Electronic Supplementary Information

2D-Black Phosphorus/Polyaniline Hybrids for Efficient Supercapacitor and Hydrogen Evolution Reaction Applications

Namsheer. K^a, Samadhan Kapse^b, Mridula Manoj^a, Ranjit Thapa^b, Chandra Sekhar Rout^{a,*}

^a Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Jakkasandra, Ramanagaram, Bangalore-562112, India.

^b Department of Physics, SRM University – AP, Amaravati 522502, Andhra Pradesh, India

**Corresponding author e-mail: <u>r.chandrasekhar@jainuniversity.ac.in</u>; <u>csrout@gmail.com</u>*

Calculation of areal capacitance, energy density and power density

The practical capacitance of the supercapacitors in two-electrode configuration was calculated

$$C = \frac{2I\int vdt}{A(V^2 - V^2)}$$

from the GCD curves at different current densities using $A(V_i^2 - V_f^2)$, where i and dv/dt are the current and the slop of discharge curve. The specific capacitance of device was calculated by Cx=2Ccell/X, where X can be surface area. The areal energy density (Ecell) can be calculated using Ecell,A=CAV2/(8×3600) where CA, V are the areal specific capacitance, and voltage window. The areal power density (Pcell,A) are calculated by Pcell=Ecell×3600/tdischarge, where Ecell and tdischarge are the entire device areal energy density and discharge time.

Fig.S1 Schematic illustration represents pre-treatment of red phosphorus

Fig.S2 XPS survey spectra of the PANI/BP.

Fig.S3 CVs and GCD of prepared (a-b) BP, (c-d) PANI at different scan rate and current density.

Fig.S4 Impedance spectra of prepared BP, PANI and BP/PANI

Fig.S5 Cycling stability analysis of PANI for continues 4000 charge discharge cycle

Material	Capacitance mF/cm ²	Energy density	Power density	Stability %	Ref
		μWh/cm ²	mW/cm ²		
BP/PPy	-	3.3	3.2	96%	1
G/PANI@Cloth	246 m	9.7	0.8	98% after 3800 cycles	2
G/PANI	176 mF/cm ²	17.1	0.25	74.8 after 500 cycles	3
G/PANI	87.8	12.2	0.226	-	4
RGO/PPy@CNT	443	7	8.2	94% after 10000 cycles	5
Carboxyl- G/PPy@CNT	196	10.9	8.1	98.1% after	6

				5000 cycles	
PANI@GF	357	7.9	167	96.4% after 5000 cycles	7
CNT@C	19.5	11.6	0.52	-	8
	145	5.04 µWh	0.5 mW cm ⁻²	91% after	9
rGO/C		cm ⁻²		10000 cycles	
Graphene/MnO ₂	42	1.46 μWh cm ⁻²	2.9 mW cm ⁻²		10
Cellular Graphene	2.47	0.34	5.3	97% after 10000 cycles	11
Graphene/CNT	-	0.32	23	-	12
Graphene/BP	13.7	2.32	0.3	85%	13
VGN	145	0.56	10.5	91%	14
MoSSe@vertically	252	11.2 μ Whcm ⁻	130 mWcm ⁻¹	80%	15
aligned graphene					
BP/PANI Present work	350 mFcm ⁻²	31.2	330	83.3% after 10000 cycles	Present work

 Table ST1 Comparison of the energy storage performance of BP and conducting polymerbased supercapacitors

Material	Overpotential	Tafal Slope	Reference
	mV	mV/dec	
Vertically aligned	300	105-120	16
MoS ₂			
Silica polypyrrole	200	83	17
Edge BP	550	-	18
BP/MoSe ₂	380	97	19
Co ₃ O ₄ /PPY	140	83	20

Co ₃ O ₄ /PPY/CNT	490	110	21
NF/PPy@SiO ₂	192	77	22
Polyaniline/BP	128	71	Present Work

Table ST2 Comparative electrocatalytic performance of conducting polymer, BP and their composites

Reference

1 S. Luo, J. Zhao, J. Zou, Z. He, C. Xu, F. Liu, Y. Huang, L. Dong, L. Wang and H. Zhang, *ACS Appl. Mater. Interfaces*, 2018, **10**, 3538–3548.

2 K. Li, X. Liu, S. Chen, W. Pan and J. Zhang, *Journal of Energy Chemistry*, 2019, **32**, 166–173.

3 X. Yang, Y. Qiu, M. Zhang, L. Zhang and H. Li, *Applied Sciences*, 2021, **11**, 8690.

4 H. Kwon, D. J. Han and B. Y. Lee, *RSC Adv.*, 2020, **10**, 41495–41502.

5 H. Zhou, L. Hou, W. Zhang and H.-J. Zhai, *Materials Chemistry and Physics*, 2020, **240**, 122259.

6 X. Zheng, L. Yao, Y. Qiu, S. Wang and K. Zhang, *ACS Appl. Energy Mater.*, 2019, **2**, 4335–4344.

7 Y. Fu, X. Cai, H. Wu, Z. Lv, S. Hou, M. Peng, X. Yu and D. Zou, *Advanced Materials*, 2012, **24**, 5713–5718.

8 L. Hou, R. Bao, Z. Chen, M. Rehan, L. Tong, G. Pang and C. Yuan, *Electrochimica Acta*, DOI:10.1016/j.electacta.2016.08.038.

9 B. T. Ho, T. Lim, M. H. Jeong and J. W. Suk, *ACS Appl. Energy Mater.*, 2021, **4**, 8883–8890.

10 X. Li, T. Zhao, Q. Chen, P. Li, K. Wang, M. Zhong, J. Wei, D. Wu, B. Wei and H. Zhu, *Phys. Chem. Chem. Phys.*, 2013, **15**, 17752–17757.

11 Y. Shao, J. Li, Y. Li, H. Wang, Q. Zhang and R. B. Kaner, *Mater. Horiz.*, 2017, **4**, 1145–1150.

12 K. Liu, Y. Yao, T. Lv, H. Li, N. Li, Z. Chen, G. Qian and T. Chen, *Journal of Power Sources*, 2020, **446**, 227355.

13 H. Xiao, Z.-S. Wu, L. Chen, F. Zhou, S. Zheng, W. Ren, H.-M. Cheng and X. Bao, *ACS Nano*, 2017, **11**, 7284–7292.

14 S. Zheng, Z. Li, Z.-S. Wu, Y. Dong, F. Zhou, S. Wang, Q. Fu, C. Sun, L. Guo and X. Bao, *ACS Nano*, 2017, **11**, 4009–4016.

15 N. K., S. R. Polaki and C. S. Rout, *Journal of Energy Storage*, 2022, **52**, 1050

16 Kong D, Wang H, Cha JJ, Pasta M, Koski KJ, Yao J, et al. Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers. Nano Lett 2013;13:1341–7. https://doi.org/10.1021/nl400258t.

17Feng J-X, Xu H, Ye S-H, Ouyang G, Tong Y-X, Li G-R. Silica–Polypyrrole Hybrids asHigh-Performance Metal-Free Electrocatalysts for the Hydrogen Evolution Reaction in NeutralMedia.AngewandteChemieInternationalEdition2017;56:8120–4.https://doi.org/10.1002/anie.201702934.

18Sofer Z, Sedmidubský D, Huber Š, Luxa J, Bouša D, Boothroyd C, et al. Layered BlackPhosphorus: Strongly Anisotropic Magnetic, Electronic, and Electron-Transfer Properties.AngewandteChemieInternationalEdition2016;55:3382–6.https://doi.org/10.1002/anie.201511309.

19 Li W, Liu D, Yang N, Wang J, Huang M, Liu L, et al. Molybdenum diselenide – black phosphorus heterostructures for electrocatalytic hydrogen evolution. Applied Surface Science 2019;467–468:328–34. https://doi.org/10.1016/j.apsusc.2018.10.127.

20 Wang D-G, Liang Z, Gao S, Qu C, Zou R. Metal-organic framework-based materials for hybrid supercapacitor application. Coordination Chemistry Reviews 2020;404:213093. https://doi.org/10.1016/j.ccr.2019.213093.

21 Jayaseelan SS, Bhuvanendran N, Xu Q, Su H. Co3O4 nanoparticles decorated Polypyrrole/carbon nanocomposite as efficient bi-functional electrocatalyst for electrochemical water splitting 2020. https://doi.org/10.1016/j.ijhydene.2019.12.085.

22 Zheng H, Yang F, Xiong T, Adekoya D, Huang Y, Balogun M-SJT. Polypyrrole Hollow Microspheres with Boosted Hydrophilic Properties for Enhanced Hydrogen Evolution Water Dissociation Kinetics. ACS Appl Mater Interfaces 2020;12:57093–101. https://doi.org/10.1021/acsami.0c16938.