Supporting Information: On the stability of anion exchange membrane fuel cells incorporating polyimidazolium ionene (Aemion+[®]) membranes and ionomers

Qiliang Wei, ^a Xinzhi Cao, ^a Philipp Veh, ^b Anastasiia Konovalova, ^a Peter Mardle, ^a Philip Overton, ^a Simon Cassegrain, ^a Severin Vierrath, ^{b,c} Matthias Breitwieser, ^b and Steven Holdcroft. ^a

^a Holdcroft Research Group, Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby BC V5A 1S6, Canada

^b Electrochemical Energy Systems, IMTEK, Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany

^c Freiburg Center for Interactive Materials and Bioinspired Technologies, FIT, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany

Figure S1: (a) Example of fitting the EIS spectra for ex-situ conductivity measurements. Fitting was conducted with the equivalent circuit **(b).** R1 is taken as the resistance for ionic conduction within the AEM.

Figure S2: In-plane (solid) and through-plane (dashed) Cl⁻ conductivity for all AEMs tested at 60 (black), 70 (red) and 80 (blue) °C.

Figure S3: DVS for all three temperatures and AEMs investigated in the AEMFC study. Thicker variants were used for direct comparison with the ex-situ conductivity measurements. All isotherms were acquired in the desorption direction (high RH to low). Materials characterized are: Aemion[®], 50 μ m (A/50) • Aemion+[®], 50 μ m (A+/50) • Aemion[®]+, 40 μ m, reinforced (A+/40-r).

Figure S4: (a) In-plane conductance for AEMs in their Cl⁻ form at 70 °C and (b) through-plane area specific resistance focused on the monolithic AEMs. Materials characterized are: Aemion[®], 50 μm

(A/50) • Aemion+[®], 50 μ m (A+/50) \bigcirc Aemion[®]+, 40 μ m, reinforced (A+/40-r) and \diamondsuit Aemion+[®], 10 μ m, reinforced (A+/10-r).

Figure S5: (a) LLP and **(b)** LVP where the water flux on the y-axis is normalized for the wet thickness of the AEM. The slope therefore corresponds to the permeability. Materials characterized are: Aemion[®], 25 μ m (A/25) \clubsuit Aemion+[®], 10 μ m (A+/10) and \diamondsuit Aemion+[®], 10 μ m, reinforced (A+/10-r).

Figure S6: ATR-FTIR of AEMs in their Cl⁻ form. Before (pristine) and after degradation by submerging in 3 M KOH_(aq) for 7 days at 80 °C. **(a)** Aemion[®], 25 μ m, **(b)** Reinforced Aemion+[®], 10 μ m, **(c)** Aemion+[®], 10 μ m. Transmittance is normalized between 1-0.

	Tensile Strength / MPa	Elongation at break /%	Young's Modulus / MPa
Aemion+® (10 μm)	28 ± 4	40 ± 14	443 ± 58
Aemion+® (10 μm, reinforced)	29 ± 10	61 ± 24	403 ± 132

Table S1: Mechanical strength tests of AEMs in their Cl⁻ form, atmospheric conditions after degradation in 3M KOH_(aq) for 7 days at 80 °C. Aemion[®] was too brittle after the degradation test to be measured.

Figure S7. Polarization curves and power density curves of single cells between OCP and 0.3 V using TKK Pt/C as cathode and PtRu/C as anode with a Pt loading of 0.5 mg_{Pt} cm⁻² on both cathode and anode. The H₂ and O₂ flows are set to 0.5 slpm. The cell temperature was 60 °C. The effect of anode and cathode RH on an MEA with Aemion+[®] (10 μ m, reinforced) is shown.

Figure S8. Polarization curves and power density curves of single cells between OCP and 0.3 V using TKK Pt/C as cathode and PtRu/C as anode with a Pt loading of 0.5 mg_{Pt} cm⁻² on both cathode and anode. The H₂ and O₂ flows are set to 0.5 slpm. The RH at the anode and cathode was 90%. The effect of cell temperature on an MEA with Aemion+[®] (10 μ m, reinforced) is shown.

Figure S9: EIS in the frequency range 10 kHz - 0.1 Hz at 0.8 V with amplitude 10 mV. AEMFC conditions are the same as in **Figure 2a**.

Figure S10: ATR-FTIR spectrums and matching active area surface SEM images of membranes after AEMFC test: **(a)-(b)** Aemion[®] (25 μ m); **(c)-(d)** Aemion[®]+ (10 μ m); **(e)-(f)** Aemion[®]+ (10 μ m, reinforced). Transmittance is normalized between 1-0.

Figure S11: Active area surface SEM images of the reinforced Aemion[®] + membrane: (a) Anode side;
(b) Cathode side; (c) Side B magnification.

Figure S12: SEM image of the MEA cross-section of the DMD-based AEM fuel cell, showing the thin total membrane thickness of only 5 μ m.

Figure S13: (a) Voltage decay and, **(b)** ASR increase of single cells with TKK Pt/C as cathode and PtRu/C as anode with a Pt loading of 0.5 mg_{Pt} cm⁻² on both cathode and anode. The H₂ and O₂ flows are set to 0.5 slpm. The RH at the anode and cathode was 90%. The cell temperature was 70 °C and the current density was 600 mA cm⁻². Aemion+[®] (10 μ m, reinforced) was used as the AEM.