Electronic Supplementary Information

ZnO nanowire arrays with *in situ* sequentially self-assembled vertically oriented CdS nanosheets as superior photoanodes for photoelectrochemical water splitting

Chunmei Li ^{a,b}, Hua Lin ^c, Maoxiang Jing ^d, Lian Ying Zhang ^e, Weiyong Yuan ^{a,f,*}, Chang Ming Li ^c

^a Ningbo Research Institute, Zhejiang University, Ningbo 315100, China

^b School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

^c School of Materials & Energy, Southwest University, Chongqing 400715, China

^d Institute for Advanced Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China

^e Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China

^f College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

* Corresponding Author. Tel./ fax: +86 574 88229995. E-mail: wyyuan@zju.edu.cn

Contents

- 1. Calculation of photoconversion efficiency.
- 2. Calculation of flatband potential and donor density.
- 3. Calculation of Debye length.
- 4. Calculation of depletion layer width.
- 5. Large-area top-view and cross-section FESEM images of ZnO NWAs (Figure S1).
- XRD patterns and their enlarged ones of ZnO NWA, ZnO NW@ZnO NP array, and ZnO NW@CdS NS array (Figure S2).
- 7. SAED pattern of ZnO NW@CdS NS array (Figure S3).
- 8. Top-view and cross-section FESEM images of ZnO NWAs grown without the assistance of PEI (Figure S4).
- 9. Linear sweep voltammograms of ZnO NW@CdS NS with different deposition cycle numbers (Figure S5).
- 10. PEC performance of representative ZnO-based photoanodes for water splitting (Table S1).

- 11. Mott–Schottky plots of ZnO NWA, ZnO NW@ZnO NP array, ZnO NW@CdS NP array, and ZnO NW@CdS NS array obtained at frequencies of 800, 1000, and 1200 Hz in the dark (Figure S6).
- 12. Nyquist and Bode plots of ZnO NWAs, ZnO NW@ZnO NP arrays, ZnO NW@CdS NP arrays, and ZnO NW@CdS NS arrays in dark (Figure S7).
- Chronoamperometric curve of ZnO NW@CdS NS array after 50 on/off cycles of solar irradiation and LSV curves of ZnO NW@CdS NS array before and after 50 cycles (Figure S8).
- 14. FESEM image of ZnO NW@CdS NS array after the stability test (Figure S9).

1. Calculation of photoconversion efficiency

The photoconversion efficiency of a photoanode was calculated according to the following formula:¹⁻²

$$\eta\% = \frac{J(1.23 - V)}{P} \times 100$$

Where J is the current density under simulated sunlight irradiation, V is the applied voltage versus RHE, and P is the light intensity (100 mW•cm⁻²).

2. Calculation of flatband potential and donor density

The depletion layer capacitance obtained from the electrochemical impedance spectra can be described by the Mott–Schottky equation:^{1,3}

$$\frac{1}{C^2} = \frac{2}{e_0 \varepsilon \varepsilon_0 N_d} [(V - V_{FB}) - \frac{kT}{e_0}]$$

where e_0 is the electron charge, ε the dielectric constant of ZnO (since the samples are ZnO and ZnO modified with thin layer of CdS, we assume that their dielectric constants are the same ⁴⁻⁶), ε_0 the permittivity of vacuum (8.85 × 10⁻¹² N⁻¹C²m⁻²), N_d the donor density, V the electrode

applied potential, V_{FB} the flatband potential, and e_0 is a temperature-dependent correction term. Therefore, V_{FB} can be determined from the intersection point between the extrapolated

kТ

1

linear line and x-axis in Mott–Schottky (M-S) plots ($\overline{C^2}$ versus V) and N_d can be estimated from the slope of the M-S plots according to the following equation:^{1,3}

$$N_d = \frac{2}{e_0 \varepsilon \varepsilon_0} \left[\frac{d^2}{dV} \right]^{-1}$$

3. Calculation of Debye length

The charge carrier diffusion lengths (Debye length, L_D) for both electrodes were also calculated according to the following equation:^{1,7}

$$L_D = \left(\frac{\varepsilon \varepsilon_0 kT}{e^2 N_D}\right)^{\frac{1}{2}}$$

where k is the Boltzmann constant (1.38×10⁻²³ J K⁻¹) and T is the absolute temperature (K). 4. Calculation of depletion layer width

The depletion layer width (W) at 0.0 V vs. SCE can be calculated via the following equation:^{1,7}

$$W = \left(\frac{2\varepsilon\varepsilon_0\phi}{e^2N_D}\right)^{\frac{1}{2}}$$

where $\phi = V - V_{FB} \phi = V - V_{FB}$ is the maximum potential drop in the depletion layer. A potential of 0.0 V was chosen because of the negligible dark current at that potential.

Figure S1. Large-area top-view (A) and cross-section (B) FESEM images of ZnO NWAs.

Figure S2. XRD patterns (A) and their enlarged ones (B) of ZnO NWA, ZnO NW@ZnO NP array, and ZnO NW@CdS NS array.

Figure S3. SAED pattern of ZnO NW@CdS NS array. Brown and green colors represent the crystal planes of CdS (JPCDS 80-0019) and hexagonal wurtzite ZnO, respectively.

Figure S4. Top-view (A) and cross-section (B) FESEM images of ZnO NWAs grown without the assistance of PEI.

Figure S5. Linear sweep voltammograms of ZnO NW@CdS NS with different deposition cycle numbers.

Photoanode	Photocurrent density	Onset potential	Maximum photoconversi on Efficiency	Light source used	Electrolyte	Ref.
ZnO/CdS core/shell nanowire arrays	7.23 mA cm ⁻² (0 V vs. SCE)	-1.55 V (vs. SCE)	3.53%	AM 1.5 G, 100 mW cm ⁻²	1 M Na ₂ S	8
ZnO/CdTe Core-Shell Nanocable Arrays	~5.9 mA cm ⁻² (0 V vs. SCE)	-0.8 V (vs. SCE)		AM 1.5 G, 100 mW cm ⁻²	0.5 M S and 0.3 M Na₂S	9
CdSe/ZnO with double layered tubular structure	2.55 mA cm ⁻² (0 V vs. Ag/AgCl)	-1.1 V (vs. Ag/AgCl)	1.78%	500 W Xe lamp, 100 mW cm ⁻²	$0.1 \text{ M Na}_2\text{S}$	10
ZnO/GaON nanowire arrays	2.25 mA cm-2 (1.23 V vs. RHE)	~0.1 V (vs. RHE)	0.85%	500 W Xe lamp, 100 mW cm ⁻²	0.5 M KOH	11
CdS NP/ZnO NW heterostructure arrays	~4.5 mA cm ⁻² (0 V vs. SCE)	~-1.3 V (vs. SCE)		AM 1.5 G, 100 mW cm ⁻²	$1 \text{ M Na}_2\text{S}$	12
3D-branched ZnO NWA–CdS nanoparticle composite	3.58 mA cm ⁻² (0 V vs. Ag/AgCl)		3.1%	70 mW cm ⁻²	0.5 M Na₂S	13
ZnO@Au@ZIF-67	1.93 mA cm ⁻² (0.6 V vs. SCE)	-0.1 V (vs. SCE)	0.8%	150 W Xe lamp, 100 mW cm ⁻²	0.5 M Na₂SO₄	14
3D ZnO/TiO ₂ /FeOOH	1.59 mA cm ⁻² (1.8 V vs. RHE)	0.14 V (vs. RHE)	0.36%	AM 1.5 G, 100 mW cm ⁻²	0.5 M Na₂SO₄	15
composition-graded Zn _x Cd ₁₋ _x Se@ZnO core-shell nanowire array	~7.4 mA cm ⁻² (1.23 V vs. RHE)	-1.2 V (vs. Ag/AgCl)		AM 1.5 G, 100 mW cm ⁻²	0.35 M Na ₂ SO ₃ and 0.24 M Na ₂ S	16
BiVO4/ZnO QDs	~5.8 mA cm-2 (1.23 V vs. RHE)	~0.23 V (vs. RHE)	1.75%	AM 1.5 G, 100 mW cm ⁻²	0.1 M Na₂SO₄	17
ZnO@InP QD	1.2 mA cm ⁻² (1.0 V vs. Ag/AgCl)		~1.3%	AM 1.5 G, 100 mW cm ⁻²	0.5 M Na₂SO₄	18
LDH/LFO/ZnO	2.46 mA cm ⁻² (1.23 V vs. RHE)	0.31 V (vs. RHE)	0.76%	AM 1.5 G, 100 mW cm ⁻²	0.5 M Na₂SO₄	19
ZnO-CdS core-shell nanocable array	6.0 mA cm ⁻²	-1.3 V (vs. Ag/AgCl)		AM 1.5 G, 100 mW cm ⁻²	$1 \text{ M Na}_2\text{S}$	20
Al-ZnO/CdS/TiO ₂	11.7 mA cm-2	~-0.3 V (vs. RHE)	5.9%	AM 1.5 G, 100 mW cm ⁻²	0.25 M Na ₂ S and 0.35 M Na ₂ SO ₃	21
Al-ZnO/CdS/Al ₂ O ₃	10.4 mA cm ⁻²	~-0.2 V (vs. RHE)	5.75%	AM 1.5 G, 100 mW cm ⁻²	0.25 M Na ₂ S and 0.35 M Na ₂ SO ₃	22
ZnO–ZnS solid solution nanowire arrays	1.5 mA cm ⁻² (1 V vs. Ag/AgCl)	-0.7 V (vs. Ag/AgCl)		AM 1.5 G, 100 mW cm ⁻²	0.5 M Na ₂ S and K ₂ SO ₃ solution	23
NiOOH/ZnWO₄/ZnO	1.7 mA cm ⁻² (1.23 V vs. RHE)	~0.4 V (vs. RHE)	0.46%	AM 1.5 G, 100 mW cm ⁻²	0.02 M KOH	24
ZnO@CdTe	2.0 mA cm ⁻² (1.0 V vs. Ag/AgCl)		1.83%	AM 1.5 G, 100 mW cm ⁻²	0.5 M Na ₂ SO ₄	25
ZnO/CdS/CuSbS ₂	6.42 mA cm-2 (0 V vs. Ag/AgCl)	-1.1 V vs. Ag/AgCl		AM 1.5 G, 100 mW cm ⁻²	0.35 M Na₂SO₃ and 0.25 M Na₂S	26
ZnO NW@CdS NS array	9.10 mA cm ⁻² (1.23 V vs. RHE)	-0.5 V (vs. RHE)	3.72%	AM 1.5 G, 100 mW cm ⁻²	0.2 M Na ₂ S	This work

Table S1. PEC performance of representative ZnO-based photoanodes for water splitting.

Figure S6. Mott–Schottky plots of ZnO NWA, ZnO NW@ZnO NP array, ZnO NW@CdS NP array, and ZnO NW@CdS NS array obtained at frequencies of 800, 1000, and 1200 Hz in the dark.

Figure S7. Nyquist (A) and Bode (B) plots of ZnO NWAs, ZnO NW@ZnO NP arrays, ZnO NW@CdS NP arrays, and ZnO NW@CdS NS arrays in dark. The inset in the lower right corner of (A) shows Nyquist plots at the high-frequency region, and the one in the upper left corner shows the equivalent circuit used for simulation.

Figure S8. (A) Chronoamperometric curve of ZnO NW@CdS NS array after 50 on/off cycles of solar irradiation. (B) LSV curves of ZnO NW@CdS NS array before and after 50 cycles.

Figure S9. FESEM image of ZnO NW@CdS NS array after the stability test.

References

[1] W. Yuan, J. Yuan, J. Xie, C. M. Li, ACS Appl. Mater. Interfaces 2016, 8, 6082.

[2] Z. Li, W. Luo, M. Zhang, J. Feng, Z. Zou, Energy Environ. Sci. 2013, 6, 347.

[3] K. Gelderman, L. Lee, S. W. Donne, J. Chem. Educ. 2007, 84, 685.

[4] A. Ghobadi, T. G. U. Ghobadi, F. Karadas, E. Ozbay, Sci. Rep. 2018, 8, 16322.

[5] F. Malara, A. Minguzzi, M. Marelli, S. Morandi, R. Psaro, V. D. Santo, A. Naldoni, ACS Catal. 2015, 5, 5292.

[6] Q. Rui, L. Wang, Y. Zhang, C. Feng, B. Zhang, S. Fu, H. Guo, H. Hu, Y. Bi, J. Mater. Chem. A 2018, 6, 7021.

[7] C. Fàbrega, D. Monllor-Satoca, S. Ampudia, A. Parra, T. Andreu, J. R. Morante, J. Phys. Chem. C 2013, 117, 20517.

[8] Y. Tak, S. J. Hong, J. S. Lee, K. Yong, J. Mater. Chem. 2009, 19, 5945.

[9] X. N. Wang, H. J. Zhu, Y. M. Xu, H. Wang, Y. Tao, S. Hark, X. D. Xiao, Q. A. Li, ACS Nano 2010, 4, 3302.

[10] M. Wang, J. G. Jiang, G. J. Liu, J. W. Shi, L. J. Guo, Appl. Catal. B 2013, 138, 304.

- [11] H. P. Ma, J. H. Yang, J. J. Tao, K. P. Yuan, P. H. Cheng, W. Huang, J. C. Wang, Q. X. Guo, H. L. Lu, D. W. Zhang, *Nano Energy* **2019**, *66*, 104089.
- [12] Y. Tak, S. J. Hong, J. S. Lee, K. Yong, Cryst. Growth Des. 2009, 9, 2627.
- [13] Z. Bai, X. Yan, Y. Li, Z. Kang, S. Cao, Y. Zhang, Adv. Energy Mater. 2016, 6, 1501459.
- [14] Y. Dou, J. Zhou, A. Zhou, J.-R. Li, Z. Nie, J. Mater. Chem. A 2017, 5, 19491.
- [15] Z. Li, S. Feng, S. Liu, X. Li, L. Wang, W. Lu, Nanoscale 2015, 7, 19178.
- [16] H. Li, C. Cheng, X. Li, J. Liu, C. Guan, Y. Tay, H. Fan, *J. Phys. Chem. C* 2012, *116*, 3802.
- [17] J. Li, H. Yuan, J. Li, W. Zhang, Y. Liu, N. Liu, H. Cao, Z. Jiao, *Appl. Catal. B* 2021, 285, 119833.
- [18] H. M. Chen, C. K. Chen, C. C. Lin, R. S. Liu, H. Yang, W. S. Chang, K. H. Chen, T. S.
- Chan, J. F. Lee, D. P. Tsai, J. Phys. Chem. C 2011, 115, 21971.
- [19] X. Long, C. Wang, S. Wei, T. Wang, J. Jin, J. Ma, ACS Appl. Mater. Interfaces 2020, 12, 2452.
- [20] Y. Myung, D. M. Jang, T. K. Sung, Y. J. Sohn, G. B. Jung, Y. J. Cho, H. S. Kim, J. Park, *ACS Nano* **2010**, *4*, 3789.
- [21] R. Wang, L. Wang, Y. Zhou, Z. Zou, Appl. Catal. B 2019, 255, 117738.
- [22] R. Wang, X. Li, L. Wang, X. Zhao, G. Yang, A. Li, C. Wu, Q. Shen, Y. Zhou, Z. Zou, *Nanoscale* **2018**, *10*, 19621.
- [23] H. M. Chen, C. K. Chen, R. S. Liu, C. C. Wu, W. S. Chang, K. H. Chen, T. S. Chan, J. F. Lee, D. P. Tsai, *Adv. Energy Mater.* 2011, *1*, 742.
- [24] S. Fu, H. Hu, C. Feng, Y. Zhang, Y. Bi, J. Mater. Chem. A 2019, 7, 2513.
- [25] H. Chen, C. Chen, Y.C. Chang, C. W. Tsai, R. S. Liu, S. F. Hu, W.S. Chang, K.H. Chen, *Angew. Chem. Int. Ed.* **2010**, *49*, 5966.
- [26] R. R. Su, Y. X. Yu, Y. H. Xiao, X. F. Yang, W. D. Zhang, *Int. J. Hydrog. Energy* **2018**, *43*, 6040.