Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels.
This journal is © The Royal Society of Chemistry 2022

Electronic Supporting Information for the manuscript:

“Oxidative polymerization of triarylamines: a promising route to low-cost hole

transport materials for efficient perovskite solar cells”

Olga A. Kraevaya, Alina F. Latypova, Alexandra A. Sokolova, Anastasiya A. Seleznyova, Nikita A.
Emelianov, Nikita A. Slesarenko, Vitaliy Yu. Markov, Lyubov A. Frolova and Pavel A. Troshin*

Table S1. Molecular weight distribution for PTAAs

Polymer M, kDa* M., kDa* M,,/M,*
P1 8.3 15.8 1.9
P2 8.8 15.7 1.8
P3 9.6 17.0 1.8
Commercial PTAA** 15.4 26.3 1.7

*Calculated from gel-permeation chromatography (GPC). Measurements carried out using

chlorobenzene as the eluent and calibrated vs. polystyrene standards.

**PTAA is poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] by Ossila.
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Figure S1. 'H NMR spectrum of compound 2
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Figure S2. '"H NMR spectrum of compound 3
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Figure S3. 'H NMR spectrum of P1
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Figure S4. "H NMR spectrum of P2 (* denotes signals of CHCl; and MeOH)
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Figure S5. 'H NMR spectrum of P3 (* denotes signal of CHCI5)
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Figure S6. MALDI mass spectrum of compound 2
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Figure S7. MALDI mass spectrum of compound 3
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Figure S8. MALDI mass spectrum of P1
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Figure S9. MALDI mass spectrum of P2
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Figure S10. MALDI mass spectrum of P3
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Figure S11. Cross-section SEM images of the p-i-n and n-i-p perovskite solar cells comprising
different HTMs: PTAA(a, e), P1 (b, f), P2 (c, g) and P3 (d, h).
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Table S2. The average* and the best (in brackets) values of power conversion efficiency (PCE),
open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF) of the

ITO/SnO,/PCBA/MAPbI3/HTM/VO,/Ag devices comprising different HTMs.**

Scan 2
HTM . . Voo, V Jsc, mA cm FF, % PCE, %
direction
(1.049) (23.1) (72.7) (17.6)
Forward
PTAA 1.035+0.014 22.7+0.4 709+1.8 16.7+0.9
(1.042) (23.2) (71.4) (17.2)
Reverse
1.024 £ 0.018 22.6x 0.6 69.4+2.0 16.9+0.3
(1.040) (23.4) (67.0) (16.03)
Forward
p1 1.019 £ 0.021 23.0+0.4 64.9+ 2.1 15.2+0.9
(1.046) (23.3) (65.4) (15.5)
Reverse
1.028 £ 0.018 229+0.4 63.1+2.3 149+ 0.6
(1.041) (23.3) (74.0) (18.1)
Forward
P2 1.030+0.011 22.8+0.5 729+2.1 17.1+1.0
(1.033) (23.4) (73.0) (17.7)
Reverse
1.019 £ 0.014 22.9+0.5 70.8+2.2 16.5+1.3
(1.053) (23.2) (76.2) (18.6)
Forward
p3 1.030 £ 0.023 22.5+0.7 73.7+25 17.1+15
(1.043) (23.3) (75.5) (18.4)
Reverse
1.016 £ 0.017 22.5+0.8 73.2+2.3 16.7+1.7

Notes: *Average values (* standard deviation from the mean) obtained for a batch of 12
devices. ** The J-V curves were measured in forward and reverse directions with the scan rate
of 0.01 V/s
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Table S3. The average* and the best (in brackets) values of power conversion efficiency (PCE),
open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF) of the ITO/HTM
/Cs0.1MAq.15FAq.75Pbls/PCBM/BCP/Ag devices comprising different HTMs.**

Scan 2
HTM . . Voo, V Jsc, mA cm FF, % PCE, %
direction
(1.046) (23.3) (81.7) (19.9)
Forward
1.034 £ 0.012 22.8+£0.5 80.1+1.6 18.8+1.1
PTAA
(1.055) (23.2) (80.9) (19.8)
Reverse
1.042 £ 0.013 22.7+0.5 78.8+2.1 18.8+1.0
(1.070) (23.3) (78.1) (19.5)
Forward
p1 1.050 £ 0.020 229104 75.9+2.2 184+1.1
(1.073) (23.3) (76.9) (19.2)
Reverse
1.056 £ 0.017 22.8+0.5 746+2.3 18.0+1.2
(1.050) (23.3) (80.4) (19.7)
Forward
P2 1.031+£0.019 22.8+0.5 78.3+2.1 184+1.3
(1.063) (23.2) (79.8) (19.7)
Reverse
1.042 £0.021 22.8+0.4 77.6+2.2 18.4+1.3
(1.041) (23.6) (81.2) (20.04)
Forward
p3 1.016 £ 0.025 23.1+0.5 789+23 185+1.5
(1.038) (23.5) (81.6) (20.10)
Reverse
1.015 £ 0.023 22.9+0.6 79.5+2.1 18.5+1.6

Notes: * Average values (*+ standard deviation from the mean) obtained for a batch of 12
devices. ** The J-V curves were measured in forward and reverse directions with the scan rate
of 0.01 V/s
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Figure S12. AFM topography (left column), and s-SNOM amplitude images for the glass/HTM
samples recorded at the characteristic frequencies of HTM.
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Figure S13. FTIR spectra of commercial PTAA (a), P1 (b), P2 (c), P3 (d) and their comparison with
FTIR spectrum of MAPbI;3
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Experimental procedures

NMR spectroscopy

NMR spectra were recorded on Bruker AVANCE Il 500 MHz spectrometer in CDCls.
Mass spectrometry

All mass spectra were acquired using MALDI ionization method on a Bruker AutoFlex Bruker
AutoFlex Il reflector time-of-flight device equipped with a N, laser (337 nm wavelength, 2.5 ns
pulse). Trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) (298%,
Sigma-Aldrich) was used as a matrix. The measurements were performed in a positive ion
mode.

Preparation of perovskite precursor solutions

For the preparation of 1.4 M MAPbI; precursor solution, MAI and Pbl, were dissolved in a
mixture of 0.850 mL of DMF and 0.150 mL of NMP. To obtain 1.35 M MAg1Csg.15FAq.75Pbl3
precursor solution, Csl, MAI, FAI, and Pbl, were dissolved in a mixture of 0.200 mL of anhydrous
DMSO and 0.800 mL of anhydrous DMF. The precursor solutions were heated at 80°C for an
hour and filtered through PTFE syringe filters (0.45 um) prior spin-coating.

Fabrication of n-i-p perovskite solar cells

ITO glass substrate (Kintec, 15 Q sq') was cleaned with deionized water, acetone, and
isopropanol in an ultrasonic bath. The tin dioxide layer was obtained by spin-coating 10%
aqueous tin dioxide suspension (Alfa-Aesar) at 4000 rpm for 40 s followed by annealing at
175°C in air for 15 minutes. Substrates were transferred inside a nitrogen glove box and all
subsequent steps were performed there. The solution of PCBA in chlorobenzene (0.1 mg mL™)
was spin coated at 3500 rpm for 30 seconds. The obtained films were annealed at 100 °C within
10 minutes. MAPDbI3 precursor solution (70 plL) was spin-coated at 4000 rpm and then quenched
with 130 uL of toluene 18 seconds later to produce the active layer with 200-250 nm thickness.
The deposited films were annealed for 10 minutes at 100°C on a hotplate. HTL was deposited
by spin-coating of the HTM polymer solution in chlorobenzene (PTAA: 6 mg mL™; P1: 9 mg
mL™%; P2, P3: 8 mg mL™) at 1000 rpm (PTAA, P2 and P3) or 2000 rpm (P1) for 60 s. Electron
blocking layer of vanadium oxide (VO,) with the thickness of 30 nm was deposited by vacuum
evaporation. Top Ag electrodes (120 nm) were thermally evaporated through a shadow mask in
high vacuum (5 x 107 Torr). Active areas of the devices were in the range of 0.4-0.5 cm?.

Fabrication of p-i-n perovskite solar cells

ITO glass substrates were cleaned as described above. The solution of HTM (PTAA or P1-P3) in
chlorobenzene (2.5 mg mL™) was spin-coated at 3500 rpm for 60 s on the ITO substrates,
followed by thermal annealing at 160 °C for 15 min inside glove box. The perovskite films were
deposited by spin-coating MAg 1Csg 15FAq 75Pbls precursor solution at 4000 rpm for 60 s. The
solution was quenched by 35 pL of chlorobenzene dripped onto the film at 33" second.

Obtained perovskite films were annealed at 120 °C for 2 min. Then a PCBM precursor solution
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(30 mg mL Y in chlorobenzene) was spin-coated on top of the perovskite layer at 2000 rpm for
50 s. BCP hole-blocking layer (3 nm) was deposited by thermal evaporation. Finally, Ag (120 nm)
electrodes were evaporated through a shadow mask in high vacuum (5 x 107° Torr) to produce
devices with the area of 0.45 cm?.

Characterization of the devices

The devices were characterized by J-V and EQE measurements inside MBraun glove box under
inert nitrogen atmosphere. The J-V characteristics of the devices were registered using
Advantest R6240A source-measurement units and KHS Steuernagel Lichttechnik solar simulator
as a source of the simulated 100 mW cm > AM1.5G illumination. The light flux was checked with
a calibrated silicon diode. Obtained Js¢ values were compared with the values derived from the
integration of the EQE spectra against AM1.5G spectrum. The EQE measurements were
performed under ambient conditions. The EQE setup was equipped with 300 W Xenon lamp,
automatic monochromator (LOMO instruments), SR510 lock-in amplifier combined with SR540
optical chopper (Stanford Research Instruments).
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