Effect of the length of bromoalkyl chains on lightdriven hydrogen evolution facilitated by fluorenebased polymers

Han-Sheng Sun, ${ }^{\text {ª] }}$ Tien-Liang Tsai, ${ }^{[a]}$ Cheng-Hao Chang, ${ }^{[a]}$ Yen-Yu Chen, ${ }^{[a]}$ Hau-Ren Yang, ${ }^{[a]}$ Jeffrey C.S. Wu, ${ }^{*[b]}$ and Yu-Ying Lai ${ }^{*[a]}$

[a] Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan; [b] Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan

Contents

\qquad
2. Chemical structures of $\mathrm{PF}_{8} \mathrm{BT}$ and PSO ... 3
3. Synthetic schemes.. 3
4. Synthetic details... 5
5. Water contact angle.. 9
6. Photoelectron spectra... 11
7. DFT calculations.. 12
8. Mass spectra .. 16
9. Photocatalytic hydrogen evolution reaction ... 18
10. Comparison of $\mathrm{PF}_{2} \mathrm{SO}$ and $\mathrm{PF}_{2} \mathrm{BT}$ with their analogues in terms of HER rate 21
11. NMR spectra .. 22
12. IR spectra ... 37
13. GPC traces .. 39
14. Reference ... 41

1. General remarks

Materials.

All commercially available chemicals, which were used as received, were purchased from Sigma-Aldrich, Acros Organics, Merck Millipore and Alfa Aesar. 2-Bromoethanol ${ }^{1}$, 2-(2-bromoethoxy)tetrahydro-2H-pyran ${ }^{2}$, 2,7-dibromofluorene ${ }^{3}$, 2,2'-[(2,7-dibromo-9H-fluoren-9-ylidene)bis(2,1-ethanediyloxy)]bis[tetrahydro-2H-pyran] ${ }^{4}$, 2,7-dibromo-9H-fluorene-9,9diethanol ${ }^{4}$, 2,7-dibromo-9,9-bis(6-bromohexyl)-9H-fluorene ${ }^{5}$, 2,2'-[9,9-bis(6-bromohexyl)-9H-fluorene-2,7-diyl]bis[4,4,5,5-tetramethyl-1,3,2-dioxaborolane] ${ }^{6}$, 2,7-dibromo-9fluorenone ${ }^{7}$, 3,7-dibromodibenzothiophene S,S-dioxide ${ }^{8}$, 4,7-dibromo-2,1,3-benzothiadiazole ${ }^{9}$, and phenylboronic acid pinacol ester ${ }^{10}$ were synthesized according to the reported literatures.

Characterization.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR measurements were carried out by using Bruker AVIII HD 400 MHz FTNMR. The FT-IR spectra were recorded by a PerkinElmer Spectrum Two FT-IR spectrometer. Sample pellets were made of polymer and KBr with the ratio of 3 to 100 by weight. The highresolution mass spectra were obtained by a JEOL, JMS-700 Mass Spectrometer via fast atom bombardment method (FAB). The source accelerating voltage was operated at 10 kV with a Xe gun, using 3-nitrobenzyl alcohol (NBA) as matrix. The CHNS elemental analysis was performed by the "Elementar Vario EL cube" elemental analyzer (for NCSH, Germany). Thinfilm UV-Vis absorption spectra were recorded on a Hitachi U-1900 spectrophotometer. HOMO energies were obtained by atmospheric photoelectron spectroscopy (PES) (RIKEN keiki AC2). The LUMO levels were determined from the equation : $\mathrm{LUMO}=E_{g}+$ HOMO. Either thin film was prepared by drop-casting a suspension of 1 mg of polymer in 1 mL of chloroform onto a $2 \mathrm{~cm} \times 2 \mathrm{~cm}$ quartz substrate. Number average molecular mass $\left(M_{\mathrm{n}}\right)$ and dispersity (Ξ) were determined with a $\mathrm{HLC}-8321 \mathrm{GPC} / \mathrm{HT}$ at $160{ }^{\circ} \mathrm{C}$ with $1,2,4$-trichlorobenzene as eluent using

Tosoh Bioscience LLC TSKgel GMHHR-HHT2 mixed-bed columns and narrow molecular weight distribution polystyrene standards. The residual palladium (Pd) concentration was measured by a THERMO-ELEMENT XR inductively coupled plasma-mass spectrometer (ICP-MS). Triethylamine (TEA) and acetonitrile were dehydrated by calcium hydride $\left(\mathrm{CaH}_{2}\right)$ and distilled before use.

2. Chemical structures of $\mathrm{PF}_{8} \mathrm{BT}$ and PSO

Scheme S1. Chemical structures of $\mathbf{P F}_{8} \mathbf{B T}$ and $\mathbf{P S O}$

$\mathrm{PF}_{8} \mathrm{BT}$

PSO

3. Synthetic schemes

Scheme S2. Synthesis of compound $\mathbf{8}$ and 9.

$\mathrm{PdCl}_{2}(\mathrm{dppf}) / \mathrm{KOAc} /$

1,4-Dioxane
$80^{\circ} \mathrm{C} / 24 \mathrm{~h}$

(9)

Scheme S3. Synthesis of compound 10, 11, and 12.

(10)

(11)

(12)

Scheme S4. Synthesis of compound $\mathbf{1 3}$ for end-capping reactions on polymers

4. Synthetic details

Synthesis of 2,7-dibromo-9,9-bis(2-bromoethyl)-9H-fluorene (6).

To a solution of 2,7-dibromo-9H-fluorene-9,9-diethanol ($1.50 \mathrm{~g}, 3.65 \mathrm{mmol}$) and triphenylphosphine ($2.87 \mathrm{~g}, 10.95 \mathrm{mmol}$) in dry dichloromethane (40 mL), carbon tetrabromide ($3.63 \mathrm{~g}, 10.94 \mathrm{mmol}$) was added dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 16 hours at room temperature under nitrogen atmosphere, and extracted with dichloromethane. The organic phase was washed with water and brine serially, and purified by column chromatography (silica gel, hexane : dichloromethane $=6: 1$) to yield 2,7-dibromo-9,9-bis(2-bromoethyl)-9H-fluorene as a white solid ($1.92 \mathrm{~g}, 97.7 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}, δ (ppm)): 7.98-7.97 (d, $J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.86-7.84(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.60(\mathrm{dd}, J=8.1 \mathrm{~Hz}$, $1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.73-2.69(\mathrm{~m}, 4 \mathrm{H}), 2.61-2.57(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}, \delta(\mathrm{ppm})$): $148.07,138.75,131.64,126.12,122.35,121.77,56.03,42.91$, and 26.23. HRMS (m/z, FAB): $[\mathrm{M}]^{+}$calc. for $\mathrm{C}_{17} \mathrm{H}_{14}{ }^{79} \mathrm{Br}_{4}, 533.7829$; found, 533.7828 .

Synthesis of 2,2'-[9,9-bis(2-bromoethyl)-9H-fluorene-2,7-diyl]bis[4,4,5,5-tetramethyl-

1,3,2-dioxaborolane] (7)

A mixture of 2,7-dibromo-9,9-bis(2-bromoethyl)-9H-fluorene ($1.74 \mathrm{~g}, 3.24 \mathrm{mmol}$), $\operatorname{bis}($ pinacolato $)$ diboron $(2.49 \mathrm{~g}, 9.80 \mathrm{mmol}), \mathrm{PdCl}_{2}(\mathrm{dppf})(119.1 \mathrm{mg}, 0.163 \mathrm{mmol})$, potassium acetate ($1.92 \mathrm{~g}, 19.57 \mathrm{mmol}$), and dry 1,4-dioxane (34 mL) was degassed by freeze-pump-thaw cycles 3 times, heated at $80^{\circ} \mathrm{C}$ under nitrogen atmosphere for 24 h , cooled to room temperature, evaporated under vacuum, and extracted with chloroform. The collected organic layer was washed with water and brine sequentially, purified by column chromatography (silica gel, hexane : ethyl acetate $=4: 1$) and recrystallized with ethyl acetate to furnish 2,2'-[9,9-bis(2-bromoethyl)-9H-fluorene-2,7-diyl]bis[4,4,5,5-tetramethyl-1,3,2-dioxaborolane] as a yellowish solid ($1.83 \mathrm{~g}, 89.6 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta(\mathrm{ppm})$): 7.87-7.85 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.81(\mathrm{~s}, 2 \mathrm{H}), 7.74-7.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.70-2.65(\mathrm{~m}, 4 \mathrm{H}), 2.53-2.49(\mathrm{~m}, 4 \mathrm{H}), 1.40(\mathrm{~s}, 24 \mathrm{H})$.

${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}, \delta(\mathrm{ppm})$): $145.99,143.42,134.93,128.68,120.04,84.05,55.78$, 43.02, 27.56, and 24.94. HRMS (m/z, FAB): $[M]^{+}$calc. for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{~B}_{2}{ }^{79} \mathrm{Br}_{2} \mathrm{O}_{4}, 630.1323$; found, 630.1320 .

Polymerization.

Synthesis of fluorene-based Polymers.

The general procedure for synthesizing fluorene-based polymers is described as follows: To a sealed Schlenk flask were loaded dibromo monomer (1 equiv.), diboron ester monomer (1 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (0.05 equiv.), toluene (1 mL), tetrahydrofuran (2 mL), ethanol (0.5 mL), and 2 M potassium carbonate solution ($1.5 \mathrm{~mL}, 17-18$ equiv. of base). The mixture was degassed through freeze-pump-thaw cycles 3 times, stirred vigorously, and heated at $80^{\circ} \mathrm{C}$ under nitrogen atmosphere. After 72 h , the end-capped reagents, phenylboronic acid pinacol ester and bromobenzene, were added and the reaction was continued for 12 hrs . The reaction mixture was cooled to room temperature and reprecipitated in methanol. In regular extraction, the collected solid was purified by Soxhlet extraction using methanol, acetone, hexane, and chloroform as solvent for 24 h , respectively. In extensive extraction, the collected solid was purified by Soxhlet extraction using methanol, acetone, hexane, and chloroform as solvent for 48 h , respectively.
$\mathbf{P F}_{2}$ ($107 \mathrm{mg}, 56.8 \%$), ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta(\mathrm{ppm})$): 7.88-7.37 (br, protons on fluorene moiety, 6 H), 2.84-2.68 (br, $-\mathrm{CH}_{2} \underline{\mathrm{C}}_{2} \mathrm{Br}, 8 \mathrm{H}$). FT-IR (KBr, cm ${ }^{-1}$): 698, 745, 817, 1221, 1257, $1406,1438,1454,1523,1569,1604,2855,2924,2966,3007,3028,3055$. Elem. Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Br}_{2}$ (repeating unit): C 54.00%, $\mathrm{H} 3.73 \%$; found: C $54.93 \%, \mathrm{H} 4.13 \%$.
$\mathbf{P F}_{2} \mathbf{F O}$ ($128 \mathrm{mg}, 38.1 \%$), ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta(\mathrm{ppm})$): 8.05-7.41 (br, protons on aromatic ring, 12 H), 2.77-2.59 (br, $-\mathrm{C}_{\mathbf{H}_{2}} \mathbf{C H}_{2} \mathrm{Br}, 8 \mathrm{H}$). FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 655, 784, 824,1122 ,
$1188,1410,1452,1608,1715,2851,2923,3047$. Elem. Anal. calc. for $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{Br}_{2}$ (repeating unit): C 64.77%, H 3.62\%; found: C 64.60%, H 4.00\%.

PF2SO (110 mg, 30.4\%), ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta(\mathrm{ppm})$): 8.17-7.68 (br, protons on aromatic ring, 12 H), 2.81-2.65 (br, $-\mathrm{C}_{\underline{\boldsymbol{H}}}^{2} \mathrm{C}_{2} \mathrm{Br}, 8 \mathrm{H}$). FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 576, 715, 750, 823, 1050, 1079, 1163, 1302, 1405, 1456, 1597, 2852, 2922, 3034, 3059, 3083. Elem. Anal. calc. for $\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{~S}$ (repeating unit): C 58.80%, H 3.40%, S 5.41 ; found: C $58.89 \%, \mathrm{H} 3.87 \%$, S 4.90\%.
$\mathbf{P F}_{2} \mathbf{B T}$ ($80 \mathrm{mg}, 35.4 \%$), ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta(\mathrm{ppm})$): 8.16-7.41 (br, protons on aromatic ring, 8 H), 2.89-2.75 (br, $-\mathrm{C}_{2} \underline{\mathrm{C}_{2}} \underline{\underline{\boldsymbol{H}}} \mathbf{2} \boldsymbol{B r}, 8 \mathrm{H}$). FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 511, 657, 697, 817, $1220,1256,1418,1459,1544,1604,2851,2919,2962,3008,3028,3053$. Elem. Anal. calc. for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{~S}$ (repeating unit): C 53.93%, H 3.15%, $\mathrm{N} 5.47 \%$, S 6.26 ; found: C $54.46 \%, \mathrm{H}$ 3.48%, N 5.16\%, S 6.19\%.

PF $_{6}$ (174 mg, 50.0\%), ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta(\mathrm{ppm})$): 7.87-7.36 (br, protons on fluorene moiety, 6 H), $3.30-3.29$ (br, $\quad-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}, \quad 4 \mathrm{H}$), 2.15 (br, $\mathrm{C}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}, 4 \mathrm{H}$), 1.70-1.69 (br, $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}, 4 \mathrm{H}$), 1.27 (br, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}, 4 \mathrm{H}$), 1.18 (br, $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}, 4 \mathrm{H}$), 0.84-0.83 (br, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}, 4 \mathrm{H}\right)$. FT-IR (KBr, cm^{-1}): 560, 724, 754, 814, 1255, 1404, 1436, 1456, 1568, 1604, 2852, 2927, 3008, 3023, 3055. Elem. Anal. calc. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{Br}_{2}$ (repeating unit): C 61.24%, H 6.17%; found: C 67.73%, H 6.63%.

PF6SO ($225 \mathrm{mg}, 59.0 \%$), ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta(\mathrm{ppm})$): 8.19-7.35 (br, protons on aromatic ring, 12 H), 3.32-3.29 (br, $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}, 4 \mathrm{H}$), 2.14-2.13 (br, $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}, 4 \mathrm{H}$), 1.70-1.69 (br, $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{\underline{\boldsymbol{H}}}^{2}-\mathrm{CH}_{2} \mathrm{Br}, 4 \mathrm{H}$), 1.24 (br, -
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}, 4 \mathrm{H}$), 1.17 (br, $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{\underline{\boldsymbol{H}}}^{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}, 4 \mathrm{H}$), 0.72 (br, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}, 4 \mathrm{H}\right)$. FT-IR (KBr, cm^{-1}): 577, 716, 750, 816, 1048, 1080, 1157, 1306, 1397, 1431, 1454, 1597, 2851, 2925, 3028, 3053. Elem. Anal. calc. for $\mathrm{C}_{37} \mathrm{H}_{36} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{~S}$ (repeating unit): C 63.08%, H 5.15\%, S 4.55; found: C 64.61%, H 5.37\%, S 4.21%.
5. Water contact angle
PF_{6}

93.5°
$\mathrm{PF}_{6} \mathrm{SO}$

71.6°
$\mathrm{PF}_{2} \mathrm{FO}$
$\mathrm{PF}_{2} \mathrm{BT}$

87.9°

69.0°

92.7°

85.1°

Figure S1. Water contact angles of $\mathbf{P F}_{6}, \mathbf{P F}_{6} \mathbf{S O}, \mathbf{P F}_{2}, \mathbf{P F}_{2} \mathbf{S O}, \mathbf{P F}_{2} \mathbf{F O}$, and $\mathbf{P F}_{2} \mathbf{B T}$.

Figure S2. Water contact angles of $\mathbf{P F}_{6}, \mathbf{P F}_{6} \mathbf{S O}, \mathbf{P F}_{2}, \mathbf{P F}_{2} \mathbf{S O}, \mathbf{P F}_{2} \mathbf{F O}$, and $\mathbf{P F}_{2} \mathbf{B T}$ after treating with TEA.

Table S1. Summary of water contact angles before and after treatment with TEA.

	Original WCA	WCA after treatment with TEA ${ }^{\text {a }}$
$\mathbf{P F}_{6}$	93.5°	87.8°
$\mathbf{P F}_{6} \mathbf{S O}$	71.6°	64.4°
$\mathbf{P F}_{2}$	87.9°	80.5°
$\mathbf{P F}_{2} \mathbf{S O}$	69.0°	63.3°
$\mathbf{P F}_{2} \mathbf{F O}$	92.7°	67.4°
$\mathbf{P F}_{2} \mathbf{B T}$	85.1°	76.5°

${ }^{\text {a}}$ Each polymer thin film was treated with pure TEA. Unreacted TEA was then removed under vacuum.
6. Photoelectron spectra

Figure S3. Atmospheric photoelectron spectra of (a) $\mathbf{P F}_{2}$, (b) $\mathbf{P F}_{2} \mathbf{F O}$, (c) $\mathbf{P F}_{2} \mathbf{S O}$, (d) $\mathbf{P F}_{2} \mathbf{B T}$, (e) PF_{6}, (f) $\mathrm{PF}_{6} \mathbf{S O}$.

7. DFT calculations

Density functional theory (DFT) calculations were performed with the Gaussian09. Molecular fragments of polymers were used to model the polymers. Geometry optimization was carried out at the $\omega \mathrm{B} 97 \mathrm{XD} / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ level of theory with solvation in chloroform by applying the SMD model. The minimum nature of each optimized structure was verified by vibrational analysis. PBE1PBE/6-311G(d,p) was then employed in time-dependent DFT (TDDFT) calculations with solvation in chloroform by applying the SMD model.

Table S2. Calculated excitation wavelength ($\lambda_{\text {calc }}$), oscillator strength, symmetry, and configuration (with largest CI coefficients) of the selected excited states.

compound	$\lambda_{\text {calc }}(\mathrm{nm})$	oscillator strength	symmetry	configuration
PF_{2}	341	2.900	Singlet-A	$\mathrm{H}-1 \rightarrow \mathrm{~L}(70 \%)$
PF2FO	444	0.287	Singlet-A	$\mathrm{H} \rightarrow \mathrm{L}$ (81\%)
	344	2.021	Singlet-A	$\mathrm{H} \rightarrow \mathrm{L}+2$ (77\%)
	294	0.583	Singlet-A	$\mathrm{H}-11 \rightarrow \mathrm{~L}(38 \%)$
PF2SO	372	2.459	Singlet-A	$\mathrm{H} \rightarrow \mathrm{L}(91 \%)$
	311	0.215	Singlet-A	$\mathrm{H} \rightarrow \mathrm{L}+2$ (68\%)
PF ${ }_{2}$ BT	441	0.857	Singlet-A	$\mathrm{H} \rightarrow \mathrm{L}(93 \%)$
	318	0.243	Singlet-A	$\mathrm{H}-2 \rightarrow \mathrm{~L}(59 \%)$

Figure S4. Experimental and calculated UV-Vis spectra. The red lines are experimental data and the black lines are calculated results.

PF_{2}

$\lambda_{\text {calc }}=341 \mathrm{~nm}$
$\mathbf{P F}_{2} \mathrm{FO}$

$\lambda_{\text {calc }}=444 \mathrm{~nm}$
$\mathrm{PF}_{2} \mathrm{SO}$

$\lambda_{\text {calc }}=311 \mathrm{~nm}$
$\lambda_{\text {calc }}=372 \mathrm{~nm}$
$\mathbf{P F}_{2}$ BT

$\lambda_{\text {calc }}=315 \mathrm{~nm}$

$\lambda_{\text {calc }}=318 \mathrm{~nm}$

$\lambda_{\text {calc }}=441 \mathrm{~nm}$

PF6

$\lambda_{\text {calc }}=347 \mathrm{~nm}$
PF6SO

Figure S5. Changes in electron density of selected electronic transitions plotted with isovalue 0.0015 au . Red indicates a decrease in electron density, while green indicates an increase.

8. Mass spectra

Br

8

was detected by electrospray ionization mass spectrometry.

Figure S6. Detection of the formation of tetraalkylammonium group by electrospray ionization mass spectrometry.

	Observed m/z	Int\%	Err[ppm / mmu]			U.S.	Composition			
1	533.7828	18.91	-79.9	1	-42.6	19.0	C24	H9	79 Br 3	
2			-0.2	1	-0. 1	9.0	C17	H14	79 Br 4	
3			-46.7	1	-24.9	20.0	C24	H7	79 Br 2	81 Br
4			+33.0	1	+17.6	10.0	C17	H12	79 Br 3	318 Br
5			-93.3	1	-49.8	31.0	C31	81 B		
6			-13.6	/	-7. 2	21.0	C24	H5	79 Br 8	81 Br 2
7			+66.1	1	+35.3	11.0	C17	H10	79 Br 2	$281 B r 2$
8			+19.6	/	+10.5	22.0	C24	H3	81 Br 3	
9			-76.6	/	-40.9	5.0	C16	H2O	79 Br	81 Br 3
10			-43.5	,	-23.2	6.0	C16	H18	81 Br 4	

1.0- C29 H38 79Br2 O4
1.0- C29 H38 79Br2 O4
2 632.1277 100.00 -4.0/ -2.5 11.0 C29 H38 79Br 81Br 04 B2
2 632.1277 100.00 -4.0/ -2.5 11.0 C29 H38 79Br 81Br 04 B2
633.1284 72.92
633.1284 72.92

Figure S7. High resolution mass spectra of (a) 2,7-dibromo-9,9-bis(2-bromoethyl)-9Hfluorene (6) and (b) 2,2'-[9,9-bis(2-bromoethyl)-9H-fluorene-2,7-diyl]bis[4,4,5,5-tetramethyl-1,3,2-dioxaborolane] (7)

9. Photocatalytic hydrogen evolution reaction

Each photocatalytic hydrogen evolution reaction was performed in a sealed glass reactor (50 mL). Polymer (5 mg) and a solution (25 mL) of triethylamine (TEA)/methanol $(\mathrm{MeOH}) /$ deionized water $\left(\mathrm{H}_{2} \mathrm{O}\right)(1 / 1 / 1(\mathrm{v} / \mathrm{v} / \mathrm{v}))$ was added into the reactor. The mixture was stirred rapidly and purged with argon (Ar) for 15 minutes. Subsequently, the reaction system was irradiated by a 300W Xenon lamp (model 66902) equipped with an AM 1.5G filter (solar simulator: PEC-11, Peccel Technologies, Inc., Kanagawa, Japan). After 4 h , the amount of produced hydrogen was analyzed by a gas chromatograph (GC) with a thermal conductivity detector (TCD). The calibration curve based on the ideal gas law was established by using certified $0.3 \mathrm{vol} \% \mathrm{H}_{2} / \mathrm{Ar}$ mixture gas. The rate of hydrogen evolution is expressed in moles per gram of polymer and per hour.

(e)

(f)

(g)

Figure S8. Time course of hydrogen evolution for all polymers.

Figure S9. Hydrogen production by $\mathbf{P F}_{2} \mathbf{S O}$ over a period of 12 hours in cycles of 2 hours each.

Figure S10. Plotting the average HER rate against the WCA for all polymers including $\mathbf{P F}_{2} \mathbf{S O}$.
10. Comparison of $\mathrm{PF}_{2} \mathrm{SO}$ and $\mathrm{PF}_{2} \mathrm{BT}$ with their analogues in terms of HER rate

$3.26 \mathrm{mmol} \mathrm{g}^{-1} \mathrm{~h}^{-1},{ }^{11}$

$\underline{5.04 \mathrm{mmol} \mathrm{g}^{-1} \mathrm{~h}^{-1},{ }^{13}}$
$42.05 \mathrm{mmol} \mathrm{g}^{-1} \mathrm{~h}^{-1}$

$\mathrm{PF}_{8} \mathrm{BT}$

$1.49 \mathrm{mmol} \mathrm{g}^{-1} \mathrm{~h}^{-1},{ }^{12}$

$\mathrm{PF}_{2} \mathrm{BT}$
$0.18 \mathrm{mmol} \mathrm{g}^{-1} \mathrm{~h}^{-1},{ }^{14}$
$0.15 \mathrm{mmol} \mathrm{g}^{-1} \mathrm{~h}^{-1}$

Figure S11. Comparison of $\mathbf{P F}_{2} \mathbf{S O}$ and $\mathbf{P F}_{2} \mathbf{B T}$ with their analogues in terms of HER rate.

11. NMR spectra

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum of 2-bromoethanol (1) in CDCl_{3}.

Figure S13. ${ }^{13} \mathrm{C}$ NMR spectrum of 2-bromoethanol (1) in CDCl_{3}.

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of 2-(2-bromoethoxy)tetrahydro-2H-pyran (2) in CDCl_{3}.

๗ัֹ

Figure S15. ${ }^{13} \mathrm{C}$ NMR spectrum of 2-(2-bromoethoxy)tetrahydro-2H-pyran (2) in CDCl_{3}.

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum of 2,7-dibromofluorene (3) in CDCl_{3}.

Figure S17. ${ }^{13} \mathrm{C}$ NMR spectrum of 2,7-dibromofluorene (3) in CDCl_{3}.

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of 2,2'-[(2,7-dibromo-9H-fluoren-9-ylidene)bis(2,1-ethanediyloxy)]bis[tetrahydro-2H-pyran] (4) in CDCl_{3}

Figure S19. ${ }^{13} \mathrm{C}$ NMR spectrum of 2,2'-[(2,7-dibromo-9H-fluoren-9-ylidene)bis(2,1-ethanediyloxy)]bis[tetrahydro-2H-pyran] (4) in CDCl_{3}.

Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum of 2,7-dibromo-9H-fluorene-9,9-diethanol (5) in CDCl_{3}.

Figure S21. ${ }^{13} \mathrm{C}$ NMR spectrum of 2,7-dibromo-9H-fluorene-9,9-diethanol (5) in CDCl_{3}.

Figure S22. ${ }^{1} \mathrm{H}$ NMR spectrum of 2,7-dibromo-9,9-bis(2-bromoethyl)-9H-fluorene (6) in DMSO- d_{6}.

Figure S23. ${ }^{13} \mathrm{C}$ NMR spectrum of 2,7-dibromo-9,9-bis(2-bromoethyl)-9H-fluorene (6) in CDCl_{3}.

\qquad

Figure S24. ${ }^{1} \mathrm{H}$ NMR spectrum of 2,2'-[9,9-bis(2-bromoethyl)-9H-fluorene-2,7-diyl]bis[4,4,5,5-tetramethyl-1,3,2-dioxaborolane] (7) in CDCl_{3}.

Figure S25. ${ }^{13} \mathrm{C}$ NMR spectrum of 2,2'-[9,9-bis(2-bromoethyl)-9H-fluorene-2,7-diyl]bis[4,4,5,5-tetramethyl-1,3,2-dioxaborolane] (7) in CDCl_{3}.

Figure S26. ${ }^{1} \mathrm{H}$ NMR spectrum of 2,7-dibromo-9,9-bis(6-bromohexyl)-9H-fluorene (8) in CDCl_{3}.

Figure S27. ${ }^{13}$ C NMR spectrum of 2,7-dibromo-9,9-bis(6-bromohexyl)-9H-fluorene (8) in CDCl_{3}.

Figure S28. ${ }^{1} \mathrm{H}$ NMR spectrum of 2,2'-[9,9-bis(6-bromohexyl)-9H-fluorene-2,7-diyl]bis[4,4,5,5-tetramethyl-1,3,2-dioxaborolane] (9) in CDCl_{3}.

Figure S29. ${ }^{13} \mathrm{C}$ NMR spectrum of 2,2'-[9,9-bis(6-bromohexyl)-9H-fluorene-2,7-diyl]bis[4,4,5,5-tetramethyl-1,3,2-dioxaborolane] (9) in CDCl_{3}.

Figure S30. ${ }^{1} \mathrm{H}$ NMR spectrum of 2,7-dibromo-9-fluorenone (10) in CDCl_{3}.

Figure S31. ${ }^{13} \mathrm{C}$ NMR spectrum of 2,7-dibromo-9-fluorenone (10) in CDCl_{3}.

Figure S32. ${ }^{1} \mathrm{H}$ NMR spectrum of 3,7-dibromodibenzothiophene S, S-dioxide (11) in CDCl_{3}.

Figure S33. ${ }^{13} \mathrm{C}$ NMR spectrum of 3,7-dibromodibenzothiophene S, S-dioxide (11) in CDCl_{3}.
-

Figure S34. ${ }^{1} \mathrm{H}$ NMR spectrum of 4,7-dibromo-2,1,3-benzothiadiazole (12) in CDCl_{3}.

Figure S35. ${ }^{13} \mathrm{C}$ NMR spectrum of 4,7-dibromo-2,1,3-benzothiadiazole (12) in CDCl_{3}.

Figure S36. ${ }^{1} \mathrm{H}$ NMR spectrum of phenylboronic acid pinacol ester in CDCl_{3}.

Figure S37. ${ }^{13} \mathrm{C}$ NMR spectrum of phenylboronic acid pinacol ester in CDCl_{3}.

Figure S38. ${ }^{1} \mathrm{H}$ NMR spectra of (a) $\mathbf{P F} 2$, (b) $\mathbf{P F} \mathbf{2} \mathbf{F O}$, (c) $\mathbf{P F} \mathbf{2} \mathbf{S O}$, and (d) $\mathbf{P} \mathbf{F}_{2} \mathbf{B T}$.

Figure S39. ${ }^{1} \mathrm{H}$ NMR spectra (a) $\mathbf{P F}_{6}$ and (b) PF6SO.

12. IR spectra

$\mathbf{P F}_{2}$, FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 698, 745, 817 (aromatic sp2 C-H out-of-plane bending); 1221, 1257 (alkyl C-H wagging, (-CH2Br)); 1406, 1438, 1454, 1523, 1569, 1604 (aromatic C-C stretching (in ring)); 2855, 2924, 2966 (alkyl sp3 C-H stretching); 3007, 3028, 3055 (aromatic sp2 C-H stretching).

PF2FO, FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 655, 784, 824 (aromatic sp ${ }^{2}$ C-H out-of-plane bending); 1122, 1188 (alkyl C-H wagging, (- $\mathrm{CH}_{2} \mathrm{Br}$)); 1410, 1452, 1608 (aromatic C-C stretching (in ring)); 1715 ($\mathrm{C}=\mathrm{O}$ stretching); 2851, 2923 (alkyl sp ${ }^{3} \mathrm{C}-\mathrm{H}$ stretching); 3047 (aromatic $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ stretching). $\mathbf{P F}_{2} \mathbf{S O}$, FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 576 (alkyl C-Br stretching, $\left(-\mathrm{CH}_{2} \mathrm{Br}\right)$); $715,750,823$ (aromatic sp^{2} C-H out-of-plane bending); 1050, 1079 (alkyl C-H wagging, ($-\mathrm{CH}_{2} \mathrm{Br}$)); 1163 (symmetric $\mathrm{S}=\mathrm{O}$ stretching); 1302 (asymmetric $\mathrm{S}=\mathrm{O}$ stretching); 1405, 1456, 1597 (aromatic C-C stretching (in ring)); 2852, 2922 (alkyl sp ${ }^{3}$ C-H stretching); 3034, 3059, 3083 (aromatic $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ stretching). PF 2 BT, FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 511 (alkyl C-Br stretching, $\left(-\mathrm{CH}_{2} \mathrm{Br}\right)$); 657, 697, 817 (aromatic sp ${ }^{2}$ C-H out-of-plane bending); 1220, 1256 (alkyl C-H wagging, ($-\mathrm{CH}_{2} \mathrm{Br}$)); 1418, 1459, 1544, 1604 (aromatic C-C stretching (in ring)); 2851, 2919, 2962 (alkyl sp ${ }^{3}$ C-H stretching); 3008,

3028, 3053 (aromatic $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ stretching).
Figure S40. FT-IR spectra of $\mathbf{P F}_{2}, \mathbf{P F}_{2} \mathbf{F O}, \mathbf{P F}_{2} \mathbf{S O}$, and $\mathbf{P F}_{2} \mathbf{B T}$.

PF6, FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 560$ (alkyl C-Br stretching, $\left(-\mathrm{CH}_{2} \mathrm{Br}\right)$); 724, 754, 814 (aromatic sp ${ }^{2} \mathrm{C}$ H out-of-plane bending); 1255 (alkyl C-H wagging, ($-\mathrm{CH}_{2} \mathrm{Br}$)); 1404, 1436, 1456, 1568, 1604 (aromatic C-C stretching (in ring)); 2852, 2927 (alkyl sp ${ }^{3}$ C-H stretching); 3008, 3023, 3055 (aromatic $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ stretching).

PF6SO, FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 577 (alkyl C-Br stretching, $\left(-\mathrm{CH}_{2} \mathrm{Br}\right)$); 716, 750, 816 (aromatic sp^{2} C-H out-of-plane bending); 1048, 1080 (alkyl C-H wagging, ($-\mathrm{CH}_{2} \mathrm{Br}$)); 1157 (symmetric $\mathrm{S}=\mathrm{O}$ stretching); 1306 (asymmetric $\mathrm{S}=\mathrm{O}$ stretching); 1397, 1431, 1454, 1597 (aromatic C-C stretching (in ring)); 2851, 2925 (alkyl sp ${ }^{3}$ C-H stretching); 3028, 3053 (aromatic $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ stretching).

Figure S41. FT-IR spectra of PF_{6} and $\mathrm{PF}_{6} \mathbf{S O}$.

13. GPC traces

(a) $\mathbf{P F}_{2}$

(b) PF_{6}

(c) $\mathrm{PF}_{6} \mathrm{SO}$
[Differential]
(d) $\mathbf{P F}_{2} \mathbf{B T}$
[Differential]
[Integral]

(e) $\mathrm{PF}_{2} \mathrm{FO}$
[Differential]

14. Reference

1 S. Ranganathan, D. Ranganathan and S. K. Singh, Tetrahedron Lett., 1987, 28, 28932894.
J. A. Murphy, M. Mahesh, G. McPheators, R. V. Anand, T. M. McGuire, R. Carling and A. R. Kennedy, Org. Lett., 2007, 9, 3233-3236.
D. W. Price and J. M. Tour, Tetrahedron, 2003, 59, 3131-3156.
J. Lee, H.-J. Cho, B.-J. Jung, N. S. Cho and H.-K. Shim, Macromolecules, 2004, 37, 85238529.
D. Stay and M. C. Lonergan, Macromolecules, 2013, 46, 4361-4369.
B. Liu and S. K. Dishari, Chem. Eur. J., 2008, 14, 7366-7375.
D. M. E. Freeman, A. J. Musser, J. M. Frost, H. L. Stern, A. K. Forster, K. J. Fallon, A. G. Rapidis, F. Cacialli, I. McCulloch, T. M. Clarke, R. H. Friend and H. Bronstein, J. Am. Chem. Soc., 2017, 139, 11073-11080.
A. Liang, M. Luo, Y. Liu, H. Wang, Z. Wang, X. Zheng, T. Cao, D. Liu, Y. Zhang and F. Huang, Dyes Pigm, 2018, 159, 637-645.
H. Akpınar, A. Balan, D. Baran, E. K. Ünver and L. Toppare, Polymer, 2010, 51, 61236131.
D. C. Gerbino, S. D. Mandolesi, H.-G. Schmalz and J. C. Podestá, Eur. J. Org. Chem., 2009, 2009, 3964-3972.
11 M. Sachs, R. S. Sprick, D. Pearce, S. A. J. Hillman, A. Monti, A. A. Y. Guilbert, N. J. Brownbill, S. Dimitrov, X. Shi, F. Blanc, M. A. Zwijnenburg, J. Nelson, J. R. Durrant and A. I. Cooper, Nat. Commun., 2018, 9, 4968.

12 R. S. Sprick, B. Bonillo, R. Clowes, P. Guiglion, N. J. Brownbill, B. J. Slater, F. Blanc, M. A. Zwijnenburg, D. J. Adams and A. I. Cooper, Angew. Chem. Int. Ed., 2018, 57, 2520-2520. C. Dai, S. Xu, W. Liu, X. Gong, M. Panahandeh-Fard, Z. Liu, D. Zhang, C. Xue, K. P. Loh and B. Liu, Small, 2018, 14, 1801839.
14 J. Kosco, M. Sachs, R. Godin, M. Kirkus, L. Francas, M. Bidwell, M. Qureshi, D. Anjum, J. R. Durrant and I. McCulloch, Adv. Energy Mater., 2018, 8, 1802181.

