Supporting information

Hydrangea-like nanosheets of Co(OH)2@NiFe-LDH/NF as

efficient electrocatalyst for oxygen evolution reactions

Yufan Qi, ‡^a Huanhuan Tang, ‡^a Weijie Zhou,^a Liying Liu,^a Yangyang Chen,^a Lei Hao,^a Kefen Yue,^{*a} Dongshen Li,^{*b} Yaoyu Wang^a

^{a.} College of Chemistry and Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, People's Republic of China.

*Ke-fen Yue Email: <u>ykflyy@nwu.edu.cn</u>

^{b.} College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, No. 8, Daxue Road, Yichang, 443002, China.

*Dong-Sheng Li Email: lidongsheng1@126.com

Fig. S1 (a, b) SEM images of bare NF skeleton at low and high magnification.

Fig. S2 The photos of bare NF, NiFe-LDH/NF and Co(OH)_2@NiFe-LDH/NF.

Fig. S3 EDS mapping images of the of Co(OH)₂@NiFe-LDH/NF.

Fig. S4 SEM images of (a, b) Co(OH)₂/NF at low and high magnification, (c) NiFe-LDH/NF and (d) Co(OH)₂@NiFe-LDH/NF.

Fig. S5 FT-IR spectra of NiFe-LDH/NF and Co(OH)₂@NiFe-LDH/NF.

Table. S1 The simulated series resistance (R_s) and charge transfer resistance (R_{ct}) values based on the fitting models.

Samples	<i>R</i> s (Ω)	$R_{ ext{ct}}(\Omega)$	
bare NF	1.293	76.57	
Co(OH)₂/NF	1.367	11.13	
NiFe-LDH/NF	1.413	1.08	
Co(OH)₂@NiFe-LDH /NF	1.325	0.63	

Fig. S6 Cyclic voltammograms of (a) bare NF, (b) Co(OH)₂/NF, (c) NiFe-LDH/NF and (d) Co(OH)₂@NiFe-LDH/NF with different scan rates.

Fig. S7 XRD patterns of Co(OH)₂@NiFe-LDH/NF before and after OER testing.

Fig. S8 SEM images of after OER testing.

Fig. S9 TEM images of Co(OH)₂@NiFe-LDH/NF after OER testing.

Fig. S10 XPS spectra of Co(OH)₂@NiFe-LDH/NF before and after OER test.

Fig. S11 EDS of $Co(OH)_2@NiFe-LDH/NF$ (a) before and (b) after OER test.

Fig. S12 a-e (Left) and f-j (Right) Polarization curves and Tafel plots of different conditions.

Table. S2 A comparison of the catalytic OER performance of recently reported catalysts in 1 M KOH solution.

Catalysts	Electrolyte	J / (mA m ⁻²)	η _i / (mV)	Ref
Co(OH)₂@NiFe-LDH/NF	1М КОН	50 100	209 229	This work
NiSe@CoFe LDH/NF	1M KOH	100	236	1
Ni-Fe-W LDH/NF	1M KOH	100	247	2
NiFeCoP/NF	1М КОН	100	244.2	3
FeOOH/NiFe/NF	1М КОН	100	290	4
NiCoP@NiMn LDH/NF	1M KOH	100	293	5
NiFe-60/Co ₃ O ₄ @NF	1M KOH	50	221	6
cMOF/LDH	1M KOH	50	217	7
CoMoP/NiFe-LDH/NF	1M KOH	50	225	8
NiFe-LDH-Vo@NiCu	1M KOH	50	244	9
Nb-NiFe-LDH	1M KOH	50	242	10
NiFe-PO _x /NF	1M KOH	50	247	11
Ni_3S_2 -NiFe LDHs /NF	1M KOH	50	230	12
CoO@NiFe-LDH/NF	1М КОН	20	225	13
Ru/NiFe LDH-F/NF	1М КОН	10	230	14
NiFeMn-LDH	1М КОН	10	310	15
CoFeV LDH/NF	1M KOH	10	242	16
CoO-Co₄N@NiFe-LDH	1М КОН	10	231	17

References

- 1. F. Nie, Z. Li, X. Dai, X. Yin, Y. Gan, Z. Yang, B. Wu, Z. Ren, Y. Cao and W. Song, *Chem. Eng. J.*, 2022, **431**, 134080.
- L. Wu, L. Yu, F. Zhang, D. Wang, D. Luo, S. Song, C. Yuan, A. Karim, S. Chen and Z. Ren, J. Mater. Chem. A, 2020, 8, 8096-8103.
- 3. J. Cen, L. Wu, Y. Zeng, A. Ali, Y. Zhu and P. K. Shen, *ChemCatChem*, 2021, **13**, 4602-4609.
- 4. J. Chi, H. Yu, G. Jiang, J. Jia, B. Qin, B. Yi and Z. Shao, J. Mater. Chem. A, 2018, 6, 3397-3401.
- P. Wang, J. Qi, X. Chen, C. Li, W. Li, T. Wang and C. Liang, ACS Appl. Mater. Interfaces, 2019, 12, 4385-4395.
- J. Lv, L. W, R. Li, K. Zhang, D. Zhao, Y. Li, X. Li, X. Huang, and G. Wang, ACS Catal., 2021, 11, 14338-14351.
- 7. Y. Wang, L. Yan, K. Dastafkan, C. Zhao, X. Zhao, Y. Xue, J. Huo, S. Li and Q. Zhai, *Adv. Mater*, 2021, **33**, e2006351.
- W. Mai, Q. Cui, Z. Zhang, K. Zhang, G. Li, L. Tian and W. Hu, ACS Appl. Energy Mater., 2020, 3, 8075-8085.
- 9. H. Su, J. Jiang, N. Li, Y. Gao and L. Ge, *Chem. Eng. J.*, 2022, **446**, 137226.
- 10. Y. Zhou, F. Wang, S. Dou, Z. Shi, B. Dong, W. Yu, H. Zhao, F. Wang, J. Yu and Y. Chai, *Chem. Eng. J.*, 2022, **427**, 131643.
- 11. S. Song, J. Zang, S. Zhou, H. Gao, X. Tian, Y. Yuan, W. Li and Y. Wang, *Electrochim. Acta*, 2021, **392**, 138996.
- 12. S. Wu, S. Liu, X. Tan, W. Zhang, K. Cadien and Z. Li, *Chem. Eng. J.*, 2022, **442**, 136105.
- 13. Z. Wang, J. Zhang, Q. Yu, H. Yang, X. Chen, X. Yuan, K. Huang and X. Xiong, *Chem. Eng. J.*, 2021, **410**, 130123.
- 14. Y. Wang, P. Zheng, M. Li, Y. Li, X. Zhang, J. Chen, X. Fang, Y. Liu, X. Yuan, X. Dai and H. Wang, *Nanoscale*, 2020, **12**, 9669-9679.
- 15. Z. Lu, L. Qian, Y. Tian, Y. Li, X. Sun and X. Duan, *Chem. Commun. (Camb)*, 2016, **52**, 908-911.
- 16. Y. Hu, Z. Wang, W. Liu, L. Xu, M. Guan, Y. Huang, Y. Zhao, J. Bao and H. Li, *ACS Sustain. Chem. Eng.*, 2019, **7**, 16828-16834.
- 17. B. Chen, M. Humayun, Y. Li, H. Zhang, H. Sun, Y. Wu and C. Wang, *ACS Sustain. Chem. Eng.*, 2021, **9**, 14180-14192.