Supplementary Information

Rapid quantification of the ethanol content in aqueous

solutions using a ratiometric fluorescent sensor

Tianruo Shen, Davin Tan, Meyammai Shanmugham and Xiaogang Liu*

Fluorescence Research Group, Singapore University of Technology and Design

(SUTD), 8 Somapah Road, Singapore 487372, Singapore

*Corresponding author: Xiaogang Liu (xiaogang_liu@sutd.edu.sg)

Contents

1.	Comparison with alternative ethanol detection techniques	S2
2.	Experimental and computational methods	S6
3.	Optical properties of acridine in different solvents	S8
4. and	Optical properties of acridine in EtOH-water mixtures under different temperatu dye concentrations	res S9
5.	Investigating the effects of impurities and pH on the detectionS	511
6.	Demonstration of the ratiometric methodS	514
7.	Computational analysis of the fluorescence mechanismS	521
8.	ReferencesS	524

1. Comparison with alternative ethanol detection techniques

The following reported methods, including titration,^{1,2} densitometry,^{3,4} spectrophotometry,⁵⁻⁸ gas chromatography (GC),⁹⁻¹¹ high-performance liquid chromatography (HPLC),^{12,13} electrochemistry,¹⁴⁻¹⁶ discoloration,^{17,18} and fluorescence,¹⁹⁻²⁴ for qualifying the ethanol concentration were compared and briefly discussed in Table S1.

No	Reference	Basic Principle	Remarks			
			Golden standard method, high			
1	Fichor ¹	Titration	generalizability, requires specific			
	FISHER	Titration	instrument and operation process, uses			
			toxic reagents			
			Detection range (0~50% v/v), foldable			
2	Nogueira <i>et</i>	Titration	paper-based analytical device,			
2	aP	Thranon	convenient operation, requires specific			
			fabrication			
			Detection range (0~100% w/w), in-situ			
3	3 Danahy <i>et al</i> ^β Densitometry		system control, requires special			
			equipment and operation procedures			
			Detection range (48~78% v/v), novel			
			hops image-based detection, uses			
4	Li <i>et al</i> ⁴	Densitometry	artificial intelligence algorithm, requires			
			special equipment and specific operation			
			procedures			
			Detection range (4~24% v/v), fast			
			response, minimal sample consumption,			
5	Abreu <i>et al^s</i>	Spectrophotometry	commercially available chemical			
			materials, requires specific operation			
			procedures			
	Choenachan		Detection range (0.5~30% v/v), uses			
6	onoengonan ot al	Spectrophotometry	commercially available chemical			
			materials, reduces sample			

Table S1 Discussion of the reported techniques.

			contamination, requires specific
			operation procedures
			Detection range (0~6% v/v), uses
7	Fletcher and	Spectrophotometry	commercially available chemical
/	Van Staden ⁷	Spectrophotometry	materials, uses minimal regents, requires
			specific operation procedures
			Detection range (0.7~8% v/v), fast
0	Sriariyanun et		response, uses commercially available
8	al ⁸	Spectrophotometry	chemical materials, encounters low
			solubility of the probe
			Detection range (0.01~1 g/dL), high
	Tinging of a	00	sensitivity and selectivity, minimal
9	Tiscione et al?	GC	sample consumption, requires
			considerable testing time
			Detection range (0.93~6.05% v/v), high
10	Buckee and	GC	sensitivity, minimal sample consumption,
10	Mundy ¹⁰		high reproducibility, requires specific
			analytical tools
			Detection range (5~200 mg/dL), high
		00	sensitivity, minimal sample consumption,
11	wash <i>et ar</i>	GC	requires considerable testing time and
			specific operation procedures,
			Detection range (0.5~10% v/v),
			commercially available chemical
12		HPLC	materials, high reproducibility, needs a
	Gomez		large amount of regents, requires specific
			operation procedures
			Detection range (1~2% v/v), low-cost
			reagents, commercially available
13	Yarita <i>et al</i> ¹³	HPLC	chemical materials, high accuracy,
			requires considerable testing time and
			specific operation procedures
		1	

14	Bueno and Paixao ¹⁴	Electrochemistry	Detection range (75~90% v/v), fast response, high sensitivity, requires specific fabrication and analytical tools
15	Shan <i>et al</i> ¹⁵	Electrochemistry	Detection range (25~200 µM), fast response, high sensitivity, requires specific fabrication
16	Cinti <i>et al</i> ¹⁶	Electrochemistry	Detection range (0~5% v/v), paper- based sensor, fast response, minimal sample consumption, requires specific fabrication
17	Yu <i>et al^{ı7}</i>	Discoloration	Detection range (0~40% v/v), reusable indicator, fast response, straightforward evaluation, requires specific synthetic routes and operation procedures
18	Shahvar et al ¹⁸	Discoloration	Detection range (98~99.5% v/v), smartphone-based detection, minimal sample consumption, requires toxic regents
19	Sharma and Quantrill ¹⁹	Fluorescence	Detection range (0~40 mM), commercially available chemical materials, involves chemical reactions, requires considerable testing time and specific analytical tools
20	Hu <i>et al</i> ²º	Fluorescence	Detection range (0~100% v/v), ratiometric detection, high sensitivity, requires specific synthetic routes
21	Passos <i>et al</i> ²¹	Fluorescence	Detection range (0~10% w/w), uses commercially available fluorophore, requires accurately controlled probe concentration for absorbance/emission intensity measurement, or expensive instrumentation for lifetime measurement

			Detection range (60~90% v/v),
			ratiometric detection, smartphone-based
	lung of o ²	Fluorocopoo	detection, provides fast response,
22	Jung et ar-	Fluorescence	experiences low solubility of the probe,
			requires specific synthetic routes with
			toxic materials
		Fluorescence	Detection range (0~100% v/v), real-time
22	Yin <i>et a</i> ₽³		detection, ratiometric detection, requires
23			specific synthetic routes with toxic
			chemical agents
			Detection range (0~100% v/v), film-
0.4	–	Fluorescence	based sensor, fast response, reduces
24	Fang <i>et a⊭</i> ⁴		sample contamination, requires specific
			synthetic routes

2. Experimental and computational methods

Chemical Materials

No.	Name	CAS No.	Company	Product No.
1	Acridine	260-94-6	Sigma-Aldrich	A23609
2	Acetonitrile	75-05-8	Sigma-Aldrich	271004
3	Glycerol ≥99% v/v	56-81-5	Sigma-Aldrich	G7757
4	Ethyl acetate	141-78-6	VWR	23881.293
5	Dimethylformamide	68-12-2	VWR	23466.298
6	Ethylene glycol ≥99% v/v	107-21-1	VWR	24041.297
7	Buffer pH = 4.00 ± 0.02	NA	VWR	32095.297
8	Buffer pH = 7.00 ± 0.02	NA	VWR	32096.291
9	Buffer pH = 10.00 ± 0.02	NA	VWR	32040.298
10	Ethanol 90% (v/v)	64-17-5	VWR	83811.360
11	1,4-Dioxane	123-91-1	TCI	D0860
12	Ethanol >99.9% v/v	64-17-5	TCI	CT04
13	Methanol >99.8% v/v	67-56-1	TCI	M0097
14	Dimethyl sulfoxide	67-68-5	TCI	D5293

Table S2 Details of chemicals for the experiments.

The water used for the experiments was the ultrapure water purified by the Arium Comfort II Benchtop Water Purification System with Integrated UV Lamp (H2O-II-1-UV-T) from Sartorius Stedim Singapore Pte. Ltd.

Spectral measurements

The emission spectra were measured using Duetta Fluorescence and Absorbance Spectrometer from HORIBA Scientific. Temperatures were controlled and adjusted using EXT-400 Liquid Cooling System from Koolance Inc and TC1 Temperature Controller from Quantum Northwest Inc, respectively.

The emission spectra of acridine were collected at 355 nm of excitation wavelength at 100 µM dye concentrations (unless specifically stated) in 1,4-dioxane (Diox), ethyl acetate (EAC), acetonitrile (ACN), dimethylformamide (DMF), dimethyl sulfoxide (DMSO), ethanol (EtOH), methanol (MeOH), ethylene glycol (EG), water, different buffers, and different ethanol-water mixtures, respectively.

Computational methods

Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations were conducted in Gaussian 16 program.²⁵⁻²⁷ We considered six functional with different Hartree-Fock exchange fractions (HF%),²⁸ including B3LYP (HF% = 20%),²⁹ PBE0 (25%),^{30,31} PW6B95 (28%),³² BMK (42%),³³ M06-2X (54%),³⁴ and ω B97XD (22~100%)³⁵ with the def2-SVP basis set.³⁶ Solvation effects were considered using the SMD solvent model and linear-response (LR) solvent formalism in water.³⁷⁻³⁹ All the optimized geometries were confirmed at the local minimum of the potential energy surfaces (unless specifically stated) in the ground state (S₀), the first excited state (S₁), and the second excited state (S₂). The hole-electron distributions were visualized using Multiwfn and VMD software.^{40,41}

3. Optical properties of acridine in different solvents

Fig. S1 (a) Samples of acridine in different solvents (acridine concentration = 100μ M). From left to right: Diox, EAC, ACN, DMF, DMSO, EtOH, MeOH, EG, and water under daylight (top) and UV light (bottom); (b) Normalized emission spectra of acridine in three alcohols and water.

Table S3 Dielectric constants (ϵ) of the solvents and the peak fluorescence intensity(F.I.) in these solvents.

No.	Solvent	3	Peak F.I. (a.u.)
1	Diox	2.2099	19.19
2	EAC	5.9867	14.23
3	ACN	35.688	23.74
4	DMF	37.219	32.88
5	DMSO	46.826	41.00
6	EtOH	24.852	361.46
7	MeOH	32.613	472.13
8	EG	40.254	630.27
9	Water	78.3553	7567.97

4. Optical properties of acridine in EtOH-water mixtures under different temperatures and dye concentrations

Fig. S2 Emission spectra of acridine in various EtOH-water mixtures at (a) 15 °C and (b) 35 °C; The EtOH content-dependence of fluorescence intensity (F.I.) ratios with linear fitting curves of acridine from 10~90% v/v EtOH content at (c) 15 °C and (d) 35 °C (The insets show the equations of the best linear fits); (e) The EtOH content-dependence of fluorescence intensity (F.I.) ratios of acridine from 90~100% v/v EtOH content with linear fitting curves of acridine (The insets illustrates the equations of the best linear fits) at 25 °C; (f) The EtOH content-dependence of fluorescence intensity (F.I.) ratios with linear fitting curves of acridine from 10~90% v/v EtOH content dependence of fluorescence intensity (F.I.) ratios with linear fitting curves of acridine from 10~90% v/v EtOH content at different temperatures.

Fig. S3 Emission spectra of acridine in various EtOH-water mixtures with a dye concentration of (a) 110 μ M and (b) 120 μ M.

5. Investigating the effects of impurities and pH on the detection

Two ethanolic samples (the concentration of acridine = 100 μ M) were prepared to assess the potential impact of the impurities. Sample 1 (the control sample) contains 75% v/v EtOH and 25% v/v water. In Sample 2 (the experimental sample), 1% v/v impurity (MeOH: EG: glycerol = 4:2:1 v/v/v) was dissolved in the mixture of 75% v/v EtOH and 24% v/v water. Our ratiometric method was applied for quantifying the EtOH concentration of each sample (Fig. 1c, S4, and S5).

Fig. S4 Emission spectra of Sample 1 during three tests.

Fig. S5 Emission spectra of Sample 2 during three tests.

The results showed that the average measured values of Sample 1 and Sample 2 are 74.94% and 75.18%, respectively (Table S4). These experiments indicated that a small amount of impurities has minimal influence on the detection accuracy.

Sample	1			2		
Test	1	2	3	1	2	3
F.I. ratio	1.514	1.516	1.506	1.518	1.513	1.512
Equation	y = 0.0081			x + 0.9052		
Concentration (% v/v)	75.22	75.45	74.15	75.69	75.00	74.86
Average (% v/v)	74.94			75.18		
Standard deviation	0.565			0.360		
Absolute error (%)	0.06		0.18			
Relative error (%)		0.08		0.25		

Table S4 Results of the measurements for Samples 1 and 2.

We also carried out the spectral measurements of acridine in various MeOHwater mixtures (Fig. S6). The results showed that the calibration to methanol is different from that of ethanol, illustrated by a different slope (0.0067).

Fig. S6 (a) The emission spectra of acridine (100 μ M) in various MeOH-water mixtures at 25 °C; the two dash lines highlight the fluorescence intensity (F.I.) at 415 nm and 448 nm, respectively; (b) The methanol content-dependence of F.I. ratios (the ratio of F.I. values at 415 nm and 448 nm) with corresponding linear fitting curve; the inset shows the best linear fitting equation.

Fig. S7 (a) UV-vis absorption and (b) emission spectra of acridine in different buffers; (c) Emission and (d) normalized emission spectra of acridine with different dye concentrations in the pH \approx 6.5 water.

6. Demonstration of the ratiometric method

We collected the emission spectra of acridine dissolved in EtOH purchased from VWR Singapore Pte Ltd, with the labelled concentration (90% v/v) (Fig. S5). We calculated the F.I. ratios between 415 nm and 448 nm and substituted the ratios into the linear fitting equation in Fig. 1c and S2e, as 90% v/v is a boundary value. Our results showed that this method has good reproducibility with low errors (Table S3).

Fig. S8 Emission spectra of acridine dissolved into the calibrated EtOH solutions (90% v/v) from VWR for four testing times.

Test 1 2 1 2 4 3 4 3 F.I. ratio 1.623 1.625 1.631 1.626 1.623 1.625 1.631 1.626 Equation y = 0.0081x + 0.9052y = 0.0107x + 0.6601Concentration (% 88.67 89.55 89.77 89.96 90.44 89.99 88.92 88.95 v/v) Average (% v/v) 89.02 90.04 Standard deviation 0.325 0.245 Absolute error (%) 0.98 0.04 Relative error (%) 1.08 0.05

Table S5 Results of the measurement of calibrated 90% v/v ethanol using two linearfitting curves.

Fig. S9 Photographs of the reference acridine sample (left) and the known samples (right) with different EtOH contents under UV light (The inset shows the EtOH content of the solution in each vial). The images were captured using a normal smartphone.

Channel	Blue		Green			
EtOH content (% v/v)	Left	Right	Ratio	Left	Right	Ratio
0	254	255	1.004	65	65	1.000
5	254	253	0.996	75	69	0.920
10	243	239	0.984	65	56	0.862
15	244	242	0.992	70	54	0.771
20	244	228	0.934	66	47	0.712
30	254	201	0.791	68	33	0.485
40	254	180	0.709	70	27	0.386
50	254	153	0.602	68	18	0.265
60	253	132	0.522	72	13	0.181
70	250	111	0.444	88	29	0.330
80	254	96	0.378	73	13	0.178
90	254	77	0.303	73	8	0.110
100	255	64	0.251	64	8	0.125

Table S6 Intensity values of the blue and green channels from the photos ofreference (left) and known (right) samples taken by the smartphone (Test 1).

Channel	Blue		Green		I	
EtOH content (% v/v)	Left	Right	Ratio	Left	Right	Ratio
0	254	253	0.996	63	64	1.016
5	255	255	1.000	76	69	0.908
10	238	236	0.992	65	55	0.846
15	249	243	0.976	73	57	0.781
20	244	231	0.947	66	47	0.712
30	253	201	0.794	66	35	0.530
40	255	178	0.698	68	25	0.368
50	255	143	0.561	67	16	0.239
60	254	129	0.508	73	15	0.205
70	251	106	0.422	89	24	0.270
80	254	94	0.370	75	12	0.160
90	253	77	0.304	72	10	0.139
100	253	66	0.261	63	10	0.159

Table S7 Intensity values of the blue and green channels from the photos ofreference (left) and known (right) samples taken by the smartphone (Test 2).

Channel	Blue		Green			
EtOH content (% v/v)	Left	Right	Ratio	Left	Right	Ratio
0	253	252	0.996	63	63	1.000
5	254	254	1.000	73	68	0.932
10	244	239	0.980	66	57	0.864
15	247	245	0.992	73	60	0.822
20	242	234	0.967	64	49	0.766
30	254	204	0.803	67	35	0.522
40	254	179	0.705	70	23	0.329
50	254	147	0.579	66	14	0.212
60	255	130	0.510	71	13	0.183
70	250	100	0.400	88	22	0.250
80	255	93	0.365	74	11	0.149
90	254	78	0.307	73	8	0.110
100	253	63	0.249	61	8	0.131

Table S8 Intensity values of the blue and green channels from the photos ofreference (left) and known (right) samples taken by the smartphone (Test 3).

Channel		Blue	Green		
EtOH content (% v/v)	Average	Standard derivation	Average	Standard derivation	
0	0.999	0.004	1.005	0.007	
5	0.999	0.002	0.920	0.010	
10	0.985	0.005	0.857	0.008	
15	0.987	0.008	0.791	0.022	
20	0.949	0.013	0.730	0.025	
30	0.796	0.005	0.513	0.020	
40	0.704	0.004	0.361	0.024	
50	0.581	0.017	0.239	0.021	
60	0.513	0.006	0.190	0.011	
70	0.422	0.018	0.283	0.034	
80	0.371	0.005	0.162	0.012	
90	0.305	0.002	0.119	0.014	
100	0.254	0.005	0.138	0.015	

Table S9 Average intensities of the blue and green channels from the photos ofvarious samples taken by the smartphone.

Fig. S10 Picture of the reference sample (left; pure water) and the test sample (right; calibrated at 90% v/v ethanol solution) under UV light.

Test	1		2		3		4	
Test	Left	Right	Left	Right	ight Left Right	Left	Right	
Value of the blue channel	242	77	243	74	241	76	241	75
Ratio	0.	0.318		305	0.315		0.311	
Concentration (% v/v)	88.35		90.05		88.70		89.22	
Average concentration (% v/v)	89.08							
Standard deviation	0.640							
Absolute error (%)	0.92							
Relative error (%)	1.02							

Table S10 The measurement results of calibrated 90% v/v ethanol using thesmartphone method.

7. Computational analysis of the fluorescence mechanism

Fig. S11 Energy levels of the dark n- π^* and bright π - π^* states of acridine attached with an explicit water molecule during the excitation and emission progresses in water using the ω B97XD functional. The bottom row illustrates the hole-electron distributions during the vertical excitation (* means the state was not optimized).

Fig. S12 The presence of the dark n- π^* state and bright π - π^* state of acridine during the vertical excitation and emission progresses in vacuum (left), water (middle), and a water molecule attaching to the acridine in water (right) using the B3LYP functional (* means the state was not optimized).

Fig. S13 The presence of the dark n- π^* state and bright π - π^* state of acridine during the vertical excitation and emission progresses in vacuum (left), water (middle), and a water molecule attaching to the acridine in water (right) using the PBE0 functional (* means the state was not optimized).

Fig. S14 The presence of the dark $n-\pi^*$ state and bright $\pi-\pi^*$ state of acridine during the vertical excitation and emission progresses in vacuum (left), water (middle), and a water molecule attaching to the acridine in water (right) using the PW6B95 functional (* means the state was not optimized).

Fig. S15 The presence of the dark n- π^* state and bright π - π^* state of acridine during the vertical excitation and emission progresses in vacuum (left), water (middle), and a water molecule attaching to the acridine in water (right) using the BMK functional (* means the state was not optimized).

Fig. S16 The presence of the dark $n-\pi^*$ state and bright $\pi-\pi^*$ state of acridine during the vertical excitation and emission progresses in vacuum (left), water (middle), and a water molecule attaching to the acridine in water (right) using the M06-2X functional (* means the state was not optimized).

Solvent Quantum Yield (x10³) π^* β Peak λ_{em} (nm) α Hexane -0.08 0 0 405 0.096 Benzene 0.59 0.1 0 410 0.33 DMF 0.88 0.69 0 410 0.028 0.19 ACN 0.75 0.31 410 0.35 2-Propanol 0.48 0.95 0.76 413 7.5 EtOH 0.54 0.77 0.83 7.9 415 MeOH 0.6 0.62 0.93 417 10.2 Formamide 0.97 0.48 0.71 420 9.7

Table S11 Solvatochromic parameters^{42, 43} of different solvents and optical

 properties⁴⁴ of acridine in these solvents.

Table S12 Results of the multiple linear regression analysis for the quantum yields of acridine in different solvents with corresponding coefficients to three solvatochromic

parametere								
Regression Sta	itistics	Coefficients						
Multiple R	0.978	Intercept	-0.362					
R^2	0.957	π^*	1.376					
Adjusted R ²	0.924	β	-2.100					
Standard Error	1.292	α	11.907					

parameters.

8. References

- 1 K. Fischer, Angew. Chem., 1935, 48, 394-396.
- S. A. Nogueira, A. D. Lemes, A. C. Chagas, M. L. Vieira, M. Talhavini, P. A. O. Morais and W. K. T. Coltro, *Talanta*, 2019, **194**, 363-369.
- 3 B. Danahy, D. Minnick and M. Shiflett, *Fermentation*, 2018, 4, 72.
- 4 X. Li, J. Zhang, Y. Xue and L. Qiu, *Measurement*, 2022, **194**, 110955.
- 5 V. L.R.G. Abreu, J. L. M. Santos and J. L. F. C. Lima, *Food Anal. Methods*, 2011,
 5, 867-873.
- 6 N. Choengchan, T. Mantim, P. Wilairat, P. K. Dasgupta, S. Motomizu and D. Nacapricha, *Anal. Chim. Acta*, 2006, **579**, 33-37.
- 7 P. J. Fletcher and J. F. Van Staden, Anal. Chim. Acta, 2003, 499, 123-128.
- 8 M. Sriariyanun, P. Mutrakulcharoen, S. Tepaamorndech, K. Cheenkachorn and K. Rattanaporn, *Orient. J. Chem.*, 2019, **35**, 744-750.
- 9 N. B. Tiscione, I. Alford, D. T. Yeatman and X. Shan, J. Anal. Toxicol., 2011, 35, 501-511.
- 10 G. Buckee and A. Mundy, J. Inst. Brew., 1993, 99, 381-384.
- 11 I. A. Wasfi, A. H. Al-Awadhi, Z. N. Al-Hatali, F. J. Al-Rayami and N. A. Al Katheeri, *J. Chromatogr. B: Anal. Technol. Biomed. Life Sci.*, 2004, **799**, 331-336.
- 12 E. F. López and E. F. Gómez, J. Chromatogr. Sci., 1996, 34, 254-257.
- 13 T. Yarita, R. Nakajima, S. Otsuka, T. Ihara, A. Takatsu and M. Shibukawa, *J. Chromatogr. A*, 2002, **976**, 387-391.
- 14 L. Bueno and T. R. Paixao, *Talanta*, 2011, 87, 210-215.
- 15 C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska and L. Niu, *Biosens. Bioelectron.*, 2010, **25**, 1504-1508.
- S. Cinti, M. Basso, D. Moscone and F. Arduini, *Anal. Chim. Acta*, 2017, 960, 123-130.
- 17 Y. Yu, S. Brandt, N. J. Nicolas and J. Aizenberg, ACS Appl. Mater. Interfaces, 2020,
 12, 1924-1929.
- 18 A. Shahvar, D. Shamsaei and M. Saraji, *Measurement*, 2020, **150**, 107068.
- 19 A. Sharma and N. S. M. Quantrill, *Spectrochim. Acta A: Mol. Spectrosc.*, 1994, **50**, 1161-1177.
- 20 X. Hu, H. Cao, W. Dong and J. Tang, *Talanta*, 2021, 233, 122480.

- 21 W. E. Passos, I. P. Oliveira, F. S. Michels, M. A. G. Trindade, E. A. Falcão, B. S. Marangoni, S. L. Oliveira and A. R. L. Caires, *Renew. Energy*, 2021, **165**, 42-51.
- 22 Y.-u. Jung, M. G. Choi, S. H. Lee and S.-K. Chang, *Sens. Actuators B: Chem.*, 2017, **241**, 342-348.
- 23 H. Q. Yin, J. C. Yang and X. B. Yin, Anal. Chem., 2017, 89, 13434-13440.
- 24 R. Huang, K. Liu, H. Liu, G. Wang, T. Liu, R. Miao, H. Peng and Y. Fang, *Anal. Chem.*, 2018, **90**, 14088-14093.
- 25 A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- 26 G. Scalmani, M. J. Frisch, B. Mennucci, J. Tomasi, R. Cammi and V. Barone, *J. Chem. Phys.*, 2006, **124**, 94107.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- 28 C. C. J. Roothaan, Rev. Mod. Phys., 1951, 23, 69-89.
- 29 A. J. Cohen and N. C. Handy, *Mol. Phys.*, 2001, **99**, 607-615.
- 30 C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158-6170.
- 31 A. V. Krukau, O. A. Vydrov, A. F. Izmaylov and G. E. Scuseria, *J. Chem. Phys.*, 2006, **125**, 224106.
- 32 Y. Zhao and D. G. Truhlar, J. Phys. Chem. A, 2005, 109, 5656-5667.
- 33 A. D. Boese and J. M. Martin, J. Chem. Phys., 2004, 121, 3405-3416.
- 34 Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2007, 120, 215-241.
- 35 J. D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys., 2008, 10, 6615-6620.
- 36 F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.

- 37 A. V. Marenich, C. J. Cramer and D. G. Truhlar, *J. Phys. Chem. B*, 2009, **113**, 6378-6396.
- 38 K. V. Mikkelsen, P. Jo/rgensen and H. J. r. A. Jensen, *J. Chem. Phys.*, 1994, **100**, 6597-6607.
- 39 M. Caricato, B. Mennucci, J. Tomasi, F. Ingrosso, R. Cammi, S. Corni and G. Scalmani, *J. Chem. Phys.*, 2006, **124**, 124520.
- 40 T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580-592.
- 41 W. Humphrey, A. Dalke and K. Schulten, J. Mol, Graph., 1996, 14, 33-38.
- 42 M. J. Kamlet, J. L. M. Abboud, M. H. Abraham and R. Taft, *J. Org. Chem.*, 1983, **48**, 2877-2887.
- 43 Y. Marcus, Chem. Soc. Rev., 1993, 22, 409-416.
- 44 L. A. Diverdi and M. R. Topp, J. Phys. Chem., 1984, 88, 3447-3451.