Supporting information for

A sensitive isothermal fluorescence biosensor for microRNAs detection coupling Primer Exchange Reaction with Catalytic Hairpin Assembly

Jiatong Liu, ^a Minzhe Shen, ^a Jadera Talap, ^a Xudan Shen, ^a Zihan Song, ^a Haihong Hu, ^a Su Zeng ^a and Sheng Cai^{*a}

^a Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou, Zhejiang 310058, China.

Name	Sequence (from 5' to 3')				
miR-200a	UAA CAC UGU CUG GUA ACG AUG U				
Primer a	CAT CAT CAT				
Self-gated Hairpin	GGT GCA TCA TCA TAC ATC GTT ACC AGA				
	CAG TGT TAA CAT CAT CAT GGG CCT TTT GGC				
	CCA TGA TGA TGT ATG ATG ATG CAC C				
Hairpin-2	GGCATCATCATACATCGTTACCAGACAGTGTTA				
	ACATCATCATGGGCCTTTTGGCCCATGATGATG				
	TATGATGATGCC				
Hairpin-4	CCCTCCCATCATCATACATCGTTACCAGACAGT				
	GTTAACATCATCATGGGCCTTTTGGCCCATGAT				
	GATGTATGATGATGGGAGGG				
	BHQ1-ATG TAT GAT GAT GTA TGA TGA TGT				
PER-CHA-H1	TCC AAT CAC AAC ACA TCA TCA TAC ATC				
	ATC-FAM				
PFR-CHA-H2	GTA TGA TGA TGT GTT GTG ATT GGA ATC ATC				
1 LIC-CIII 1-112	ATA CAT TCC AAT CAC AAC ACA TCA				
PER-CHA-H3	GTT GTG ATT GGA ATG TAT GAT GAT ACA TCA				
	TCA TAC ATC ATC ATA CAT TCC AAT				
miR-200b	CAU CUU ACU GGG CAG CAU UGG A				
miR-200c	CGU CUU ACC CAG CAG UGU UUG G				
miR-429	UAA UAC UGU CUG GUA AAA CCG U				
miR-141	CAU CUU CCA GUA CAG UGU UGG A				

 Table S1. Sequences of DNA and RNA probes used.

Figure S1. Optimization of the experimental parameters. Fluorescence intensity and SNR results of various parameters, including (A) Self-gated Hairpin concentration, (B) Primer a concentration, (C) Bst DNA polymerase amount, (D) Mg2+ concentration, (E) dHTP concentration, (F) the incubation temperature, (G) the incubation time, and (H) the CHA probes concentration. The concentration of target miR-200a was 1 nM. Error bars: the standard deviation of triplicate independent measurements.

Figure S2. Optimization of the experimental parameters of PER. Fluorescence intensity with and without target of various parameters, including (A) Self-gated Hairpin concentration, (B) Primer a concentration, (C) Bst DNA polymerase amount, (D) Mg²⁺ concentration, (E) dHTP concentration, (F) the incubation temperature and (G) the incubation time. The concentration of target miR-200a was 1 nM. Error bars: the standard deviation of triplicate independent measurements.

Figure S3. Analytical performance of the proposed biosensor. The Linear correlation between logarithmic fluorescence intensity and logarithmic concentration of PER (A). Selectivity of PER strategy. (B). Error bars: the standard deviation of triplicate independent measurements.

Target	Method	Reaction time	Linear range	LOD	Ref.
miR-21	Catalytic-hairpin-assembly assisted DNA tetrahedron nanoprobe	8 h	0.1-10 nM	120 pM	[1]
miR-21	Duplex-specific nuclease and catalytic hairpin assembly	1 h	10 fM-100 pM	5.4 fM	[2]
miR-21	Catalytic hairpin assembly coupled with enzymatic repairing amplification	2h	100 fM-1 nM	50 fM	[3]
miRNA	Rolling circle amplification-based DNA machine coupling catalytic hairpin assembly with DNAzyme formation	75 min	1 fM-1 pM	0.68 fM	[4]
miR-155	Cascaded catalytic hairpin assembly	1 h	10 pM- 1000 pM	6.9 pM	[5]
miR-21	DNA nanowire based localized catalytic hairpin assembly	3 h	0-8 nM	2.0 pM	[6]
miR-let- 7a	Catalytic hairpin assembly and spherical nucleic acid	2 h	0.1-100 pM	53.7 fM	[7]
miR-200a	Primer exchange reaction coupling with catalytic hairpin assembly	1 h	250 pM-10 nM	14.35 pM	this work

Table S2. Comparison of previously reported CHA method for miRNA detection

miRNA	Added (fmol)	Detected (fmol)	Recovery (%)	RSD (%)
miR-200a	128	130.7	102.1	5.72
	256	266.4	104.1	1.82
	512	436.2	85.2	1.22

Table S3. Recovery detection of miR-200a in 20% human serum (n=3)

References

 Q. Huang, P.Q. Ma, H.D. Li, B.C. Yin, B.C. Ye, Catalytic-Hairpin-Assembly-Assisted DNA Tetrahedron Nanoprobe for Intracellular MicroRNA Imaging, Acs Applied Bio Materials 3(5) (2020) 2861-2866.

[2] N. Hao, P.P. Dai, T. Yu, J.J. Xu, H.Y. Chen, A dual target-recycling amplification strategy for sensitive detection of microRNAs based on duplex-specific nuclease and catalytic hairpin assembly, Chem. Commun. 51(70) (2015) 13504-13507.

[3] C.-H. Zhang, Y. Tang, Y.-Y. Sheng, H. Wang, Z. Wu, J.-H. Jiang, Ultrasensitive detection of microRNAs using catalytic hairpin assembly coupled with enzymatic repairing amplification, Chem. Commun. 52(93) (2016) 13584-13587.

[4] J. Zhuang, W. Lai, G. Chen, D. Tang, A rolling circle amplification-based DNA machine for miRNA screening coupling catalytic hairpin assembly with DNAzyme formation, Chem. Commun. 50(22) (2014) 2935-2938.

[5] X. Li, F. Yang, C. Gan, R. Yuan, Y. Xiang, Sustainable and cascaded catalytic hairpin assembly for amplified sensing of microRNA biomarkers in living cells, Biosens. Bioelectron. 197 (2022).

[6] Q. Wei, J. Huang, J. Li, J. Wang, X. Yang, J. Liu, K. Wang, A DNA nanowire based localized catalytic hairpin assembly reaction for microRNA imaging in live cells, Chem. Sci. 9(40) (2018) 7802-7808.

[7] X. Wei, D. Liu, M. Zhao, T. Yang, Y. Fan, W. Chen, P. Liu, J. Li, S. Ding, An enzyme-free surface plasmon resonance imaging biosensing method for highly sensitive detection of microRNA based on catalytic hairpin assembly and spherical nucleic acid, Anal. Chim. Acta 1108 (2020) 21-27.