Enhancing electrochemical performance of micron size Ge anode through in-situ surface composite flowerlike Zn₂GeO₄ for Li ion batteries

Jian Hao^{a*}, Jun Bai^a, Jing Wang^a, Lu Xu^a, Junli Guo^b, Caixia Chi^c, Haihong Li^d

^a State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical

Engineering, College of Chemistry & Chemical Engineering, Ningxia University,

Yinchuan 750021, China, E-mail: haojian2017@126.com.

^b College of Mechanical Engineering, Ningxia University, Yinchuan 750021, China.

^c Food and Pharmaceutical Engineering College, Suihua University, Suihua 152061, China.

^d The Chemical Engineering Department, Hulunbuir Vocational Technical College, Hulunbuir, Inner Mongolia 021000,China.

Fig S1 Detailed morphology of samples, in EDTA:water=1:1 solvent system without NaOH(a), in EDTA:water=1:2 solvent system the without NaOH(b), in

EDTA:water=1:1 solvent system the with 1ml NaOH(c), and in EDTA:water=1:1 solvent system the with 2ml NaOH(d).

Fig.S2 SEM images of Ge/Zn₂GeO₄ products obtained at different reaction temperatures: (a) 120 $^{\circ}$ C, (b) 140 $^{\circ}$ C, (c) 160 $^{\circ}$ C, (d) 180 $^{\circ}$ C, (e) 200 $^{\circ}$ C, and (f) 220 $^{\circ}$ C.

Fig.S3 SEM images of Ge/Zn₂GeO₄-140 $^{\circ}$ C with different reaction times, (a) 12h, (b) 24h, (c) 48h, and Ge/Zn₂GeO₄-180 $^{\circ}$ C with different reaction times, (d) 12h, (e) 24h, (f) 48h.

Fig.S4 Galvanostatic charge-discharge profiles for different cycles (a), and cycling performance and Coulombic efficiency (b) of micron Ge electrode.

Fig.S5 (a) Galvanostatic charge-discharge profiles for different cycles of Ge/Zn₂GeO₄NFs at 0.2 A g^{-1} , (b) cycling performance of Ge/Zn₂GeO₄NFs,

Ge/Zn₂GeO₄NDs, and Ge at 0.2 A $g^{\text{-1}}$

Fig.S6 Rate performance of micron Ge electrode, at current density of 0.2, 0.5, 1.0, 2.0,

5.0A g⁻¹

Fig.S7 (a) Galvanostatic charge-discharge profiles for different cycles of Ge/Zn_2GeO_4NFs at 2 A g⁻¹, (b) cycling performance and Coulombic efficiency of Ge/Zn_2GeO_4NFs , at 2 A g⁻¹.

Fig.S8 SEM images of the Ge/Zn₂GeO₄NFs anode before cycle (a) and after the 200th cycle (b) at 0.2 A g⁻¹.

Fig.S9 The GITT curves (voltage vs. time) and (LogD vs. time) for the

 Ge/Zn_2GeO_4NDs (a), and Ge (b) anode at room temperature 4th cycle, Li^+ ion diffusion coefficients calculated from the GITT potential profiles as a function of depth of discharge (c), and Li^+ ion diffusion coefficients as a function of state of charge (d).

Materials	Cycling performance (mAh g ⁻¹)	Rate capability (mAh g ⁻¹)	Initial Coulomb efficiency (%)	Ref.
meso-porous Ge anode	1291 after 150 cycles at 0.2 C	673 at 10 C	~65	1
np-GeSn ₅	974 after 500 cycles at 200 mA g^{-1}	778 at 1500 mA g ⁻¹ ,	~65	2
np-Ge	318 after 150 cycles at 200 mA g^{-1}	500 at 1000 mA g^{-1}		2
Ag/np-Ge	953 after 100 cycles at 100 mA g^{-1}	522 at 1000 mA g^{-1}	81.8	3
nanoporous Ge (np-Ge)	1060 after 100 cycles at 0.2 A g^{-1}	844.2 at 5 A g^{-1}		4
Ge asymmetric membrane	850 after 100 cycles at 600 mA g^{-1}	840 at 800 mA g^{-1}	~65	5
porous GeO ₂ (s)/Ge(c)	1333.5 after 30 cycles at 0.1 A g^{-1}	1024.4 at 0.4 A g^{-1}	60.1	6
Zn ₂ GeO ₄ amorphous nanoparticles	1250 after 500 cycles at 400 mA g^{-1}	610 and 470 at 3.2 A g^{-1} and 6.4 A g^{-1}	34	7
Zn ₂ GeO ₄ nanowires	1220 after 100 cycles,		52.5	8
$\begin{array}{c} Mn\text{-doped} \\ Zn_2GeO_4 \\ hierarchical \\ nanosheet arrays \end{array}$	1301 after 100 cycles at 100 mA g ⁻¹	500 at 2 A g ⁻¹	61.3	9
Zn ₂ GeO ₄ /RGO composite	1005 after 100 cycles at 0.5 A g^{-1}	515 at 5 A g ⁻¹	63.2	10
Zn ₂ GeO ₄ ultrathin nanosheets	794 after 500 cycles at 200 mA g^{-1}	537 at 2 A g ⁻¹	~59	11

Table S1. The comparison of electrochemical performance of Ge and Zn_2GeO_4 anodes for LIBs.

Zn ₂ GeO ₄ Nanorods	616 after 100th cycles at 400 mA g^{-1}	~500 at 5C	54	12
Ge/Zn ₂ GeO ₄ NFs	816 after 200th cycles at 0.2 A g ⁻¹	567 at 2 A g^{-1}	62	This work

References

- 1. N. Lin, T. Q. Li, Y. Han, Q. L. Zhang, T. J. Xu and Y. T. Qian, ACS applied materials & *interfaces*, 2018, **10**, 8399-8404.
- Y. H. Yan, Y. Liu, Y. G. Zhang, C. L. Qin, H. Yu, Z. Bakenov and Z. F. Wang, J Colloid Interf Sci, 2021, 602, 563-572.
- Y. H. Yan, Y. Liu, Y. G. Zhang, C. L. Qin, Z. Bakenov and Z. F. Wang, *J Colloid Interf Sci*, 2021, **592**, 103-115.
- S. Z. Wang, W. S. Ma, W. F. Yang, Q. G. Bai, H. Gao, Z. Q. Peng and Z. H. Zhang, J Chem Phys, 2021, 155, 184702.
- 5. I. Byrd, H. Chen, T. Webber, J. L. Li and J. Wu, *Rsc Adv*, 2015, 5, 92878-92884.
- S. C. Yan, H. Z. Song, S. R. Lin, H. Wu, Y. Shi and J. Yao, Advanced Functional Materials, 2019, 29, 1807946.
- R. Yi, J. K. Feng, D. P. Lv, M. L. Gordin, S. R. Chen, D. W. Choi and D. H. Wang, *Nano Energy*, 2013, 2, 498-504.
- 8. Y. R. Lim, C. S. Jung, H. S. Im, K. Park, J. Park, W. I. Cho and E. H. Cha, *Journal of Materials Chemistry A*, 2016, **4**, 10691-10699.
- Q. Li, X. G. Miao, C. X. Wang and L. W. Yin, *Journal of Materials Chemistry A*, 2015, 3, 21328-21336.
- Y. Chen, Z. Y. Ji, X. P. Shen, H. Y. Chen, Y. Qi, A. H. Yuan, J. X. Qiu and B. L. Li, J Colloid Interf Sci, 2021, 589, 13-24.
- G. X. Gao, Y. Xiang, S. Y. Lu, B. T. Dong, S. Chen, L. Shi, Y. K. Wang, H. Wu, Z. Y. Li,
 A. Abdelkader, K. Xi and S. J. Ding, *Nanoscale*, 2018, **10**, 921-929.
- 12. J. K. Feng, M. O. Lai and L. Lu, *Electrochem Commun*, 2011, 13, 287-289.