# Free-standing P-doped Fe<sub>2</sub>O<sub>3</sub>/ZnO nanotubes as a bifunctional electrocatalyst for electrochemical water splitting

Pratap M. Ganje<sup>1</sup>, Harshad A. Bandal\*, Hern Kim\*

Department of Energy Science and Technology, Environmental Waste Recycle Institute,

Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea E-mail address: hernkim@mju.ac.kr (H. Kim)

# **Electronic Supporting Information**

This electronic supplementary Information (ESI) shows the detailed explanation for preparation method of electrocatalyst and characterization methods.

## SM.1 Preparation of RuO<sub>2</sub> electrode:

The RuO<sub>2</sub>-supported nickel foam (NF) electrode was prepared using the standard drop casting process. The first back side of the NF (0.5 X 1.5 cm) was covered with epoxy glue to prevent the percolation of catalyst ink from the surface of NF and minimize the contribution of bare NF. The upper part of this NF was covered with epoxy glue in such a way that only (0.5 X 0.5 cm) area of NF was exposed with 10  $\mu$ L catalyst ink consisting of 2.8 mg RuO<sub>2</sub>, 10  $\mu$ L Nafion (5 wt% in IPA), and 90  $\mu$ L NMP dropped dried on the exposed surface of NF to afford an overall catalyst loading of ~1.1 mg cm<sup>-2</sup>.

# SM.2 Characterization of electrocatalyst:

XRD spectra were collected using a powder X-ray diffractometer (X pert MPD diffractometer) using CuKα radiation. The sample morphology was observed using a field-emission scanning electron microscope coupled with an energy dispersive X-ray spectrometer (FE-SEM-EDX, Hitachi S-3500 N, Japan) and transmission electron microscopy (TEM, Japan JEOL-3010)

equipped with EDS operated at an accelerating voltage of 300 kV. The Raman spectra were recorded using a high-resolution Raman spectrometer (Raman Spectroscope 8228). The Fe, P, Zn, and O element state was analyzed by X-ray photoelectron spectroscopy (XPS, Thermo Electron) using Mg Kα radiation.

#### SM.3 Double Layer Capacitance (DLC) measurement:

By using 1 M KOH electrolyte solution the electrochemical available surface area (ECSA) of all the electrocatalysts was derived from the double-layered capacitance (Cdl) values based on cyclic voltammetry. The electrocatalyst was covered with an epoxy glue limited area. The cyclic voltammograms were recorded in a non-Faradic region (-0.25 to -0.30 V vs. Hg/HgO) at various scan rates of 10, 20, 30, 40, and 50 mV/s. A linear trend has been seen when comparing the difference in current density (j) between the anodic and cathodic sweeps at 0.65 V vs. Hg/HgO against the scan rate. The slope of the line that fit was twice as steep as the Cdl.

## SM.4 Estimation of electrochemical surface area:

Then, the electrochemical surface area (ECSA) has been calculated by following equation.

$$ECSA = \frac{Cdl}{Cs}$$
(1)

The Cs is the specific capacitance, and the value of Cs is 0.04 mF cm<sup>-2</sup><sup>1</sup>.

#### SM.5 Mott-Schottky calculation:

The flat band potential ( $V_{fb}$ ) is calculated from the intercept of the MS plot on the X-axis while the Donor density ( $N_d$ ) and Debye radius ( $L_D$ ) were calculated using the following equations.

$$\frac{1}{C^2} = \frac{2}{eA^2 N_D \varepsilon \varepsilon_o} \left( V - V_{fb} - \frac{KT}{e} \right)$$
(1)

$$N_{D} = \frac{2}{\varepsilon \varepsilon_{\circ} A^{2} e \times Slope}$$
(2)  

$$L_{D} = \sqrt{\left(\frac{\varepsilon \varepsilon_{\circ} KT}{2e^{2} N_{D}}\right)}$$
(3)  

$$V_{fb} = intercept - \left(\frac{KT}{e}\right)$$
(4)

Where,  $\varepsilon$  is the dielectric constant (12),  $\varepsilon_0$  is vacuum permittivity (8.854 x 10<sup>-12</sup> F m<sup>-1</sup>), A is the BET surface area (Fig. S18), and K is the Boltzmann constant, and T is the temperature (298 ° kelvin), e is the electronic charge (1.602 x 10<sup>-19</sup> coulombs).



Fig S 1 photographs of (a) nickel foam, (b) ZnO treatment, (c) Fe ZnO, (d) FO-P2



Fig S 2 XPS survey spectra of FO-P2



Fig S 3 EPR spectra of FO-P2



Fig S 4 (a) X-ray diffraction spectra of FO-N2, (b) Raman spectra of FO-N2



**Fig S 5** XPS analysis of FO-N2; (a) High resolution Fe 2p spectra, (b) High resolution O 1s spectra (c) High resolution N 1s spectra, (d) High resolution Zn 2p spectra.



Fig S 6 SEM image of FO-N2 (a-c), elemental mapping of Fe, O, Zn, N elements (d-g), EDX Mapping of elements



Fig S 7 LSV of samples collected after different phosphorization time



Fig S 8 CV curve collected for the measurement of DLC of different catalyst (a) FO-P2, (b) FO-N2, (C) Fe-ZnO, (d) ZnO



Fig S 9 ECSA of different catalyst



Fig S 10 LSV curve of different catalysts normalized with respect to ECSA



Fig S 11 Comparison between Fe2p region of XPS spectra of FO-P2 and FO-N2



Fig S 12 LSV curve normalized with respect to ECSA



Fig S 13 Dependence of HER activity on phosphorization time



Fig S 14 SEM image of FO-P2 collected after HER



Fig S 15 (a,b) SEM images of FO-P2 after OER, (c, d) TEM images of FO-P2 after OER



**Fig S 16** XPS analysis of FO-P2 (comparison between before and after water splitting reaction); (a) High resolution Fe 2p spectra, (b) High resolution O 1s spectra (c) High resolution P 2p spectra, (d) High resolution Zn 2p spectra.





Fig S 18 BET surface area analysis of different catalysts (a) FO-P2, (b) FO-N2, (c) Fe-ZnO, (d) ZnO

| Sr. No | Electrocatalyst                          | Electrolyte | η value at 10       | Tafel slope          | Reference |
|--------|------------------------------------------|-------------|---------------------|----------------------|-----------|
|        |                                          | OER         | mA cm <sup>-2</sup> | mV/dec <sup>-2</sup> |           |
| 1      | P-Fe <sub>2</sub> O <sub>3</sub> -0.45   | 1 M KOH     | 270 mV              | 72.1                 | 3         |
| 2      | P-Co <sub>3</sub> O <sub>4</sub>         | 1 M KOH     | 280 mV              | 51.6                 | 4         |
| 3      | Fe-P@CP                                  | 1 M KOH     | 290 mV              | 63.6                 | 5         |
| 4      | ZnO/FeOOH/NF                             | 1 M KOH     | 301 mV              | 50.0                 | 6         |
| 5      | Fe CoO-NF                                | 1 M KOH     | 244 mV              | 57.0                 | 7         |
| 6      | Ni CoFeP/C                               | 1 M KOH     | 270 mV              | 65.0                 | 8         |
| 7      | Fe <sub>2</sub> O <sub>3</sub> /CNT      | 1 M KOH     | 383 mV              | 68.0                 | 9         |
| 8      | FeP-FePxOy                               | 1 M KOH     | 280 mV              | 48.0                 | 10        |
| 9      | Fe-NiO-Ni                                | 1 M KOH     | 245 mV              | 43.4                 | 11        |
| 10     | FO 800                                   | 1 M KOH     | 330 mv              | 52                   | 12        |
| 11     | Co <sub>0.20</sub> Fe <sub>0.80</sub>    | 1 M KOH     | 383 mv              | 40                   | 13        |
| 12     | $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> | 1 M KOH     | 317 mv              | 58.5                 | 14        |
| 13     | Fe/Fe3C-F@CNT                            | 1 M KOH     | 286 mv              | 49                   | 15        |
| 14     | c-Fe <sub>2</sub> O <sub>3</sub>         | 1 M KOH     | 650 mv              | 56                   | 16        |
| 15     | Hm                                       | 1 M KOH     | 280 mv              | 43                   | 17        |
| 16     | CoPO/NF                                  | 1 M KOH     | 116 mV              | 65.6                 | 18        |
| 17     | Fe1Co1-ONS                               | 1 M KOH     | 350 mV              | 36.8                 | 19        |
| 18     | FO - N2                                  | 1 M KOH     | 299 mV              | 61.0                 | This work |
| 19     | FO – P2                                  | 1 M KOH     | 240 mV              | 40.0                 | This work |

**Table. S1** Performance comparison of FO-P2 with other reported materials in previous literature towards OER application.

| Electrodes                                  | FO - P2 | FO - N2  | Fe - ZnO | ZnO      |
|---------------------------------------------|---------|----------|----------|----------|
| R <sub>S</sub> (ohm)                        | 2.96    | 2.227    | 2.339    | 2.203    |
| R <sub>1</sub> (ohm)                        | 6.176   | 73.933   | 86.66    | 185.102  |
| $Qy_1$ (S s <sup>n</sup> cm <sup>-2</sup> ) | 0.18429 | 0.004958 | 0.019185 | 0.009141 |
| Qa <sub>1</sub>                             | 0.30338 | 0.685676 | 0.609204 | 0.649575 |
| $R_2(ohm)$                                  | 3.828   | 30.964   | 6.747    | 34.1     |
| $Qy_2$ (S s <sup>n</sup> cm <sup>-2</sup> ) | 0.02145 | 0.017521 | 0.009962 | 0.004496 |
| Qa <sub>2</sub>                             | 0.86911 | 0.996524 | 1.025    | 0.775505 |

Table. S2 Value of different parameters obtained by fitting EIS data in an equivalent circuit.

| Catalyst | Slope    | N <sub>D</sub>             | L <sub>D</sub> | $V_{fb}$    |
|----------|----------|----------------------------|----------------|-------------|
| FO-P2    | 16.77585 | 7.88396 X 10 <sup>23</sup> | 3.2867E-09     | 0.250177515 |
| FO-N2    | 71.2438  | 1.00136E+22                | 2.91634E-08    | 0.281897515 |
| Fe-ZnO   | 64.01017 | 9.30673E+21                | 3.02506E-08    | 0.292807515 |

 Table. S3 Values of different parameters obtained MS analysis.

| Sr. No | Electrocatalyst                           | Electrolyte | η value at 10       | Tafel slope | Reference |
|--------|-------------------------------------------|-------------|---------------------|-------------|-----------|
|        |                                           | HER         | mA cm <sup>-2</sup> | mV/dec-2    |           |
| 1      | P-Co <sub>3</sub> O <sub>4</sub>          | 1 M KOH     | 120 mV              | 52.0        | 4         |
| 2      | Fe-P/Ti                                   | 1 M KOH     | 95 mV               | -           | 20        |
| 3      | Fe-P                                      | 1 M KOH     | 194 mV              | 75.0        | 21        |
| 4      | Fe CoO-NF                                 | 1 M KOH     | 205 mV              | 118.0       | 7         |
| 5      | Ni CoFeP/C                                | 1 M KOH     | 149 mV              | 89.0        | 8         |
| 6      | Ni-Fe <sub>2</sub> O <sub>3</sub>         | 1 M KOH     | 310 mV              |             | 22        |
| 7      | Ni-FeP/C                                  | 1 M KOH     | 95 mV               | 72          | 23        |
| 8      | N-FeP                                     | 1 M KOH     | 226 mV              | 84.8        | 24        |
| 9      | NiCoFeP                                   | 1 M KOH     | 131 mV              | 56          | 25        |
| 10     | Mn-FeP                                    | 1 M KOH     | 173 mV              | 95          | 26        |
| 11     | Vc-FeP                                    | 1 M KOH     | 108 mV              | 62          | 27        |
| 12     | Ni-Fe-P                                   | 1 M KOH     | 142 mV              | 84.24       | 28        |
| 13     | Ni-Fe/NF                                  | 1 M KOH     | 142 mV              | 133.3       | 29        |
| 14     | Co-Fe-P                                   | 1 M KOH     | 73 mV               | 44          | 30        |
| 15     | Co <sub>0.75</sub> Fe <sub>0.25</sub> -NC | 1 M KOH     | 202 mV              | 67.96       | 31        |
| 16     | Co <sub>0.59</sub> Fe <sub>0.41</sub> P   | 1 M KOH     | 92 mV               | 72          | 32        |
| 17     | Ni <sub>2</sub> P nanosheets              | 1 M KOH     | 168 mV              | 63          | 13        |
| 18     | Fe <sup>3+</sup> Ni@NCF                   | 1 M KOH     | 219 mV              | 109.9       | 33        |
| 19     | FO - N2                                   | 1 M KOH     | 312 mV              | 315         | This work |
| 20     | FO – P2                                   | 1 M KOH     | 139 mV              | 104         | This work |

**Table. S4** Performance comparison of FO-P2 with other reported materials in previous literature towards HER application.

# **Reference:**

- C. C. L. McCrory, S. Jung, J. C. Peters and T. F. Jaramillo, *J. Am. Chem. Soc.*, 2013, 135, 16977–16987.
- A. Banerjee, V. Aravindan, S. Bhatnagar, D. Mhamane, S. Madhavi and S. Ogale, *Nano Energy*, 2013, 2, 890–896.
- 3 Y. L. Tong, B. Q. Chi, D. L. Qi and W. Zhang, *RSC Adv.*, 2021, **11**, 1233–1240.
- 4 Z. Xiao, Y. Wang, Y.-C. Huang, Z. Wei, C.-L. Dong, J. Ma, S. Shen, Y. Li and S. Wang, *Energy Environ. Sci.*, 2017, **10**, 2563–2569.
- 5 D. Xiong, X. Wang, W. Li and L. Liu, *Chem. Commun.*, 2016, **52**, 8711–8714.
- L. Zhang, H. Li, B. Yang, N. Han, Y. Wang, Z. Zhang, Y. Zhou, D. Chen and Y. Gao, J.
   Solid State Electrochem., 2020, 24, 905–914.
- H. A. Bandal, A. R. Jadhav, A. H. Tamboli and H. Kim, *Electrochim. Acta*, 2017, 249, 253–262.
- X. Wei, Y. Zhang, H. He, L. Peng, S. Xiao, S. Yao and P. Xiao, *Chem. Commun.*, 2019, 55, 10896–10899.
- H. A. Bandal, A. R. Jadhav, A. A. Chaugule, W. J. Chung and H. Kim, *Electrochim. Acta*, 2016, 222, 1316–1325.
- 10 J. Xu, D. Xiong, I. Amorim and L. Liu, ACS Appl. Nano Mater., 2018, 1, 617–624.
- 11 Y. Lei, T. Xu, S. Ye, L. Zheng, P. Liao, W. Xiong, J. Hu, Y. Wang, J. Wang, X. Ren, C.

He, Q. Zhang, J. Liu and X. Sun, Appl. Catal. B Environ., 2021, 285, 119809.

- 12 H. A. Bandal, A. A. Pawar and H. Kim, *Electrochim. Acta*, 2022, **422**, 140545.
- D. Inohara, H. Maruyama, Y. Kakihara, H. Kurokawa and M. Nakayama, ACS Omega, 2018, 3, 7840–7845.
- 14 H. Wu, T. Yang, Y. Du, L. Shen and G. W. Ho, *Adv. Mater.*, 2018, **30**, 1–9.
- T. Gao, C. Zhou, Y. Zhang, Z. Jin, H. Yuan and D. Xiao, J. Mater. Chem. A, 2018, 6, 21577–21584.
- W. L. Kwong, C. C. Lee, A. Shchukarev, E. Björn and J. Messinger, *J. Catal.*, 2018, 365, 29–35.
- B. Mohanty, Y. Wei, M. Ghorbani-Asl, A. V. Krasheninnikov, P. Rajput and B. K. Jena,
   *J. Mater. Chem. A*, 2020, 8, 6709–6716.
- 18 Y. Liu, D. Yang, Z. Liu and J. H. Yang, J. Power Sources, 2020, 461, 228165.
- L. Zhuang, L. Ge, Y. Yang, M. Li, Y. Jia, X. Yao and Z. Zhu, *Adv. Mater.*, 2017, 29, 1606793.
- X. Zhao, Z. Zhang, X. Cao, J. Hu, X. Wu, A. Y. R. Ng, G. P. Lu and Z. Chen, *Appl. Catal. B Environ.*, 2020, 260, 118156.
- 21 C. Y. Son, I. H. Kwak, Y. R. Lim and J. Park, *Chem. Commun.*, 2016, **52**, 2819–2822.
- L. Zeng, K. Zhou, L. Yang, G. Du, L. Liu and W. Zhou, *ACS Appl. Energy Mater.*, 2018, 1, 6279–6287.
- 23 S. Xu, H. Zhao, T. Li, J. Liang, S. Lu, G. Chen, S. Gao, A. M. Asiri, Q. Wu and X. Sun,

J. Mater. Chem. A, 2020, 8, 19729–19745.

- J. Huang, J. Han, T. Wu, K. Feng, T. Yao, X. Wang, S. Liu, J. Zhong, Z. Zhang, Y.
   Zhang and B. Song, ACS Energy Lett., 2019, 3002–3010.
- 25 Z. Ge, B. Fu, J. Zhao, X. Li, B. Ma and Y. Chen, J. Mater. Sci., 2020, 55, 14081–14104.
- M. Wang, Y. Tuo, X. Li, Q. Hua, F. Du and L. Jiang, ACS Sustain. Chem. Eng., 2019, 7, 12419–12427.
- J. Duan, S. Chen, C. A. Ortíz-Ledón, M. Jaroniec and S. Qiao, Angew. Chem. Int. Ed.
   Engl., 2020, 59, 8181–8186.
- 28 Z. Ma, R. Li, M. Wang, H. Meng, F. Zhang, X. Q. Bao, B. Tang and X. Wang, *Electrochim. Acta*, 2016, 219, 194–203.
- 29 Z. Zhang, Y. Wu and D. Zhang, Int. J. Hydrogen Energy, 2022, 47, 1425–1434.
- 30 H. Kim, S. Oh, E. Cho and H. Kwon, ACS Sustain. Chem. Eng., 2018, 6, 6305–6311.
- 31 X. Feng, X. Bo and L. Guo, J. Power Sources, 2018, 389, 249–259.
- 32 X. Wen and J. Guan, *Appl. Mater. Today*, 2019, **16**, 146–168.
- 33 Z. Zhang, L. Cong, Z. Yu, L. Qu and W. Huang, *Mater. Today Energy*, 2020, 16, 100387.