Upconversion Fluorescence of MXenes Nanosheets and the Sensitive Detection of L-Tryptophan

Feng Wang^{a,c}, Hongye Wang^a, Xiaoqiang Cui^{b*}, Yang Liu^{a*}

^aDepartment of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R China.

^bSchool of Materials Science and Engineering, State Key Laboratory of Automotive Simulation and Control and Key Laboratory of Automobile Materials of MOE, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China.

^cShenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China

Corresponding Author

xqcui@jlu.edu.cn (XQ Cui), liu-yang@mail.tsinghua.edu.cn (Y Liu)

Fig.S1 (a) TEM image of Ti_3C_2 nanosheets. (b) SEM image of accordion-like Ti_3C_2 .

Fig.S2 High-resolution XPS spectrum of C 1s of Ti₃C₂ nanosheets.

Fig.S3 Fluorescence emission spectra of Ti_3C_2 nanosheets in an aqueous solution at different excitation wavelengths.

Fig.S4 The fluorescence emission spectra of a) Ti₃AlC₂ powder and b) accordion-like Ti₃C₂.

Fig.S5 The relationship between the energy of emission light and excitation light.

Fig.S6 (a) Fluorescence emission spectra of Ti_3C_2 nanosheets stripped by TMAOH at different wavelength (320 nm to 450 nm) excitation. (b) Fluorescence emission spectra of Ti_3C_2 nanosheet stripped by TMAOH at different wavelength (750 nm to 900 nm) excitation.

Fig.S7 (a) The UV-Vis spectra of the Ti_3C_2 nanosheets prepared by LiF and HCl and S- Ti_3C_2 NPs. (b) The fluorescence emission spectra of the Ti_3C_2 nanosheets prepared by LiF and HCl and S- Ti_3C_2 NPs at 850 nm.

Fig.S8 (a) The normalized fluorescence emission spectra of Ti_3C_2 nanosheets at different concentration (a-g: 0.5, 1, 3, 4, 5, 7.5, 10 µg/mL, respectively). (b) Plots of relative normalized PL intensity *vs* the concentration of Ti_3C_2 nanosheets

Fig.S9 (a) The fluorescence emission spectra of 4 μ g/mL Ti₃C₂ with 500 nM L-Tryptophen at different incubation time (a-g: 0, 1, 2, 3, 4, 5, 6 min, respectively). (b) Plots of relative normalized PL intensity *vs* incubation time.

Method	materials	linear range	Detection limit	Refrence
Electrochemica	Cu_2O nanoparticles- coated	0.02-20 μM	0.01 µM	[1]
1	nanocomposite			
Chronoampero	Conductor polymer	3.3×10^{-7} -	$1.05 \times 10^{-7} \text{ M}$	[2]
metry	polypyrrole doped with	$1.06 \times 10^{-5} \mathrm{M}$		
	potassium			
	hexacyanoferrate (II)			
Electrocatalytic	Fe ₃ O ₄ /C composite	1.0-80µM and	0.26 µM	[3]
		80-800 μM		
Cyclic	Polymethionine modified	1.5 - 8.0×10 ⁻⁵	6.99×10 ⁻⁷ M	[4]
voltammetry	carbon nanotube	М		
Electrochemica	Exfoliated graphene and	0.1-100µM	0.015 μ M	[5]
1	poly (3,4-	and 100-		
	ethylenedioxythiophene):	1000µM		
	poly (styrene sulfonate)			
Voltammetric	Silver dendrites decorated	200 nM-400	20 nM	[6]
	polythiophene	μΜ		
	nanocomposite			
Colorimetric	purified tryptophanases	100 µM to	100 µM	[7]
method		600 µM		
Fluorescence	the TF-Splinting Duplex	0–100 µM	790 nM	[8]
Fluorescence	Single layer of MXene	0-5 μM	91 nM	Our
	(Ti_3C_2) nanosheets			work

Table. S1 The detection performance of sensors based on different nanomaterials for L-Tryptophan.

References

- 1. Q. He, Y. Tian, Y. Wu, J. Liu, D. Chen, *Biomolecules*, 2019, 9, 176.
- 2. A. Dinu, C. Apetrei, *Inventions*, 2021, 6, 56.
- 3. J. Liu, S. Dong, Q. He, S. Yang, G. Li, *Biomolecules*, 2019, 9, 245.
- 4. N. S. Prinith, J. G. Manjunatha, J. Electrochem. Sci. Eng. 2020, 10, 305-315.
- 5. S. Duan, W. Wang, C. Yu, M. Liu, L. Yu, Nano., 2019, 14, 1950058.
- 6. S. D. Gunavathana, P. Thivya, J. Wilson, A. C. Peter, J. Mol. Struct., 2019, 1205, 127649.
- 7. Y. N. Wu, T. M. Wang, C. Zhang, X. H. Xing, *Talanta*, 2018, 176, 604-609.
- X. Y. Duan, Z. W. Chen, S. M. Tang, M. Q. Ge, H. Wei, Y. F. Guan, G. J. Zhao, ACS Sens., 2020, 5, 837–844.