Supporting Information

Facile Preparation of N-Doped Graphitic Carbon Encapsulated Nickel Catalysts for Transfer hydrogenolysis of Lignin β-O-4 Model Compounds to Aromatics

Hua Tan,^{*,a, d} Xuecheng Li,^a Hao Ma,^a Xiaolin Yang,^a Tong Zhan,^{b, c} Wenyu Xie,^{b, c} Suhua Wang,^{c, d} Jiaping Zhu^{*,a}

^a College of Chemistry, Guangdong University of Petrochemical Technology, Maoming
525000, P. R. China

^b Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Guangdong University of Petrochemical Technology, Maoming 525000, P. R. China

^c College of Environmental Science and engineering, Guangdong University of Petrochemical Technology, Maoming 525000, P. R. China

^d Research Institute of Environmental and Safety Technology, Guangdong University

of Petrochemical Technology, Maoming 525000, P. R. China

*Corresponding Author: huatan@gdupt.edu.cn; zhu04401539@163.com

KEYWORDS: lignin β -O-4 model compounds; transfer hydrogenolysis; the encapsulated Ni; N-doped graphitic carbon shell; isopropanol

Catalysts	Ni content (wt%) by
-	ICP-OES
Ni/NC-800	12.16
Ni@NC-600-H	2.67
Ni@NC-800-S	7.83
Ni/NC-800-S	10.33

 Table S1 The Ni content in various catalysts measured by ICP-OES

Figure S1 TEM images of Ni/NC-600 (a), Ni@NC-600-H (b), Ni@NC-800-S (c), Ni/NC-800 (d), and Ni/NC-800-S (e).

Figure S2 (a) XRD patterns of Ni@NC-600-H, Ni@NC-800-H, Ni@NC-800-S, and Ni/NC-800-S. (b) XPS Ni 2p spectra of Ni@NC-600-H, Ni@NC-800-H, and Ni@NC-800-S.

Figure S3 The effect of reaction time for the conversion of acetophenone over Ni@NC-800-H at 180 °C.

Synthesis of the β -O-4 lignin alcohol and ketone model compounds and detailed NMR characterizations

For the synthesis of 2-phenoxy-1-phenylethanone, a 150 mL round bottom flask equipped with a reflux condenser and a dropping funnel was charged with phenol (0.591 g, 6.28 mmol), 2-bromoacetophenone (1.000 g, 5.02 mmol) and K₂CO₃ (1.040 g, 7.54 mmol) in acetone (50 mL). The resulting suspension was stirred under reflux for 5 h, after the suspension was filtered and concentrated in vacuum. The crude product was purified by recrystallization from hexane/ethyl acetate solvent (100 mL, 3:1 Volume ratio) to give 2-phenoxy-1-phenylethanone as a white solid. For the synthesis of 2-phenoxy-1-phenethanol, A round bottom flask was charged with 2phenoxy-1-phenylethanone (1.00 g, 4.71 mmol) in THF/H₂O solvent (25 mL, 4:1 Volume ratio). Sodium borohydride (0.39 g, 10.41 mmol) was added to the solution in small portions at room temperature. After stirring for 6 h, the suspension was quenched with saturated aqueous NH₄Cl, followed by the addition of ethyl acetate. After separation, the organic phase was washed with H₂O, dried over Anhydrous MgSO₄, filtered and the solvent was evaporated under vacuum. The crude product was purified by recrystallization from hexane to give a white crystalline. For the other methoxyl substituted 2-phenoxy-1-phenylethanone and 2-phenoxy-1-phenethanol, the preparation procedure is the same as described above, except that using different stating materials. In addition, for the synthesis of 1-(3,4-dimethoxyphenyl)-3hydroxy-2-(2-methoxyphenoxy)propan-1-one, K₂CO₃ (1.2 g, 8.6 mmol) and 1-(3,4dimethoxyphenyl)-2-(2-methoxyphenoxy)ethanone (2.4 g, 8 mmol) were added in

ethanol: acetone (v/v=1:1, 40 mL) mixed solvent in a 100 mL round bottom flask under stirring at room temperature, then formaldehyde (36.5-38%) (1.2 mL, 14.6 mmol) was added and stirred for 4 h. subsequently, the reaction mixture was concentrated under vacuum to get a solid product. The solid was purified by column chromatography (pentane/ethyl acetate, 1:1) to yield 1-(3,4-dimethoxyphenyl)-3hydroxy-2-(2-methoxyphenoxy)propan-1-one as yellow solid (2.40 g, 7.2 mmol) with 90% yield. For 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol and guaiacylglycerol- β -guaiacyl ether, they are purchased from Aladdin reagent company (Shanghai, China). The NMR spectra of all above compounds, which were in accordance with theocratically predicted, were shown in below.

2-phenoxyacetophenone

¹H NMR (400 MHz, D6-DMSO)

2-(2-methoxyphenoxy)-1-phenylethan-1-one

¹H NMR (400 MHz, D6-DMSO)

1-(4-methoxyphenyl)-2-phenoxyethan-1-one

2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethan-1-one

(3,4-dimethoxyphenyl)-2-phenoxyethan-1-one

1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)ethan-1-one

NMR (400 MHz, D6-DMSO)

2-phenoxy-1-phenylethanol

$4.01 \\ 4.00$ 7.467.447.377.377.357.357.357.357.357.357.357.357.357.357.357.357.357.357.377.377.377.377.377.377.377.377.377.377.357.377.357.377.357.357.377.357.266.936.936.91<5.63 5.62 -6.54 $(4.92 \\ 4.91$ -40000 -35000 -30000 -25000 -20000 -15000 -10000 -5000 h į, -0 5.4 5.0 fl (ppm) 8.2 7.8 7.4 7.0 6.6 6.2 5.8 4.6 4.2 3.8 3.4 3.0 2.6

2-(2-methoxyphenoxy)-1-phenylethan-1-ol

¹H NMR (400 MHz, D6-DMSO)

1-(4-methoxyphenyl)-2-phenoxyethan-1-ol

¹H NMR (400 MHz, D6-DMSO)

2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethan-1-ol

OH

C

OMe

1-(3,4-dimethoxyphenyl)-2-phenoxyethan-1-ol

1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)ethan-1-ol

1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol

¹³C NMR (400 MHz, D6-DMSO)

1-(3,4-dimethoxyphenyl)-3-hydroxy-2-(2-methoxyphenoxy)propan-1-

one

Guaiacylglycerol-guaiacyl ether

