## **Supplementary Material**

## MOFs-derived carbon coated Cu<sub>3</sub>P with Ni doping as advanced supercapacitor

## electrode materials

Xuan He<sup>a,</sup> Yuhong Jin<sup>b\*</sup>, Miao Jia<sup>c</sup>, Mengqiu Jia<sup>a\*</sup>, Hao Wang<sup>b</sup>, Muhammad Imran<sup>d</sup>

<sup>a</sup>Beijing Key Laboratory of Electrochemical Process and Technology for Materials,

Beijing University of Chemical Technology, Beijing 100029, China

<sup>b</sup>Key Laboratory for New Functional Materials of Ministry of Education, Institution of

Advanced Energy Materials and Devices, Faculty of Materials and Manufacturing,

Beijing University of Technology, Beijing 100124, PR China

°College of Chemistry and Materials Engineering, Beijing Technology and Business

University, Beijing 100048, P. R. China.

<sup>d</sup>Department of Chemistry, Faculty of Science, King Khalid University, PO Box 9004, Abha, 61413, Saudi Arabia

- Fig. S1. XRD patterns of Cu-MOF.
- Fig. S2. XRD patterns of Cu@C.
- Fig. S3. XRD of Cu<sub>3</sub>P/C-5%Ni, Cu<sub>3</sub>P/C-10%Ni and Cu<sub>3</sub>P/C-15%Ni.
- Fig. S4. SEM image of Cu<sub>3</sub>P/C-6%Ni at high magnification.
- Fig. S5. SEM images of (a) Cu-MOF-3%Ni; (b) Cu-MOF-4%Ni; (c) Cu-MOF-5%Ni;
- (d) Cu-MOF-6%Ni; (e) Cu-MOF-10%Ni; (f) Cu-MOF-15%Ni.

Fig. S6. SEM images of (a) Cu/C; (b) Cu/C-3%Ni; (c) Cu/C-4%Ni; (d) Cu/C-5%Ni; (e) Cu/C-6%Ni; (f) Cu/C-10%Ni; (g) Cu/C-15%Ni.

Fig. S7. SEM images of (a) Cu<sub>3</sub>P/C-3%Ni; (b) Cu<sub>3</sub>P/C-4%Ni; (c) Cu<sub>3</sub>P/C-5%Ni; (d) Cu<sub>3</sub>P/C-10%Ni; (e) Cu<sub>3</sub>P/C-15%Ni.

- Fig. S8. SEM images of the product by direct phosphorization of Cu-MOF.
- Fig. S9. EDS mapping of Cu, P, N and C elements for Cu<sub>3</sub>P/C.

Fig. S10. CV curves of (a) Cu<sub>3</sub>P/C; (b) Cu<sub>3</sub>P/C-3%Ni; (c) Cu<sub>3</sub>P/C-4%Ni; (d) Cu<sub>3</sub>P/C-

5%Ni; (e) Cu<sub>3</sub>P/C-10%Ni and (f) Cu<sub>3</sub>P/C-15%Ni electrode at different scan rates.

Table S1. Specific capacitances of the Cu<sub>3</sub>P-based electrodes at different scan rates.

Fig. S11. GCD curves of (a) Cu<sub>3</sub>P/C; (b) Cu<sub>3</sub>P/C-3%Ni; (c) Cu<sub>3</sub>P/C-4%Ni; (d) Cu<sub>3</sub>P/C-

5%Ni; (e) Cu<sub>3</sub>P/C-10%Ni and (f) Cu<sub>3</sub>P/C-15%Ni electrode at different current densities.

Table S2. Specific discharge capacitance of Cu<sub>3</sub>P-based electrodes.

Fig. S12. EIS plots of Cu<sub>3</sub>P-based-samples.

Fig. S13. EIS plots of initial and after 10000 cycles, inset shows the equivalent circuit and enlarged section.



Fig. S1. XRD patterns of Cu-MOF.



Fig. S2. XRD patterns of Cu@C.



Fig. S3. XRD of Cu<sub>3</sub>P/C-5%Ni, Cu<sub>3</sub>P/C-10%Ni and Cu<sub>3</sub>P/C-15%Ni

The samples doped with Ni show the diffraction peak of  $Ni_2P$  corresponding to the crystal plane.



Fig. S4. SEM image of  $Cu_3P/C-6\%Ni$  at high magnification.



Fig. S5. SEM images of (a) Cu-MOF-3%Ni; (b) Cu-MOF-4%Ni; (c) Cu-MOF-5%Ni; (d) Cu-MOF-6%Ni; (e) Cu-MOF-10%Ni; (f) Cu-MOF-15%Ni.



Fig. S6. SEM images of (a) Cu/C; (b) Cu<sub>3</sub>P/C-3% Ni; (c) Cu<sub>3</sub>P/C-4% Ni; (d) Cu<sub>3</sub>P/C-5%Ni; (e) Cu<sub>3</sub>P/C-6%Ni; (f) Cu<sub>3</sub>P/C-10% Ni; (g) Cu<sub>3</sub>P/C-15% Ni.



Fig. S7. SEM images of (a) Cu<sub>3</sub>P/C-3% Ni; (b) Cu<sub>3</sub>P/C-4% Ni; (c) Cu<sub>3</sub>P/C-5% Ni; (d) Cu<sub>3</sub>P/C-10%Ni; (e) Cu<sub>3</sub>P/C-15%Ni.

The Cu-MOF-based precursors all showed smooth surfaces, while nanoparticles gathered on the surfaces after carbonization and phosphorization.



Fig. S8. SEM images of the product by direct phosphorization of Cu-MOF.



Fig. S9. EDS mapping of Cu, P, N and C elements for Cu<sub>3</sub>P/C.



Fig. S10. CV curves of (a) Cu<sub>3</sub>P/C; (b) Cu<sub>3</sub>P/C-3% Ni; (c) Cu<sub>3</sub>P/C-4%; (d) Cu<sub>3</sub>P/C-5%; (e) Cu<sub>3</sub>P/C-10% and (f) Cu<sub>3</sub>P/C-15% electrode at different scan rates.

| Specific capacitance | 5 mV s <sup>-</sup> | 10 mV           | 20 mV           | 30 mV           | 50 mV           | 80 mV           | 100 mV |
|----------------------|---------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------|
| (C g-1)              | 1                   | S <sup>-1</sup> | S      |
| Cu <sub>3</sub> P/C  | 353.6               | 235.3           | 204.1           | 191.5           | 173.6           | 155.3           | 131.2  |
| Cu <sub>3</sub> P/C- | 394.0               | 267.0           | 227.7           | 210.0           | 188.8           | 168.0           | 157.9  |
| 3% Ni                |                     |                 |                 |                 |                 |                 |        |
| Cu <sub>3</sub> P/C- | 562.6               | 397.0           | 320.0           | 279.5           | 235.0           | 200.0           | 184.9  |
| 4% Ni                |                     |                 |                 |                 |                 |                 |        |
| Cu <sub>3</sub> P/C- | 694.0               | 441.4           | 347.5           | 303.8           | 257.5           | 220.6           | 204.8  |
| 5% Ni                |                     |                 |                 |                 |                 |                 |        |
| Cu <sub>3</sub> P/C- | 700.0               | 561.0           | 465.0           | 410.6           | 346.0           | 291.9           | 264.8  |
| 6% Ni                |                     |                 |                 |                 |                 |                 |        |
| Cu <sub>3</sub> P/C- | 534.0               | 437.2           | 368.9           | 328.6           | 272.2           | 215.4           | 188.0  |
| 10% Ni               | 554.0               | HJ1.4           | 500.9           | 528.0           | 212.2           | 213.7           | 100.0  |
| Cu <sub>3</sub> P/C- | 382 3               | 304.0           | 255 7           | 231.8           | 202.5           | 173 5           | 158 1  |
| 15% Ni               | 562.5               | 504.0           | 255.1           | 231.0           | 202.3           | 1/3.3           | 1.50.1 |

Table S1. Specific capacitances of the Cu<sub>3</sub>P-based electrodes at different scan rates.



Fig. S11. GCD curves of (a)  $Cu_3P/C$ ; (b)  $Cu_3P/C-3\%$  Ni; (c)  $Cu_3P/C-4\%$ ; (d)  $Cu_3P/C-5\%$ ; (e)  $Cu_3P/C-10\%$  and (f)  $Cu_3P/C-15\%$  electrode at different current densities.

| Specific                       |                    |                     |                     |                      |                      |
|--------------------------------|--------------------|---------------------|---------------------|----------------------|----------------------|
| capacitance                    | 1A g <sup>-1</sup> | 2 A g <sup>-1</sup> | 5 A g <sup>-1</sup> | 10 A g <sup>-1</sup> | 20 A g <sup>-1</sup> |
| (C g <sup>-1</sup> )           |                    |                     |                     |                      |                      |
| Cu <sub>3</sub> P/C            | 81.8               | 77.6                | 68.5                | 58                   | 48                   |
| Cu <sub>3</sub> P/C-3%<br>Ni   | 99.1               | 90.4                | 77.5                | 65                   | 52                   |
| Cu <sub>3</sub> P/C-4%<br>Ni   | 196                | 164.8               | 124.5               | 94                   | 68                   |
| Cu <sub>3</sub> P/C-5%<br>Ni   | 211.7              | 177                 | 135.5               | 104                  | 78                   |
| Cu <sub>3</sub> P/C-6%<br>Ni   | 283.8              | 232.2               | 173.5               | 134                  | 98                   |
| Cu <sub>3</sub> P/C-<br>10% Ni | 186.2              | 171                 | 138                 | 105                  | 62                   |
| Cu <sub>3</sub> P/C-<br>15% Ni | 123.9              | 104.8               | 85                  | 69                   | 52                   |

Table S2. Specific discharge capacitance of Cu<sub>3</sub>P-based electrodes.



Fig. S12. EIS plots of Cu<sub>3</sub>P-based-samples.



Fig. S13. EIS plots of initial and after 10000 cycles, inset shows the equivalent circuit and enlarged section.

Reference:

[S1] J. Lin, C. Zeng, X. Lin, C. Xu, C.-Y. Su, CNT-Assembled Octahedron Carbon-Encapsulated Cu<sub>3</sub>P/Cu Heterostructure by In Situ MOF-Derived Engineering for Superior Lithium Storage: Investigations by Experimental Implementation and First-Principles Calculation, Adv. Sci 7 (2020)