Supporting Information

Planar carbon electrodes for real-time quantification of hydrogen sulfide release from cells

Jackson R. Hall^a, James B. Taylor^a, Taron M. Bradshaw^a, Mark H. Schoenfisch^{*,a,b}

^{*a*} Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States

^b Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, United States

*Email: schoenfisch@unc.edu

Table of Contents

1. Table of electrochemical hydrogen sulfide sensors used to monitor live cells	Table S-1
2. Mask schemes for the two SPCE designs	Figure S-1
3. Cyclic voltammograms of o-PD upon GC electrodes and SPCEs	Figure S-2
4. Repeated standard calibration curves on bare and o-PD coated SPCEs	Figure S-3

Table S-1.	Comparison of various,	, recent hydrogen s	sulfide electrochemical	sensors used to de	tect hydrogen sulfide	release from live
cells.						

Electrode Material	Method	Limit of Detection	Sensitivity	Response Time	Cell type	Reference
SPCE (o-PD/2x XG)	Amperometry	80 nM	1.71 nA/µM	16.8±7.4s	HUVEC	This work
PEDOT-modified nanoporous gold microelectrode	Amperometry	0.1 µM	0.125 nA/µM	1s	HeLa	1
LDH wrapped carbon nanotubes	Amperometry	0.3 nM	73 μA/mM cm ⁻²	3s	Sulfate reducing bacteria; Melanoma (A375)	2
Reduced graphene oxide-MoS ₂	Amperometry	10 nM	0.0008 µA/µM	<5s	E. coli	3
PtNi alloy nanoparticles	Amperometry	0.004 µM	0.323 μA/μM cm ⁻²	4.8s	Breast cancer (MDA-MB- 231); Fibroblasts (L929)	4
rGO/Fe ₃ O ₄ /Cu ₂ O NSs modified magnetic glassy carbon electrode	CV	230 pM			HeLa	5

References for table 1

- Hu, X. B.; Liu, Y. L.; Zhang, H. W.; Xiao, C.; Qin, Y.; Duo, H. H.; Xu, J. Q.; Guo, S.; Pang, D. W.; Huang, W. H. Electrochemical Monitoring of Hydrogen Sulfide Release from Single Cells. *ChemElectroChem* 2016, *3*, 1998–2002.
- (2) Asif, M.; Aziz, A.; Wang, Z.; Ashraf, G.; Wang, J.; Luo, H.; Chen, X.; Xiao, F.; Liu, H. Hierarchical CNTs@CuMn Layered Double Hydroxide Nanohybrid with Enhanced Electrochemical Performance in H 2 S Detection from Live Cells. *Anal. Chem.* **2019**, *91*, 3912–3920.
- (3) Jeromiyas, N.; Mani, V.; Chang, P. C.; Huang, C. H.; Salama, K. N.; Huang, S. T. Anti-Poisoning Electrode for Real-Time in-Situ Monitoring of Hydrogen Sulfide Release. *Sensors Actuators, B Chem.* **2021**, *326*, 128844.
- Panda, A. K.; Keerthi, M.; Sakthivel, R.; Dhawan, U.; Liu, X.; Chung, R. J. Biocompatible
 Electrochemical Sensor Based on Platinum-Nickel Alloy Nanoparticles for In Situ Monitoring of
 Hydrogen Sulfide in Breast Cancer Cells. *Nanomater. 2022, Vol. 12, Page 258* 2022, *12*, 258.
- (5) Gu, W.; Zheng, W.; Liu, H.; Zhao, Y. Electroactive Cu2O Nanocubes Engineered Electrochemical Sensor for H2S Detection. *Anal. Chim. Acta* **2021**, *1150*, 338216.

Figure S-1. Mask schemes for the two SPCE designs. (A) Vinyl mask designs. Left: dual electrode (3.2 mm x 19.0 mm) for analytical performance and selectivity measurements. Right: Single, thin electrode (1.6 mm x 25.4 mm) for cellular measurements. (B) Image of completed dual SPCE with Kapton tape (green) to demarcate working area (3.2 mm x 6.5 mm) from lead connections.

Figure S-2. Cyclic voltammograms of the electropolymerization of *o*-PD upon (A) glassy carbon electrodes and (B) SPCEs. Performed in 10 mM *o*-PD in 10 mM PBS, sweeping from 0.0 to ± 1.0 V at a scan rate of 10 mV s⁻¹. Initial sweep shows the characteristic peak at ± 0.4 V and prominent shoulder (± 0.5 to ± 0.8 V). Subsequent sweeps are passivated by the deposited film.

Figure S-3. Repeated standard calibrations performed on bare (Top row, N = 4) and poly-*o*-PD-coated (Bottom row, N = 4) SPCEs. Each graph is four consecutive standard calibrations performed using a single SPCE. Key for each graph: Calibration 1 (circle), Calibration 2 (X symbol), Calibration 3 (diamond), and Calibration 4 (square). All calibration curves had background current subtracted.