Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Catalytic conversion of sucrose to 1,2-propanediol over alumina supported Ni-Mo bimetallic catalyst

Sreejith Sreekantan^{a,b}, Arun Arunima Kirali^{a,b}, Banu Marimuthu,*^{ab}

^aCatalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr.Homi Bhabha Road, Pune-411008, India

^bAcademy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh- 201 002, India

KEYWORDS : Biomass conversion, Sugar hydrogenolysis, propylene glycol, Retro-aldol condensation, Renewable resources, Sustainability.

Table S1	The reaction data of different Ni-Mo supported over $\gamma\text{-Al}_2O_3$ catalysts on sucrose substrate
Table S2	The optimisation of the reaction conditions using 8%Ni-20%Mo/ γ - Al ₂ O ₃ catalyst.
Table S3	The reusability study of the catalyst 8%Ni-20%Mo/ γ - Al $_2O_3$ catalyst.
Table S4	The reusability of the 8%Ni-20%Mo/ γ - Al ₂ O ₃ on 2wt% sucrose at 160°C, 40bar H ₂ , 1 h run time (at low conversion)
Figure S1	The XRD patterns of the fresh and spent catalyst at low conversion and high conversion
Figure S2	The morphology of the spent catalyst after 4 runs (a & b) FE-SEM (c & d) HR- TEM
Figure S3	The py-IR spectra of various Ni-Mo/ γ -Al ₂ O ₃ supported catalysts.
Figure S4	The deconvoluted XPS spectrum of Mo-3d and Ni-2p of various Ni-Mo/ γ -Al $_2O_3$ supported catalysts.
Figure S5	The HPLC chromatogram of the reaction of 8%Ni-20%Mo/ γ -Al ₂ O ₃ on 2wt% sucrose at optimized reaction condition.
Figure S6	The Calibration curve for the 1,2-propanediol for the quantification

1. The reaction data of different Ni-Mo supported over γ -Al₂O₃ catalyst on sucrose substrate

Table S1 : The optimisation of different Ni-Mo bimetallic combinations over γ -Al₂O₃ support at 220°C , 40 bar H₂, 4.5 h, 2 wt% Sucrose

Entry No	Me Loa (؟	etal ding %)			Ρ	roduct S	electivity	· (%)		
	Ni	Мо	1,2- PDO	1,3- PDO	EG	1,2- BDO	2- PrOH	1- PrOH	Lactic Acid	EG+ PDO+ BDO
1	6	20	70.1	1.0	4.1	15.3	1.0	1.7	2.2	90.5
2	10	20	67.1	0.4	7.2	11.4	2.9	1.8	2.4	86.1
3	8	20	72.2	1.1	4.6	11.7	2.2	2.0	3.1	89.6
4	8	15	61.2	Trace	2.9	12.0	8.2	Trace	7.0	76.1
5	8	25	69.4	0.8	5.5	12.6	1.4	1.3	2.3	88.3
6	8	0	30.4	0.6	6.3	3.1	3.6	ND	20.0	40.4
7	0	20	15.7	1.2	14.0	2.1	4.2	ND	32.2	33.0
8	0	0	19.9	1.3	14.6	2.2	3.7	ND	29.8	38.0

2. The optimisation of the reaction conditions using 8%Ni-20%Mo/ γ - Al₂O₃ catalysts

Entry			React	ion Conditio	ons	Product Selectivity (%)					
No											
	T	P	Sucrose:	Sucrose	Time (h)	1,2-PD	1,3-PD	EG	1,2-	Lactic	PDO+
	(°C)	(bar)	Ratio	tration (wt%)					BDO	Acid	EG+BDO
1	220	40	1:0.35	2	4.5	72.2	1.1	4.6	11.7	3.1	89.6
2	200	40	1:0.35	2	4.5	71.6	Trace	4.6	11.9	3.2	88.1
3	180	40	1:0.35	2	4.5	73.7	2.6	2.5	12.2	1.8	91.0
4	160	40	1:0.35	2	4.5	46.0	6.0	1.9	8.7	Trace	62.6
5	180	50	1:0.35	2	4.5	70.0	3.2	5.8	10.8	2.6	89.8
6	180	30	1:0.35	2	4.5	67.6	3.9	4.0	11.6	3.2	87.1
7	180	40	1:0.5	2	4.5	70.6	2.6	4.6	13.1	2.0	90.9
8	180	40	1:0.20	2	4.5	53.1	5.6	3.9	10.5	6.6	73.1
9	180	40	1:0.35	2	2.5	70.8	4.1	2.5	12.9	2.4	90.3
10	180	40	1:0.35	2	6.5	71.7	1.8	3.1	13.6	2.5	90.2
11	180	40	1:0.35	5	4.5	73.5	3.7	1.4	14.3	3.2	92.9

Table S2: The optimisation of the reaction conditions for active catalyst (8%Ni-20%Mo/ γ - Al₂O₃) on sucrose substrate

3. The reusability study of the catalyst $8\% Ni\-20\% Mo/\gamma\ Al_2O_3$ catalyst

# of Run	Product Selectivity (%)							
	1,2-PD	1,3-PD	EG	1,2-BDO	Lactic Acid	PDO+ FG+BDO		
Run 1	73.7	2.6	2.5	12.3	1.8	91.1		
Run 2	73.2	2.6	3.8	12.8	1.6	92.4		
Run 3	70.0	3.0	4.0	10.8	3.4	87.8		
Run 4	61.8	1.7	4.3	11.6	6.6	79.4		

Table S3: The reusability of the 8%Ni-20%Mo/γ- Al₂O₃ over 2wt% sucrose at 180°C, 40bar H₂, 4.5 h run time

4. The reusability study of 8%Ni-20%Mo/ γ - Al₂O₃ at lower conversion

Table S4: The reusability of the 8%Ni-20%Mo/ γ - Al₂O₃ over 2wt% sucrose at 160°C, 40bar H₂, 1 h run time

# of	Conversion	Product Selectivity (%)							
Run		1,2-PD	1,3- PD	EG	1,2- BDO	Lactic Acid	1-PrOH	PDO+ EG + BDO	
Run 1	54.7	69.0	3.3	1.5	10.1	2.8	2.1	83.9	
Run 2	54.4	71.3	2.6	1.2	10.3	0.3	2.6	85.4	
Run 3	57.7	69.9	3.1	1.2	9.7	0.9	2.3	83.9	

5. The XRD data of fresh and spent catalysts

Figure S1: The XRD patterns of the fresh and spent catalyst at low conversion and high conversion

6. The morphology study of used and spent catalyst

Figure S2: The morphology of the spent catalyst after 4 runs (a & b) FE-SEM (c & d) HR-TEM

7. The pyridine IR of various Ni-Mo/ γ -Al₂O₃ supported catalysts.

Figure S3 : The py-IR spectra of various γ -Al₂O₃ supported catalysts

8. The deconvoluted XPS spectrum of Ni-2p and Mo-3d various Ni-Mo/ γ -Al₂O₃ catalysts.

Figure S4 : The deconvoluted XPS of (a) Mo-3d of 20%Mo/ γ -Al₂O₃ (b&e) Mo-3d & Ni-2p of 8%Ni-15%Mo/ γ -Al₂O₃ (c &f) Mo 3d & Ni 2p of 8%Ni - 25%Mo/ γ -Al₂O₃ (d) Ni-2p of 8%Ni/ γ -Al₂O₃

9. The HPLC chromatogram of the activity study of the catalyst 8%Ni-20%Mo/ γ - Al₂O₃ at optimized reaction condition

Figure S5: The HPLC chromatogram of the reaction of 8% Ni-20%Mo/ γ - Al₂O₃ over 2wt% sucrose at 180°C, 40 bar H₂, 4.5 h at 1:0.3 sucrose: catalyst ratio

Retention Time	Compound
21.23	1,2- Propanediol
22.89	1,3-Propanediol
19.94	1,2-Ethanediol
25.29	1,2-Butanediol
16.18	Lactic acid
32.15	1-Propanol
17.41	Glycerol

10. The Calibration curve for the 1,2-propanediol

Figure S6: The calibration curve for 1,2-PDO