Sensors & Diagnostics

Electronic Supplementary Information

Salicylaldehyde-based molecular sensor with one facile step toward visual detection of viscosity

Lingfeng Xu,^{1,2,*} Yuefeng Wang,¹ Chuan Jiang,¹ Yanrong Huang,³ Genhe He,^{1,*} and Limin Liu^{4,*}

1 Key Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji'an, Jiangxi 343009, China.

2 State Key Laboratory of Luminescent Materials & Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science & Engineering, South China University of Technology, Guangzhou 510640, China

3 School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China

4 School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China

* Corresponding author. E-mail: <u>rs7lfxu@outlook.com</u>

Table of contents

Scheme S11
Fig. S11
Fig. S22
Fig. S3
Fig. S44
Fig. S55
Fig. S66
Fig. S77
Fig. S8
Fig. S99
Table S110
Table S212
Table S312
Table S412
References13

Scheme S1. Synthesis route of the molecular sensor DTPMP.

Fig. S1 ¹H-NMR spectrum of the molecular sensor DTPMP in CDCl₃.

Fig. S2 ¹³C-NMR spectrum of the molecular sensor DTPMP in CDCl₃.

Fig. S3 HR mass spectrum of the molecular sensor DTPMP. MS (ESI): m/z 337.15287 [M+1]⁺.

Fig. S4 Detection limit of the sensor DTPMP.

The calibration curve was first obtained from the plot of log (I_{532}) as a function of log

(η). Then the regression curve equation was obtained for the lower viscosity part.

The detection limit = $3 \times S.D./k$

Where k is the slope of the curve equation, and S.D. represents the standard deviation

for the log (I_{532}) of molecular sensor DTPMP.

$$\log (I_{532}) = 1.381 + 1.330 \times \log (\eta) (R^2 = 0.982)$$

 $\log (LOD) = 3 \times 0.038/1.330 = 0.086$

LOD =10^0.086 =1.220 cP

Fig. S5 Fluorescence spectra of the sensor DTPMP (10 μ M) in glycerol under different temperature, including the ambient temperature (25 °C), normal body temperature (37 °C), and fresh-maintenance temperature (5 °C).

Fig. S6 Fluorescence spectra of the molecular sensor DTPMP (10 μ M, containing 1% DMSO) in eight kinds of common liquids, including the water, grape juice, lime juice, red pomelo juice, milk, jasmine juice, watermelon juice and edible oil, λ_{ex} =420 nm.

Fig. S7 (a) Normalized fluorescence emission spectra of molecular sensor DTPMP in six kinds of common solvents. (b) Normalized absorption spectra of molecular sensor DTPMP in six kinds of common solvents.

Fig. S8 (a) Fluorescence emission spectra intensity of the molecular sensor DTPMP (10 μ M) under various pH values (containing 1% DMSO) in low viscous water. (b) Corresponding fluorescence intensities of molecular sensor DTPMP under various pH values environment, λ_{ex} =420 nm.

Fig. S9 Photostability analysis of the molecular sensor DTPMP in water (containing 1% DMSO), glycerol (containing 1% DMSO) and other seven kinds of common liquids (containing 1% DMSO). All upon samples were tested under continuous light irradiation with 420 nm UV lamp.

Probe	λ_{ab}^{*}	λ_{em}^{**}	Stokes shift ^{***}	Applicatio n	Reference
N N N N N N N N N N N N N N N N N N N	500 nm	607 nm	107 nm	Biological system, living cells.	[1]
N OH	530 nm	620 nm	90 nm	Biological system, living cells.	[2]
$ \begin{array}{c} 0 & 0 \\ 0 & 0 $	560 nm	580 nm	20 nm	Biological system, living cells.	[3]
	600 nm	635 nm	35 nm	Biological system, living cells, in vivo.	[4]
	580 nm	635 nm	55 nm	Biological system, living cells.	[5]
	678 nm	698 nm	20 nm	Biological system, living cells, rat slice.	[6]

Table S1. Comparison of the representative fluorescence-based probes for viscosity detection reported in recent years.

N ⁺	545 nm	628 nm	83 nm	Biological system, living cells.	[7]
CHA-SJ-H	525 nm	595 nm	70 nm	Biological system, living cell.	[8]
	520 nm	610 nm	90 nm	Biological system, living cell, zebra fish, mice.	[9]
, , , , , , , , , , , , , ,	470 nm	560 nm	90 nm	Biological system, living cell.	[10]
your of	520 nm	580 nm	60 nm	Biological system, living cell.	[11]
CF3 OH	415.6 nm	532.4 nm	116.8 nm	Liquids, food spoilage analysis.	This work

* Absorption peak. The absorption was measured in the glycerol.

** Emission peak. The fluorescence emission was measured in the glycerol.

*** The stokes shift herein was obtained from the absorption and emission measured in the glycerol.

Fluorescence intensity
22.50
34.80
37.50
50.75
102.14
55.10
89.13
412.10

Table S2. Fluorescence intensity of commercial liquids with the molecular sensor DTPMP.

Table S3. Viscosity values of the liquids determined *via* viscometer and fluorescence technique.

Liquids	Viscosity (cP)	Calculated (cP)
Water	1.00	1.02
Grape juice	1.36	1.34
Lime juice	1.42	1.44
Red pomelo juice	2.44	2.47
Watermelon juice	7.50	7.40
Milk	2.81	2.86
Jasmine juice	6.00	6.09
Edible oil	68.10	68.25

Table S4.	Photo-physical	properties	of	the	molecular	sensor	DTPMP	in	different
solvents.									

Solvents	Dielectric	η (cP)	Absorption	Emission
	constant (ϵ)		λ_{ab} (nm)	λ_{em} (nm)
Water	78.5	1.0	401.2	543.7
Acetonitrile	37.5	0.4	388.6	527.1
DMSO	46.8	2.1	396.8	541.1
Methanol	32.6	0.6	395.5	530.4
THF	7.4	0.5	384.5	521.2
Toluene	2.4	0.6	381.1	518.3
Ethyl acetate	7.3	0.4	385.3	523.8
Glycerol	45.8	956.0	415.6	532.4

References

- M. Ren, B. Deng, K. Zhou, X. Kong, J.-Y. Wang and W. Lin, Single fluorescent probe for dual-imaging viscosity and H₂O₂ in mitochondria with different fluorescence signals in living cells, *Anal. Chem.*, 2017, **89**, 552–555.
- 2 G. Zhang, Y. Sun, X. He, W. Zhang, M. Tian, R. Feng, R. Zhang, X. Li, L. Guo, X. Yu and S. Zhang, Red-emitting mitochondrial probe with ultrahigh signal-to-noise ratio enables high-fidelity fluorescent images in two-photon microscopy, *Anal. Chem.*, 2015, 87, 12088–12095.
- 3 L.-L. Li, K. Li, M.-Y. Li, L. Shi, Y.-H. Liu, H. Zhang, S.-L. Pan, N. Wang, Q. Zhou and X.-Q. Yu, BODIPY-based two-photon fluorescent probe for real-time monitoring of lysosomal viscosity with fluorescence lifetime imaging microscopy, *Anal. Chem.*, 2018, **90**, 5873–5878.
- 4 M. Ren, L. Wang, X. Lv, J. Liu, H. Chen, J. Wang and W. Guo, Development of a benzothiazole-functionalized red-emission pyronin dye and its dihydro derivative for imaging lysosomal viscosity and tracking endogenous peroxynitrite, *J. Mater. Chem. B*, 2019, **7**, 6181– 6186.
- 5 L. Zhu, M. Fu, B. Yin, L. Wang, Y. Chen and Q. Zhu, A red-emitting fluorescent probe for mitochondria-target microviscosity in living cells and blood viscosity detection in hyperglycemia mice, *Dye. Pigment.*, 2020, **172**, 107859.
- 6 S. J. Park, B. K. Shin, H. W. Lee, J. M. Song, J. T. Je and H. M. Kim, Asymmetric cyanine as a far-red fluorescence probe for mitochondrial viscosity, *Dye. Pigment.*, 2020, **174**, 108080.
- 7 K. Zhou, M. Ren, B. Deng and W. Lin, Development of a viscosity sensitive fluorescent probe for real-time monitoring of mitochondria viscosity, *New J. Chem.*, 2017, **41**, 11507–11511.
- 8 Y. Baek, S. J. Park, X. Zhou, G. Kim, H. M. Kim and J. Yoon, A viscosity sensitive fluorescent dye for real-time monitoring of mitochondria transport in neurons, *Biosens. Bioelectron.*, 2016, 86, 885–891.
- 9 J. Yin, M. Peng and W. Lin, Visualization of mitochondrial viscosity in inflammation, fatty liver, and cancer living mice by a robust fluorescent probe *Anal. Chem.*, 2019, **91**, 8415–8421.
- 10 Z. Zou, Q. Yan, S. Ai, P. Qi, H. Yang, Y. Zhang, Z. Qing, L. Zhang, F. Feng and R. Yang, Real-time visualizing mitophagy-specific viscosity dynamic by mitochondria-anchored molecular sensor, *Anal. Chem.*, 2019, **91**, 8574–8581.
- 11 L. He, Y. Yang and W. Lin, Rational design of a rigid fluorophore–molecular sensor-based probe for high signal-to-background ratio detection of sulfur dioxide in viscous system, *Anal. Chem.*, 2019, **91**, 15220–15228.