3-e namide (4e). Following the typical procedure described above, the reaction was carried out by the mixture of 1u (78.0 mg, 0.2 mmol, 1.0 equiv), 3e (49.3 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 76% isolated yield (64.8 mg) and E/Z = 11:1 as a yellow solid. M.p. 88-89 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.49 – 7.45 (m, 2H), 7.29 – 7.25 (m, 3H), 7.16 – 7.08 (m, 4H), 6.91 – 6.88 (m, 2H), 6.70 – 6.67 (m, 2H), 6.03 (dd, *J* = 15.9 Hz, 1H), 5.09 (s, 2H), 3.39 (s, 3H), 3.24 – 3.21 (m, 1H), 3.21 – 3.14 (m, 1H), 3.09 (s, 3H), 2.70 – 2.64 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 156.8, 145.1, 143.1, 132.0, 131.5, 130.4, 130.0, 129.5, 128.1, 127.5, 127.4, 126.0, 118.9, 116.2, 110.1, 94.3, 55.9, 48.9, 39.8, 37.3. HRMS (ESI) calcd for C₂₇H₂₆N₂O₃ [M+H]⁺: 427.2016, found 427.2013.

(*E*)-4-([1,1'-biphenyl]-4-yl)-2-(4-cyanobenzyl)-*N*-methyl-*N*-phenylbut-3-enamide (4f). Following the typical procedure described above, the reaction was carried out by the mixture of 1u (78.0 mg, 0.2 mmol, 1.0 equiv), 3f (54.1 mg, 0.3 mmol, 1.5 equiv),

Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 45% isolated yield (39.8 mg) and E/Z = 4:1 as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.52 – 7.45 (m, 6H), 7.40 – 7.33 (m, 3H), 7.30 – 7.25 (m, 5H), 7.11 (d, J = 8.1 Hz, 2H), 6.70 (s, 2H), 6.20 (dd, J = 15.9, 8.1 Hz, 1H), 5.99 (d, J = 15.9 Hz, 1H), 3.32 – 3.17 (m, 2H), 3.10 (s, 3H), 2.69 (dd, J = 12.3, 4.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 145.0, 143.1, 140.5, 140.5, 135.5, 132.0, 131.7, 130.0, 129.6, 128.7, 128.1, 127.9, 127.5, 127.3, 127.2, 126.9, 126.7, 118.9, 110.2, 49.0, 39.8, 37.4. HRMS (ESI) calcd for C₃₁H₂₆N₂O [M+H]⁺: 443.2118, found 443.2114.

(*E*)-2-(4-cyanobenzyl)-*N*-methyl-4-(naphthalen-2-yl)-*N*-phenylbut-3-enamide (4g). Following the typical procedure described above, the reaction was carried out by the mixture of 1u (78.0 mg, 0.2 mmol, 1.0 equiv), 3g (46.3 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 48% isolated yield (40.0 mg) and E/Z = 20:1 as a yellow solid. M.p. 143-144 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.80 – 7.76 (m, 3H), 7.61 (s, 1H), 7.57 – 7.51 (m, 3H), 7.47 – 7.43 (m, 2H), 7.39 – 7.35 (m, 3H), 7.21 – 7.18 (m, 2H), 6.79 (s, 2H), 6.36 (dd, J = 15.9, 8.4 Hz, 1H), 6.19 (d, J = 15.9 Hz, 1H), 3.44 – 3.36 (m, 1H), 3.34 – 3.27 (m, 1H), 3.18 (s, 3H), 2.80 (dd, J = 12.3, 5.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 145.0, 143.2, 134.0, 133.4, 133.0, 132.2, 132.0, 130.1, 129.6, 128.2, 128.2, 128.1, 127.9, 127.6, 127.5, 126.3, 126.2, 125.9, 123.3, 119.0, 110.2, 49.1, 39.9, 37.4.
HRMS (ESI) calcd for C₂₉H₂₄N₂O [M+H]⁺: 417.1961, found 417.1962.

(*E*)-2-(4-cyanobenzyl)-*N*-methyl-*N*-phenyl-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxab orolan-2-yl)phenyl)but-3-enamide (4h). Following the typical procedure described above, the reaction was carried out by the mixture of 1u (78.0 mg, 0.2 mmol, 1.0 equiv), 3h (69.0 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 65% isolated yield (64.0 mg) and *E*/*Z* = 12:1 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.74 (d, *J* = 7.8 Hz, 2H), 7.55 (d, *J* = 8.1 Hz, 2H), 7.36 – 7.33 (m, 3H), 7.30 – 7.27 (m, 2H), 7.17 (d, *J* = 8.1 Hz, 2H), 6.76 (s, 2H), 6.30 (dd, *J* = 15.9, 8.4 Hz, 1H), 6.03 (d, *J* = 15.9 Hz, 1H), 3.39 – 3.31(m, 1H), 3.28 (dd, *J* = 12.3, 9.3 Hz, 1H), 3.17 (s, 3H), 2.76 (dd, *J* = 12.3, 4.8 Hz, 1H), 1.34 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 144.9, 143.1, 139.1, 135.0, 132.2, 132.0, 130.0, 129.6, 128.9, 128.1, 127.5, 125.5, 118.9, 110.2, 83.8, 49.0, 39.7, 37.4, 24.8, 24.8. HRMS (ESI) calcd for C₃₁H₃₃BN₂O₃ [M+H]⁺: 493.2657, found 493.2663.

(*E*)-2-(4-cyanobenzyl)-*N*-methyl-*N*-phenyl-4-(4-(trimethylsilyl)phenyl)but-3-ena mide (4i). Following the typical procedure described above, the reaction was carried out by the mixture of 1u (78.0 mg, 0.2 mmol, 1.0 equiv), 3i (52.9 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 49% isolated yield (42.9 mg) and *E* only as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 8.0 Hz, 2H), 7.46 (d, *J* = 7.6 Hz, 2H), 7.36 – 7.33 (m, 3H), 7.29 – 7.26 (m, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 6.78 (s, 2H), 6.25 (dd, *J* = 16.0, 8.8 Hz, 1H), 6.01 (d, *J* = 16.0 Hz, 1H), 3.37 – 3.31 (m, 1H), 3.29 – 3.24 (mz, 1H), 3.17 (s, 3H), 2.76 (dd, *J* = 12.4, 5.6 Hz, 1H), 0.26 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 145.0, 143.1, 140.1, 136.8, 133.5, 132.2, 132.0, 130.0, 129.6, 128.1, 128.0, 127.5, 125.5, 118.9, 110.1, 49.0, 39.7, 37.4, -1.2. HRMS (ESI) calcd for C₂₈H₃₀N₂OSi [M+H]⁺: 439.2200, found 439.2200.

(*E*)-2-(4-cyanobenzyl)-4-(4-fluorophenyl)-*N*-methyl-*N*-phenylbut-3-enamide (4j). Following the typical procedure described above, the reaction was carried out by the mixture of 1u (78.0 mg, 0.2 mmol, 1.0 equiv), 3j (36.6 mg, 0.3 mmol, 1.5 equiv),

Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 70% isolated yield (53.8 mg) and E/Z = 13:1 as a yellow solid. M.p. 121-122 °C. ¹**H NMR (400 MHz, CDCl₃)** δ 7.56 – 7.54 (m, 2H), 7.37 – 7.34 (m, 3H), 7.28 – 7.24 (m, 2H), 7.19 – 7.17 (m, 2H), 7.01 – 6.96 (m, 2H), 6.79 – 6.74 (m, 2H), 6.15 (dd, *J* = 16.0, 8.4 Hz, 1H), 6.00 (d, *J* = 16.0 Hz, 1H), 3.36 – 3.31 (m, 1H), 3.29 – 3.24 (m, 1H), 3.17 (s, 3H), 2.78 – 2.73 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 162.2 (d, *J* = 247.4 Hz), 144.9, 143.1, 132.6 (d, *J* = 3.0 Hz), 132.0, 130.9, 130.0, 129.6, 128.1, 127.7 (d, *J* = 8.1 Hz), 127.5 (d, *J* = 3.0 Hz), 127.4, 118.9, 115.4 (d, *J* = 21.2 Hz), 110.1, 48.8, 39.7, 37.3. ¹⁹F NMR (376 MHz, CDCl₃) δ 114.1. HRMS (ESI) calcd for C₂₅H₂₁FN₂O [M+H]⁺: 385.1711, found 385.1709.

(*E*)-4-(2-chlorophenyl)-2-(4-cyanobenzyl)-*N*-methyl-*N*-phenylbut-3-enamide (4k). Following the typical procedure described above, the reaction was carried out by the mixture of 1u (78.0 mg, 0.2 mmol, 1.0 equiv), 3k (41.6 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:3) afforded the title product in 69% isolated yield (55.2 mg) and *E*/*Z* = 3:1 as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.48 (d, *J* = 9.0 Hz, 2H), 7.44 – 7.40 (m, 2H), 7.30 – 7.25 (m, 3H), 7.14 – 7.09 (m, 4H), 6.71 (s, 2H), 6.37 (d, *J* = 15.0 Hz, 1H), 6.14 (dd, *J* = 15.0, 9.0 Hz, 1H), 3.37 – 3.29 (m, 1H), 3.24 – 3.16 (m, 1H), 3.09 (s, 3H), 2.70 (dd, *J* = 12.0, 6.0 Hz, 1H).
¹³C NMR (101 MHz, CDCl₃) δ 171.6, 144.7, 143.0, 134.5, 132.8, 132.0, 130.8, 130.0, 129.7, 129.5, 128.7, 128.5, 128.2, 127.4, 126.8, 126.7, 118.9, 110.2, 49.1, 39.6, 37.3. **HRMS (ESI)** calcd for $C_{25}H_{21}CIN_{2}O[M+H]^+$: 401.1415, found 401.1409.

(E)-4-(3-chlorophenyl)-2-(4-cyanobenzyl)-N-methyl-N-phenylbut-3-enamide (4l). Following the typical procedure described above, the reaction was carried out by the mixture of 1u (78.0 mg, 0.2 mmol, 1.0 equiv), 3l (41.6 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 70% isolated yield (56.0 mg) and E only as a yellow oil. ¹H NMR (300 MHz, **CDCl₃**) δ 7.49 – 7.46 (m, 2H), 7.30 – 7.26 (m, 3H), 7.20 – 7.19 (m, 1H), 7.15 – 7.06 (m, 5H), 6.68 (s, 2H), 6.17 (dd, J = 15.9, 8.1 Hz, 1H), 5.91 (d, J = 15.9 Hz, 1H), 3.30 – 3.23 (m, 1H), 3.22 - 3.15 (m, 1H), 3.09 (s, 3H), 2.68 (dd, J = 12.3, 4.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) & 171.5, 144.7, 143.0, 138.3, 134.4, 132.0, 130.8, 130.0, 129.7, 129.6, 129.4, 128.1, 127.6, 127.4, 126.2, 124.4, 118.9, 110.2, 48.8, 39.6, 37.3. HRMS (ESI) calcd for $C_{25}H_{21}CIN_2O[M+H]^+$: 401.1415, found 401.1411.

(E)-4-(4-bromophenyl)-2-(4-cyanobenzyl)-N-methyl-N-phenylbut-3-enamide **S37**

(4m). Following the typical procedure described above, the reaction was carried out by the mixture of 1u (78.0 mg, 0.2 mmol, 1.0 equiv), 3m (54.9 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 75% isolated yield (66.6 mg) and E/Z = 20:1 as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.48 – 7.46 (m, 2H), 7.35 – 7.32 (m, 2H), 7.28 – 7.26 (m, 3H), 7.10 – 7.06 (m, 4H), 6.68 (s, 2H), 6.15 (dd, *J* = 15.9, 8.1 Hz, 1H), 5.89 (d, *J* = 15.9 Hz, 1H), 3.30 – 3.24 (m, 1H), 3.21 – 3.14 (m, 1H), 3.09 (s, 3H), 2.67 (dd, *J* = 12.3, 4.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 144.8, 143.0, 135.4, 132.0, 131.6, 130.9, 130.0, 129.6, 128.6, 128.1, 127.7, 127.4, 121.4, 118.9, 110.2, 48.8, 39.6, 37.4. HRMS (ESI) calcd for C₂₅H₂₁BrN₂O [M+H]⁺: 445.0910, found 445.0906.

(*E*)-2-(4-cyanobenzyl)-*N*-methyl-*N*-phenyl-4-(4-(trifluoromethyl)phenyl)but-3-en amide (4n). Following the typical procedure described above, the reaction was carried out by the mixture of 1u (78.0 mg, 0.2 mmol, 1.0 equiv), 3n (51.6 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 70% isolated yield (60.8 mg) and *E* only as a yellow solid. M.p. 161-162 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.49 – 7.45 (m, 4H), 7.32 – 7.26 (m, 5H), 7.09 (d, *J* = 8.1 Hz, 2H), 6.69 (s, 2H), 6.27 (dd, *J* = 15.9, 8.4 Hz, 1H), 6.00 (d, *J* = 15.9 Hz, 1H), 3.34 – 3.26 (m, 1H), 3.24 – 3.16 (m, 1H), 3.10 (s, 3H), 2.69 (dd, J = 12.6, 5.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 144.6, 143.0, 139.9 (q, J = 1.1 Hz), 132.0, 130.8, 130.6, 130.0, 129.7, 129.4 (q, J = 32.3 Hz), 128.2, 127.4, 126.4, 125.5 (q, J = 4.0 Hz), 124.0 (q, J = 271.6 Hz), 118.8, 110.3, 48.8, 39.6, 37.4. ¹⁹F NMR (376 MHz, CDCl₃) δ 62.5. HRMS (ESI) calcd for C₂₆H₂₁F₃N₂O [M+H]⁺: 435.1679, found 435.1675.

Methyl(*E*)-4-(3-(4-cyanobenzyl)-4-(methyl(phenyl)amino)-4-oxobut-1-en-1-yl)ben zoate (40). Following the typical procedure described above, the reaction was carried out by the mixture of 1u (78.0 mg, 0.2 mmol, 1.0 equiv), 3o (48.7 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 66% isolated yield (60.0 mg) and *E*/*Z* = 20:1 as a yellow solid. M.p. 138-139 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 − 7.88 (m, 2H), 7.49 − 7.47 (m, 2H), 7.30 − 7.26 (m, 5H), 7.11 − 7.09 (m, 2H), 6.68 (s, 2H), 6.29 (dd, *J* = 16.0, 8.8 Hz, 1H), 6.01 (d, *J* = 16.0 Hz, 1H), 3.83 (s, 3H), 3.33 − 3.27 (m, 1H), 3.20 (dd, *J* = 12.8, 9.2 Hz, 1H), 3.10 (s, 3H), 2.69 (dd, *J* = 12.8, 5.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 166.7, 144.7, 143.0, 140.9, 132.0, 131.2, 130.6, 130.0, 129.8, 129.6, 129.1, 128.2, 127.4, 126.1, 118.8, 110.2, 52.0, 48.9, 39.6, 37.4. HRMS (ESI) calcd for C₂₇H₂₄N₂O₃ [M+H]⁺: 425.1860, found 425.1859.

(*E*)-2-(4-cyanobenzyl)-4-(4-cyanophenyl)-*N*-methyl-*N*-phenylbut-3-enamide (4p). Following the typical procedure described above, the reaction was carried out by the mixture of 1u (78.0 mg, 0.2 mmol, 1.0 equiv), 3p (38.7 mg, 0.3 mmol, 1.5 equiv), $Pd(OAc)_2$ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs_2CO_3 (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 62% isolated yield (48.5 mg) and E/Z = 20:1 as a light yellow solid. M.p. 155-157 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.52 – 7.47 (m, 4H), 7.31 – 7.27 (m, 5H), 7.10 – 7.08 (m, 2H), 6.68 (s, 2H), 6.31 (dd, J = 15.9, 8.4 Hz, 1H), 6.00 (d, J = 15.9 Hz, 1H), 3.35 – 3.27 (m, 1H), 3.24 – 3.16 (m, 1H), 3.10 (s, 3H), 2.69 (dd, J = 12.8, 5.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 144.4, 142.9, 140.9, 132.3, 132.0, 131.9, 130.5, 130.0, 129.7, 128.2, 127.3, 126.7, 118.8, 118.8, 110.9, 110.3, 48.8, 39.6, 37.4. HRMS (ESI) calcd for $C_{26}H_{21}N_3O$ [M+H]⁺: 392.1757, found 392.1748.

(*E*)-4-(4-acetylphenyl)-2-(4-cyanobenzyl)-*N*-methyl-*N*-phenylbut-3-enamide (4q). Following the typical procedure described above, the reaction was carried out by the mixture of 1u (78.0 mg, 0.2 mmol, 1.0 equiv), 3q (43.9 mg, 0.3 mmol, 1.5 equiv),

Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 45% isolated yield (36.7 mg) and E/Z = 7:1 as a yellow solid. M.p. 144-145 °C. ¹H **NMR (300 MHz, CDCl₃)** δ 7.84 – 7.81 (m, 2H), 7.50 – 7.47 (m, 2H), 7.31 – 7.27 (m, 5H), 7.10 (d, *J* = 8.1Hz, 2H), 6.68 (s, 2H), 6.30 (dd, *J* = 15.9, 8.4 Hz, 1H), 6.01 (d, *J* = 15.9 Hz, 1H), 3.34 – 3.27 (m, 1H), 3.21 (dd, *J* = 12.6, 9.3 Hz, 1H), 3.10 (s, 3H), 2.70 (dd, *J* = 12.6, 5.1 Hz, 1H), 2.52 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.5, 171.4, 144.7, 143.0, 141.1, 136.1, 132.0, 131.1, 130.9, 130.0, 129.7, 128.7, 128.2, 127.4, 126.3, 118.9, 110.3, 48.9, 39.7, 37.4, 26.6. HRMS (ESI) calcd for C₂₇H₂₄N₂O₂ [M+H]⁺: 409.1911, found 409.1909.

(*E*)-2-(4-cyanobenzyl)-*N*-methyl-*N*-phenyl-4-(pyridin-2-yl)but-3-enamide (4r). Following the typical procedure described above, the reaction was carried out by the mixture of 1u (78.0 mg, 0.2 mmol, 1.0 equiv), 3r (31.5 mg, 0.3 mmol, 1.5 equiv), $Pd(OAc)_2$ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs_2CO_3 (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:2) afforded the title product in 70% isolated yield (51.4 mg) and *E* only as a light yellow solid. M.p. 122-123 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.46 – 8.44 (m, 1H), 7.58 – 7.53 (m, 1H), 7.49 – 7.46 (m, 2H), 7.28 – 7.24 (m, 3H), 7.23 – 7.20 (m, 1H), 7.12 – 7.10 (m, 2H), 7.08 – 7.05 (m, 1H), 6.66 – 6.60 (m, 3H), 6.19 (d, *J* = 16.0 Hz, 1H), 3.38 – 3.32 (m, 1H), 3.25 – 3.18 (m, 1H), 3.09 (s, 3H), 2.72 (dd, *J* = 12.8, 5.2 Hz, 1H). ¹³C NMR (101 MHz, **CDCl₃)** δ 171.3, 154.8, 149.3, 144.8, 143.0, 136.5, 132.5, 132.0, 131.9, 130.0, 129.6, 128.1, 127.3, 122.2, 121.1, 118.9, 110.2, 48.4, 39.5, 37.3. **HRMS (ESI)** calcd for $C_{24}H_{21}N_{3}O[M+H]^{+}$: 368.1757, found 368.1757.

(*E*)-2-(4-cyanobenzyl)-*N*-methyl-4-((8*R*,9*S*,13*S*,14*S*)-13-methyl-17-oxo-7,8,9,11,12 ,13,14,15,16,17-decahydro-6*H*-cyclopenta[a]phenanthren-3-yl)-*N*-phenylbut-3-en amide (4s). Following the typical procedure described above, the reaction was carried out by the mixture of 1u (78.0 mg, 0.2 mmol, 1.0 equiv), 3s (84.1 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 61% isolated yield (66.2 mg) and E/Z > 20.1 as a yellow oil. ¹H **NMR (300 MHz, CDCl₃)** δ 7.47 (d, J = 8.1 Hz, 2H), 7.29 – 7.25 (m, 3H), 7.19 – 7.15 (m, 1H), 7.11 - 7.08 (m, 2H), 7.03 - 6.98 (m, 2H), 6.70 (s, 2H), 6.11 (dd, J = 15.9, 8.1Hz, 1H), 5.88 (d, J = 15.9 Hz, 1H), 3.25 - 3.21 (m, 1H), 3.15 (d, J = 9.6 Hz, 1H), 3.09 (s, 3H), 2.82 (dd, J = 9.0, 4.2 Hz, 2H), 2.68 (dd, J = 12.0, 4.8 Hz, 1H), 2.44 (dd, J = 18.3, 8.4 Hz, 1H), 2.25 – 2.21 (m, 1H), 2.14 – 2.04 (m, 1H), 2.03 – 1.88 (m, 3H), 1.77 (s, 1H), 1.59 – 1.33 m, 6H), 0.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 145.0, 143.2, 139.5, 136.6, 134.1, 132.0, 130.0, 129.6, 128.1, 127.5, 127.2, 126.8, 126.7, 125.6, 123.8, 123.8, 119.0, 110.1, 50.4, 49.0, 47.9, 44.4, 39.8, 38.1, 37.3, 35.8, 31.5, 29.3, 26.4,

25.7, 21.5, 13.8. **HRMS (ESI)** calcd for $C_{31}H_{33}BN_2O_3$ [M+H]⁺: 543.3006, found 543.3001.

3-(4-Cyanophenyl)-2-(1H-inden-2-yl)-*N***-methyl-***N***-phenylpropanamide** (4t). Following the typical procedure described above, the reaction was carried out by the mixture of **1u** (78.0 mg, 0.2 mmol, 1.0 equiv), **3t** (34.8 mg, 0.3 mmol, 1.5 equiv), $Pd(OAc)_2$ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs_2CO_3 (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 28% isolated yield (21.2 mg) as a yellow solid. M.p. 162-163 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.51 – 7.46 (m, 2H), 7.33 – 7.30 (m, 1H), 7.26 – 7.22 (m, 3H), 7.20 – 7.13 (m, 4H), 7.10 – 7.05 (m, 1H), 6.62 (s, 2H), 6.39 (s, 1H), 3.65 (dd, *J* = 9.9, 5.1 Hz, 1H), 3.38 – 3.19 (m, 3H), 3.08 (s, 3H), 2.80 (dd, *J* = 12.9, 5.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 146.2, 145.3, 144.3, 143.2, 143.0, 132.1, 129.9, 129.6, 129.2, 128.1, 127.4, 126.4, 124.5, 123.6, 120.7, 118.9, 110.2, 47.0, 39.7, 39.5, 37.4. HRMS (ESI) calcd for C₂₆H₂₂N₂O [M+H]⁺: 379.1805, found 379.1811.

(Z)-2-(4-cyanobenzyl)-N,3-dimethyl-N,4-diphenylbut-3-enamidee (4u). Following the typical procedure described above, the reaction was carried out by the mixture of 1u

(78.0 mg, 0.2 mmol, 1.0 equiv), **3u** (35.5 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 20% isolated yield (15.2 mg) and *Z* only as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.48 (m, 2H), 7.10 – 7.02 (m, 8H), 6.56 (s, 2H), 6.48 – 6.46 (m, 2H), 6.24 (s, 1H), 4.02 (dd, *J* = 10.0, 4.4 Hz, 1H), 3.42 (dd, *J* = 13.2, 10.0 Hz, 1H), 3.10 (s, 3H), 2.66 (dd, *J* = 13.2, 4.4 Hz, 1H), 2.01 (d, *J* = 1.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 145.6, 142.7, 137.0, 135.8, 131.9, 129.8, 129.5, 128.3, 127.9, 127.8, 127.6, 127.1, 126.2, 119.1, 110.0, 46.3, 38.1, 37.9, 21.1. HRMS (ESI) calcd for C₂₆H₂₄N₂O [M+H]⁺: 381.1961, found 381.1955.

2-(4-Cyanobenzyl)-*N***-methyl-***N***,4-diphenylpent-4-enamide** (4v). Following the typical procedure described above, the reaction was carried out by the mixture of **1u** (78.0 mg, 0.2 mmol, 1.0 equiv), **3v** (35.5 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product in 39% isolated yield (29.7 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 8.0 Hz, 2H), 7.17 – 7.04 (m, 6H), 6.98 – 6.96 (m, 2H), 6.81 (d, *J* = 8.0 Hz, 2H), 6.36 (s, 2H), 5.28 (d, *J* = 1.2 Hz, 1H), 5.05 (d, *J* = 1.2 Hz, 1H), 3.04 (s, 3H), 2.88 – 2.82 (m, 2H), 2.63 – 2.56 (m, 1H), 2.53 – 2.47 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.7, 145.8, 144.9, 142.9,

139.4, 131.9, 129.8, 129.4, 128.3, 127.6, 127.5, 127.1, 125.9, 119.0, 115.5, 109.9, 43.0, 38.0, 37.8, 37.2. **HRMS (ESI)** calcd for $C_{26}H_{24}N_2O$ [M+H]⁺: 381.1961, found 381.1957.

Reaction of Carboxamide Substrates

(2,3-Dihydro-1*H*-pyrrol-1-yl)(phenyl)methanone (S2-1ae). Following the typical procedure described above, the reaction was carried out by the mixture of 1ae (60.2 mg, 0.2 mmol, 1.0 equiv), styrene (31.2 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5mg, 0.02 mmol, 10 mol%), Xantphos (23.1 mg, 0.04 mmol, 20 mol%) and Cs₂CO₃ (130.3 mg, 0.4 mmol, 2.0 equiv) in PhH (2.5 mL) at room temperature in nitrogen atmosphere under the irradiation of blue LED lamps for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:2) afforded the title product in 70% isolated yield (24.3 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.50 (m, 2H), 7.47 – 7.39 (m, 3H), 7.11 – 6.45 (m, 1H), 5.39 – 5.18 (m, 1H), 4.06 – 3.80 (m, 2H), 2.74 – 2.69 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.9, 135.8, 130.6, 130.3, 128.4, 127.6, 111.7, 45.6, 28.3. The spectroscopic data match the reported literature.¹³

Grams Scale Synthesis

An oven-dried 100 mL reaction flask was charged with *N*-(2-iodophenyl)-*N*-methylhexanamide **1a** (2.0 g, 6. mmol), styrene **3** (937 mg, 9.0 mmol), Pd(OAc)₂ (135 mg, 0.6 mmol) and Xantphos (694 mg, 1.2 mmol) and Cs₂CO₃ (3.9 g, 12.0 mmol). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 50 mL of degassed benzene (PhH) were added to the flask. The flask was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 48 hours. After completion of the reaction, the resulting mixture was diluted with acetone (60 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10) to yield the desired product **2a** (1.33 g, 72%).

An oven-dried 100 mL reaction flask was charged with *N*-(2-iodophenyl)-*N*-methylacetamide **1k** (2.2 g, 8.0 mmol), styrene **3** (1.25 g, 12.0 mmol), $Pd(OAc)_2$ (180 mg, 0.8 mmol) and Xantphos (926 mg, 1.6 mmol) and Cs_2CO_3 (5.21 g, 16.0 mmol). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 60 mL of degassed benzene (PhH) were added to the flask. The flask was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 48 hours. After completion of the reaction, the resulting mixture was diluted with acetone (80 mL), filtered (Celite), and concentrated under a reduced

pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) to yield the desired product 2k (1.03 g, 51%).

Derivatizations of product 2a

To a stirred soln of **2a** (61.4 mg, 0.2 mmol) in THF (1.0 mL) at -78 °C was added LDA (0.13 mL, 0.26 mmol, 1.3 equiv) dropwise, the mixture was stirred at -78 °C for 1 hour. To the resulting solution, MeI (85.2 mg, 0.6 mmol, 3.0 equiv.) in THF (1mL) was added slowly, then it was stirred at room temperature for 12 hours. The resulting solution was quenched with saturated NH₄Cl solution and extracted with EtOAc (3 × 5 mL). The combined organic layer was washed with brine and dried over Na₂SO₄. After filtration and concentration, the crude was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:5), yielding the desired compound **5** as a yellow oil (46.2 mg, 72% yield). (*E*)-*N*,2-dimethyl-*N*-phenyl-2-styrylhexanamide (**5**). ¹H NMR (400 MHz, CDCl₃) δ 7.15 – 7.11 (m, 2H), 7.09 – 7.03 (m, 3H), 7.02 – 6.96 (m, 5H), 5.88 (d, *J* = 20.0, 1H), 5.84 (d, *J* = 20.0, 1H), 3.10 (s, 3H), 1.57 – 1.42 (m, 2H), 1.18 (s, 3H), 1.16 – 1.07 (m, 4H), 0.77 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.3, 144.2, 137.3, 135.5, 128.8, 128.8, 128.3, 127.6, 127.0, 126.8, 126.0, 49.1, 40.8, 40.0, 26.8, 24.4, 23.2, 14.1. HRMS (ESI) calcd for C₂₂H₂₇NO [M+H]⁺: 322.2165, found 322.2164.

Derivatizations of product 2k

To a stirred soln of 2k (50.2 mg, 0.2 mmol) in THF (1.0 mL) at -78 °C was added

LDA (0.13 mL, 0.26 mmol, 1.3 equiv) dropwise, the mixture was stirred at -78 °C for 1 hour. To the resulting solution, BnBr (120 mg, 0.7 mmol, 3.5 equiv) in THF (1mL) was added slowly, then it was stirred at room temperature for 12 hours. The resulting solution was quenched with saturated NH₄Cl solution and extracted with EtOAc (3 × 5 mL). The combined organic layer was washed with brine and dried over Na₂SO₄. After filtration and concentration, the crude was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:5), yielding the desired compound **6** as a yellow oil (44.0 mg, 64% yield). **(***E***)-2-benzyl-***N***-methyl-***N***,4-diphenylbut-3enamide (6). ¹H NMR (400 MHz, CDCl₃) \delta 7.24 – 7.18 (m, 8H), 7.17 – 7.12 (m, 3H), 7.00 – 6.98 (m, 2H), 6.60 (s, 2H), 6.22 (dd,** *J* **= 16.0, 8.8 Hz, 1H), 5.99 (d,** *J* **= 16.0 Hz, 1H), 3.26 (td,** *J* **= 8.8, 5.2 Hz, 1H), 3.14 (dd,** *J* **= 12.8, 9.6 Hz, 1H), 3.08 (s, 3H), 2.62 (dd,** *J* **= 12.8, 5.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) \delta 172.6, 143.4, 139.3, 136.9, 131.4, 129.4, 129.3, 128.9, 128.5, 128.2, 127.8, 127.6, 127.4, 126.5, 126.3, 49.4, 40.0, 37.3. HRMS (ESI) calcd for C₂₄H₂₃NO [M+H]⁺: 342.1852, found 342.1860.**

The mixture of **2k** (50.2 mg, 0.2 mmol, 1.0 equiv), PhBr (47.1 mg, 0.3 mmol, 1.5 equiv), [Pd(allyl)Cl]₂ (7.2 mg, 0.02 mmol, 10 mol%), dtbpf (1,1'-bis(di-*tert*-butylphosphino)ferrocene) (18.9 mg, 0.04 mmol, 20 mol%) and Et₃N (40.5 mg, 0.4 mmol, 2.0 equiv) in PhCF₃ (2.0 mL) was stirred at 100 °C for 12 hours. Column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) afforded the title product 7 in 30% isolated yield (19.6 mg) as a colorless oil and **8** in 41% isolated yield (26.8 mg) as a colorless oil. (*E*)-*N*-methyl-*N*,**3**,**4**-triphenylbut-**3**-enamide (7). ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.25 (m, 10H), 7.23 – 7.18 (m, 3H), 7.03 – 7.01 (m, 2H), 6.85 (s, 1H), 3.38 (s, 2H), 3.17 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.71, 143.84, 142.30, 137.71, 136.29, 131.04, 129.79, 128.68, 128.33, 128.23, 127.82, 127.31, 127.28, 126.92, 126.34, 37.49, 36.69. HRMS (ESI) calcd for C₂₃H₂₁NO

 $[M+H]^+$: 328.1696, found 328.1693. *N*-methyl-*N*,4,4-triphenylbut-3-enamide (8). ¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.11 (m, 11H), 6.96 – 6.91 (m, 4H), 6.16 (t, *J* = 7.2 Hz, 1H), 3.19 (s, 3H), 2.88 (d, *J* = 7.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 143.8, 143.7, 142.1, 139.3, 129.6, 128.4, 128.0, 128.0, 127.6, 127.4, 127.1, 127.1, 127.0, 122.3, 37.4, 35.4. HRMS (ESI) calcd for C₂₃H₂₁NO [M+H]⁺: 328.1696, found 328.1695.

Derivatizations of product 2i

To a solution of **2i** (100 mg, 0.21 mmol, 1.0 equiv.) in MeOH (5 mL, 0.042 M) was added Palladium on carbon (20.0 mg, 5 wt. % loading). After gas exchanged using hydrogen balloon for 10 minutes, the reaction mixture was stirred under hydrogen atmosphere at room temperature for 3 h. Upon completion, the reaction was filtered through a pad of celite. The mixture was concentrated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/Petroleum ether = 1:5) to afford the desired compound **11** as a colorless oil (96.0 mg, 96% yield). **2-**(Cyclohexylmethyl) -*N*-methyl-*N*,4-diphenylbutanamide (**11**). ¹H NMR (**300 MHz**, CDCl₃) δ 7.29 – 7.21 (m, 3H), 7.18 – 7.12 (m, 2H), 7.10 – 7.07 (m, 1H), 7.03 – 6.97 (m, 4H), 3.20 (s, 3H), 2.47 – 2.37 (m, 3H), 1.62 – 1.77 (m, 1H), 1.64 – 1.43 (m, 5H), 1.35 – 0.98 (m, 7H), 0.65 – 0.50 (m, 2H). ¹³C NMR (**101 MHz, CDCl**₃) δ 176.2, 143.8, 141.9, 129.4, 128.2, 128.2, 127.5, 127.5, 125.6, 40.5, 38.7, 37.4, 35.2, 34.5, 33.6, 33.5, 33.2, 26.4, 26.1. HRMS (ESI) calcd for C₂₄H₃₁NO [M+H]⁺: 350.2478, found 350.2477.

To a solution of **11** (80.8 mg, 0.17 mmol, 1. equiv.) in THF (2 ml, 0.085 M) was added LiAlH₄ (25.8 mg, 0.68 mmol, 4.0 equiv.). The reaction mixture was stirred under hydrogen atmosphere at room temperature for 8 h. Upon completion, the reaction was poured into H₂O (5 mL) and the mixture was extracted with EtOAc (3×5 mL). The

organics were washed with H₂O and dried over Na₂SO₄. After solvent removal, the crude was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10), yielding the desired compound **12** as a colorless oil (69.0 mg, 89% yield). *N*-(2-(cyclohexylmethyl)-4-phenylbutyl)-*N*-methylaniline (12). ¹H NMR (400 MHz, CDCl₃) δ 7.19 – 7.10 (m, 4H), 7.09 – 7.03 (m, 3H), 6.61 – 6.57 (m, 3H), 3.10 (d, *J* = 7.2 Hz, 2H), 2.80 (s, 3H), 2.59 – 2.47 (m, 2H), 1.92 – 1.82 (m, 1H), 1.64 – 1.45 (m, 7H), 1.21 – 1.03 (m, 6H), 0.85 – 0.70 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 149.9, 142.7, 129.0, 128.3, 128.3, 125.6, 115.8, 112.1, 58.0, 40.3, 39.2, 35.0, 34.2, 34.1, 33.5, 33.2, 32.8, 26.6, 26.4, 26.3. HRMS (ESI) calcd for C₂₄H₃₃N [M+H]⁺: 336.2686, found 336.2691.

Experimental Procedures for the Mechanistic Studies

The Radical Trapping Experiment with TEMPO

An oven-dried 4.0 mL vial was charged with *N*-(2-iodophenyl)-*N*-methyl-3phenylpropanamide **10** (73.0 mg, 0.2 mmol), styrene (31.3 mg, 0.3 mmol), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol), Xantphos (23.1 mg, 0.04 mmol), TEMPO (15.6 mg, 0.1 mmol) and Cs_2CO_3 (65.2 mg, 0.4 mmol). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2.5 mL of degassed benzene (PhH) were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 12 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10) to yield the radical trapping product **13** (15.0 mg, 19%) as a colorless oil. *N*-methyl-*N*, **3-diphenyl-2-((2,2,6,6-tetra-methylpiperidin-1-yl)oxy)** propanamide (13). ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.03 (m, 10H), 4.38 (dd, J = 10.8, 4.4 Hz, 1H), 3.12 – 3.06 (m, 4H), 2.90 (dd, J = 12.4, 4.4 Hz, 1H), 1.58 – 1.43 (m, 3H), 1.35 – 1.26 (m, 3H), 1.18 (s, 3H), 1.11 (s, 3H), 1.06 (s, 3H), 0.67 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 143.1, 136.6, 130.0, 128.7, 128.2, 128.2, 127.3, 126.4, 80.1, 60.7, 59.2, 40.7, 40.1, 38.1, 37.3, 32.8, 32.4, 20.3, 20.0, 17.1. HRMS (ESI) calcd for C₂₅H₃₄N₂O₂ [M+H]⁺: 395.2693, found 395.2700.

Note: No desired product **20** was observed, and 80% of the starting material **10** was recovered.

Radical Clock Experiment with amide 14

An oven-dried 4.0 mL vial was charged with 2-cyclopropyl-*N*-(2-iodophenyl)-*N*-methylacetamide **14** (63.0 mg, 0.2 mmol), styrene **3** (31.3 mg, 0.3 mmol), Pd(OAc)₂ (4.5 mg, 0.02 mmol), Xantphos (11.6 mg, 0.04 mmol) and Cs₂CO₃ (65.2 mg, 0.4 mmol). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2.5 mL of degassed benzene (PhH) were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 12 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:10) to yield both the ring-opened dienamide **15** and further relay alkyl heck product **16**.

Me N Ph 15

(E)-N-methyl-N-phenylpenta-2,4-dienamide (15). 15 was isolated in 13% yield as a

yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.40 (m, 2H), 7.37 – 7.32 (m, 1H), 7.30 – 7.24 (m, 1H), 7.20 – 7.17 (m, 2H), 6.26 (dt, J = 16.8, 10.4 Hz, 1H), 5.84 (d, J = 15.2 Hz, 1H), 5.53 (dd, J = 16.8, 1.6 Hz, 1H), 5.35 (dd, J = 10.0, 1.6 Hz, 1H), 3.36 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 166.1, 143.6, 142.0, 135.1, 129.6, 127.5, 127.3, 124.1, 122.6, 37.5. The spectroscopic data match the reported literature.¹²

(2*E*,6*E*)-*N*-methyl-*N*,7-diphenylhepta-2,6-dienamide (16). 16 was isolated in 10% yield as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.23 (m, 4H), 7.23 – 7.22 (m, 3H), 7.15 – 7.12 (m, 1H), 7.08 – 7.06 (m, 2H), 6.90 – 6.83 (m, 1H), 6.25 (d, *J* = 15.6 Hz, 1H), 6.03 (d, *J* = 15.6 Hz, 1H), 5.70 (d, *J* = 15.2 Hz, 1H), 3.26 (s, 3H), 2.21 – 2.16 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 144.7, 143.7, 137.5, 130.6, 129.5, 129.2, 128.5, 127.4, 127.3, 127.0, 126.0, 122.1, 37.4, 32.0, 31.6. HRMS (ESI) calcd for C₂₀H₂₁NO [M+H]⁺: 292.1696, found 292.1693.

Radical Clock Experiment with vinyl arene 17

An oven-dried 4.0 mL vial was charged with amide **1k** (78.0 mg, 0.2 mmol), alkene **17** (43.2 mg, 0.3 mmol), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol) and Xantphos (23.1 mg, 0.04 mmol) and Cs_2CO_3 (130.3 mg, 0.4 mmol). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2.5 mL of degassed benzene (PhH) were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 12 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (DCM) to yield the ring closing

product **19** (6.5 mg, 11%) as a colorless oil. **3-(3,4-Dihydronaphthalen-1-yl)**-*N*-**methyl-***N*-**phenylpropanamide (19)**. ¹**H NMR (400 MHz, CDCl₃)** δ 7.38 – 7.29 (m, 3H), 7.15 – 7.04 (m, 5H), 6.94 (d, *J* = 6.8 Hz, 1H), 5.77 – 5.75 (m, 1H), 3.28 (s, 3H), 2.73 (t, *J* = 8.0 Hz, 2H), 2.67 (t, *J* = 8.0 Hz, 2H), 2.32 – 2.28 (m, 2H), 2.20 – 2.15 (m, 2H). ¹³**C NMR (101 MHz, CDCl₃)** δ 172.8, 144.0, 136.5, 135.3, 134.3, 129.7, 127.7, 127.5, 127.3, 126.6, 126.3, 125.5, 122.4, 37.4, 33.5, 28.9, 28.2, 23.0. **HRMS (ESI)** calcd for C₂₀H₂₁NO [M+H]⁺: 292.1696, found 292.1691.

Investigation of Enantioselective Radical Relay Heck Reaction (1u to 4r)

Enantioselective aryl-to-alkyl radical relay Heck reaction was attempted using chiral ligands illustrated below. The reaction of amide 1u with 2-vinyl pyridine was employed as the model reaction due to its good yields and high trans/cis selectivity. After some chiral ligands screening, when BINAP-Type chiral ligands (**CL1-4**) were employed as the ligands (instead of Xantphos), 16-22% yield of the desired product 4r was obtained with some extent of enantio-control (from 10% to 20% ee). Other chiral ligands (**CL4-8**) all gave sluggish results.

Typical procedure for the enantioselective Radical Relay Heck Reaction

An oven-dried 4.0 mL vial was charged with amide 1u (78.0 mg, 0.2 mmol, 1.0 equiv), 3r (31.5 mg, 0.3 mmol, 1.5 equiv), Pd(OAc)₂ (4.5 mg, 0.02 mmol), CL1 (24.9 mg, 0.04 mmol) and Cs₂CO₃ (130.3 mg, 0.4 mmol). It was directly transferred in a nitrogen-filled glovebox with caps. In the glovebox, 2.5 mL of degassed benzene (PhH) were added to the vial. The vial was tightly sealed, transferred out of glovebox and stirred at room temperature under the irradiation of blue LED lamps for 12 hours. After completion of the reaction, the resulting mixture was diluted with acetone (5 mL), filtered (Celite), and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/Petroleum ether = 1:2) to afford 4r (11.8 mg, 16% yield with 19% ee) as a yellow solid and recover the 1u (59.3 mg, 76%).

Chiral HPLC (Daicel CHIRALDICEL[®] AD-H column, 30% *i*-PrOH in *n*-hexane, flow rate = 1.0 mL/min, $\lambda = 254$ nm), t_{major} = 10.2 min, t_{minor} = 16.2 min.

	峰 保留时间	类型	峰宽	峰	面积	峰高		峰面积	
	# [min]		[min]	[mAU	$[]*_{S}]$	[mAU	[]	%	
					-		-		-
	1 10.169	BB	0.2407	1.170	089e4	747.8	8190	49.796	0
	2 16.231	BB	0.4155	1.180	049e4	439.3	0399	50.204	0
ık	Rettime[min]	Type	Width	minl	Area[m/	Au*]	Height	[mAu]	Area[%

Peak	Rettime[min]	Туре	Width[min]	Area[mAu*]	Height[mAu]	Area[%]
1	10.169	BB	0.2407	1.17089e4	747.88190	49.7960
2	16.231	BB	0.4155	1.18049e4	439.30399	50.2040

Enantiomeric sample 4r using CL1

DAD	1 C, Sig=2	54,4 Ref=off (2022)	1014 2023-0	02-07 09-11-25\D-	2-66-1.D)			
mAU		131					$\bigcirc \bigcirc \bigcirc$	
200		10					PPh ₂ PPh ₂	
150						3.191	CL1	
100		1				7		
50		$ \rangle$						
o -				-			-	
8		10	62 C	12	14	16	18	min
	峰	保留时间	类型	峰宽	峰面积	峰高	峰面积	
	#	[min]		[min]	[mAU*s]	[mAU]	%	
	1	10.131	BB	0.2405	3750. 53467	239. 78331	59.3002	
	2	16. 191	BB	0.4185	2574. 12671	94.89928	40.6998	

Peak	Rettime[min]	Туре	Width[min]	Area[mAu*]	Height[mAu]	Area[%]
1	10.131	BB	0.2405	3750.53467	239.78331	59.3002
2	16.191	BB	0.4185	2574.12671	94.89928	40.6998

Enantiomeric sample 4r using CL2

Peak	Rettime[min]	Туре	Width[min]	Area[mAu*]	Height[mAu]	Area[%]
1	10.132	MM	0.2675	6989.75830	435.58020	57.2619
2	16.190	BB	0.4114	5216.88086	195.45383	42.7381

Peak	Rettime[min]	Туре	Width[min]	Area[mAu*]	Height[mAu]	Area[%]
1	10.129	BB	0.2408	3054.07446	194.91895	60.0274
2	16.182	BB	0.4057	2033.72693	77.60232	39.9726

峰伐	 保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.150	BB	0.2430	7016.37012	447.30029	54.9824
2	16.213	BB	0.4139	5744.74805	214.85043	45.0176

Peak	Rettime[min]	Туре	Width[min]	Area[mAu*]	Height[mAu]	Area[%]
1	10.150	BB	0.2430	7016.37012	447.30029	54.9824
2	16.213	BB	0.4139	5744.74805	214.85043	45.0176

References

- 1 T. Shimada, I. Nakamura, Y. Yamamoto, J. Am. Chem. Soc. 2004, **126**, 10546-10547.
- 2 (a). S. Yang, H. Fan, L. Xie, G. Dong, M. Chen. Org. Lett. 2022, 24, 6460–6465.
 (b). R. R. Goehring, Y. P. Sachdeva, J. S. Pisipati, M. C. Sleevi, J. F. Wolfe. J. Am. Chem. Soc. 1985, 107, 435–443. (c). R. Guo, H. Xiao, S. Li, Y. Luo, J. Bai, M. Zhang, Y. Guo, X. Qi and G. Zhang. Angew. Chem. Int. Ed. 2022, 61, e202208232.
- 3 L. Lu, J. C. Siu, Y. Lai, S. Lin, J. Am. Chem. Soc. 2020, 142, 21272–21278.
- 4 S. Ochi, Z. Zhang, Y. Xia, G. Dong, Angew. Chem. Int. Ed. 2022, 61, e202202703.
- 5 M. L. Conner, M. K. Brown, J. Org. Chem. 2016, 81, 8050-8060.
- J. Lee, S. Radomkit, S. Torker, J. del Pozo, A. H. Hoveyda, *Nat. Chem.* 2018, 10, 99–108.
- 7 J.-Z. Zhang, Y. Tang, Adv. Synth. Catal. 2016, 358, 752-764.
- 8 D. Gärtner, A. Welther, B. R. Rad, R. Wolf, A. J. Wangelin, *Angew. Chem. Int. Ed.*2014, *53*, 3722–3726.
- 9 G. A. Molander, M. R. Rivero, Org. Lett. 2002, 4, 107–109.
- 10 C.-Y. Huang, A. G. Doyle, J. Am. Chem. Soc. 2012, 134, 9541–9544.
- H. Pang, Y. Wang, F. Gallou, B. H. Lipshutz, J. Am. Chem. Soc. 2019, 141, 17117–17124.
- M. Ratushnyy, N. Kvasovs, S. Sarkar, V. Gevorgyan. *Angew. Chem. Int. Ed.* 2020, 59, 10316-10320.
- 13 W.-L. Yu, Z.-G. Ren, K.-X. Ma, H.-Q. Yang, J.-J. Yang, H. Zheng, W. Wu, P.-F. Xu, Chem. Sci. 2022, 13, 7947-7954.

NMR Spectra ¹H NMR (300 MHz, CDCl₃)

) 100 f1 (ppm) -10 $\dot{70}$ ò . 190 $\dot{20}$

¹H NMR (400 MHz, CDCl₃)

6.00 6.00 6.00 7.22 7.22 7.22 7.22 7.22 7.22 7.22 7	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

¹³C NMR (101 MHz, CDCl₃)

110 100 f1 (ppm) 0 210 200 190 180 170 160 150 140 130 120 90 80 $\frac{1}{70}$ 60 50 4030 20 10 -10

¹⁹F NMR (376 MHz, CDCl₃)

¹H NMR (300 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl3)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

0.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR (376 MHz, CDCl₃)

2q, *E/Z* = 10:1

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

6.02 6.02 6.02 6.02 7.22 7.22 7.22 7.22 7.23 7.23 7.23 7.2	2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65	

----0.00

¹³C NMR (101 MHz, CDCl₃)

	₹ 77.3 76.7	- 49.2	39.137.3
--	----------------	--------	-------------------------------------

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

001222232222223333333333333333333333333	62 62 63 63 63 63 63 63 63 63 63 63 63 63 63
	00000000000000000000

--- 0.00

0.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1. f1 (ppm)

¹³C NMR (75 MHz, CDCl₃)

	- 172.	143. 131. 131. 123. 123. 123. 126. 127. 126. 127. 126. 126. 127. 126. 127. 126. 127. 126. 127. 126. 127. 127. 127. 127. 127. 127. 127. 127	77.4 77.0 76.6	- 49.2	39.2
--	--------	---	----------------------	--------	------

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

9016814525690144567722256644 90168142563901445677222344	33 33 34 34 35 33 33 33 34 34 35 35 35 35 35 35 35 35 35 35 35 35 35
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	



00.0 —

2.70 2.69 2.66







100 f1 (ppm) 210 200 190 180 170 160 150 140 130 120 110 80  $\frac{1}{70}$ 60 50 40 30 20 10 0 -10 90





#### ¹H NMR (300 MHz, CDCl₃)

6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22  ----0.00









^{5.0 4.5} f1 (ppm)





210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

#### ¹H NMR (400 MHz, CDCl₃)

 7.1.23
 7.2.33

 7.2.33
 7.2.33

 7.7.23
 7.7.23

 7.7.23
 7.7.23

 7.7.23
 7.7.23

 7.7.23
 7.7.23

 7.7.23
 7.7.23

 7.7.23
 7.7.23

 7.7.23
 7.7.14

 7.7.23
 7.7.14

 7.7.23
 7.7.14

 7.7.14
 7.7.14

 7.7.14
 7.7.14

 7.7.14
 7.7.14

 7.7.14
 7.7.14

 7.7.14
 7.7.14

 7.7.14
 7.7.14

 7.7.14
 7.7.14

 7.7.14
 7.7.14

 7.7.14
 7.7.14

 7.7.14
 7.7.14

 7.7.15
 7.7.14

 7.7.14
 7.7.14

 7.7.15
 7.7.14

 7.7.15
 7.7.14

 7.7.15
 7.7.14

 7.7.15
 7.7.14

 7.7.15
 7.7.14

 7.7.15
 7.7.14

 7.7.15
 7.7.15

 7.7.15



![](_page_83_Figure_0.jpeg)

 $[\]overline{o}$   $\overline{o}$ 5.0 4. f1 (ppm) 0.5 10.0 9.5 9.0 8.5 8.0 6.5 3.0 2.5 7.5 7.0 6.0 5.5 4.5 4.0 3.5 0.5 0.0 -0.5 -1

![](_page_84_Figure_1.jpeg)

![](_page_84_Figure_2.jpeg)

![](_page_84_Figure_4.jpeg)

![](_page_84_Figure_5.jpeg)

![](_page_85_Figure_0.jpeg)

![](_page_86_Figure_0.jpeg)

![](_page_86_Figure_1.jpeg)

![](_page_86_Figure_2.jpeg)

![](_page_87_Figure_1.jpeg)

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1. f1 (ppm)

![](_page_88_Figure_1.jpeg)

0010404010040		
$\nabla$ $\nabla$ $\overline{\alpha}$	, ∞ ∞ ∽ ∾ ∩ N N O © © © © O N N N N N O © © 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-
	, , , , , , , , , , , , , , , , , , ,	்ப் வட்டப் வில் வில் வில் பில் பில் ஆட்
	- N N O O O A A A A A A A A O O O O O O	

![](_page_89_Figure_2.jpeg)

![](_page_90_Figure_1.jpeg)

![](_page_90_Figure_2.jpeg)

![](_page_90_Figure_3.jpeg)

![](_page_90_Figure_4.jpeg)

![](_page_90_Figure_5.jpeg)

#### ¹H NMR (400 MHz, CDCl₃)

![](_page_90_Figure_7.jpeg)

----0.00

![](_page_90_Figure_8.jpeg)

![](_page_91_Figure_1.jpeg)

![](_page_92_Figure_0.jpeg)

![](_page_93_Figure_0.jpeg)

![](_page_93_Figure_1.jpeg)

![](_page_93_Figure_2.jpeg)

![](_page_93_Figure_3.jpeg)

00.0 —

![](_page_94_Figure_1.jpeg)

![](_page_94_Figure_2.jpeg)

![](_page_95_Figure_1.jpeg)

![](_page_95_Figure_2.jpeg)

![](_page_96_Figure_1.jpeg)

![](_page_97_Figure_1.jpeg)

![](_page_97_Figure_2.jpeg)

![](_page_97_Figure_3.jpeg)

![](_page_98_Figure_1.jpeg)

![](_page_98_Figure_2.jpeg)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

- 0.00

#### ¹H NMR (400 MHz, CDCl₃)

#### 

![](_page_98_Figure_6.jpeg)

Me Ph^{_N}

ö

**4j**, *E*/*Z* = 13:1

![](_page_99_Figure_1.jpeg)

![](_page_99_Figure_2.jpeg)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

![](_page_100_Figure_1.jpeg)

![](_page_100_Figure_2.jpeg)

110 100 90 f1 (ppm) 210 200 180 170 160 150  $\dot{70}$ -10

![](_page_101_Figure_0.jpeg)

![](_page_101_Figure_2.jpeg)

![](_page_101_Figure_3.jpeg)

110 100 f1 (ppm)  $\frac{1}{70}$  $\frac{1}{40}$ -10 

7 7 7 7 7 7 48 7 7 7 35 7 7 35 7 7 35 7 7 35 7 7 26 7 10 7 10 7 10 7 00 7 00 7 00 7 00 7 00	6.19 6.14 6.14 5.92 5.87	2.2668 2.2709 2.2688 2.2709 2.2688 2.2709 2.2688 2.2688 2.2688 2.2688 2.2688 2.2688 2.2688 2.2688 2.2688 2.2688 2.2688 2.2688 2.2688 2.2688 2.2688 2.2688 2.2688 2.270 2.2688 2.277 2.2688 2.277 2.2688 2.277 2.2688 2.277 2.2688 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.277 2.2777 2.2777 2.2777 2.2777 2.2777 2.2777 2.2777 2.2777 2.27777 2.27777 2.277777777

- 0.00

![](_page_102_Figure_2.jpeg)

## ¹³C NMR (101 MHz, CDCl₃)

![](_page_102_Figure_4.jpeg)

![](_page_102_Figure_5.jpeg)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

![](_page_103_Figure_1.jpeg)

![](_page_103_Figure_2.jpeg)

![](_page_103_Figure_3.jpeg)

110 100 f1 (ppm) 210 200 190 180 170 160 150 140 130 120 90 80 70 60 50  $\frac{1}{40}$ 30  $\frac{1}{20}$ 10 ò -10

![](_page_104_Figure_1.jpeg)

![](_page_105_Figure_0.jpeg)

![](_page_105_Figure_1.jpeg)

![](_page_105_Figure_2.jpeg)

![](_page_105_Figure_4.jpeg)

![](_page_105_Figure_5.jpeg)

![](_page_106_Figure_0.jpeg)

![](_page_106_Figure_1.jpeg)

- 0.00

![](_page_106_Figure_2.jpeg)

![](_page_107_Figure_1.jpeg)




























5.0 4.5 f1 (ppm)

5.5

 $4.0 \quad 3.5 \quad 3.0 \quad 2.5 \quad 2.0 \quad 1.5 \quad 1.0 \quad 0.5 \quad 0.0 \quad -0.5 \quad -1.$ 

10.5 10.0 9.5 9.0 8.5 8.0 7.5

7.0

6.5 6.0







S118





S120







