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Supplementary Information

1. Supplementary Figures

Suppl. Figure 1 Schematic of the Strain Field Generator (SFG) that is used as the mechanical test module. The device 
was fabricated for testing the sensors under prescribed strain generated from four actuators. To apply the strain to the 
sensor, a PDMS base was fabricated and clamped to the SFG. The SFG is comprised of a 250 x 250 mm aluminum 
plate, four Actuonix linear actuators, 8 clamps (four of them fixed,  four of them attached to the arm of the actuators), 
and a 40 x 40 mm PTFE block was used to provide support under the sensor location and to provide contrast for the 
DIC speckle pattern. 
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Suppl. Figure 2 εxx and εyy strain field Images of the inner upper arm during the three different movements: straight-
armed bicep contractions, arm flexion at the elbow, and arm flexion at the elbow with bicep contraction. The strain field 
exhibits positive values in the y-direction (tension) and small positive values in the x-direction on the right side of the 
sample during flexion and flexion plus contraction. Here the strain field during flexion plus contraction with respect to 
straight position can be calculated by adding S-F and F-FC strain fields together. 



Suppl. Figure 3 εxx and εyy strain field Images of the outer upper arm during the three different movements: straight 
armed bicep contractions, arm flexion at the elbow, and arm flexion at the elbow with bicep contraction. The strain 
profile exhibits positive values (i.e., tension) in the y-direction and negative values (i.e., compression) in the x-direction, 
for flexion and flexion plus contraction) indicating a more uniaxial profile. 



Suppl. Figure 4 COMSOL Multiphysics is used to model the capillaric strain sensor using the Solid Mechanics Module. 
A square frame with dimensions of 50 x 50 mm2 in area and 1130 µm in thickness is defined from a PDMS material, 
which has a density of 1000 kg/m3, Young's modulus of 1 MPa, and Poisson's ratio of 0.49. Inside the square of PDMS, 
fluid channels with a height of 50 µm are established, and the solid material inside the channels are defined with a 
Young's modulus of 1 µPa, and a Poisson's ratio of 0.49 to represent a liquid filled channel. Identical to the experimental 
case, a 50 µm wide sensing channel connects two blocks of fluidic channels, each consisting of 12 channels and one 
inlet. With a magnitude of 1 mm in each direction, a prescribed displacement in X and Y is applied. On the boundaries 
that run opposite to those set for a prescribed displacement, fixed constraints are defined. The volumetric strain 
readings of the capillaric strain sensor are recorded for the X and Y directions, using a stationary study and a fine mesh 
with physics-controlled mesh element size. The volumetric strain values in the X direction are divided into volumetric 
strain values in the Y direction (X/Y) to determine the volumetric strain ratio that indicates the directionality in this study. 
The 3D schematic of the COMSOL model deformation and its Von Mises stress color map under strain a) in X direction 
and b) in Y direction. c) The directionality with respect to the channel length. 

2. Supplementary Analysis

2.1. Theoretical gauge factor calculations for orthogonal and parallel direction
The measured gauge factor is used to find the theoretical individual contributions of the orthogonal 
and parallel strain components, , respectively.  As shown in Fig. 1, a single liquid 𝐺𝐹 '

⊥ , 𝐺𝐹 '
∥

reservoir under uniform uniaxial strain has two measured GF values in two different applied strain 
directions as,
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Here  is the measured resistance change in response to the applied strain,  for the ∆𝑅 ⊥ , ∥ 𝜀𝑎𝑝𝑝𝑙𝑖𝑒𝑑
⊥ , ∥  ,

associated direction. To simplify the analysis of the direction dependent sensor response, we 
have always applied the strain in parallel or in orthogonal direction to the reservoir orientation. 
The subscripts show this direction. When strain in a uniaxial direction is applied to a thin film, this 
induces a strain in the lateral direction with respect to the applied strain direction. Using Poisson’s 
ratio for an incompressible material, 
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we calculate this lateral strain as:

𝜀𝑖𝑛𝑑𝑢𝑐𝑒𝑑
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 The volumetric strain is simply sum of individual linear strains for isotropic materials under small 

strains ( . Here the strain component in Z-axis is omitted, as the thin film 
∆𝑉
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system is assumed two-dimensional. Therefore, the measured gauge factors in Eq. 1 and 2 are 
due to the addition of individual volume expansion contributions from the applied and induced 
strain. If we decouple the effect of the two strain components on the volumetric strain, we obtain 

two theoretical volumetric strains;   due to the applied and 

∆𝑉 ⊥ , ∥

𝑉
= 𝜀𝑎𝑝𝑝𝑙𝑖𝑒𝑑

⊥ , ∥ , 
∆𝑉 ∥ , ⊥

𝑉
=‒ 0.5  𝜀𝑎𝑝𝑝𝑙𝑖𝑒𝑑

⊥ , ∥

induced strains, respectively. Each of these components will cause a proportional sensor 
response. Consequently, the measured resistance response will be the addition of two theoretical 
sensor responses that have orthogonal and parallel components. 
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Here, shows the theoretically calculated resistance change solely in response to the volume ∆𝑅 '
∥ , ⊥

change in the associated strain direction. Plugging Eq. 5 and 6 into Eq. 1 and 2;
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Assuming that , Equation 7 and 8 gives us two equations with two 𝜀𝑎𝑝𝑝𝑙𝑖𝑒𝑑
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unknowns, and allows us to find the individual direction dependent Gauge factors, , for 𝐺𝐹 '
∥ , ⊥

single reservoirs as:
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2.2. Theoretical calculation of the sensor response based on the DIC results
To demonstrate how the theoretical procedure described in Methods section is used we are 
providing two examples here. 

Example 1: HHVV OR with X1 strain profile

First, the strain values in both X and Y directions at each of the liquid reservoirs are found by 
averaging the strain under each reservoir. 

Reservoir εxx
A 0.0029
B 0.0026
C 0.0411
D 0.0426

εyy
A 0.000758
B 0.0011
C -0.0222
D -0.0195

The X (Y)-direction strain is orthogonal to B(A) and D(C) on the HHVV design. Therefore, the 
sensor response is calculated with the following equation;  

Δ𝑅
𝑅0

= 43 ∗ (𝜀 𝐴
𝑋𝑋 + 𝜀 𝐶

𝑋𝑋 + 𝜀 𝐵
𝑌𝑌 + 𝜀 𝐷

𝑌𝑌) + 59 ∗ (𝜀 𝐵
𝑋𝑋 + 𝜀 𝐷

𝑋𝑋 + 𝜀 𝐴
𝑌𝑌 + 𝜀 𝐶

𝑌𝑌 ‒ 0.01)

Δ𝑅
𝑅0

= 43 ∗ (0.0029 +  0.0411 + 0.0011 ‒ 0.0195) + 59 ∗ (0.0026 + 0.0426 + 0.000758 ‒ 0.0222 ‒ .01)

The strain threshold of 0.01 is used for the OR configuration as there are twice as many liquid 
reservoirs connected to the sensing channel.

Δ𝑅
𝑅0

=  1.87

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝑒𝑛𝑠𝑜𝑟 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 =  

∆𝑅 ‒ 𝑅0

𝑅0

𝑀𝑎𝑥 𝑆𝑡𝑟𝑎𝑖𝑛

1.87 / 0.05 =  37.4

  𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 40.2



Example 2: HHVV AND with an XXYY strain profile

Reservoir εxx
A 0.0318
B 0.0598
C 0.06
D 0.0315

εyy
A 0.0528
B 0.0347
C 0.0249
D 0.0368

Here, since there are essentially two independent sensors (i.e., AB and CD) that are connected 
in parallel (i.e., AB // CD) electrically, their individual responses are found with the same approach 
demonstrated above and then the overall response is found using the parallel resistor formula. 

Δ𝑅1

𝑅0,1
 =  43 ∗  (𝜀 𝐴

𝑋𝑋 + 𝜀 𝐷
𝑋𝑋) +  59 ∗  (𝜀 𝐴

𝑌𝑌 + 𝜀 𝐷
𝑌𝑌 – 0.01)

Δ𝑅1

𝑅0,1
=  7.4

Δ𝑅2

𝑅0,2
 =  59 ∗  (𝜀 𝐵

𝑋𝑋 + 𝜀 𝐶
𝑋𝑋 ‒ 0.01) +  43 ∗  (𝜀 𝐵

𝑌𝑌 + 𝜀 𝐶
𝑌𝑌)

Δ𝑅2

𝑅0,2
 =  9

The strain threshold of 0.01 is used in this case, as the strain profile is biaxial.

 M
𝑅1,𝑇𝑂𝑇 =  

Δ𝑅1

𝑅0,1
 ∗  𝑅0,1 +  𝑅0,1 =  34.6

 M
𝑅2,𝑇𝑂𝑇 =  

Δ𝑅2

𝑅0,2
 ∗  𝑅0,1 +  𝑅0,1 =  41.4

, where is 4.1 M𝑅0,1

1
𝑅𝑇𝑂𝑇

=
1

𝑅1, 𝑇𝑂𝑇
+  

1
𝑅2, 𝑇𝑂𝑇

 M𝑅𝑇𝑂𝑇 =  18.9

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝑒𝑛𝑠𝑜𝑟 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 =  

∆𝑅𝑇𝑂𝑇

𝑅0,𝑇𝑂𝑇

𝑀𝑎𝑥 𝑆𝑡𝑟𝑎𝑖𝑛
= 127.9



𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 =  125.2


