SUPPORTING INFORMATION

Assessment of acidity and zeolite porous structure on hydrocracking of HDPE

Cátia S. Costa^a*, Hang Dao Thi^b, Kevin M. Van Geem^b, M. Rosário Ribeiro^a*, João M. Silva^{a,c}

^a Centro de Química Estrutural - Instituto Superior Técnico, Universidade de Lisboa, Portugal

^bGhent University, Laboratory for Chemical Technology, Technologiepark 125, 9052 Ghent, Belgium

°Chemical Engineering Department, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Portugal

Figure S.1- FTIR analysis of liquid oil produced from catalytic cracking of HDPE under H₂ pressure over H-ZSM-5, H-MOR, H-USY and H-FER (T=300°C, t=60min, PH_{2i}=20 bar, HDPE/catalyst mass ratio= 8/2)

Figure S.2- PXRD diffractograms (A) and N_2 sorption isotherms (B) of H-ZSM-5, H-MOR, H-USY and H-FER after regeneration (R) procedure (T=800°C, t=60min, air atmosphere).

Figure S.3- Gaseous products distribution cracking of HDPE under H₂ pressure over regenerated H-ZSM-5, H-MOR, H-USY and H-FER (T=300°C, t=60min, PH_{2i}=20 bar, HDPE/catalyst mass ratio= 8/2)

Figure S.4- Liquid products distribution cracking of HDPE under H₂ pressure over regenerated H-ZSM-5, H-MOR, H-USY and H-FER (T=300°C, t=60min, PH_{2i}=20 bar, HDPE/catalyst mass ratio= 8/2)