Supplementary information for

Facile Synthesis and Characterization of γ-Al₂O₃ Loaded on Reduced Graphene Oxide for Electrochemical Reduction of CO₂

Balaji B. Mulik,^{a,d} Balasaheb D. Bankar,^b Ajay V. Munde,^a Ankush V. Biradar,^{b*} Tewodros Asefa,^{e,f*} and Bhaskar R. Sathe^{a,c*}

^a Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, Maharashtra, India

^b Inorganic Material and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India

^c Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, Maharashtra, India

^d University Department of Basic and Applied Science (Chemistry), MGM University, Aurangabad 431003, Maharashtra, India

^e Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ, 08854, USA

^f Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA

E-mail: ankush@csmcri.res.in; tasefa@chem.rutgers.edu; bhaskarsathe@gmail.com

Content of Supporting Information

- 1. Particle size distribution curve
- 2. ICP-MS of Al₂O₃-rGO nanocomposite materials
- 3. The equivalence circuit and values of electrochemical resistances at electrified interfaces during CO₂ reduction reactions over various electrocatalysts
- 4. High pressure liquid chromatography (HPLC) data
- Bulk electrolysis (i-t) of rGO under CO₂ saturated solution for 3600 sec. at -0.934 V vs RHE and respective FE-39% observed for rGO electrocatalyst
- 6. Faradaic efficiency (FE), along with error bars, for the formation of formate during of electrocatalytic CO₂ reduction reaction over Al₂O₃-rGO hybrid electrocatalyst
- 7. A table of data comparing the catalytic activities of the materials reported herein with those taken from the literature.

Figure S1. Particle size distribution curve for Al_2O_3 particles on rGO. The curve demonstrates that the average particle size of Al_2O_3 on rGO is in the range of 8 to 12 nm.

Concentrations IBYO9/22 04:38:37 PM			QTEGRA		
Instrument Name Serial ICAP RQ Undef	Number				
LabBook REO NO 2385 2388 2401	LabBook Path	Ia/Worksnace/LabBooks/2022/09 September 2022			
Labeook REQ NO 2385 2388 2401.	LabBook Path mexp _Application D	ta/Workspace/LabBooks/2022/09 September 2022			
LabBook REQ NO 2385 2388 2401. Analysis index: 29	LabBook Path imexp _Application D Analysis started at:	talWorkspaceLabBooks12022/09 September 2022			
LebBook REQ NO 2385 2388 2401.J Analysis index: 29 Analysis label: A 2	LebBook Path imexpApplication D Analysis started at: User name:	ta/Workspace/LabBooks/2022/09 September 2022 08/09/22 02:12:25 PM ADMINTH-HKUUMBR(Administrator			
LebBook REQ NO 2385 2388 2401. Analysis index: 29 Analysis label: A 2	LabBook Path imexp _Application D Analysis started at: User name:	ta/Workspace/LabBooks/2022/09 September 2022 08/09/22 02:12:25 PM ADMINTH-HKUUMBR/Administrator			
LabBook REQ NO 2385 2388 2401. Analysis index: 29 Analysis label: A 2 Galegory	LabBook Path imexp _Application D Analysis started at: User name: 27AI (KED) 0.387 sees	talWorkspace\LabBooks\2022/09 September 2022 08/09/22 02:12:25 PM ADMINTH-HKUUMBR\Administrator			
LebBook REQ NO 2385 2388 2401. Analysis index: 29 Analysis label: A 2 Gategory Concentration average	LabBook Path imexpApplication D Analysis started at: User name: 27AI (KED) 0.387 opm 0.387 opm	talWorkspacelLabBooks/2022/09 September 2022 08/09/22 02-12-25 PM ADMINTH-HKUUMBR/Administrator			
Le3Book REQ NO 2385 2388 2401.: Analysis index: 29 Analysis label: A 2 Gategory Concentration average Concentration average	LabBook Path imexpApplication D Analysis started at: User name: 27AI (KED) 0.387 ppm 0.398 ppm 0.398 ppm	ta/Workspace/LabBooks/2022/09 September 2022 08/09/22 02:12:25 PM ADMINTH-HKUUMBR/Administrator			
LEBBOK REQ NO 2385 2388 2401. Analysis index: 29 Analysis label: A 2 Category Concentration per Run 1 Concentration per Run 1 Concentration per Run 2	LebBook Path mexp _Application D Analysis started at: User name: 27AI (KED) 0.387 ppm 0.376 ppm 0.376 ppm 0.376 ppm 0.386 ppm 0.386 ppm	talWorkspaceLabBooks1202209 September 2022 08/09/22 02:12:25 PM ADMINTH-HKUUMBR\Administrator			

Figure S2. The amount of Al in Al_2O_3 -rGO nanocomposite materials as determined by ICP-MS. The result shows that the amount of Al on rGO surface is 2.8 wt.%.

Figure S3. The equivalence circuit model corresponding to the impedance spectra and the values of resistances at electrified interfaces during CO_2 reduction reactions over: (a) bare GC electrode, (b) AI_2O_3 NPs-modified GC electrode, (c) rGO-modified GC electrode and (d) AI_2O_3 -rGO hybrid nanomaterial-modified GC electrode. The results are obtained using their EIS plots.

Figure S4. HPLC analysis data of the bulk electrolysis products indicating the formation of formate. The results show the products formed from the reactions that are run (a) at a potential of -0.434V vs. RHE, showing 0.01 mM formate; (b) at -0.54 V vs. RHE, showing 0.025 mM; (c) at -0.64 V vs RHE, showing 0.031mM; (d) -0.734 V vs. RHE, showing 0.040 mM formate; and (e) at -0.934 V vs. RHE, showing 1.269 mM formate. (f) The standard calibration curve obtained with known amounts of formate is included for comparison with experimental data. In the figures, a.u represents arbitrary unit.

Figure S5. Bulk electrolysis (a) (i-t) curve for the CO_2RR over rGO as electrocatalyst in CO_2 saturated solution for 3600 s at -0.934 V vs RHE. (b) Confirmation of the formation of formate product using HPLC data.(c) The value of FE is obtained to be 39 % for CO_2RR rGO electrocatalyst in 3600 s at -0.934 V vs RHE,

Figure. S6. Faradaic Efficiency (FE) values along with error bars for the formation of formate (red rows) as a major product during electrocatalysis of CO_2 reduction reaction over Al_2O_3 -rGO hybrid electrocatalyst.

Table S1. Comparison of the activity of the catalyst reported in the present work with notable electrocatalysts reported in the literature. The electrocatalytic conditions, electrolyte, and potential observed for reduction, Faradic efficiency, references, etc. are also listed.

Sr.	Electrocatalytic System	Electrolyte	Cathodic	Faradaic	Ref.
No			Potential	Efficiency (FE %)	
1.	Carbon-supported Bi nanoparticles	0.5 M KHCO ₃	-1.5 V vs. AgCl/Ag	93 %	1
2.	Carbon black supported SnO ₂	1.0 M KOH	-1.43 V vs. RHE	80%	2
3.	Sn-In bimetallic electrodes.	0.1 M KHCO ₃	-1.6 V vs. Ag/AgCl,	88%	3
4.	Copper (I) oxide nanoparticles	0.5 M KHCO ₃	-0.8 V vs RHE	66%	4
5.	Sn-based gas diffusion electrode prepared by Sn on Nafion-bonded carbon black	0.5 M KHCO₃	-0.5 V vs. RHE	73.01%	5
6.	SnO_2 supported by γ -Al ₂ O ₃	0.1 M KHCO ₃	-0.95 V vs. RHE	65 %	6
7.	γ -Al ₂ O ₃ decorated reduced graphene oxide (rGO)	0.5 M KHCO ₃	-0.934 V vs. RHE	91.20 %	Present Work

References

- 1. B. Avila-Bolivar, L. García-Cruz, V. Montiel, J.Solla-Gullon, *Molecules.*, 2019, 24, 1-15.
- 2. H. Xiang, H. A. Miller, M. Bellini, H. Christensen, K. Scott, S. Rasula, H. E.Yu, *Sustain. Energ. Fuels.*, 2020, **4**, 277-284.
- 3. F. Li, H. Zhang, S. Ji, W. Liu, D. Zhang, C. Zhang, J. Yang, F. Yang, L. Lei, *Int. J. Electrochem. Sci.*, 2019, **14**, 4161-4172.
- 4. X. Zhu, K. Gupta, M. Bersani, J. A. Darr, P. R. Shearing, D. J. L. Brett, *Electrochimica Acta.*, 2018, **283**, 1037-1044.
- 5. Q. Wang, X. Wang, C. Wu, Sci. Rep., 2017, 7, 13711.
- Y. E. Kim, W. Lee, M. H. Youn, S. K. Jeong, H. J. Kim, J. C. Park K. T. Park, J. Ind. Eng. Chem., 2019, 78, 73-78.