Supplementary material

Efficient and sustainable production of *p*-xylene from biomass-derived 2,5-

dimethylfuran and ethylene using alkali metal doped phosphotungstic acid

catalysts

Chengming Wu, Zhao Yang, Jifan Li, Chun-Ling Liu, Wen-Sheng Dong*

Key Laboratory of Applied Surface and Colloid Chemistry (SNNU), MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China

*Corresponding author.

E-mail address: wsdong@snnu.edu.cn.

Fig. S1. N_2 adsorption-desorption isotherms of the pure HPW and $M_x H_{3\text{-}x} PW$ catalysts.

Fig. S2. Effect of initial ethylene pressure on the conversion of DMF and ethylene to PX. (Reaction conditions: DMF, 1.15 g; 1,4-dioxane, 14.3 g; catalyst, 12.5wt% DMF; 250 °C for 6 h; stirring speed, 800 rpm.)

Notation: CH: 1,4-dimethyl-7-oxabicyclo[2.2.1]hept-2-ene; AP: 1-methyl-4-propylbenzene; CP: 3methyl-2-cyclopentenone; HDO: 2,5-hexanedione; DM: dimers; Others: undetectable byproducts by the GC. **Fig. S3.** Effect of catalyst dosage on the conversion of DMF and ethylene to PX. (Reaction conditions: DMF, 1.15 g; 1,4-dioxane, 14.3 g; 4 MPa C₂H₄; 250 °C for 6 h; stirring speed, 800 rpm.) Notation: CH: 1,4-dimethyl-7-oxabicyclo[2.2.1]hept-2-ene; AP: 1-methyl-4-propylbenzene; CP: 3-methyl-2-cyclopentenone; HDO: 2,5-hexanedione; DM: dimers; Others: undetectable byproducts by the GC.

Fig. S4. Effect of reaction temperature and time on the HDO and AP selectivity (a), DM and CP selectivity (b), carbon balance (c). (Reaction conditions: DMF, 1.15 g; 1,4-dioxane, 14.3 g; catalyst, 12.5wt% DMF; 4 MPa C₂H₄, stirring speed, 800 rpm.)

Notation: HDO: 2,5-hexanedione; AP: 1-methyl-4-propylbenzene; CP: 3-methyl-2-cyclopentenone; DM: dimers; Others: undetectable byproducts by the GC.

Fig. S5. Effect of water content on the conversion of DMF and ethylene to PX. (Reaction conditions: DMF, 1.15 g; 1,4-dioxane, 14.3 g; catalyst, 12.5wt% DMF; 4 MPa C₂H₄; 250 °C for 6 h; stirring speed, 800 rpm.)

Catalyst	DMF concentra tion (M)	Solvent	T (°C)	Time (h)	X _{DMF} (%) ^a	Y _{PX} (%) ^b	Catalyst stability	Ref.
Cs ₁ H ₂ PW	0.80	1,4-dioxane	250	6	86.8	60.4	stable	This work
			250	8	91.8	64.0	stable	This work
SiO ₂ -SO ₃ H	1.04	n-heptane	250	6	67.0	56.6	~26% activity loss in the next run	1
H ₃ PO ₄ /TiO ₂	0.88	n-dodecane	250	6	80.0	56.8	~20% activity loss in the next run	2
HPA/SiO ₂	1.08	1,4-dioxane	250	6	91.2	80.0	~45% activity loss in the next run	3
WO _X /ZrO ₂	0.80	hexadecane	250	6	60.0	46.0	stable	4
SAA-57	0.73	1,4-dioxane	250	6	90.0	60.0	stable	5
HY	2.35	n-heptane	250	6	95.0	57.0	stable	6
SAPO-34	1.00	n-hexane	250	24	61.4	33.1	stable	7
WO ₃ /SBA-15	1.35	n-heptane	250	24	64.4	51.1	stable	8
H-ZSM-5	3.00	n-octane	250	24	90.0	63.7	stable	9
SA-60	2.35	n-heptane	250	24	96.8	75.0	stable	10
MFI zeolite	2.35	n-heptane	250	9	55.7	39.6	stable	11
			250	24	89.1	75.8	stable	11
NSP-BEA	2.35	n-heptane	250	9	88.4	62.4	stable	12
			250	24	99.3	79.4	stable	12
H-BEA	1.00	n-heptane	250	6	81.5	69.2	stable	13
			250	24	99.0	90.0	stable	13
SnOP	1.04	n-heptane	250	18	99.7	93.0	stable	14

Table S1 A summary of various catalysts for the conversion of DMF and ethylene to PX.

 a $X_{DMF}\!=\!DMF$ conversion; $^bY_{PX}\!=\!PX$ yield.

References

- [1] X. Feng, C. Shen, C. Tian and T. Tan, Ind. Eng. Chem. Res., 2107, 56, 5852-5859.
- [2] H. Kim and J. Jae, Catalysts, 2021, 9, 1074-1085.
- [3] Y. Philip, H. Pandu, Y. Park, D. Jin, H. Lee, J. Ha and J. Jae, Catal. Today, 2107, 293, 167-175.
- [4] D. Wang, C.M. Osmundsen, E. Taarning and J.A. Dumesic, ChemCatChem, 2103, 5, 2044-2050.
- [5] Y.P. Wijaya, D.J. Suh and J. Jae, Catal. Commun., 2015, 70, 12-16.
- [6] P. T. M. Do, J. R. McAtee, D. A, Watson and R. F, Lobo, ACS Catal., 2013, (3), 41-46.
- [7] Z. Gao, Y. Feng, L. Zhang, X. Zeng, Y. Sun, X. Tang, T. Lei and L. Lin, ChemistrySelect, 2020, 5, 2449-2454.
- [8] X. Feng, C. Shen, K. Ji, J. Yin and T. Tan, Catal. Sci. Technol., 2017, 7, 5540-5549.
- [9] J. McGlone, P. Priecel, L. Da Vià and L. Majdal, J.A. Lopez-Sanchez, Catalysts, 2018, 8, 253-270.
- [10] J.S. Lee, S.Y Kim, T.W Kim, S.Y Jeong, C.U. Kim, K.Y Lee and J. Nanosci. Nanotechnology, 2017, 17, 2695-2699.
- [11] J.C. Kim, T.W. Kim, Y. Kim, R. Ryoo, S.Y. Jeong and C.U. Kim, Appl. Catal. B Environ., 2017, 206, 490-500.
- [12] T.W. Kim, S.Y. Kim, J.C. Kim, Y. Kim, R. Ryoo and C.U. Kim, Appl. Catal. B Environ., 2016, 185, 100-109.
- [13] C.C. Chang, S.K. Green, C.L. Williams, P.J. Dauenhauer and W. Fan, Green Chem., 2014, 16, 585-588.
- [14] X. Feng, Z. Cui, K. Ji, C. Shen and T. Tan, Appl. Catal. B Environ., 2019, 259, 118108-118120.