Supporting Information

Prussian blue analogue (PBA) derived Cobalt Telluride Nanogranules: An efficient catalyst for energy conversion and storage

Rajat K. Tripathy, ^{a, b} Abhisek Padhy, ^{a, b} Nachiketa Sahu ^{a,b} and J.N. Behera*^{a,b}

^a School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), P. O. Jatni, Khurda 752050,

Odisha, India. E-mail: jnbehera@niser.ac.in.

^b Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Odisha, India 752050.

*Corresponding author.

Email adresses: jnbehera@niser.ac.in

Electrochemical calculations:

The intrinsic electrocatalytic activity of all the electrocatalysts were determined by iR compensating the recorded polarization plots as per the following equation,

$$E_{iR \ corrected} = E_{observed} - iR \ \dots \ (1)$$

Here, i and R are the observed anodic current and solution resistance (R_s) of the electrocatalyst. The R_s was obtained from the Nyquist impedance spectrum recorded in the frequency range of 1 MHz to 0.1 Hz at an applied amplitude of 5 mV.

(a) Determination of Electrochemical active surface area (ECSA)

The electrochemical active surface area has been evaluated by measuring the double layer capacitance (C_{dl}) of Co_{0.63}Te, Co-PBA, Co_{0.63}Te and RuO₂. For this, CVs are collected in a non-Faradaic region (1.24-1.26 V vs. Hg/HgO) at different scan rates (20, 40, 80, 100, 200 mV/s). The ECSA has a linear relation with double layer capacitance (C_{dl}). ECSA was determined from the C_{dl} values by adopting following equation,¹

$$ECSA = \frac{c_{dl}}{c_s} \tag{2}$$

(b) Calculation of specific capacitance, energy density and power density

The specific capacitance (C_s) of $Co_{0.63}$ Te has been calculated from both the cyclic voltammogram (equation 4) and galvanostatic charge-discharge profiles (equation 3) as per the following equations,²

$$C_{s} = \frac{\int_{V_{a}}^{V_{c}} I(V) dV}{m\vartheta \left(\Delta V\right)}.$$
(3)

Here, the $\int_{V_a}^{V_c} I(V) dV$, m, ϑ , (ΔV) are the integrated area of the CV curve, mass of the electrode material, scan rate and the optimized potential window taken for the measurement. Thereafter the energy density (ED) and power density (PD) was calculated from the Cs values as per the following,³

$$ED = \frac{C_s(\Delta V)^2}{2}....(4)$$

$$PD = \frac{C_s(\Delta V)\vartheta}{2}....(5)$$

(c) Calculation of capacitive contribution

At first the CVs of $Co_{0.63}$ Te modified electrode from 5 to 100 mV/s scan rate has been recorded. Thereafter the degree of capacitive effect has been calculated from the relation among the observed current (*i*) and scan rate (*v*) from the CV curves as per the following equation,^{4,5}

Here both the "a" and "b" are the constants and the value of "b" varies from 0.5 to 1.0 that calculated from the slope of the plot of log i vs. log v (Fig. 5c).

Figure S 1. PXRD (a), FESEM (b) of bare $Co_{0.63}$ Te.

Figure S 2. EDS spectrum and elemental mapping of elements in $Co_{0.63}$ Te.

Figure S 3. OER LSV polarization curve for (a) $Co_{0.63}$ Te, (b) Co-PBA, (c) bare $Co_{0.63}$ Te and (d) RuO₂ modified electrodes in 1 M KOH electrolyte at scan rate of 5 mV/s with and without iR compensation.

Figure S 4. CVs for (a) $Co_{0.63}$ Te, (b) bare $Co_{0.63}$ Te, (c) Co-PBA showing in a non-Faradaic region at a scan rate of 20, 40, 80, 100, 200 mV/s respectively.

Figure S 5. Powder X-ray pattern (a), FESEM image of $Co_{0.63}$ Te after OER.

Figure S 6. XPS spectrum of (a) Co 2p (b) Te 3d in Co_{0.63}Te after OER.

Figure S 7. Variation of specific capacitance with scan rate of $Co_{0.63}$ Te.

Figure S 8. Ragone plot of $Co_{0.63}$ Te.

Figure S 9. FESEM image of $Co_{0.63}$ Te after 5000 CV cycles.

Table S1. Comparison of various cobalt telluride for oxygen evolution reaction.

Catalysts	Electrolyte	Overpotential	Tafel slope	References
	(Conc)	(mV)	(mV/decade)	
CoTe-Ni foam	1 M KOH	241	66	Fuel, 280,
				2020, 118666
Co@CoTe ₂	1 M KOH	286	42	Inorg. Chem.
				Front., 2020,7,
				2523-2532
CoTe ₂ @NCNTFs	1 M KOH	330	82.8	J. Mater. Chem.
				A, 2018, 6,
				3684
СоТе	1 M KOH	200	43.8	ACS Appl.
				Energy Mater.
				2021, 4,
				8158-8174
CoTe ₂ /CNT/GCE	1 M KOH	290	44.2	J. Phys. Chem.
				C 2016, 120,
				28093-28099
CoTe ₂ /GCE	1 M KOH	380	58.0	ACS Catal.,
				2016, 6, 7393-
				7397.
CoTe ₂ /CNT/GCE	0.1 M	357	32.0	Angew. Chem.
	КОН			Int. Ed. 2017,
				56, 7769 –7773
СоТе	1 M KOH	445	93.1	Electrochimica
				Acta 321
				(2019) 134656
CoTe ₂ @ NF	1 M KOH	340	54.0	Electrochim.
				Acta., 2019,
				307, 451-458.
CoTe/NR/NF	1 M KOH	350	75.0	Small Methods,
				2019, 3,
				1900113.
Co(Te 0.72 Se0.28)2	1 M KOH	315	69.0	Nanoscale,
				2019,
				11, 6108-6119.
C00.63Te	1 M KOH	319	56	Our Work

Catalysts	Electrolyte	Specific Capacitance	References
	(Conc)	(F / g)	
CoTe ₂		460	Ceram. Int. 2020 , <i>46</i> (5),
			6991–6994
NiCo ₂ S ₄	3 M KOH	437	ACS Sustainable Chem.
nanoplate			Eng. 2014, 2, 4, 809–815
PCs/NiCo ₂ S ₄	6 M KOH	605.2	Applied surface science,
			2019, 463, 1001-1010
NCS/graphene	3 M KOH	710	ACS Appl. Energy Mater.
			2021, 4, 8262-8274
CoSe ₂	6 M KOH	333	J. Mater. Chem. C, 2021, 9,
			228
NiSe ₂	2 M KOH	341	J. Mater. Chem. A, 2017, 5,
			3621
C00.63Te	5 M KOH	680	Our Work

Table S2. Comparison of various cobalt chalcogenides for supercapacitor application.

	Catalyst	Electrolyte	Overpotenti	Tafel slope	Remarks	References
SI.			al (ŋ) (mV)			
No				(mV/decade)		
1	ED-CoTe, ED-	1 M KOH	200, 240,	43.8, 44.8,	Electro	ACS Appl.
	CoTe ₂ , HD-CoTe,		270, 320@10	67.7, 111.8	deposition	Energy Mater.
	HD-CoTe ₂		mA/cm ⁻²		(ED),	2021, 4,
					Hvdrothermal	8158-8174
					(HD) route	
					used on Au	
					glass and	
					carbon cloth	
					respectively.	
2	NC-PB@ CNT	1 M KOH	240@10	73	CNT	Chemical
					incorporated	Engineering
			mA/cm ⁻²		Ni-Co-PBA on	Journal 426
					Ni foam.	(2021) 130773
3	Co-Fe PBA	1 M KOH	256@10	54	Nickel foam	Nanoenergy,2
			mA/cm ⁻²		used as	019,
					substrate by	
					hydrothermal	
					route.	
4	Co/CoTe	1 M KOH	400@50mA/c	94.1	Solvothermal	Applied
	heterostructure		m ⁻²		followed by	Surface
					high	Science, 581,
					temperature	2022, 152405
					heating.	
5	Co _{0.63} Te	1 M KOH	317@ 10	56	Facile	Our Work
	(Present work)		mA/cm ⁻²		solvothermal	
					approach.	
					Catalyst	
					coated on	
					GCE.	

Table S3. Comparison of electrochemical parameters of some similar reported literature.

References

1 Charles C. L. McCrory, Suho Jung, Jonas C. Peters and Thomas F. Jaramillo, *J. Am.*

Chem. Soc., 2013, **135**, 16977–16987.

- 2 R. Ding, L. Qi and H. Wang, J. Solid State Electrochem., 2012, 16, 3621–3633.
- 3 S. Ratha and C. S. Rout, *ACS Appl. Mater. Interfaces*, 2013, **5**, 11427–11433.
- S. Muduli, N. K. Rotte, V. Naresh and S. K. Martha, J. Energy Storage, 2020, 29, 101330.

Z. Wang, Y. Liu, C. Gao, H. Jiang and J. Zhang, J. Mater. Chem. A, 2015, 3, 20658–20663.