Electronic Supplementary Information

A sensitive electrochemiluminescence immunosensor for carbohydrate antigen 12-5 analysis based on a dual-function SnO₂ nanoflowers

Xiangfei Zheng, Dongmiao Qin, Guichun Mo, Weiming Mo and Biyang Deng*

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China

*Corresponding Author:

Email: dengby16@163.com

Table of Contents

1. X-ray photoelectron spectroscopies of SnO ₂ NFsS3											
2.	UV-vis	spec	trum	and	XRE) patte	ern	of	the	prep	pared
materialsS4											
3. EDS spectra of AuNPs/PEI-SnO ₂ NFs and Ag@ZnONSsS5											
4. Fig. S1. XPS scans of SnO ₂ NFs: Survey spectrum, Sn3d spectrum and O1s											
spectrum											
5. I	Fig. S2.	UV-vis	optical	spectra	of S	SnO ₂ NFs,	, PEI	-SnO ₂	NFs,	AuNPs	and
AuN	IPs/PEI-S1	nO ₂ NFs;	XRD	patterns	of	AuNPs,	SnO	2NFs	and	AuNPs	/PEI-
SnO ₂ NFsS4											
6.	Fig.	S3.	EDS	diagra	ms	of	AuN	Ps/PE	[-SnO ₂	₂ NFs	and
Ag@ZnONSsS.											
7. References											S5

1. X-ray photoelectron spectroscopies of SnO₂NFs

XPS characterization is used to determine the element composition and chemical oxidation valence of SnO₂NFs. The binding energies obtained in the XPS analysis were corrected for specimen charging by referencing the C1s line to 284.6 eV. The result of the wide survey scan shown in Fig.S1A learly reveals that the existence of Sn and O elements. The Sn3d spectrum showed that centered around 495.1 eV and 486.7 eV spin orbit of twin peaks (Fig.S1B), corresponding to Sn3d_{3/2} and Sn3d_{5/2}, respectively, indicating that Sn⁴⁺ in SnO₂ is in a normal oxidation valence, which consistent with the reported on the SnO₂ structure.^{1,2} As shown in Fig.S1C, the O1s spectrum showed the binding energies of 530.7 eV could be the lattice oxygen of SnO₂.³

Fig. S1. XPS scans of SnO₂NFs: Survey spectrum (A), Sn3d spectrum (B) and O1s spectrum (C).

2. UV-vis spectra and XRD pattern of the prepared materials

The SnO₂NFs, PEI-SnO₂NFs, AuNPs and AuNPs/PEI-SnO₂NFs composites were investigated by UV-vis. As shown in Fig.S2A, SnO₂NFs presented a characteristic peak at 325 nm (curve a). Compared with SnO₂NFs, the absorption peak of PEI-SnO₂NFs was red shifted to 337 nm (curve b). PVP-AuNPs showed a main peak at 538 nm and a shoulder peak at 620 nm (curve c). The AuNPs/PEI - SnO₂NFs composite (curve d) showed the same absorption wavelength range both PEI-SnO₂NFs and PVP-AuNPs, indicating the successful preparation of AuNPs/PEI-SnO₂NFs composites. Fig.S2B presented the XRD patterns of AuNPs (curve a), SnO₂NFs (curve b) and AuNPs/PEI-SnO₂NFs (curve c). It is observed from that the 2θ of SnO₂NFs diffraction peaks are 26°, 34°, 37°, 52° and 61°, corresponding to (110), (101), (200), (211) and (310) crystal surfaces, respectively. The crystal plane shows good crystallinity.⁴ It can found that the XRD peaks of AuNPs/PEI-SnO₂NFs were completely coincided with SnO₂NFs and AuNPs, the diffraction peaks of AuNPs in 38.2° (111), 44.3° (200), 64.6° (220), 77.3° (311), respectively.⁵ It can be concluded that the AuNPs was successfully fixed on the surface of SnO₂NFs.

Fig. S2. (A) UV-vis optical spectra of SnO_2NFs (a), PEI-SnO₂NFs (b), AuNPs (c) and AuNPs/PEI-SnO₂NFs (d); (B) XRD patterns of AuNPs (a), SnO₂NFs (b) and AuNPs/PEI-SnO₂NFs (c).

3. EDS spectra of AuNPs/PEI-SnO₂NFs and Ag@ZnONSs

The elemental analysis of the AuNPs/PEI-SnO₂NFs and Ag@ZnONSs composite was further studied by EDS spectra. As shown in Fig.S3A, AuNPs/PEI-SnO₂NFs composite mainly contains three elements of 73.56% Sn, 23.55% O and 2.89% Au, indicating that the AuNPs were grown on the surface of SnO₂NFs successfully. It could be observed from Fig.S3B that the major elements of Ag@ZnONSs composite were 25.88% Zn, 14.21% O and 59.91% Ag, indicating that the AgNPs were reduced to the surface of ZnONSs successfully.

Fig. S3. EDS diagrams of AuNPs/PEI-SnO₂NFs (A) and Ag@ZnONSs (B).

References

- 1 J. Zhang, X. Liu, S. Wu, M. Xu, X. Guo and S. Wang, J. Mater. Chem., 2010, 20, 6453-6459.
- 2 S. Wang, J. Yang, H. Zhang, Y. Wang, X. Gao, L. Wang and Z. Zhu, Sensor. Actuat. B-Chem., 2015, 207, 83-89.
- 3 H. Chen, X. Pu, M. Gu, J. Zhu and L. Cheng, Ceram. Int., 2016, 42, 17717-17722.
- 4 D. Narsimulu, S. Vinoth, E. S. Srinadhu and N. Satyanarayana, Ceram. Int., 2018, 44, 201-207.
- 5 H. Zhou, N. Gan, T. Li, Y. Cao, S. Zeng, L. Zheng and Z. Guo, Anal. Chim. Acta, 2012, 746, 107-113.