Electronic Supplementary Information

Combined small and large magnetic nanoparticles extraction and concentration from biofluids for non-toxic detection of biomarkers

Anatoliy S. Lapchuk,^{1*} Ivan V. Gorbov¹, Alexander V. Prygun¹, Iryna V. Balagura¹, and Yevhenii M. Morozov^{1,2*}

¹Department of Optical Engineering, Institute for Information Recording of NAS of Ukraine, 03113 Kyiv, Ukraine ²Biosensor Technologies, AIT-Austrian Institute of Technology, 3430 Tulln, Austria *Corresponding authors: Anatoliy S. Lapchuk (email: alapchuk@yahoo.com) Yevhenii M. Morozov (email: Yevhenii.Morozov@ait.ac.at) \vec{V}_{0-} displacement speed of the LmNPs relatively to SmNPs (*NB*! At the same time, this quantity determines the gradient of the external magnetic field).

 μ_0 – relative magnetic permeability of the vacuum.

 μ – relative magnetic permeability of the biofluid medium.

 μ_{NP} – (fixed) relative magnetic permeability of the mNPs (regardless of the mNP's sort).

 μ_s – relative magnetic permeability of the SmNPs.

 M_{sat} – (fixed) saturation magnetisation of the mNPs (regardless of the mNP's sort).

 \vec{M} – magnetisation of an mNP (regardless of the mNP's sort).

 \vec{B}_0 – magnetic flux density of the external system of permanent magnets.

 \vec{B} – magnetic flux density created by a uniformly magnetized spherical mNP.

 \vec{B}_{ext} – external magnetic flux density.

 \vec{B}_{l} – magnetic flux density of an LmNP nearest to the considered SmNP.

 \vec{v}_i – velocities of the small mNPs (*i* = 1, 2, 3, ..., *n*; where *n* – number of small NPs).

R – radius of an mNP (regardless of the mNP's sort).

 R_s – (external) radius of the SmNPs.

 R_{l} – (external) radius of the LmNPs.

 R_m – radius of an mNP's magnetic core (regardless of the mNP's sort).

 R_{sm} – radius of the magnetic core the SmNPs.

 R_{lm} – radius of the magnetic core the LmNPs.

 \vec{r} – radius-vector from the centre of an NP to the point of the magnetic field determination.

 \vec{r}_{s} – radius-vector (coordinates) of an SmNP.

 \vec{r}_{l} – radius-vector (coordinates) of an LmNP.

 \vec{m} – magnetic moment of an mNP (regardless of the mNP's sort).

- \vec{m}_{s} magnetic moment of an SmNP.
- \vec{m}_{l} magnetic moment of an LmNP.
- π the number π .
- V_{s} volume of an SmNP.
- \vec{F} force of the mNPs interaction.
- E energy of the mNPs interaction.
- $\vec{\nabla}$ del (nabla) operator.