Nucleotide(s)-mediated simultaneous N, P co-doped reduced graphene oxide (N, P-rGO) porous nanohybrids as a high-performance electrode material for designing sustainable binder-free high-voltage (2.8 V) aqueous symmetric supercapacitor and electrochemical sensor

Fig. S1. Optical spectra of different nucleotide(s)-mediated reduction of GO (a); Optical spectra of GO and 5'-AMP-mediated-N, P-rGO (inset) digital photograph of GO (b') and N, P-rGO (b") (b); maximum absorption of N, P-rGO with time (c).

Fig. S2. Raman spectral comparison of different nucleotide(s) (5'-AMP, 5'-UMP, 5'-IMP, 5'-GMP and 5'-CMP)-mediated N, P- rGO in the wavenumber range of 500-3500 cm⁻¹; Raman spectra of GO (a); Raman spectra of these samples extended in the wavenumber range of 1200-1800 cm⁻¹ (a').

Fig. S3. Linear sweep voltammetry (LSV) of three electrode system for different nucleotide(s)mediated N, P-rGO in 0.5 m K₂SO₄ (a), extended LSV Voltammograms in different potential window of these samples - Inset (a') (a"). A comparison of CVs of different nucleotide(s) (5'-AMP, 5'-UMP, 5'-IMP, 5'-GMP and 5'-CMP)-mediated N, P-rGO in the potential range of -1.4 to 1.2 V with a GO (b); CV plots of 5'-AMP mediated N, P-rGO as a function of variation in cathodic potential ranging from: -1.4 to 0 V (c)

Fig. S4. Capacitance (C_{dl}) vs Frequency curve at frequency range of 0.01 H_Z to 10⁶ Hz obtained using the Nyquist plot.

Fig. S5. Impedance curves, inset: extended curves between 0-3 Ohm (a); CV measurements for SSC constructed from nucleotides 5'-CMP/ 5'-AMP/ 5'-GMP/ 5'-UMP and 5'-IMP-mediated N, P-rGO in 0.5 m K_2SO_4 (b). CV voltammograms recorded at 100 mV/s scan rate GCD curves at 1 A/g current density (c).

S.	Nucleotide	Electrolyte	Cell	Capacitance	Energy	Power	Coulombic
No.			Voltage	(F g ⁻¹)	density (W	density	efficiency
			(V)		h kg-1)	(W kg ⁻¹)	
1	5'-GMP	0.5 m	2.5	17.4	15.1	624.8	81.0
		K_2SO_4					
2	5'-CMP	0.5 m	2.5	24.5	24.2	624.8	88.4
		K_2SO_4					
3	5'-AMP	0.5 m	2.6	36.0	33.9	644.9	90.0
		K_2SO_4					
4	5'-UMP	0.5 m	2.5	20.3	17.6	624.8	90.3
		K_2SO_4					
5	5'-IMP	0.5 m	2.5	24.2	21.0	624.8	85.4
		K_2SO_4					

Table S1. Electrochemical data for SSC, constructed from nucleotides 5'-CMP/5'-AMP/ 5'-GMP/5'-UMP/ 5'-IMP-mediated N, P-rGO, recorded using 0.5 m K2SO4 as an electrolyte.

Fig. S6. CV measurements for SSC constructed from nucleotides 5'-CMP/ 5'-AMP/ 5'-GMP/ 5'-UMP/ 5'-IMP-mediated N, P-rGO in 17 m NaClO₄: CV voltammograms recorded at 100 mV/s scan rate (a); GCD curves at 1 A/g current density (b). Impedance curves, inset: extended curves between 0-3 Ohm (c).

Table S2. Electrochemical data for SSC, constructed from nucleotides 5'-CMP/ 5'-AMP 5'-GMP/5'-UMP/ 5'-IMP-mediated N, P-rGO, recorded using 17 m NaClO4 as an electrolyte.

S.	Nucleotides	Electrolyte	Cell	Capacitance	Energy	Power	Coulombic
No.			Voltage	(F g ⁻¹)	Density	Density	efficiency
			(V)		(Whkg-	(W kg ⁻¹)	
					1)		
1	5'-GMP	17 m	2.7	37.64	38.11	674.58	92.4
		NaClO ₄					
2	5'-CMP	17 m	2.7	42.70	43.23	674.56	90.2
		NaClO ₄					
3	5'-AMP	17 m	2.8	51.35	55.92	699.67	87.0
		NaClO ₄					
4	5'-UMP	17 m	2.7	44.44	44.99	674.58	90.6
		NaClO ₄					
5	5'-IMP	17 m	2.7	37.96	38.43	674.53	90.8
		NaClO ₄					

Fig. S7. SEM images of solid sample N, P-rGO (a) and GO (b), EDAX analysis and elemental composition of N, P-rGO (a') and GO (b"), respectively; elemental mapping of N, P-rGO.

Fig. S8. Thermogravimetric analysis of GO (a) and N, P-rGO (b).

Fig. S9. Linear sweep voltammetry (LSV) measurements for estimating electrode potential window of N, P-rGO in different electrolytes performed at a scanning speed of 10 mV/s using three-electrode set-up.

Fig. S10. Cyclic voltammograms recorded for bare graphite, GO, rGO and N, P-rGO (a) and their GCD at 1 A/g (b) with their C_s values (F g⁻¹) calculated to be: 43.8, 54.7, 144.1 and 227.5 respectively. Cyclic voltammograms recorded by varying reduction potential from 0 to -1.5 V in 17 m NaClO₄ (c).

Fig. S11. Linear sweep voltammetry (LSV) of three-electrode system were recorded at a scan rate of 10 mV/s in the used electrolytes 17 m NaClO₄ on a GCE as working electrode (a). Cyclic voltammograms recorded by varying reduction potential from 0 to -1.45 V in 17 m NaClO₄ (b) and CV recorded varied scan rate 10 mV/s to 200 mV/s (c).

Fig. S12. Cyclic voltammetry measurements performed using SSC, designed from 5'-AMP mediated- N, P-rGO as an electrode material: recorded in 3 m each KNO₃, CH₃COONa, NaNO₃, NaClO₄ electrolytes at 100 mV/s scan rate (a); GCD curves recorded at 1 A/g current density in these electrolytes (b).

Fig. S13. Cyclic voltammetry measurements performed using SSC, designed from N, P-rGO as an electrode material in 7 m CH₃COONa electrolyte: in varied range of cell voltages (1-2.5 V) at a scan speed of 100 mV/s (a), at different scan rates from 10-500 mV/s for cell voltage of 2.0 V (b); GCD curves recorded at different current density from 0.7 -10 A/g (c).

Fig. S14. CV measurements made for the SSC (using N, P-rGO as an electrode material) in the 11m NaNO₃ electrolyte: for a varied range of cell voltages (1-2.8 V) at a scan speed of 100 mV/s (a), at different scan rates from 10-500 mV/s (b); GCD for 2.3 V at different current density from 0.7 -15 A/g (c).

Fig. S15. CV measurements made for the SSC (using N, P-rGO as an electrode material) in the 3 m KNO₃ electrolyte: for a varied range of cell voltages (1-2.7 V) at a scan speed of 100 mV/s (a), at different scan rates from 10-500 mV/s (b); GCD for 2.3 V at different current density from 0.7 -15 A/g (c).

Fig. S16. CV measurements made for the SSC (using N, P-rGO as an electrode material) in the 0.5 m K_2SO_4 electrolyte: for a varied range of cell voltages (1-3.2 V) at a scan speed of 100 mV/s (a), at different scan rates from 10-500 mV/s (b); GCD for 2.6 V at different current density from 0.7 -15 A/g (c).

Fig. S17. CV measurements made for the SSC (using N, P-rGO as an electrode material) in the 2 m Na_2SO_4 electrolyte: for a varied range of cell voltages (1-3.2 V) at a scan speed of 100 mV/s (a), at different scan rates from 10-500 mV/s (b); GCD for 2.6 V at different current density from 0.7 -15 A/g (c).

Fig. S18. CV measurements made for the SSC (using N, P-rGO as an electrode material) in the $0.5 \text{ m Na}_2\text{SO}_4$ electrolyte: for a varied range of cell voltages (1-3.1 V) at a scan speed of 100 mV/s (a), at different scan rates from 10-500 mV/s (b); GCD for 2.5 V at different current density from 0.7 -15 A/g (c).

Fig. S19. CV measurements made for the SSC (using N, P-rGO as an electrode material) in the 0.1 m KClO₄ electrolyte: for a varied range of cell voltages (1-2.5 V) at a scan speed of 100 mV/s (a), at different scan rates from 10-500 mV/s (b); GCD for 2.0 V at different current density from 0.7 -10 A/g (c).

Fig. S20. CV measurements made for the SSC (using N, P-rGO as an electrode material) in the 0.1 m NaClO₄ electrolyte: for a varied range of cell voltages (1-2.5 V) at a scan speed of 100 mV/s (a), at different scan rates from 10-500 mV/s (b); GCD for 2.0 V at different current density from 0.7 -10 A/g (c).

Electrolytes	Ice-like component	Ice-like liquid	Monomeric water
	(cm ⁻¹)	component (cm ⁻¹)	(cm ⁻¹)
DIW	3235	3380	3590
K ₂ SO ₄ (0.5 m)	3238	3382	3591
$Na_2SO_4 (2 m)$	3237	3378	3589
KNO ₃ (3 m)	3241	3384	3590
CH ₃ COONa (7 m)	3327	3378	3591
NaNO ₃ (11 m)	3249	3421	3590
NaClO ₄ (17 m)	3246	3429	3587

Table S3. ATR-FTIR data obtained for DIW and electrolytes at their maximum solubility: CH₃COONa (7 m), NaClO₄ (17 m), NaNO₃ (11 m), KNO₃ (3 m), K₂SO₄ (0.5 m), and Na₂SO₄ (2

m).

Fig. S21. Extended ATR-FTIR spectra of DIW, 0.5 m Na₂SO₄ and 0.5 m K₂SO₄.

Fig. S22. ¹H NMR spectra in extended chemical shift range for: DIW, $0.5 \text{ m Na}_2\text{SO}_4$ and $0.5 \text{ m K}_2\text{SO}_4$ (a); DIW, 7 m CH₃COONa (satd.), 3 m KNO₃, 11 m NaNO₃, 17 m NaClO₄, and 2 m Na₂SO₄ (b); 17 m NaClO₄ to show the DSS reference peaks.

Scheme S1. The representation of $ClO_4^-(H_2O)_{16}$ cluster (a); and $SO_4^{2-}(H_2O)_{16}$ (b).

Fig. S23. Self-discharging of N, P-rGO in 17 m NaClO₄ electrolyte at a current density of 1 A/g.

Fig. S24. Cyclic voltammograms recorded for N, P-rGO for single cell and by constructing tandem device by joining two and three SSC in series in 17 m NaClO₄ electrolyte at a scan rate of 100 mV/s (b); GCD curves recoded for the single cell and tandem device(s) in 17 m NaClO₄ at a current density of 5 A/g.

Fig. S25. CV curves of tandem device constructed by joining three SSC in series of N, P-rGO in 17 m NaClO₄ electrolyte recorded at scan rates varying from10- 500 mV/s (a); GCD curves of tandem device in 17 m NaClO₄ at varied current densities of 0.7 - 15 A/g (b); Cyclic stability of a tandem device of the as-fabricated symmetric cell at 5 A/g (c).

Fig. S26. CV curves of 50 μ M Dopamine (a), 50 μ M Serotonin (b) CV and DPV Simultaneous detection of Dopamine and serotonin respectively in 7.0 pH phosphate buffer (0.1 M).

Fig. S27. CV curves of 50 μ M Dopamine (a), 30 μ M Serotonin (b) and corresponding current vs concentration plot (a') (b') respectively in 7.0 pH phosphate buffer (0.1 M).

Black = Carbon, Red = Oxygen, Blue = Nitrogen, Yellow = Phosphorous and White = Hydrogen Scheme S2. Schematic representation of simultaneous sensing of Dopamine and Serotonin at the interface of N-P-rGO electrode.

Black = Carbon, Red = Oxygen, Blue = Nitrogen, Yellow = Phosphorous and White = Hydrogen Scheme S3. Schematic illustration representing the synthesis of 5'-AMP-mediated porous N, PrGO nanohybrids and their use for investigating different electrochemical aspects.

	Conducting	Weight	Voltage	Electrolyte	Energy	Power	Cycle stability	Ref.
Materials	agent/		Range		Density	Density	(current density)	
	Binder		(V)		(Whkg-1)	(W kg-1)		
N, P-co-doped	acetylene	2 mg	1	6 M KOH	26.289 (0.5	Maximum	10000, 94.2% (10	10
porous carbon	black/				Ag ⁻¹)	3694.084	A g ⁻¹)	
	*PVDF							
N/P-co-doped	Super P/	1.5 mg/	1.4	6 KOH	9.1	350	20000, 84.6% (5	11
Porous Carbon-	*PTFE	electrode					A g ⁻¹)	
Coated Graphene								
(KNPG)								
Nitrogen,	carbon	2 mg	1.8	1 M	21.5	250	100000, (2 A g ⁻¹)	12
Phosphorus-co-	black/ PTEF			Na_2SO_4				
doped Carbon								
(NPC-800-2)								
N, P-CQDs/rGO	acetylene	Coin used	1.3	6 M KOH	15.69	325	10000, 85.5% (5	13
	black/ PTFE						A g ⁻¹)	
N/P-G-3	carbon	1.5x1 cm ⁻	1.6	1 M H ₂ SO ₄	11.33	571	10000, 94% (5 A	14
	black/ PVDF	¹ thin film					g-1)	
(NP-rGO)	acetylene	3 mg	1	6 M KOH	22.3	500	10000, 94.63%	15
	black							
	/PVDF							
N, P-co-doped	-/ PTFE	coin-cells	1	1 M	21	50	10000, 95%	16
hierarchical				Na ₂ SO ₄				
porous carbon								
Tremella-like	acetylene	1.25 mg	2	2 M Li ₂ SO ₄	34.7	500	20000, 91.4% (5	17
nitrogen and	black/ PTFE						A g ⁻¹)	
Phosphorus-co-								
doped graphene								
NPHCMs-65-800	acetylene	3 mg	1	KOH/PVA	6.4	0.1 k	5000, 91% (0.5 A	18
	black/ PTFE			gel			g-1)	
NP-PCNs-100	-	0.192 mg	1.6	1 M	17.04	400	10000, 90% (10 A	19
				Na ₂ SO ₄			g-1)	
1NPHC-	Super P/	2 mg cm ⁻¹	1.6	1 M	10.61	400	10000, 86.3% (5	20
850//1NPHC-850	PTFE			Na_2SO_4			A g ⁻¹)	
N/P-co-doped	acetylene	3 mg	1.3	6 KOH	8.17	162	20000, 86.5% (10	21
graphene (NPG)	black				(0.25Ag ⁻¹)		A g ⁻¹)	
	(PTFE)							
5'-AMP-mediated-	-	2.2 mg	2.8	17 m	59.2	489.6	10000, 115.2%	This
N, P co-doped				NaClO ₄			(10 A g^{-1})	work
rGO								
5'-AMP-mediated	-	5.2 mg	2.8	17 m	26.4	819.7	10000, 93.6% (1	This
N, P co-doped				NaClO ₄			A g ⁻¹)	work
rGO								

Table S4. A comparison of the present work with the literature reports with respect to supercapacitor behavior.

*PVDF: -Polyvinylidene fluoride *PTFE: -Polytetrafluoroethylene