Supporting Information

Minimizing the off-target frequency of the CRISPR/Cas9 system via zwitterionic polymer conjugation and peptide fusion

Yanjiao Han^a, Zhefan Yuan^b, Sijin Luo Zhong^b, Haoxian Xu^c, Shaoyi Jiang^{d*}

^aMolecular Engineering and Science Institute, University of Washington, WA 98195
^bDepartment of Biomedical Engineering, Cornell University, Ithaca, NY, 14853

^cDepartment of Material Science and Engineering, University of Washington, Seattle, WA, 98195

^dMeinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853

* Corresponding author e-mail: sj19@cornell.edu

This file includes:

Figures S1 to S5 Table S1 to S3

Figure S1. Synthetic route of pCB-Cas9 conjugates.

Figure S2 Size-exclusion chromatogram of native Cas9, and pCB₁₀-Cas9, pCB₂₀-Cas9, pCB₅₀-Cas9 conjugates.

Figure S3 Optimal sgRNA to protein ratio for native Cas9 (a) and pCB-Cas9(b). All experiments were performed in a 96-well plate using a volume of 110 ul.

Figure S4 Effect of CRISPRMAX dose on the delivery efficiency and cellular toxicity of Cas9/sgRNA (a) and pCB-Cas9/sgRNA (b).

Figure S5 Electrophoresis of in vitro transcribed Cas9 and Cas9-EK mRNA pre- and post-polyadenylation.

Table S1 On-target and known off-target substrates of Cas9:sgRNAs that target sites in *GFP*, *EMX*, *VEGF*, and *CLTA*. List of genomic on-target and off-targets sites for *GFP*, *EMX*, *VEGF*, and *CLTA* are shown with mutations from the on-target sequence shown in lower case and red.

Target	Site name	Sequence				
Target 1 (GFP)	GFP-On	GGGCACGGGCAGCTTGCCGG				
Target 2 (VEGF)	VEGF-On	GGGTGGGGGGGGAGTTTGCTCC				
	VEGF-Off1	GGaTGGaGGGAGTTTGCTCC				
	VEGF-Off2	GGGaGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG				
	VEGF-Off3	cGGgGGaGGGAGTTTGCTCC				
	VEGF-Off4	GGGgaGGGGaAGTTTGCTCC				
Target 3 (EMX)	EMX-On	GAGTCCGAGCAGAAGAAGAA				
	EMX-Off1	GAG <mark>g</mark> CCGAGCAGAAGAA <mark>ag</mark> A				
	EMX-Off2	GAGTCCtAGCAGgAGAAGAA				
	EMX-Off3	GAGTCtaAGCAGAAGAAGAA				
	EMX-Off4	GAGT <mark>ta</mark> GAGCAGAAGAAGAA				
Targrt 4 (CLTA)	CLTA-On	GCAGATGTAGTGTTTCCACA				
	CLTA-Off1	aCAtATGTAGTaTTTCCACA				
	CLTA-Off2	cCAGATGTAGTaTTcCCACA				
	CLTA-Off3	ctAGATGaAGTGcTTCCACA				
	CLTA-Off4	ctAGATGaAGTGcTTCCACA				

	HEK293			U2OS			K562		
	Cas9-(EK)10	(EK) ₁₀ -Cas9- (EK) ₁₀	Cas9-(EK) ₃₀	Cas9-(EK)10	(EK) ₁₀ -Cas9- (EK) ₁₀	Cas9-(EK) ₃₀	Cas9-(EK)10	(EK) ₁₀ -Cas9- (EK) ₁₀	Cas9-(EK) ₃₀
VEGFA-OT1	0.764	0.037	0.017	0.427	0.007	0.005	0.897	0.013	0.004
VEGFA-OT2	0.507	0.031	0.045	0.687	0.004	0.007	0.813	0.026	0.024
VEGFA-OT3	0.121	0.005	0.009	0.441	0.002	0.007	0.557	0.021	0.024
VEGFA-OT4	0.851	0.045	0.047	0.292	0.025	0.027	0.61	0.025	0.029
EMX-OT1	0.649	0.001	0.003	0.793	0.045	0.05	0.344	0.006	0.005
EMX-OT2	0.077	<0.001	<0.001	0.749	0.035	0.043	0.932	0.007	0.007

Table S2 *P* values of Cas9-(EK)10, (EK)10-Cas9-(EK)10, and Cas9-(EK)30 for target sites (VEGFA and EMX) in three different cell lines (HEK293, U2OS, and K562).

 Table S3 Purity of Cas9 mRNA and EK-Cas9 mRNA measured by UV spectroscopy.

	Cas9 mRNA	Cas9-(EK)10 mRNA	(EK) ₁₀ -Cas9-(EK) ₁₀ mRNA	Cas9-(EK) ₃₀ mRNA
A ₂₆₀ /A ₂₈₀ ratio	2.04 ± 0.04	1.98 ± 0.03	2.02 ± 0.04	2.01 ± 0.03