Supporting information

Preparation of Ni-Fe-based transition metal phosphide as efficient electrocatalyst for the oxygen evolution reaction

Huanhuan Tang,[‡]^a Yufan Qi,[‡]^a Danning Feng,^a Yangyang Chen,^a Liying Liu,^a Lei Hao,^a Kefen Yue,^{*a} Dongshen Li, ^{*b} and Yaoyu Wang^a

^{a.} College of Chemistry and Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, People's Republic of China.

Email: ykflyy@nwu.edu.cn

^{b.} Dong-Sheng Li

College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, No. 8, Daxue Road, Yichang, 443002, China. Email:lidongsheng1@126.com

Fig. S1 FT-IR spectra of Ni₂P-Fe₂P/NF and Ni-Fe PBA/NF.

Fig. S2 TGA curve of Ni-Fe PBA precursor measured under a $N_{\rm 2}$ atmosphere.

Fig. S3 EDX spectrum and corresponding elemental compositions of the Ni₂P- Fe_2P/NF .

Fig. S5 Under different conditions, the LSV curves and Tafel slopes of mixed-metal phosphides.

Fig. S6 The cyclic voltammograms (CVs) measurements with various scan rates for (a) NF, (b) Ni(OH)₂/NF, (c) Ni-Fe PBA/NF, (d)Ni₂P-Fe₂P/NF.

Fig. S7 The XRD patterns of fresh sample and sample after OER.

Fig. S8 The high resolution XPS of Ni 2p before (down) and after (up) OER test.

Fig. S9 The high resolution XPS of P 2p before (down) and after (up) OER test.

Fig. S10 The high resolution XPS of Fe 2p before (down) and after (up) OER test.

Fig. S11 The SEM images of (a,b)bare NF, (c,d) Ni₂P-Fe₂P/NF and (e,f) Ni₂P-Fe₂P/NF after OER test.

Table S1 Average mass loading of catalysts on NF substrates.

Samples	Mass loading (mg cm ⁻²)
Ni(OH)2/NF	3.19
Ni-Fe PBA/NF	2.02
Ni ₂ P-Fe ₂ P/NF	2.63

Table S2 The simulated series resistance (R_s) and charge transfer resistance(R_{ct}) values based on the fitting models.

Samples	<i>R</i> s (Ω)	$R_{ m ct}\left(\Omega ight)$
NF	1.258	5.68
Ni(OH) ₂ /NF	1.276	5.50
Ni-Fe PBA/NF	1.497	1.18
Ni ₂ P-Fe ₂ P/NF	1.288	0.23

Table S3 The activity comparison of PBA precursors on the surface of NF forOER in 1.0 M KOH solution.

Catalysis	Electrolyte	Overpotential	Tafel slope	Ref
Ni ₂ P-Fe ₂ P/NF	1 M KOH	222 mV	40.9 mV dec ⁻¹	This
		100 mA cm ⁻²		work
NiFeP@NiP@NF	1 M KOH	252 mV	56 mV dec ⁻¹	1
		100 mA cm ⁻²		
NiFe2O4@NPNiFePB	1 M KOH	304 mV	80 mV dec ⁻¹	2
A/NF		100 mA cm ⁻²		
Ni(OH)2@Ni3S2/NF	1 M KOH	210 mV	62.0 mV dec ⁻¹	3
		100 mA cm ⁻²		
NiSe ₂ /CoSe/NF	1 M KOH	270 mV	69.77 mV dec ⁻¹	4
		100 mA cm ⁻²		
Ni-Fe-P@NC/NF	1 M KOH	245 mV	81.0 mV dec⁻¹	5
		100 mA·cm⁻²		
(Mo, Fe)P ₂ O ₇ @NF	1 M KOH	250 mV	40.0 mV dec-1	6
		100 mA cm ⁻²		
NiFeP _x /NF	1 M KOH	258 mV	29 mV dec ⁻¹	7
		100 mA cm ⁻²		
FeCoNi-LDH/NF	1.0 M KOH	230 mV	45.76 mV dec ⁻¹	8

	+ 0.5 M	100 mA cm ⁻²		
	urea			
FeCoNiN/NF	1 M KOH	267 mV	60mV dec ⁻¹	9
		50 mA cm ⁻²		
Ni ₃ S ₂ @MIL-	1 М КОН	236 mV	14.8 mV dec ⁻¹	10
53(NiFeCo)/NF		50 mA cm ⁻²		
MOF CoFeP	1 М КОН	140 mV	40 mV dec ⁻¹	11
		50 mA cm ⁻²		
NiFeP@NC/NF	1 M KOH	286 mV	69 mV dec ⁻¹	12
		20 mA cm ⁻²		
Ru–MnFeP/NF	1 M KOH	191 mV	69 mV dec ⁻¹	13
		20 mA cm ⁻²		
PBA-SMo /NF-10 h	1 M KOH	252 mV	64 mV dec ⁻¹	14
		20 mA cm ⁻²		
CuFe-P/NF	1 M KOH	231 mV	63.0 mV dec ⁻¹	15
		10 mA cm ⁻²		
Fe-CoP/NF	1 M KOH	190 mV	92 mV dec ⁻¹	16
		10 mA cm ⁻²		
NixCo _{3-x} O ₄ /NF	1 M KOH	287 mV	88 mV dec ⁻¹	17
		10 mA cm ⁻²		
CoFePBA@NiCoFe-	1 M KOH	228 mV	36 mV dec ⁻¹	18
LTH/NF		10 mA cm ⁻²		
(NiCo)₂P/NF	1 M KOH	162 mV	135 mV dec ⁻¹	19
		10 mA cm ⁻²		

References

- 1 F. Diao, W. Huang, G. Ctistis, H. Wackerbarth, Y. Yang, P. Si, J. Zhang, X. Xiao and C. Engelbrekt, *ACS Appl Mater Interfaces*, 2021, **13**, 23702-23713.
- 2 X. Zhang, I. U. Khan, S. Huo, Y. Zhao, B. Liang, K. Li and H. Wang, *Electrochimica Acta*, 2020, **363**, 137221.

- 3 X. Chen, L. Yang, Y. Huang, S. Ge, H. Zhang, Y. Cui, A. Huang and Z. Xiao, *Chem. Eur. J*, 2020, **26**, 1111-1116.
- 4 J. Zhang, L. Jin, P. Gu, L. Hu, D. Chen, J. He, Q. Xu and J. Lu, *ACS Appl. Nano Mater*, 2021, **4**, 12407-12414.
- 5 Y. Wang, S. Zhao, Y. Zhu, R. Qiu, T. Gengenbach, Y. Liu, L. Zu, H. Mao, H. Wang, J. Tang, D. Zhao and C. Selomulya, *iScience*, 2020, **23**, 100761.
- 6 J. Wang, J. Huang, S. Zhao, I. P. Parkin, Z. Tian, F. Lai, T. Liu and G. He, *Green Energy Environ*, 2022, **02**, 014.
- X. Y. Zhang, B. Y. Guo, X. Y. Chen, L. Zhao, B. Dong, M. Yang, J. F. Yu, L. Wang,
 C. G. Liu and Y. M. Chai, *Mater. Today Energy*, 2020, **17**, 100468.
- 8 B. Yuan, F. Sun, C. Li, W. Huang and Y. Lin, *Electrochim. Acta*, 2019, **313**, 91-98.
- 9 Z. Wang, S. Jiao, B. Wang, Y. Kang, W. Yin, X. Lv, Q. Zhang, Z. Zhang, Y. Chen and G. Pang, *Int. J. Hydrog. Energy*, 2021, **46**, 8345-8355.
- 10 B. Yuan, C. Li, L. Guan, K. Li and Y. Lin, *J. Power Sources*, 2020, **451**, 227295.
- 11 A. Muthurasu, G. P. Ojha, M. Lee and H. Y. Kim, *J. Phys. Chem. C*, 2020, **124**, 14465-14476.
- 12 R. Yue, Z. Mo, C. Shuai, S. He, W. Liu, G. Liu, Y. Du, Q. Dong, J. Ding, X. Zhu, N. Liu and R. Guo, *J. Electroanal. Chem*, 2022, **918**, 116427.
- 13 D. Chen, Z. Pu, R. Lu, P. Ji, P. Wang, J. Zhu, C. Lin, H. W. Li, X. Zhou, Z. Hu, F. Xia, J. Wu and S. Mu, *Adv. Energy Mater*, 2020, **10**, 2000814.
- 14 C. Zhang, J. Chen, J. Zhang, Y. Luo, Y. Chen, Y. Xue, Y. Yan, Y. Jiao, G. Wang and R. Wang, *J Colloid Interface Sci*, 2022, **607**, 967-977.
- 15 X. Xing, Y. Song, W. Jiang and X. Zhang, *Sustain. Energy Fuels*, 2020, **4**, 3985-3991.
- 16 L. M. Cao, Y. W. Hu, S. F. Tang, A. Iljin, J. W. Wang, Z. M. Zhang and T. B. Lu, *Adv Sci*, 2018, **5**, 1800949.
- 17 Y. Shen, S. G. Guo, F. Du, X. B. Yuan, Y. Zhang, J. Hu, Q. Shen, W. Luo, A. Alsaedi,
 T. Hayat, G. Wen, G. L. Li, Y. Zhou and Z. Zou, *Nanoscale*, 2019, **11**, 11765-11773.
- 18 T. Wang, Q. Pang, B. Li, Y. Chen and J. Z. Zhang, *Appl. Phys. Lett*, 2021, **118**, 233903.
- 19 G. Yan, X. Zhang and L. Xiao, J Mater Sci, 2019, 54, 7087-7095.