Supplementary information

Catalytic pyrolysis of LDPE and PP over zeolites in a stirred tank reactor

MD M. Hasan^{a,b}, Nuno Batalha^{a,c,d,*}, Gabriel L. L. Fraga^a, Mohamed H. M. Ahmed^b, L. Pinard^c, Muxina Konarova^b, Bronwyn Laycock^a, Steven Pratt^a

^aSchool of Chemical Engineering, Faculty of Engineering, Architecture and Information

Technology, University of Queensland, St Lucia, QLD 4072, Australia

^bAustralian Institute of Bioengineering and Nanotechnology (AIBN), University of Queensland, St Lucia, QLD 4072, Australia

° Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers,

CNRS, F-86073 Poitiers, France

^d Université de Lyon, Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON), UMR5256 CNRS-UCB Lyon 1, 2 Avenue Albert Einstein, 69626, Villeurbanne Cedex, France

* Corresponding Author: <u>nuno.rocha-batalha@ircelyon.univ-lyon1.fr</u>

Figure S1. ¹H - ¹³C HSQC NMR of liquid product obtained from the catalytic pyrolysis of PP over ZSM-5. Table S1 includes the integration area considered for each C-H bond type.

Table S1. CH bond allocation range in ¹H - ¹³C HSQC NMR.

	¹ H range	¹³ C range
	(ppm)	(ppm)
Aliphatic CH ₃	1.4 - 0.7	50 - 5
Aliphatic CH ₂	1.8 - 1.4	50 - 5
Aliphatic CH	2.1 - 1.4	50 - 5
Allylic C=C-CH _n	2.4 - 2.1	55 - 5
C _{Ar} -CH _n	3.2 - 2.4	55 - 5
Vinylic C=CH _n	6.5 -4.5	150 - 100
Aromatic C _{Ar} H	8.0 - 6.5	150 - 110