Electronic Supplementary Material (ESI) for Sensors & Diagnostics. This journal is © The Royal Society of Chemistry 2022

1	Supporting Information				
2	The Design of Anti-fouling and Anti-hydrolysis Cyclic Peptides				
3	for Accurate Electrochemical Antigen Testing in Human Blood				
4					
5	Rui Han, Wenjie Hou, Yang Li, Min Chen, Caifeng Ding*, Xiliang Luo*				
6					
7	Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science,				
8	MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and				
9	Molecular Engineering, Qingdao University of Science and Technology, Qingdao				
10	266042, China				
11					
12					
13					

14 Contents

- 15 1. Supplementary Note
- 16 2. Supplementary Figures
- 17 3. Supplementary Tables
- 18

19 1. Supplementary Note

20

21 1. Instrument

22 A three-electrode electrochemical system was constructed to perform 23 electrochemical measurements such as cyclic voltammetry (CV), differential pulse 24 voltammetry (DPV) and amperometric i-t curve, on a CHI 660E electrochemical 25 workstation (Shanghai Chenhua Instruments Co., Ltd., China), which consists of a 26 working glassy carbon electrode (GCE), a reference saturated calomel electrode and an 27 auxiliary platinum electrode. The structures of the cyclic and linear peptides were 28 confirmed by 1H-NMR spectroscopy with a Bruker AV 600 NMR spectrometer and 29 electronic circular dichroism spectra (CD) were recorded utilizing J-1100 instrument 30 (Jasco, Japan) with wavelengths of 190-260 nm. Zeta potentials of peptides were 31 investigated by ZEN3600 zeta potential analyzer (Malvern, U.K.). Scanning electron 32 microscopy (SEM) was performed with a Hitachi S4800 scanning electron microscope 33 (Hitachi, Japan). The water contact angles of all modified surfaces were measured by 34 means of a JC2000D1 meter (Shanghai, China). X-ray photoelectron spectroscopy 35 (XPS) was performed using the Thermo Fisher Scientific XPS System. TCS-SP5 laser 36 confocal microscopy (Leica, Germany) was used for fluorescent analysis of proteins,

37 cells and bacteria adsorption.

38 2. Optimization of the incubation time for the RBD

To determine the optimal incubation time for the target, the biosensor was incubated with the RBD solution (100.0 ng mL⁻¹) for different time periods, and the DPV signal was recorded accordingly. It was clearly found that the response signal increased with the extension of incubation time and reached a maximum at 60 min, as shown in Fig. S9. Therefore, the incubation time for target detection was selected as 60 min.

45

47 2. Supplementary Figures

48

(A) Cyclic peptide (cPep): c(CEKEKEKEK)

(B) Linear peptide 1 (IPep 1): CEKEKEKEK

50 Fig. S1 The molecular structure of cyclic peptide (A), linear peptide 1 (B) and 2 (C).

52 Fig. S2 Zeta potentials of the cyclic peptide (A) and linear peptide 1 (B).

51

54

55 Fig. S3 Fluorescent images of FITC-BSA (10.0 mg mL⁻¹) adsorption on peptide-free

56 surface (A), and lPep1 (B), lPep2 (C) and cPep (D) modified surfaces.

58 Fig. S4 CD spectra of aqueous solutions of 0.2 M cyclic peptide (red line), linear

59 peptide 1 (blue line) and linear peptide 2 (green line).

73 cPep (E, F) modified surfaces before (A, C, E) and after (B, D, F) enzymatic hydrolysis

- 78 Fig. S7 Water contact angle images of the PEDOT/GCE (A), AuNP/PEDOT/GCE (B),
- and cPep/PEDOT/GCE (C) surfaces.

81 Fig. S8 Comparative antifouling characteristics of various modified electrodes after

82 soaking in human blood with different concentrations (V/V) for 30 min. Error bars

83 represent the standard deviations of three parallel detections.

90 Fig. S9 The effect of RBD (100.0 ng mL⁻¹) incubation time on the DPV response. Error

94 Fig. S10 DPV curves of the cyclic peptide-based biosensor at different concentrations

97 Fig. S11 Responses of the biosensor to 10.0 ng mL^{-1} target (RBD), nonspecific proteins

98 (IgG, IgM, HER2, CA15-3, CA12-5, CEA, AFP) with higher concentrations (1.0 μg
99 mL⁻¹), and mixture solution of above proteins. Error bars represent the standard
100 deviations of three parallel detections.

106 Fig. S12 (A) Seven DPV scans in 5.0 mM $[Fe(CN)_6]^{3-/4-}$ solution of the biosensor

107 before and after the detection of 10.0 ng mL⁻¹ RBD. (B) 50 CV scans in 5.0 mM

 $[Fe(CN)_6]^{3-/4-}$ solution of the biosensor before and after the detection of 10.0 ng mL⁻¹

109 RBD.

117 Fig. S13 The reproducibility for the detection of 10.0 ng mL⁻¹ RBD with seven

118 independently prepared biosensors. Error bars represent the standard deviations of three

- 119 parallel detections.

124 Fig. S14 Calibration curves of the biosensor for the detection of RBD in 10.0 mM PBS

125 and 25% human blood (V/V). Error bars represent the standard deviations of three

126 parallel detections.

127

129 Supplementary Table

130

139

131 Table S1 Performance comparison of different approaches for the antigen

	Detection method	Linear range	Detection limit	Ref.
	Electrochemical analysis	2.0-40.0 pg mL ⁻¹	0.7 pg mL ⁻¹	[1]
	Electrochemical analysis	0.002-100.0 pg mL ⁻¹	0.577 fg mL ⁻¹	[2]
	Electrochemical analysis	0.1-20.0 ng mL ⁻¹	16.9 fg mL ⁻¹	[3]
	Electrochemical analysis	$0.05-1.0 \ \mu g \ m L^{-1}$	18.2 ng mL ⁻¹	[4]
	SERS immunoassay	$1.0-6.0 \text{ fg mL}^{-1}$	4.7 fg m L^{-1}	[5]
	Electrochemical analysis	1.0 pg mL ⁻¹ -100.0 ng mL ⁻¹	0.45 pg mL ⁻¹	This work
133				
134				
135				
136				
137				
138				

132 detection of COVID-19.

140 References

- 141 1 Amouzadeh Tabrizi M, Fernández-Blázquez JP, Medina DM, Acedo P. Biosens. Bioelectron.,
- 142 2022, 196: 113729
- 143 2 Aydın EB, Aydın M, Sezgintürk MK. Sens. Actuators B, 2021, 345: 130355
- 144 3 Ali MA, Hu C, Jahan S, Yuan B, Saleh MS, Ju E, Gao S-J, Panat R. Adv. Mater., 2021, 33: 2006647
- 145 4 Soto D, Orozco J. Anal. Chim. Acta, 2022, 1205: 339739
- 146 5 Mohammadi M, Antoine D, Vitt M, Dickie JM, Sultana Jyoti S, Wall JG, Johnson PA, Wawrousek
- 147 KE. Anal. Chim. Acta, 2022, 1229: 340290